
On Abstraction in the OMG Hierarchy
Systems, Models, and Descriptions

Andreas Prinz
Themis Dimitra Xanthopoulou

andreas.prinz@uia.no
themis.d.xanthopoulou@uia.no
Faculty of Engineering & Science,

University of Agder
Grimstad, Norway

Terje Gjøsæter
terje.gjosater@uia.no

Faculty of Social Sciences,
University of Agder
Kristiansand, Norway

Birger Møller-Pedersen
birger@ifi.uio.no

Department of Informatics,
University of Oslo
Oslo, Norway

ABSTRACT
The Model-Driven Architecture (MDA) uses a metadata hierarchy
with several layers that are placed on top of each other. The tradi-
tional view is that the layers provide abstractions related to models
in languages defined by meta-models. Over the years, it has been
difficult to define a consistent understanding of the layers. In this
paper, we propose such a consistent understanding by clarifying
the relations between the different elements in the hierarchy. This
is done based on the Scandinavian approach to modelling that
distinguishes between systems and system descriptions. Systems
can be physical, digital, or even mental, while descriptions can be
programs, language descriptions, specifications, and diagrams. We
relate descriptions and systems by explaining where semantics of
objects originate and how they apply in the hierarchy.

KEYWORDS
System, Model, Description, Abstraction, Semantics, Instantiation.

ACM Reference Format:
Andreas Prinz, Themis Dimitra Xanthopoulou, Terje Gjøsæter, and Birger
Møller-Pedersen. 2022. On Abstraction in the OMG Hierarchy: Systems,
Models, and Descriptions. In ACM/IEEE 25th International Conference on
Model Driven Engineering Languages and Systems (MODELS ’22 Companion),
October 23–28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3550356.3561573

1 INTRODUCTION
Model-driven development as seen from the point of view of the
object management group (OMG) is closely related to the model-
driven architecture (MDA) [20]. MDA is based on different kinds of
models and transformations between these. Models are formulated
in modelling languages defined by meta-models. The general con-
nection between models, meta-models, and the objects related to
them is captured in the four-layer meta-modelling architecture, see
Table 1. For readers more familiar with programming languages we
have included how the architecture applies to grammars, including

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9467-3/22/10.
https://doi.org/10.1145/3550356.3561573

Table 1: The OMG view of the four-layer meta-modelling
architecture

OMG Layer UML Example Grammar example
M3 = meta languages MOF EBNF
M2 = languages UML metamodel Java grammar
M1 = models UML model a program
M0 = instances objects of classes a run

program, grammar and EBNF along with UML model, UML meta-
model (defining the language UML), and MOF as a subset of UML
in which UML is defined.

The lowest layer of the OMG hierarchy is called M0 and it con-
tains all sorts of objects. There can be physical objects like (in case
of a travel agency system) passengers and flight seats, and there
can be digital objects, such as objects that represent or model real
passengers and seats in an airplane, and flight bookings.

In the layers M1,M2,M3 we find descriptions of those objects
(often referred to as models), descriptions of how models are ex-
pressed (called meta-models), and descriptions of how meta-models
are expressed (called meta-meta-models) respectively. An example
of M1 would be a model of a passenger. On M2, we find languages
in which to describe models - in an OMG context typically UML,
but other languages as Java or Python are also possible. The layers
are called Mx because they are intended to be modelling layers.

This architecture seems simple enough, but still the details of
its understanding are far from simple. This leads to a gap between
programmers and modellers, where programming and modelling
are seen as different activities that are difficult to bring together. A
common understanding between the two is needed [15].

The real relationship between the layers has been source of a lot
of debate [1–3, 5, 6, 8, 11, 13, 16, 18, 21] and final agreement has not
been achieved. The main challenge is the possibility of describing
objects in UML, which would somehow be both on M0 and M1.
Therefore, in the last OMG standards, the use of the architecture has
been avoided, see also Section 6. Still, the relation between layers
is important and a consistent understanding would be needed.

As Atkinson and Kühne observed in [4], the elements in the
hierarchy can have different roles. For example, meta-models can
be language descriptions, ontological descriptions, or perspectives
on reality. We will follow these directions in more detail later when
we discuss abstraction in the hierarchy.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-0646-2877
https://orcid.org/0000-0003-2914-0472
https://orcid.org/0000-0002-1688-7377
https://orcid.org/0000-0003-2123-3260
https://doi.org/10.1145/3550356.3561573
https://doi.org/10.1145/3550356.3561573
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3550356.3561573&domain=pdf&date_stamp=2022-11-09


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Prinz et al.

