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Abstract—In this paper the attitude tracking control problem
of a 2 degrees-of-freedom helicopter system with network induced
constraints is studied. A predictor feedback control law is
developed to compensate a known delay in the communica-
tion, where the inputs are quantized before transmitted over
the network. Stability of the closed-loop system is established,
where tracking is achieved with bounded tracking errors due
to the network issues. The developed predictor-based controller
is experimentally tested on the helicopter system, where we
demonstrate that tracking is achieved in presence of both input
delay and quantization.

Index Terms—Attitude control, quantization, delay

I. INTRODUCTION

Air vehicles such as unmanned aerial vehicles (UAVs) and
helicopters provide great accessibility and have a wide range
of applications such as transport, search and rescue, inspection,
monitoring and photography. Unmanned aircraft are controlled
by a human operator from ground or fully autonomously
by electronic systems, where remote controlled systems are
sensitive to time delays and also the sampling and quantization
of signals before transmitted in the communication network
affect the performance of such systems.

For an attitude tracking control problem where signals are
sent through a network, both quantization and delay have
impact on the tracking performance. Quantization naturally
exists in networked control systems (NCSs), where a quantizer
can be considered as a devise that converts a continuous signal
into a piecewise constant signal, which leads to quantization
errors that are nonlinear. These errors can not be ignored
when the resolution in the network is low, since it will affect
the performance and stability of the system. Quantization
can also be considered as useful, from the advantage of
reducing occupation rate of transmission bandwidth in the
communication channel [1]. Tracking control of systems with
input quantization has been investigated in e.g. [2]–[5] for
uncertain nonlinear systems, in [6] for a group of unmanned
aerial vehicles with unknown parameters, in [7] for under-
actuated autonomous underwater vehicles (AUVs) and in [8]
for a 2 degrees-of-freedom (DOF) helicoper system.

One of the first tools for handling delays was the Smith
predictor used for compensating a pure time-delay for open-
loop stable plants. A modified Smith predictor compensates

for both the predicted effect of the control input and of
the future evolution of the system state, and also works for
unstable plants [9]. Several predictor based approaches have
been proposed to compensate input delays for linear systems
in [10]–[12] and nonlinear systems in [13]–[19] where a
backstepping transformation was introduced in the control
design in [13], which makes it possible to show stability of the
closed-loop system using a Lyapunov functional. In [20] the
attitude stabilization of a quadrotor with a known input delay
was considered where a predictor feedback controller was
developed to compensate the delay. Compared to stabilization
to a desired attitude, the problem of tracking a changing
reference signal with time is more difficult. Unless knowing
the reference signal in advance, and by sending the reference
signal the delayed-time units ahead to the controller, it is not
possible to track the desired signal perfectly in presence of
a delay. In [21], the tracking control problem of nonlinear
networked and quantized control systems was studied. In [22]
a predictor feedback controller was developed for trajectory
tracking where both input delay and parameters were un-
known.

In this paper we are focusing on the problem of track-
ing a given reference attitude for a nonlinear multiple-input
multiple-output (MIMO) helicopter system with 2 DOF, when
there is a known constant time-delay of D-time units for
the inputs and at the same time, the inputs are quantized
before transmitted over the network. The main contributions
in this paper are dealing with the simultaneous issues caused
by quantization and delay, where the effect of the delay
is compensated for by the design of a predictor feedback
controller, and where the effect of quantization is analytically
shown to be related to the tracking error. A higher quantization
level increases the tracking error. Simulations and experiments
are carried out to illustrate the proposed control scheme.

The paper is organized as follows. In Section II, the dynam-
ical model of the helicopter system, the control problem and
the considered quantizer are presented. Section III provides
the predictor-feedback control design, in Section IV a proof
of stability on the basis of a Lyapunov functional is given
and in Section V experimental results of the proposed method
implemented on the helicopter system are presented and
Section VI sums up the paper in a conclusion.
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Fig. 1: Control system with input quantization and delay over
a network.

