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Abstract

In this paper, we propose a model for the Environment Sound
Classification Task (ESC) that consists of multiple feature chan-
nels given as input to a Deep Convolutional Neural Network
(CNN) with Attention mechanism. The novelty of the paper lies
in using multiple feature channels consisting of Mel-Frequency
Cepstral Coefficients (MFCC), Gammatone Frequency Cep-
stral Coefficients (GFCC), the Constant Q-transform (CQT)
and Chromagram. And, we employ a deeper CNN (DCNN)
compared to previous models, consisting of spatially separable
convolutions working on time and feature domain separately.
Alongside, we use attention modules that perform channel and
spatial attention together. We use the mix-up data augmentation
technique to further boost performance. Our model is able to
achieve state-of-the-art performance on three benchmark envi-
ronment sound classification datasets, i.e. the UrbanSound8K
(97.52%), ESC-10 (94.75%) and ESC-50 (87.45%).

Index Terms: Convolutional Neural Networks, Attention, Mul-
tiple Feature Channels, Environment Sound Classification

1. Introduction

One of the most important application is the Environment
Sound Classification (ESC) that deals with distinguishing be-
tween sounds from the real environment. It is a complex task
that involves classifying a sound event into an appropriate class
such as siren, dog barking, airplane, people talking etc.

The most successful ESC models consist of one or more stan-
dard audio feature extraction techniques and deep neural net-
works. In this paper, we explore the idea of employing multiple
feature extraction techniques like the Mel-frequency Cepstral
Coefficients (MFCC) [1], Gammatone Frequency Cepstral Co-
efficients (GFCC) [2], Constant Q-Transform (CQT) [3], Chro-
magram [4] and stack them to create a multiple channel input to
our classifier.

After feature extraction, the next stage is classification. Many
machine learning algorithms have been used to classify sound,
music or audio events. However, in the ESC task, Deep CNNs
have been able to outperform other techniques, as evident from
the previous ESC models. In this paper, we also employ a Deep
CNN for classification. However, we split between time and
frequency domain feature processing by using separable convo-
lutions [5] with different kernel sizes. Also, we use max pooling
across only one of the domains at a time, until after the last set
of convolutional layers to combine time and frequency domain
features. This enables processing time and frequency domain
features separately and then combining them at a later stage.
Along with the model, we also design a novel attention mod-
ule that enables both spatial and channel attention. In order to
achieve both spatial and channel attention with the same mod-

ule, we need an attention weight matrix with dimensions equal
to the DCNN block output. So that, each output feature map in
each channel has it’s own attention weights. We use the depth-
wise separable convolution [6] to achieve attention with mini-
mal increase in number of parameters.

Using these techniques allows our model to achieve state-of-
the-art performance on three benchmark datasets for environ-
ment sound classification task, namely, ESC-10, ESC-50 [7]
and UrbanSound8K [8].

2. Related Work

There have been several innovative and high performance ap-
proaches proposed for the task of environmental sound classi-
fication (ESC). In [9], a deep CNN was shown to give com-
petitive results for the ESC tasks by thorough and exhaustive
experimentation on the three benchmark datasets.

In [10], phase encoded filterbank energies (PEFBEs) was pro-
posed as a novel feature extraction technique. Finally, a
score-level fusion of FBEs and PEFBEs with a CNN classifier
achieved best performance.

In the second version of the EnvNet, called EnvNetv2 [11],
the authors employed a mechanism called Between Class (BC)
learning. In BC learning, two audio signals from different
classes are mixed with each other with a random ratio. The
CNN model is then fed the mixed sound as input and trained to
output this mixing ratio.

An unsupervised approach of learning a filterbank from raw
audio signals was proposed in [12]. Convolutional Restricted
Boltzmann Machine (ConvRBM), which is an unsupervised
generative model, was trained to raw audio waveforms. A
CNN is used as a classifier along with ConvRBM filterbank and
score-level fusion with Mel filterbank energies. Their model
achieves 86.5% on the ESC-50 dataset.

A novel data augmentation technique, called mixup, was pro-
posed in [13]. It consists of mixing two audio signals and their
labels, in a linear interpolation manner, where the mixing is con-
trolled by a factor A. In this way, their model achieves 83.7%
accuracy on the UrbanSound8K dataset. We employ the mix-
up data augmentation in our work to boost our model’s perfor-
mance.

A complex two stream structure deep CNN model was proposed
in [14]. It consists of two CNN streams. One is the LMC-
Net which works on the log-mel spectrogram, chroma, spectral
contrast and tonnetz features of audio signals and the other is
the MCNet which takes MFCC, chroma, spectral contrast and
tonnetz features as inputs. The decisions of the two CNNs are
fused to get the final TSDCNN-DS model. It achieves 97.2%
accuracy on the UrbanSound8K dataset.