In this paper, we sort out the different roles of the elements in the
architecture by looking at the instantiation (based on semantics) re-
lationships between layers and the abstraction relationships within
layers. Our goal is to provide a simple and consistent understanding
of the elements in the hierarchy and their relationships. We present
both an understanding and an explanation of the layers and how
they relate. In addition, we also look at the reality of the objects
in the hierarchy. Important for our understanding is the distinc-
tion between systems (and elements of systems) and descriptions of
systems (and elements thereof).

In Section 2, we discuss reality and introduce the notions of
system and perspective, while in Section 3 we cover models, to-
gether with the abstraction relation. We then introduce the notions
of descriptions and semantics (Section 4), and how descriptions
lead to systems; followed by a discussion (Section 5) of the OMG
hierarchy based on those relations. Finally, in Section 6 we discuss
our findings, and in Section 7 we summarise and conclude.

2 SYSTEM AND PERSPECTIVE
A system can be a part of reality or, as it happens in computer
science, it can be an application within an application domain
made by systems and software engineering. The aforementioned
application has a purpose and required functionality. From [22] we

Figure 1: Sample system 1: Mini

borrow the example of a Mini as a system, see Figure 1. We add
a travel agency as another example of a system, see Figure 2. The

Figure 2: Sample system 2: Travel agency

travel agency is an example of a real system of which we would
like to make a (simulation) model. Applications (e.g. a travel agency
software system) are also part of reality, and during engineering
it is useful to make models of parts of the application domain, of

elements of reality that will be influenced by the application, and
even of the application itself (planned systems).

In our understanding, systems can be dynamic, have a struc-
ture, and boundaries. In our context, dynamic means that a system
evolves over time and changes its state. Moreover, the system struc-
ture is given by contained objects and this is evolving as well.
System boundaries imply that we can distinguish elements from
inside and from outside the system.

In order to be able to comprehend and work with systems we
identify boundaries of the system, parts of the system, and prop-
erties of these parts. Following the object-oriented approach (see
below), these parts are objects, and it leads to the following defini-
tion of system, see also [15].

Definition 2.1 (System). A system is a changing set of executing
objects and their properties. These objects interact with each other
and with entities in the environment of the system resulting in
changes of the objects and properties. Objects may be existing
entities like devices, and they may be entities that have to be made
as part of the systems development. This way, a system is a set of
possible executions, i.e. a set of object configurations that exist at
different time points.

In order to understand systems we use the notion of perspec-
tive. Typically, we understand that systems have a relatively stable
structure of their included objects. Such a definition can work in
an object-oriented setting, where we have objects with properties.
However, reality in general does not have such an implied structure
and identification of objects and parts of reality is typically man-
made. It is given by the way we look at reality, not by reality itself.
For this paper, we define perspective as the structure we apply on
reality.

Definition 2.2 (Perspective). A system is a part of reality perceived
using a perspective, which is a structure imposed on reality.

Perspective is closely related to theory [17], which provides a
shared perspective for a field of discourse. In our context, perspec-
tive can be a theory, but also a more individual way of looking at
reality.

In general, it is possible to employ different perspectives on the
same part of reality. This is both done to reduce the complexity
of reality and to view reality related to different purposes. Each
perspective can be thought of as a pair of glasses that is used to
observe reality. Figure 3 illustrates that a system is a part of reality
with a perspective that works as a filter only showing the relevant
aspects.

We distinguish between two kinds of perspectives. First, there
is a basic perspective related to our way of looking at the world
and answering the question: What are the things we expect to
see in reality? We have chosen to employ a basic (philosophical)
perspective based on phenomena and concepts. This perspective
is the basis for object-orientation when we in short consider that
phenomena and concepts are represented by objects and classes,
respectively.

Using an object-oriented perspective does not mean that we
include all possible objects in the perceived system (existing or
planned). That is to say, a lot of objects are ignored. This ignorance
leads to a second kind of perspective which is based on the purpose



On Abstraction in the OMG Hierarchy MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 3: Reality seen through different glasses with specific perspectives on the Mini; a physical view with atoms, the electrical
system, and the engine.

of the system, i.e. why we are looking at the system, see again
Figure 3. In this paper, we consider the object-oriented perspective
as given and wemostly discuss the second kind of perspective based
on the purpose of the system.

From our point of view, perspective is not the same as abstrac-
tion. It would be possible to consider perspective to be some kind of
abstraction. After all, perspective reduces reality to something man-
ageable. We think that this is not completely correct, as a system is
not only reduced reality. This is because without the perspective,
reality is not even observable. So, it is difficult to say that perspec-
tive is an abstraction of the unstructured reality, exactly because
there is no structure in reality per se.