II. DYNAMICAL MODEL AND PROBLEM STATEMENT

A. Notations

Vectors are denoted by small bold letters and matrices
with capitalized bold letters. λmax(·) and λmin(·) denote the
maximum and minimum eigenvalue of the matrix (·), and
∥·∥ denotes the L2-norm and induced L2-norm for vectors
and matrices, respectively. For vector functions, the norm

∥u(t)∥2 =
√∫D

0
u(x, t)⊤u(x, t)dx denotes the spatial L2

norm.

B. Problem Statement

We are considering a control problem as shown in Fig. 1,
where the input vector u is quantized before transmitted in
the communication network and there is a time-delay D in
the network. The system is assumed noiseless, so that the
quantized signals are recovered after transmission, and so the
system receives the quantized delayed input uQ(t−D).

The control objective is to develop a predictor based control
law to compensate for a constant known input delay for a multi
input nonlinear helicopter system to track a given reference
attitude signal. From the derived error dynamics, we will
design a controller so that stability of the origin of the error
system is maintained in the presence of both quantization and
delay of the input.

C. Quantizer

In this paper we consider a uniform quantizer for the inputs,
where the quantizer for each input signal is modeled as

Q(u) = uQ =

{
ui sgn(u), ui − l

2 < |u| ≤ ui +
l
2

0, |u| ≤ u0
, (1)

where Q(·) is a quantizer, u0 > 0, u1 = u0+
l
2 , ui+1 = ui+l,

l > 0 is the length of the quantization interval, sgn(u) is the
sign function. The uniform quantization uQ ∈ U = {0,±ui},
and a map of the quantization for ui > 0 is shown in Fig. 2.

The following property holds for the uniform quantizer

|uQ − u| ≤ δ, (2)

where δ > 0 denotes the quantization bound. Clearly, the
property in (2) is satisfied with δ = max{u0,

l
2}. When a

vector is quantized, we have

uQ =
[
uQ
1 uQ

2 · · · uQ
n

]⊤
, (3)
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Fig. 2: Map of the uniform quantizer for u > 0.
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Fig. 3: Quanser Aero helicopter system.

and so each vector element is bounded by (2), and we have

∥uQ − u∥ = ∥d∥ ≤ ∥δ∥ ∆
= δu, (4)

where d is the quantization error.

D. Mathematical Model

The helicopter system shown in Fig. 3 is a two-rotor
laboratory equipment for flight control-based experiments.
With a horizontal position of the main thruster and a vertical
position of the tail thruster, this resembles a helicopter with
two propellers driven by two DC motors. The helicopter is a
MIMO system with 2 DOF, and can rotate around two axes.
This is considered as a rigid body and a mathematical model
is derived using Euler-Lagrange equations and expressed as:

M(q)q̈ +C(q, q̇)q̇ +Dq̇ + g(q) = uQ(t−D), (5)

where

M(q) =

[
Ip +mr2 0

0 Iy +mr2 sin2 q1

]
, (6)

C(q, q̇) =

[
0 −mr2 sin q1 cos q1q̇2

mr2 sin q1 cos q1q̇2 mr2 sin q1 cos q1q̇1

]
,

(7)

g(q) =
[
mgr sin q1 0

]⊤
, q =

[
q1 q2

]⊤
, (8)



and where q, q̇, q̈ ∈ R2 are angles, angular velocities and
accelerations, M(q), C(q, q̇),D ∈ R2×2 are the inertia,
Coriolis and damping matrices, respectively, where D is a
constant matrix, g(q) ∈ R2 is a vector of gravitational loading,
r is the distance between the center of mass and the origin of
the body-fixed frame, Ip and Iy are the moments of inertia of
q1 and q2 respectively, g is the gravitational acceleration, and
m is the total mass of the Aero body.