There have also been a few contributions towards the ESC task




that consist of attention based systems. In [15], a combination
of two attention mechanisms, channel and temporal, was pro-
posed. The temporal attention consists of 1 X 1 convolution for
feature aggregation followed by a small CNN to produce tem-
poral attention weights. On the other hand, channel attention
consists of a bank of fully connected layers to produce the chan-
nel attention map. Using two separate attention models makes
the system very complex and increases the number of parame-
ters by a lot. We perform spatial and channel attention with just
one depthwise convolutional layer.

A multi-stream network with temporal attention for the ESC
task was proposed in [16]. The model consists of three streams
with each stream receiving one of the three stacked inputs:
raw waveform, STFT (Short-time Fourier Transform) and delta
STFT. A temporal attention model received the inputs directly
and propagated it’s output to the main models intermediate lay-
ers. Here, again, the model is too complex and also, the atten-
tion block doesn’t receive any intermediate feedback from the
main model.

The research works mentioned above and many others provide
us with many insights by achieving high performance on diffi-
cult datasets. But, they also suffer from issues regarding feature
extraction, computational complexity and CNN model architec-
ture. In this paper, we try to address these issues and in doing
so, achieve state-of-the-art performance.

3. Proposed Environment Sound
Classification Model

We propose a novel ESC model that consists of multiple feature
channels extracted from the audio signal and a new DCNN ar-
chitecture consisting of separable convolutions, that works on
time and frequency domain separately and a depthwise convo-
lution based attention mechanism.

The feature extraction stage consists of four channels
of features, which are: Mel-Frequency Cepstral Coeffi-
cients (MFCC), Gammatone Frequency Cepstral Coefficients
(GFCC), Constant Q-transform (CQT) and Chromagram.

For the classification stage, we propose a CNN architecture that
works better for audio data, as shown in Fig. 3. We use spa-
tially separable convolutions to process time and frequency do-
main features separately and aggregate them at the end. Also,
the downsampling value is different for time and frequency do-
mains in the maxpooling layers. Along side the main DCNN
model, we add spatial and channel attention using the depth-
wise convolution. In the subsequent sub-sections, we explain
the feature extraction and classification stages of our model.

3.1. Multiple Feature Channels

In this paper, we employ four major audio feature extrac-
tion techniques to create a four channel input for the Deep
CNN, namely, Mel-Frequency Cepstral Coefficients (MFCC)
[1], Gammatone Frequency Cepstral Coefficients (GFCC) [2],
Constant Q-Transform [3] and Chromagram [4]. Incorporat-
ing different signal processing techniques that extract different
types of information provides the CNN with more distinguish-
able characteristics and complementary feature representations
to accurately classify audio signals.

The MFCC, GFCC, CQT and Chroma features are stacked to-
gether to create a four channel input for the Deep CNN. Each
feature plays it’s part in the classification task. MFCC acts as
the backbone by providing rich features, GFCC adds transient
sound features, CQT contributes with better low-to-mid fre-
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Figure 1: Multiple Feature Channels
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Figure 2: PCA of Features

quency range features and finally Chromagram provides pitch
category analysis and signal structure information. Fig. 1 shows
a graphical representation of the features extracted from an au-
dio signal (Fig. 1(a)). All features are normalized between 0
and 1 using min-max normalization. From the figure, we can
see the contrast in the values of each feature.

Fig. 2(a) shows the Principal Component Analysis (PCA) of
the features. We take the first two principal components of the
four features we use in our model to create a 2D visualization
of the feature space. From the figure we can see that most of
features are heavily concentrated in the middle region. But, as
shown in Fig. 2(b), we encircle a few regions that different
features provide some amount of different information. Indeed
some of these regions might contain irrelevant or outlier infor-
mation that is not of value to classification. But, as seen in the
figure these feature extraction techniques do provide unique and
complementary information. Chromagram features provide lit-
tle distinctive information and shown in the results section, it
provides little increase to the performance of the model.

3.2. Deep CNN Architecture: Main Block

Fig. 3 shows our proposed Deep CNN architecture for environ-
mental sound classification. The main block consists of five
repetitions of Conv2D-Conv2D-Conv2D-MaxPool-BatchNorm



with different number of kernels and kernel sizes. Almost all
convolutional layers are made up of spatially separable convo-
lutions.

In the case of the ESC task, the input are the features extracted
from the audio signals. Each feature set is of the shape (¢, f, ¢),
where ¢ is the compressed time domain (compressed due to win-
dow size and hop length) and c is the number of channels. Each
window of time yields f number of features (f = 128 in our
model). So, we treat the time domain and the feature domain
separately. The kernels with the form 1 x m work on the fea-
ture domain and the ones with n X 1 work on the time domain.
Using the 1 x m type of convolution operation enables the net-
work to process each set of features from a time window sep-
arately. And, the n x 1 type of convolution allows the aggre-
gation of a feature along the time domain. Now, ¢ corresponds
to the number of feature extraction methods we adopt (in our
model, ¢ = 4). So, each kernel works on each channel, which
means that all different types of features extracted from the sig-
nal feature extraction techniques is aggregated by every kernel.
Each kernel can extract different information from an aggre-
gated combination of different feature sets.