However, it is well possible to have abstractions between dif-
ferent perspectives of the same reality. For example, the car audio
view of the Mini can be an abstraction of the general electrical view
of the same Mini. This way, perspective is the realisation dimen-
sion as observed by Jean-Marie Favre in [12]. Reality is then the
realisation of the systems. Even though it is a dimension, there are
only two end points in this dimension: reality and systems. Please
remember that there is only one reality, but there can be several
systems based on perspective and on the selection of part of reality.
We will discuss possible (abstraction) relations between systems in
the next section.

3 MODEL AND ABSTRACTION
A model in our sense is an abstraction of a system, which we call
‘referent system’. In a way, the model refers to the referent system.
Sometimes, the referent system is also called target system. Amodel
is also a system in itself. A system becomes a model by having a
relationship to the original system it is a model of.

Definition 3.1 (Model). Amodel is a system that is in the model-of
relationship to a referent system, existing or planned, where the
model-of relationships means that the model is analogous to and
more focused than the referent system.

Two systems are analogous when they use a similar perspective,
and a system is more focused than another (analogous) system, if
it uses fewer objects and properties.

Please note that this definition of model is independent of the
purpose of the model (decision making, system creation, under-
standing, etc.). The purpose is taken care of by the perspective used
for the systems.

This definition might seem trivial, but we will discuss in the
next Section 4, which artefacts we do not consider to be models.
In particular, a UML diagram is part of a model according to OMG
but is not part of a model according to our definition of model,
but rather part of a model description. We discuss descriptions in
Section 4.

Staying with our examples, Figure 4 shows a (physical) model of
the Mini from Figure 1, made with the purpose of being played with
by children. It is easy to see that both are systems, and that they

Figure 4: A Lego Mini as a model of the Mini

are analogous, which means that their perspective is overlapping.
The Lego Mini is more focused in that it has less detail than the
original. A similar case can be made for an online booking portal
as shown in Figure 5 which is a model of the travel agency from
Figure 2. Again, both are systems with matching perspectives, and
there is some extra focus in the model.

By our definition, each model is a system, but not every system
is a model. As a model is a system itself, it is a set of all possible



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Prinz et al.

Figure 5: Expedia as a model of the travel agency

executions by our definition of system. In [22], the same argument
is made, i.e. that models are program executions. We apply this un-
derstanding to the meta-model architecture, which is not addressed
in [22]. In particular, we use this understanding to identify different
kinds of abstraction in the meta-model architecture.

Thalheim introduces the following properties of models in [26].
(1) well-formed
(2) analogous
(3) more focused (simpler, truncated, more abstract, reduced)
(4) dependable (fit for its purpose)

We will come back to well-formedness in the next Section, while
analogy and focus are already given in the definition. Dependability
of the model is part of the model being a system, given by the
perspective of the model. In fact, the focus property is optional
for being a model, as it is already implied in the model and the
referent system being systems. The application of a perspective
already implies focus.

For the general notion of model, it is generally agreed that a model
is an abstraction of an existing or planned system. Therefore, only
a subset of the properties of a system are represented in the model.
One of the uses of models is to experiment with the models instead
of with the real systems and deduce properties for the systems,
as long as the experiments are possible in the abstracted view of
the model. This idea of model works for material, mathematical
or digital models. It is obvious that experiments are related to
the executions of the system, for example validation is the check
whether the executions of a model and its related system match.

A kid can experiment with a Lego Mini car to imitate driving,
thereby interacting with the model (the Lego Mini car), its position,
orientation, and velocity, while imitating how a car turns around.
Playing with the car simulates the execution, which is often match-
ing the possible executions of the Mini system from Figure 1. Of
course, the kid can let the Lego Mini fly, which would not match
with the real Mini.

Similarly, the booking portal acts as a model of a physical travel
agent. It also functions as a system in itself, facilitating much of the
same functionality as the physical travel agency.

This way, physical models are systems, because it is their be-
haviour (their executions) that makes them systems. Scale models
are also systems, but often with a fixed object structure.

Please observe that the abstraction property (more focused) of
a model is heavily dependent on the perspectives of model and
referent system. This way, simplification is somewhat outside the
model-of relation. Anyway, the relation betweenmodel and referent

system is an abstraction relation and it is characterised by the model
being analogous, and more focused than the referent system.

The importance of analogy is also identified in [19] by stating "...
abstraction is the result of recognising and isolating what different
concrete concepts have in common."

4 DESCRIPTION, INSTANTIATION,
SEMANTICS

More often than not, systems are coming to exist based on system
descriptions. The most obvious case is programming, where the
system is the set of executions, and the description is a program.
Alternative kinds of descriptions could be specifications, sets of
statements, diagrams, or formulae.

In many cases, models are understood as being descriptions of
(referent) systems. Here we can remember the characterisation
as [26] that a model is well-formed. Well-formedness is a clear
property of a description, not of a system. It would not apply to
scale models, for example, but to descriptions of those. Also the
UML language specification [24] considers a model to "make some
statements of interest about that system ... from a certain point of
view and for a certain purpose".