Defining x = [q⊤, q̇⊤]⊤ = [x⊤
1 ,x

⊤
2 ] ∈ R4, and u ∈ R2,

the system can be written in state space form as

ẋ(t) = f(x(t),uQ(t−D)). (9)

For tracking of a reference signal xr(t), the error states are
defined as

z1 = xr − x1, (10)
z2 = ż1 +Az1, (11)

where A is a constant positive definite matrix, and the error
dynamics is given as

ż(t)=f(z(t),uQ(t−D)) =

[
z2 −Az1

Az2+h−M−1uQ(t−D)

]
,

(12)

h= ẍr−A⊤Az1+M−1[(C+D)(ẋr+Az1−z2)+g]. (13)

The change of coordinates (10)–(11) are chosen by following
the backstepping design procedure [23], where a similar design
is given in e.g. [24]. To achieve the control objective, the fol-
lowing assumption regarding the reference signal is imposed:

Assumption 1. The desired angles, angular velocities and ac-
celerations, xr(t), ẋr(t), ẍr(t) ∈ R2, are known, continuous
and bounded for all t ≥ t0 ≥ 0.

III. PREDICTOR-FEEDBACK CONTROL DESIGN

To compensate for the input delay, we derive a predictor-
feedback controller for the system. A nominal controller for
the error system (12) without quantization and delay D = 0,
can be formulated as

u(t) = κ (z(t),xr(t)) = M(h+ (A+B)z2 + z1), (14)

where B is a positive definite matrix, and makes the origin
exponentially stable in the absence of delay and quantization.
System (12) can be equivalently modeled by a cascade of
ODE-PDE [17]

ż(t) = f(z(t),u(0, t)), (15)
ut(x, t) = ux(x, t), (16)

u(D, t) = uQ(t), (17)

where the actuator state is modeled by a transport PDE and
where the solution to (16)–(17) is given by u(x, t) = uQ(t+
x−D) for all x ∈ [0, D].

The predictor feedback controller is defined as [14]

uQ(t) = Q (κ[p(D, t),xr(t+D)]) , (18)

where the predictor state is given as

p(x, t) = z(t)+

∫ x

0

f(p(y, t),u(y, t))dy,∀x ∈ [0, D], (19)

where, assuming perfect model f , p(x, t) = z(t + x) ∀x ∈
[0, D], and so p(D, t) = z(t+D) is the D-time units ahead
predictor of z(t). Then the delayed input

u(0, t)=uQ(t−D)=Q(κ[t,p(0, t)])=κ(t, z(t))+d(t), (20)

where d(t) is the quantization error which satisfies (4).

IV. STABILITY ANALYSIS

To analyze the closed-loop stability, we first establish some
preliminary results as stated in the following Lemma.

Lemma 1. The open loop system ż = f(z,ω) is forward
complete.

Proof. Consider the nonnegative-valued, radially unbounded,
smooth Lyapunov function and its derivative [18]

V1(z) =
1

2
z⊤z, (21)

V̇1 = z⊤
1 (z2 −Az1) + z⊤

2 (Az2+h−M−1ω)

≤ c1V1 +
1

2
ω⊤ω + c2(x

⊤
r xr + ẋ⊤

r ẋr + ẍ⊤
r ẍr)

≤ c1V1 + c3, ∀z ∈ R4,ω ∈ R2, (22)

where c(·) are positive constants, Assumption 1 is used, and
where ω is a bounded input. Then, the system ż is forward
complete and solutions exist globally.

A definition of forward completeness is given in e.g. [14].
Since the system is forward complete, the problem of a
finite escape phenomenon is avoided, and ensures that for
every initial condition and every bounded input signal, the
corresponding solution is defined for all t ≥ 0.

Following [17], we define the direct and inverse backstep-
ping transformation

w(x, t) = u(x, t)−Q (κ[x+ t,p(x, t)]) , (23)
u(x, t) = w(x, t) +Q (κ[x+ t,π(x, t)]) , (24)

where for all x ∈ [0, D],

π(x, t) =z(t) +

∫ x

0

f(π(y, t), Q (κ[t+ y,π(y, t)])

+w(y, t))dy, (25)

where π(x, t) are used to generate the target predictor state
π(D, t).

By [17, Lemma 1], the transformation (23) maps the closed
loop system consisting of the error system (15)–(17) and the
control law (18)–(19) into the target system

ż(t) = f(z(t),w(0, t) + κ(t, z(t)) + d(t))

=

[
z2(t)−Az1(t)

−z1(t)−Bz2(t)−M−1w(0, t)−M−1d(t)

]
,

(26)
wx(x, t) = wt(x, t), ∀x ∈ [0, D], (27)
w(D, t) = 0. (28)



By [17, Lemma 2], (24) is the inverse of (23).
We now state our main result in the following theorem.