Another major advantage of using this type of convolution is the
reduction in number of parameters. This is the primary advan-
tage of separable convolutions when they were used in [5] and
have probably been used earlier as well.

In case of standard square kernels like nn x n, which are used for
computer vision tasks, the dimensions of the kernel are in accor-
dance to the image’s spatial structure. The 2D structure of an
image represents pixels, i.e. both dimensions of an image rep-
resent the same homogeneous information. Whereas, in case of
audio features, one dimension gives a compact representation
of frequency features of a time window and the other dimen-
sion represents the flow of time (or sliding time window). So,
in order to process information accordingly and respect the in-
formation from different dimensions of the input, we use 1 x m
and n x 1 separable convolutions.

3.3. Deep CNN Architecture: Attention Block

In this paper, we achieve spatial and channel wise attention
using a single attention module and dramatically reduce the
number of parameters required for attention by using depthwise
convolutions. The attention block, shown in Fig. 3, runs in
parallel with a main block. The pooling size and kernel size
in the attention block is the same as the pooling and kernel
size in the corresponding parallel main block. Using depthwise
convolution reduces the number of parameters and thus reduces
the overhead of adding attention blocks to the model.

Before the element-wise multiplication of the attention matrix
with the main block output, we add a batch normalization layer
to normalize the attention weights. Normalization is important
for smoothing. The batch-norm layer is followed by a ReLU
activation, that makes the attention weight matrix sparse
which makes the element-wise multiplication computationally
efficient.

a' = ¢(BatchNorm(f(MazPool(1'"")))) (1)

P=d ol )

Equations 3 and 4 make up the attention module, where f is
the depthwise separable convolution comprising of depthwise
and point-wise convolution and ¢ is the ReLU activation func-

tion. This single attention module performs both spatial and
channel attention. Channel-wise attention requires an attention
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Figure 3: Attention based DCNN model

weight for each output channel of the main block and spatial
attention requires an attention weight for each spatial location
in the output feature map. Our attention module produces ¢
weights, which enables channel attention, and each weight in ¢
is a matrix of n X m, which enables spatial attention. And, us-
ing a single depthwise separable convolution layer we are able
to achieve this with considerably less number of parameters and
operations.

An advantage of using attention as a separate module that runs
in parallel with every main block and connected before and af-
ter each main block, with less number of parameters and layers,
is that it allows smooth propagation of the gradient like skip or
residual connections [17,18].

4. Experimental Setup

We report state-of-the-art results on ESC benchmark datasets,
i.e. UrbanSound8K, ESC-10 and ESC-50, using the proposed
model. The ESC-10 and ESC-50 contain 2000 audio files of
5 seconds length each, while UrbanSound8K consists of 8732
audio files of 4 seconds each. ESC-10 and UrbanSound8K con-
tain audio from 10 classes while ESC-50 has 50 classes. We
use k-fold cross-validation on the specified folds and report the
average accuracy across the folds. For ESC-10 and ESC-50,
k = 5 and for UrbanSound8K, k£ = 10.

We use Tensorflow and Keras to implement our CNN classifier
and Librosa [19] and the Matlab Signal Processing Toolbox [20]
for audio processing and feature extraction. In terms of hard-
ware, we use the NVIDIA DGX-2 consisting of 16 NVIDIA
Tesla V100 GPUs with 32 Gigabytes of VRAM each and a sys-
tem memory of 1.5 Terabytes.

For every feature extraction technique, we extract 128 features
for each window of length 1024 (3.2 ms) with a hop length of
512 (1.6 ms) at 32kHz. We normalize all feature vectors us-
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ing min-max normalization. Our DCNN model is trained to
minimize the categorical cross-entropy loss using the Adam op-
timizer with Nestorov momentum, along with Dropout of 0.25
after the dense layer. and weight decay of A = 0.1. We run our
model for 500 epochs per fold. We set the initial learning rate
of training to 0.01 and decrease it by a factor of 10 every 150
epochs.

As shown in [13], mix-up data augmentation plays a very im-
portant role in improving performance, especially when the
model is large and data is scarce. We use a mini-batch size
of 200. Table 1 displays the results of previous state-of-the-
art ESC models that tested their methods on one or more of the
three benchmark datasets. All of these models have been briefly
described in Section 2. The last row of the table shows the re-
sults of our proposed model on the three datasets.