In our approach, the description is not the model, but describes
the model. For example, Figure 6 provides a partial description for

Figure 6: Partial description of the model of the Mini.

building the Lego-Mini. It is obvious that the description is not
the system itself (the Lego Mini), but it provides a way to create
the system. In the same sense, the description of a system is not a
model of the system, but a way to create another system that then
is the model.

This might be easier to understand by looking at Figure 7, which
provides a partial description of the database structure of the book-
ing portal. This description is obviously not the database itself, but
a way to create and handle the database. The database itself is then
the model of our intended reality.

We could even use the term "prescription", as the system descrip-
tion leads to (prescribes) a system as shown in Figure 8. Systems
can be made using various kinds of system descriptions from which
their executing objects are created. A similar argument can be made
for mathematical models.



On Abstraction in the OMG Hierarchy MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 7: Description of the database of the booking portal.

Figure 8: Prescriptions lead to systems, which can be models.

It is very common to associate the description with its implied
system, for example the database description is often considered as
if it were already the database that it describes. In this paper, we fol-
low the Scandinavian approach to modelling [14] by distinguishing
between description and implied system.

Among the descriptions, programs (or specifications) are de-
scriptions of systems as possible program executions. A program
execution will consist of a changing structure of computational
objects according to the descriptions of objects and classes in the
program.

Definition 4.1 (System description). A system description is a well-
formed description of all possible static structures that may exist
during run time of the system together with their possible dynamic
development.

A description is given in a language as shown in Figure 9. Well-
formedness means that the description adheres to the rules of the
language. Sometimes, this adherence is called static correctness.
Please note that the language can be both formal or informal, lead-
ing to different formality levels of the well-formedness.

As can be seen in the lower part of Figure 9, a system description
always leads to a system, which is a set of possible executions. The
system does not need to be a model if there is no related referent
system. This connection between a system description and the

system itself is typically called instantiation, see also [9, 12]. It will
not only work on the system as a whole, but for all the elements of
the system as well. Instantiation is based on the semantics of the
language in which the description is made, which provides a set
of possible instances1. Instantiation will select one instance from
the set of possible instances. This relation is the classical “meta”-
relation as for example stated in [8]. It is also closely related to the
mathematical ‘interpretation’ relation. This leads to the following
definition of semantics.

Definition 4.2 (Semantics and instantiation). Semantics is the
relation between a (system) description and its prescribed possible
systems. Selecting one specific system from the possible systems is
called instantiation.

How does this magic of instantiation work? The answer is, that
it is defined by the language (which we call layer L) that is used for
the description (called layer D), see Figure 9. Again, the semantics
can be formal or informal, depending on the language. Each lan-

Figure 9: Semantics of the language relates system descrip-
tion and system.

guage defines the semantics of its elements, e.g. what are instances
of classes, modules, methods, and variables. This is the known as-
pect of compilers called runtime environment (RTE). RTE states
describe the situations we can encounter at runtime and runtime
state changes describe the dynamics at runtime. How RTE states
and state changes can be described for formal languages is shown
in [25].

This means that the instantiation semantics of a language (RTE
structure) is defined on layer L as a mapping from any description
on layer D to appropriate structures on layer S (for systems). The
execution semantics of a language assembles RTE structures into
sequences of structures forming runs. Again, this is a part of the
language description on layer L which defines the possible runs for
any description on layer D, leading to runs on layer S as depicted
in Figure 9. This three-layer structure L-D-S is always there when
we talk about instantiation.2

1Please note that the kind of instances depends on the kind of description. Instances
of classes are objects, while instances of system descriptions are sets of possible runs.
2The L-D-S structure can be seen as a way of deep instantiation [7], because the instan-
tiation between D and S is described already in L. In this understanding, instantiation
from the language level is always deep.



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Prinz et al.

The UML 2.4.1 Infrastructure specification [23] agrees by stating
that when dealing with meta-layers to define languages there are
generally three layers that always have to be taken into account:

(1) the language specification, or the meta-model,
(2) the user specification, or the model3, and
(3) objects of the model3.
From the relation between system description and system it is

clear that the system description is not an abstraction of the system
- rather, it is a description of the system. There is some abstraction in
the diagonal relation in Figure 8, but the plain abstraction relation
is horizontal.

5 HIERARCHY
OMG has defined a model-driven architecture (MDA) for using
models in the development process, and together with this the
notion of models and meta-models, see Figure 1 and [20]. After the
discussion in Section 4, we know that the relation between M1 and
M0 is the instantiation relation, where M1 contains descriptions
and M0 contains instances according to these descriptions. In this
context, the descriptions on M1 are fixed (read-only).