Theorem 1. Consider the closed-loop system consisting of
the error dynamics of the helicopter system (15)–(17), the
control law (18)–(19) with input quantization satisfying the
bounded property (4), and the reference signal xr(t) satisfying
Assumption 1. If the gain matrices A and B are chosen to
satisfy the inequality

min{2λmin(A), 2λmin(B)− 2, 1} > c4 > 0, (29)

where c4 is a positive constant, then for all initial conditions
z(t0) ∈ R4, u(x, t0) ∈ R2 ∀x ∈ [0, D] and for all t ≥ t0 ≥ 0,
the following holds:

∥z(t)∥+∥w(t)∥2≤ c6(∥z(t0)∥+∥w(t0)∥2) e−
c4
2 (t−t0)+c5δu,

(30)

where

c5 =

√
2k

c4
> 0, c6 =

√
2keD > 0, (31)

where k = max{1, λmax(M
−1)2}.

Proof. Due to forward completeness of (15) (Lemma 1), the
predictor state (19) is well defined and therefore w(x, t) in
(23) is well defined. It follows that the target system (26)–(28)
is well defined and that we can select the Lyapunov function
candidate

V2(t)=
1

2
z(t)⊤z(t)+

k

2

∫ D

0

exw(x, t)⊤w(x, t)dx, (32)

that satisfies

1

2
E(t) ≤ V2(t) ≤

1

2
keDE(t), (33)

where

E(t) = z(t)⊤z(t) +

∫ D

0

w(x, t)⊤w(x, t)dx. (34)

The derivative of (32) is

V̇2 =− z⊤
1 Az1 − z⊤

2 Bz2 − z⊤
2 M

−1w(0, t)

− z⊤
2 M

−1d(t) + k

∫ D

0

exw(x, t)⊤wt(x, t)dx

≤− z⊤
1 Az1 − z⊤

2 Bz2 + z⊤
2 z2

− k

2
w(0, t)⊤w(0, t)− k

2

∫ D

0

exw(x, t)⊤w(x, t)dx

+
k

2

(
w(0, t)⊤w(0, t) + δ2u

)
, (35)

where Young’s inequality and integration by parts are used.
By choosing matrices A and B such that (29) holds, we have

V̇2 ≤ −c4V2 +
k

2
δ2u. (36)

TABLE I: Helicopter Parameters.

Symbol Value Units
Ip, Iy 0.0217 kgm2

m 1.075 kg
g 9.81 m/s2

r 0.0038 m
D [0.007 0;0 0.0095] kgm2/s

From (36) and by using the comparison lemma [25, Lemma
3.4], then for all t ≥ t0 ≥ 0,

V2(t) ≤ V2(t0)e
−c4(t−t0)+

k

2c4
δ2u(1−e−c4(t−t0))

≤ V2(t0)e
−c4(t−t0)+

k

2c4
δ2u. (37)

From (37) and (33) we have

E(t) ≤ k

c4
δ2u + keDE(t0)e

−c4(t−t0), (38)

and by using the inequality (∥z(t)∥+ ∥w(t)∥2)2 ≤ 2E(t)
we get estimate (30). This shows that the target system is
uniformly ultimately bounded with an ultimate bound that is
directly related to the value of the quantization parameter.

Remark 1. From (30), tracking is achieved with a bounded
error proportional to the quantization.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the attitude tracking control problem is
considered for the Quanser Aero helicopter system, where both
simulation using MATLAB/Simulink and experiments on the
helicopter system have been carried out. The initial values
were set to x(t0) = 0, where t0 defines the start of experiment.
The parameters used for simulation and experiment are shown
in Table I, and the design parameters were chosen as A = 3I
and B = 1.6I and satisfies the inequality (29). The objective
in the experiment was to track a given sinusoidal signal for
the attitude xr(t) in presence of both quantization and delay
of the inputs.