Table 1: Previous state-of-the-art ESC models vs Proposed model

Model ESC-10 ESC-50 US8SK
EnvNetv2+strong augment [11] 91.30 84.70 78.30
PiczakCNN [9] 90.20 64.50 73.70
CNN+Mixup [13] 91.70 83.90 83.70
FBEs®ConvRBM-BANK [12] - 86.50 -
CRNN-+channel & temporal
Attention [15] 94.20 86.50 B
Multi-stream-+temporal
Attention [16] 94.20 84.00 B
TSCNN-DS [14] - - 97.20

Multiple Feature Channel
+ Deep CNN with Attention 94.75 87.45 97.52
(Proposed)

5. Results

We show the advantages of using multiple features, data aug-
mentation, depthwise convolutions and attention mechanism
from our experiments on the three benchmark datasets'. Using
separable convolutions (spatial or depthwise), has the advantage
of reducing the number of parameters in the model. We use spa-
tially separable convolutions in our main block and depthwise
separable convolutions in the attention block. In Table 2, we
show the effect of using separable convolutions in terms of the
number of parameters and model performance. The DCNN-5 is
the model without attention and DCNN-5 SC is with standard
convolutions instead of separable convolutions. The separable
convolutions, 1 X 3 and 5 X 1, is replaced by 5 X 3 convolution
operation. We use padding when necessary to keep the model
depth valid according to the input, since standard rectangular
convolutions reduce the output dimensions more quickly.

From Table 2, we can see that, for the task of environment
sound classification, the spatially separable convolutions have
less number of parameters and perform better than standard
convolutions. DCNN-5 SC has 130K more parameters than
DCNN-5 and obtains 3.25% lower accuracy than DCNN-5 on
the ESC-50. Adding the attention mechanism just adds 20K
more parameters and increases the performance by 2.7%, cour-
tesy of depthwise convolutions. Using standard convolutions to
build the attention model results in an increase of 90K parame-
ters and 0.4% accuracy.

These findings are consistent with the UrbanSound8K dataset.
The difference in the number of parameters between the

I The Table containing the results of our experiments with different
combination of features and the effect of data augmentation is attached
as supplementary material, due to lack of space

Table 2: Performance Comparison of Number of Parameters on ESC-50

and UrbanSound8K
Parameters Parameters

Model ESC-50 ESC-50 USSK USSK

DCNN-5 1.27M 84.75 0.87M 94.25

ADCNN-5 1.29M 87.45 0.89M 97.52

DCNN-5 SC 1.40M 81.50 1.04M 91.25
ADCNN-5

(without Depthwise 1.36M 87.05 0.97M 96.35
Sep. Conv.)

Table 3: Performance of different number of feature
coefficients on ESC-50 and UrbanSound8K

Model # Features ESC-50 USSK

48 80.12 89.25
ADCNN-5 64 85.25 94.25
96 86.15 95.50
128 87.45 97.52

datasets for the same models is because of the difference in
input shapes. UrbanSound8K has 4 seconds long audio files,
whereas, ESC-50 has 5 seconds long. So, both of them sam-
pled at 32kHz produce different number of time windows.
The input shape for ESC-50 is (313,128, 4) and for Urban-
Sound8K is (250,128,4) represented as (time-windows, fea-
tures, channels). We also test our model with fewer number of
features extracted by the audio feature extraction methods. Ta-
ble 3 shows the results when the number of features are reduced.
The model accuracy monotonically increases with the increase
in the number of features. We stop at 128 features, which pro-
duces the best results, to avoid increasing the complexity of the
model.

The same tests were conducted on the ESC-10 dataset. The re-
sults were consistent with the findings shown above. ESC-10 is
a subset of the ESC-50 dataset. We also report state-of-the-art
performance on the ESC-10 dataset with 94.75% accuracy.

6. Conclusions

We propose a novel approach for environmental sound clas-
sification that consists of multiple feature channels and atten-
tion based deep convolutional neural network with domain wise
convolutions. We combine feature extraction methods like the
MFCC, GFCC, CQT and Chromagram to create a multi chan-
nel input for the CNN classifier. The model consists of two
block: Main block and Attention block. We employ a Deep
CNN consisting of separable convolutions in the main block.
The separable convolutions work on the time and feature do-
mains separately. Parallel to the main blocks, we also use an
attention mechanism that consists of depthwise separable con-
volution. Both channel and spatial attention are achieved us-
ing a small increase in number of parameters. We test our
model on the three benchmark datasets: ESC-10, ESC-50 and
UrbanSound8K. We use mix-up data augmentation techniques
to further improve performance. Our model achieves 94.75%,
87.45% and 97.52% accuracy on ESC-10, ESC-50 and Urban-
Sound8K respectively, which is state-of-the-art performance on
all three datasets.
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