Essential in our understanding of the modelling layers is that
of semantics and instantiation, and this is further coupled with
our understanding of systems and descriptions. As we shall see in
the sequel, this understanding applies to all layers and not just the
M1-M0 crossing, see Figure 10.

The key observation is that a description (on M1) is realised by
objects (still onM1 - i.e. instances of meta-classes atM2) and thereby
part of a system. This system is not the one being described by the
description, but rather the system where the description itself can
be handled by changing the objects representing the description, e.g.
editing. The objects onM1 are instances of the language description,
which is onM2. In Figure 10, there are objects on the right-hand side,
and descriptions on the left-hand side. The connection between
right-hand side and left-hand side is realisation (or representation).
According to our discussion in Section 2, there would be even a
far left side which contains the reality underlying the systems and
objects. This way, the horizontal dimension in Figure 10 is the
realisation dimension.

In the following we indicate with (L), (D) or (S) how the layers
of Figure 9 correspond to the various OMG layers. Please note that
the instantiation goes one layer down from the left to the right. In
summary, that means for the M0-M1 crossing, see also Figure 10.

• Descriptions on M1 (D) are represented by objects (of classes
from M2 (L)). These descriptions describe systems.

• A system description on M1 (D) is instantiated to a system
on M0 (S), with all its possible runs, based on the possible
objects in RTE states.

• Objects on M0 (S) are generated from the descriptions on
M1 (D), according to the semantics of the language defined
on M2 (L).

A similar situation appears for the crossing between M2 and M1,
with semantics from M3.

• Descriptions on M2 (D) are represented by objects (of classes
from M3 (L)). These descriptions describe languages.

3Note that this is OMG notation, where ‘model’ is in fact a ‘model description’.

• A language description on M2 (D) is instantiated to a sys-
tem on M1 (S) - typically called IDE, based on the possible
specifications (system descriptions that can be created in
the described language). This way, a language (instance of a
language description) is a set of system descriptions.

• Objects on M1 (S) are generated from the descriptions on
M2 (D), according to the semantics of the (meta-)language
defined on M3 (L).

As an example, in Figure 10 the description on M2 defines UML,
in terms of objects of the (meta-)classes on M3 (MOF). The cor-
responding system on M1 is the system (the language) generated
from the description of UML (i.e the UML language as a system),
given the semantics of MOF. The different runs of this system will
have (run time) objects that represent different UML specifications
on M1.

Because the semantics of MOF is more or less plain instantiation,
different runs of the UML language system will just produce differ-
ent object structures representing different UML specifications on
M1. Runs of the UML system will typically be performed by a tool
for handling UML descriptions (editors and the like).

We can apply the same situation again for M2, M3, and M4.
Obviously, the languages on M4 are the same as the languages
on M3, as those are languages to define languages. Therefore, we
would normally stop at M3 and consider the upper layers to be
repetitions of M3, i.e. M3=M4=M5=M6=... This method is normally
called bootstrapping, for example when writing a Java compiler in
Java.

There is also a similarity between the layers M2 and M3, as
both of them contain descriptions of languages. All meta-languages
are also languages by definition. Still, not all languages are meta-
languages and therefore M3 is a subset of M2, and not the same.

6 DISCUSSION
In this section, we will discuss several aspects of our approach. First,
we look into the difference between a model and a description of
a model, then we consider the difference between meta-data and
meta-models, and finally, we discuss the importance of well-defined
terms.

6.1 Is a Description a Model?
In our approach, every model is a (model) system in itself, which
becomes a model by having an abstraction relationship to a referent
system. The (model) system can be physical and tangible, but it can
also be digital or mental. Similarly, also the referent system can
be physical, digital, or mental. This way, a model is always on the
same modelling layer as the referent system.We compare this to the
OMG idea in Table 2. Obviously, there is no difference in the idea
of M0. The main difference is that according to our understanding,
all layers above layer M0 are description layers. Their meaning is
given by instantiation and is placed on the layer below, see again
Figure 8.

Distinguishing between models and model descriptions allows a
unified handling of models with and without descriptions. In the
general understanding of modelling, most people would agree that
physical models (e.g. the Lego Mini) and systems (e.g. the real Mini)
are obviously on the same layer. A system being a model is just



On Abstraction in the OMG Hierarchy MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Figure 10: Descriptions are also systems.

Table 2: Our view compared with the OMG view of the four-
layer architecture

Layer OMG terms Our terms
M3 meta-languages descriptions of meta-languages
M2 languages descriptions of languages
M1 models descriptions of systems & models
M0 objects of classes systems, models, objects

as physical: it contains objects with identity, state and potential
actions, and these model/represent elements of the real systems.

When models are created from descriptions, we tend to call
the descriptions for models and even think of them as models. In
this view, we consider architectural drawings to be models of the
buildings, UML diagrams to be models of the systems, and music
sheets to be models of the music.