To illustrate the performance of the proposed predictor-
based controller, we first tested without the predictor and
without quantization when there was a delay for the input, and
so the system received the delayed inputs u(t − D), where
the input vector is defined in (14). By increasing the delay,
the system had more oscillation, and when D = 0.1s, the
oscillations increased during the experiment and was stopped
after about 4s. Figs. 4–5 show the tracking of angle q1(t) and
the inputs u(t−D), respectively, from this experiment. This
shows that the closed-loop system becomes unstable without
the predictor for delays greater or equal to 0.1s.

The proposed control law was then tested for different
delays and quantization parameters. The initial condition of the
actuator state was set to u(x, t0) = 0 ∀ x ∈ [0, D], and so the
system received zero input until t = t0 +D. The results from
simulation and experiment, where the quantization parameters
were set to l = 0.01, u0 = l/2 and with a time delay
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D = 0.2s, are shown in Figs. 6–11, showing tracking of the
angles q(t), the tracking errors z(t) and the inputs uQ(t−D),
respectively, where the red plots are from simulation and the
blue plots are from experiment.

From Figs. 6–9 we can see that the desired trajectory
can be followed both in simulation and when tested on the
helicopter, illustrating our main results in Theorem 1. From
the simulation, there are only small tracking errors that are
due to the quantization. From the experiment, the tracking
errors are higher relative to the simulations due to several other
disturbances to the system such as unmodeled dynamics and
sensor noise that affects the performance, and the helicopter
have a practical stabilization with this controller.

To compare results for different delays and quantization
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Fig. 6: Tracking of angle q1(t) from simulation and experiment
with delay D = 0.2s and quantization.
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Fig. 7: Tracking of angle q2(t) from simulation and experiment
with delay D = 0.2s and quantization.
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Fig. 8: Tracking error z11(t) from simulation and experiment
with delay D = 0.2s and quantization.
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Fig. 9: Tracking error z12(t) from simulation and experiment
with delay D = 0.2s and quantization.
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TABLE II: Total tracking error from experiment with and with-
out delay and quantization. System receives input uQ(t−D).

Experiment
ztrack ×10−4

Quantization
No q. l = 0.010 l = 0.012 l = 0.014

Delay

D = 0 3222 3271 3305 3490
D = 0.1 4866 5278 5741 5689
D = 0.2 7274 8692 8518 9114
D = 0.3 13748 11788 13868 14038

parameters, the total tracking error was defined as

ztrack =

∫ tf

t0

z⊤
1 z1dτ, (39)

where t0 and tf define start and end of experiment, respec-
tively, and the experiments were run for 50 s where results
are provided in Table II. From the results we see that by
increasing the delay, the total tracking error also increases
for the helicopter system, for mainly two reasons. First, since
the system receives no input until D seconds after the start
of experiment, the total tracking error increases during an
initial time period, since the reference signal is changing while
the helicopter remains stationary. Then, the system receives
control input by the predictor based controller and starts
tracking the desired signal. So increasing D, increases the time
before control kicks in, and ztrack increases initially. Secondly,
because the model is not perfect and from other effects such as
measurement errors, the tracking error increases by an increase
in the delay. From a perfect model without quantization, the
total tracking error will not increase after an initial time period
since then z1 becomes zero.

The effect of quantization is also shown, where by increas-
ing the quantization, the measurement of the total tracking
error increases. This is also affected by other disturbances.

VI. CONCLUSION

In this paper, the attitude tracking control problem of a
nonlinear system with networked induced delay and quantiza-
tion for the inputs has been considered. A predictor-feedback
controller is proposed to compensate for the input delay. Based
on a Lyapunov approach, stability of the closed loop system is
ensured and tracking of a desired reference signal is achieved
with a bounded tracking error that is directly related to the
quantization parameter. Simulations and experiments illustrate
the proof.
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[15] D. Bresch-Pietri and M. Krstić, “Backstepping transformation of input
delay nonlinear systems,” arXiv:1305.5305, 2013.

[16] ——, “Delay-adaptive control for nonlinear systems,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 5, pp. 1203–1218, 2014.

[17] N. Bekiaris-Liberis and M. Krstić, “Predictor-feedback stabilization
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