However, when we look more closely, we see that the real con-
nection is not from the description to the referent system, but from
the description to the implied system (by instantiation semantics)
and then to the referent system (by abstraction), see again Figure 8.
The model description is connected to the referent system indirectly
via an instantiation and a model-of.

Separating model-of from instantiation also clarifies the differ-
ence between linguistic and ontological instantiation as introduced
by [5]. We already discussed linguistic instantiation, which is the

relation based on semantics. Ontological instantiation is the intra-
layer relation between descriptions of classes (e.g. in class diagrams)
and descriptions of objects (e.g. in object diagrams). As the relation
is between descriptions of classes and descriptions of objects (not
between a class and an object), this is not instantiation at all. In-
stead, it is a relation between the semantics of a class (which is an
object) and the semantics of an instance specification (which is also
an object).

6.2 Meta-data or Meta-model?
Even though the four-layer architecture should have a prominent
place in the OMG standards, binding together languages and tech-
nologies, it does in fact only appear as a side-remark in the OMG
standards. Moreover, its role is played down more and more for the
new versions of the central standards UML [24] and MOF [10].

We see a major problem in that the architecture is designed to
be a meta-data architecture, as stated in [10].

One of the sources of confusion in the OMG suite of
standards is the perceived rigidness of a ‘Four layered
metamodel architecture’ that is referred to in various
OMG specifications. Note that key modeling concepts
are Classifier and Instance or Class andObject, and the
ability to navigate from an instance to its metaobject
(its classifier). This fundamental concept can be used
to handle any number of layers (sometimes referred
to as metalevels).



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Prinz et al.

Handling meta-data instead of meta-models does not take into
account the dynamic aspect of systems. With meta-data, we only
handle (static) snapshots and attach meta-information to them. This
leads to a bottom-up approach with focus on extensibility, because
the basic operation is attaching meta-data to data, which goes from
objects to classes. Related to Figure 9, we see that the OMG focus
removes the upper part (the language), in particular the semantics.
Instantiation semantics is fixed in this approach to be connection
between object and class. This is the reason that MOF can be used
in a two-layer architecture.

Handling languages requires a different approach, where the
starting point is the language and well-formedness is essential.
Such an approach is more top-down and not overly interested in
extensibility. For meta-modelling, the main operation is instantia-
tion, which is going from classes to objects. When meta-modelling
is involved, it is essential to have at least three layers as shown in
Figure 9.

It appears that OMG has tried to capture both meta-models and
meta-data in the same architecture, leading to many misunderstand-
ings. A decision towards a meta-model architecture would improve
and clarify the OMG standards.

6.3 Calling a Spade for a Spade
In [4], a point is made that it is important to capture all the possible
meanings of a term when naming something. We agree wholeheart-
edly. We would like to add that it is essential to identify all different
meanings of a term, when doing this work. For example, there are
two different meanings of the term ‘spade’, see figure 11.

Figure 11: A spade is a spade, or is it?

Although it is important to be aware of the different semantics
of some term, it is also and maybe even more important to ensure
that the semantics is precise. When there are two or more different
concepts denoted by the same term, then it is wise to introduce
distinguishing terms, for example to distinguish the two types of
spade in Figure 11. This precision is even more important when the
terms are used to create an architecture that should unify different
technologies, tools, and theories.

This is done in our article. We have identified three different
concepts that each might be called abstraction. We have defined
each of them and the we use different terms in order to distinguish
them: instantiation which crosses layers, model-of which is on the
same layer, and perspective which relates systems to reality. All
three could be subsumed into the term ‘abstraction’.

When separating model-of from instantiation, it appears clear
that instantiation is not an abstraction relation, while model-of is

an abstraction relation. Furthermore, we argued already in Section
2 that perspective is not really an abstraction as the reality is not
an entity we can handle before we apply the perspective. This way
it is difficult to state from what a system is an abstraction of. This
way, we conclude that model-of is the only true abstraction relation
in the hierarchy.

7 SUMMARY
We have presented a simple understanding of the layers using three
main observations.

(1) Systems are parts of reality viewed under a perspective.
(2) Models are special systems that are abstractions of referent

systems.
(3) Systems (including models) can be instantiated from descrip-

tions by using the semantics of the language of the descrip-
tions.

With these observations, models and their referent systems are
placed on the same layer and connected with the model-of relation
(abstraction), which is a horizontal relation. Descriptions are placed
one layer higher than their systems and instantiation crosses the
layer structure. This makes instantiation a vertical relation.

Instantiation connects descriptions with their systems. It is given
by a semantics description, which is placed one layer above the
descriptions. From this consideration, we need at least three layers:
languages, descriptions, systems.

The elements given here provide a clean and straightforward
approach to modelling - also known as the Scandinavian approach
to modelling - and they are compatible with the four-layer architec-
ture. The critical change to current practice is the understanding
that UML models and most other kinds of non-physical models
are actually model descriptions, and they do not directly relate to
their referent systems. Instead, via instantiation they create a model
which is a model-of the referent system (abstraction).

This approach to modelling is easily compatible with the stan-
dard approach to programming, where the code (the description)
is used to produce the executions. This way, our paper also ex-
plains how programming and modelling are similar and can be
used together.

It would be useful to consider calling the descriptions for de-
scription, but it is important to at least understand that they are
not in a model-of relationship with the referent system themselves,
even if we call them models.

REFERENCES
[1] Colin Atkinson. 1997. Meta-modeling for distributed object environments. In In

Enterprise Distributed Object Computing. Published by IEEE Computer Society,
Gold Coast, Australia, 90–101.

[2] Colin Atkinson and Thomas Kühne. 2000. Meta-level Independent Modelling.
In International Workshop on Model Engineering at 14th European Conference
on Object-Oriented Programming. Workshop Proceedings, Sophia Antipolis and
Cannes, France, 1–4.

[3] Colin Atkinson and Thomas Kühne. 2002. Rearchitecting the UML infrastructure.
ACM Transactions on Computer Systems (TOCS), 12, 4 (October 2002), 290–321.

[4] Colin Atkinson and Thomas Kühne. 2003. Calling a Spade a Spade in the MDA
Infrastructure. In Proceedings of the Metamodeling for MDA First International
Workshop. Univ. of York, workshop proceedings, York, UK, 9–12.

[5] Colin Atkinson and Thomas Kühne. 2003. Model-Driven Development: A Meta-
modeling Foundation. IEEE Software 20, 5 (2003), 36–41. https://doi.org/10.1109/
MS.2003.1231149

https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/MS.2003.1231149


On Abstraction in the OMG Hierarchy MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

[6] Colin Atkinson and Thomas Kühne. 2005. Concepts for Comparing Modeling
Tool Architectures. In Model Driven Engineering Languages and Systems, 8th
International Conference, MoDELS 2005, Montego Bay, Jamaica, October 2-7, 2005,
Proceedings (Lecture Notes in Computer Science, Vol. 3713), Lionel C. Briand and
Clay Williams (Eds.). Springer, Montego Bay, Jamaica, 398–413. https://doi.org/
10.1007/11557432_30

[7] Colin Atkinson and Thomas Kühne. 2018. Deep Instantiation. Springer New York,
New York, NY, 1040–1041. https://doi.org/10.1007/978-1-4614-8265-9_80608

[8] Jean Bézivin and Olivier Gerbé. 2001. Towards a Precise Definition of the
OMG/MDA Framework. In 16th IEEE International Conference on Automated
Software Engineering (ASE 2001), 26-29 November 2001, Coronado Island, San
Diego, CA, USA. IEEE Computer Society, Coronado Island, San Diego, CA, USA,
273–280. https://doi.org/10.1109/ASE.2001.989813

[9] Tony Clark, Paul Sammut, and James S. Willans. 2015. Applied Metamod-
elling: A Foundation for Language Driven Development (Third Edition). CoRR
abs/1505.00149 (2015), 1–244. arXiv:1505.00149 http://arxiv.org/abs/1505.00149

[10] OMG Editor. 2019. OMG Meta Object Facility (MOF) Core Specification Version
2.5.1 (OMG Document formal/2019-10-01). Technical Report. Object Management
Group.

[11] Owen Eriksson, Brian Henderson-Sellers, and Pär J. Ågerfalk. 2013. Ontological
and linguistic metamodelling revisited: A language use approach. Information
and Software Technology 55, 12 (2013), 2099–2124. https://doi.org/10.1016/j.infsof.
2013.07.008

[12] Jean-Marie Favre. 2003. Meta-Model and Model Co-Evolution within the 3D
Software Space. In Proceedings of ELISA 2003. Royal Netherlands Academy of
Arts and Sciences, Amsterdam, The Netherlands, 98–109.

[13] Jean-Marie Favre. 2005. Foundations of Meta-Pyramids: Languages vs. Meta-
models – Episode II: Story of Thotus the Baboon. In Language Engineering for
Model-Driven Software Development (Dagstuhl Seminar Proceedings (DagSemProc),
Vol. 4101), Jean Bezivin and Reiko Heckel (Eds.). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 1–28. https://doi.org/10.4230/
DagSemProc.04101.7

[14] Joachim Fischer, Birger Møller-Pedersen, Andreas Prinz, and Bernhard Thalheim.
2020. Models Versus Model Descriptions. In Modelling to Program - Second
International Workshop, M2P 2020, Lappeenranta, Finland, March 10-12, 2020,
Revised Selected Papers (Communications in Computer and Information Science,
Vol. 1401), Ajantha Dahanayake, Oscar Pastor, and Bernhard Thalheim (Eds.).
Springer, Lappeenranta, Finland, 67–89. https://doi.org/10.1007/978-3-030-72696-
6_3

[15] Joachim Fischer., Birger Møller-Pedersen., and Andreas Prinz. 2020. Real Models
are Really on M0 - Or How to Make Programmers Use Modeling. In Proceedings
of the 8th International Conference on Model-Driven Engineering and Software
Development - MODELSWARD,. INSTICC, SciTePress, Valletta, Malta, 307–318.
https://doi.org/10.5220/0008928403070318

[16] Ralf Gitzel, Ingo Ott, and Martin Schader. 2007. Ontological Extension to the
MOF Metamodel as a Basis for Code Generation. Comput. J. 50, 1 (2007), 93–115.
https://doi.org/10.1093/comjnl/bxl052

[17] Shirley Gregor. 2006. TheNature of Theory in Information Systems.MIS Quarterly
30, 3 (2006), 611–642. http://www.jstor.org/stable/25148742

[18] Wolfgang Hesse. 2006. More matters on (meta-)modelling: remarks on Thomas
Kühne matters. Software and Systems Modeling (SoSyM) 5, 4 (December 2006),
387–394. http://dx.doi.org/10.1007/s10270-006-0033-9

[19] Douglas R Hofstadter. 2013. Surfaces and essences : analogy as the fuel and fire of
thinking. Basic Books, New York.

[20] Anneke Kleppe and Jos Warmer. 2003. MDA Explained. Addison–Wesley, Boston,
MA, USA.

[21] Thomas Kühne. 2006. Matters of (Meta-)Modeling. Software and SystemsModeling
(SoSyM) 5, 4 (December 2006), 369–385. http://dx.doi.org/10.1007/s10270-006-
0017-9

[22] Ole Lehrmann Madsen and Birger Møller-Pedersen. 2018. This is not a model :
On development of a common terminology for modeling and programming. In
Proceedings of the 8th International Symposium, ISoLA 2018: Leveraging Applica-
tions of Formal Methods, Verification and Validation - Modeling, Lecture Notes in
Computer Science 2018 ;Volume 11244 LNCS. Springer, Limassol, Cyprus, 206–224.
https://doi.org/10.1007/978-3-030-03418-4_13

[23] OMG Editor. 2011. Unified Modeling Language: Infrastructure version 2.4.1
(OMG Document formal/2011-08-05). Published by Object Management Group,
http://www.omg.org.

[24] OMG Editor. 2017. Unified Modeling Language: Infrastructure version 2.5.1
(OMG Document formal/2017-12-05). Published by Object Management Group,
http://www.omg.org.

[25] Markus Scheidgen and Joachim Fischer. 2007. Human Comprehensible and Ma-
chine Processable Specifications of Operational Semantics. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 157–171. https://doi.org/10.1007/978-3-540-72901-3_12

[26] Bernhard Thalheim. 2018. Conceptual Modeling Foundations: The Notion of a
Model in Conceptual Modeling. Springer New York, New York, NY, 559–561.
https://doi.org/10.1007/978-1-4614-8265-9_80780

https://doi.org/10.1007/11557432_30
https://doi.org/10.1007/11557432_30
https://doi.org/10.1007/978-1-4614-8265-9_80608
https://doi.org/10.1109/ASE.2001.989813
https://arxiv.org/abs/1505.00149
http://arxiv.org/abs/1505.00149
https://doi.org/10.1016/j.infsof.2013.07.008
https://doi.org/10.1016/j.infsof.2013.07.008
https://doi.org/10.4230/DagSemProc.04101.7
https://doi.org/10.4230/DagSemProc.04101.7
https://doi.org/10.1007/978-3-030-72696-6_3
https://doi.org/10.1007/978-3-030-72696-6_3
https://doi.org/10.5220/0008928403070318
https://doi.org/10.1093/comjnl/bxl052
http://www.jstor.org/stable/25148742
http://dx.doi.org/10.1007/s10270-006-0033-9
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1007/978-3-030-03418-4_13
https://doi.org/10.1007/978-3-540-72901-3_12
https://doi.org/10.1007/978-1-4614-8265-9_80780

	Abstract
	1 Introduction
	2 System and Perspective
	3 Model and Abstraction
	4 Description, Instantiation, Semantics
	5 Hierarchy
	6 Discussion
	6.1 Is a Description a Model?
	6.2 Meta-data or Meta-model?
	6.3 Calling a Spade for a Spade

	7 Summary
	References

