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Abstract
The state-of-the-art natural language processing
models have raised the bar for excellent perfor-
mance on a variety of tasks in recent years. How-
ever, concerns are rising over their primitive sensi-
tivity to distribution biases that reside in the train-
ing and testing data. This issue hugely impacts the
performance of the models when exposed to out-
of-distribution and counterfactual data. The root
cause seems to be that many machine learning mod-
els are prone to learn the shortcuts, modelling sim-
ple correlations rather than more fundamental and
general relationships. As a result, such text classi-
fiers tend to perform poorly when a human makes
minor modifications to the data, which raises ques-
tions regarding their robustness. In this paper, we
employ a rule-based architecture called Tsetlin Ma-
chine (TM) that learns both simple and complex
correlations by ANDing features and their nega-
tions. As such, it generates explainable AND-rules
using negated and non-negated reasoning. Here,
we explore how non-negated reasoning can be more
prone to distribution biases than negated reasoning.
We further leverage this finding by adapting the
TM architecture to mainly perform negated reason-
ing using the specificity parameter s. As a result,
the AND-rules becomes robust to spurious correla-
tions and can also correctly predict counterfactual
data. Our empirical investigation of the model’s
robustness uses the specificity s to control the de-
gree of negated reasoning. Experiments on pub-
licly available Counterfactually-Augmented Data
demonstrate that the negated clauses are robust to
spurious correlations and outperform Naive Bayes,
SVM, and Bi-LSTM by up to 20%, and ELMo by
almost 6% on counterfactual test data.

1 Introduction
Despite impressive advances of Deep Neural Network (DNN)
architectures for Natural Language Processing (NLP), their
implementations still suffer from various challenges. One
of the challenges is associated with DNN’s capability of
learning simple correlations and ignoring more complex

ones [Sauer and Geiger, 2021]. This behavior of DNN be-
comes questionable when the simple correlation is spurious
and absent from the test data, or occurs in an unfitting con-
text. For instance, in the sentence Nolan’s films are always
great mostly because of his excellent direction, the influential
word for predicting a positive sentiment should be “great”
and “excellent” instead of “Nolan’s” and “direction”. How-
ever, due to the majority of samples consist of “Nolan hav-
ing a great movie”, it makes the classifier learn that “Nolan”
corresponds to a positive sentiment word [Wang and Culotta,
2020]. Similarly, a toxicity classifier learns that “gay” cor-
responds to a toxic comments [Wulczyn et al., 2017] and a
medical diagnosis classification system learns the disease as-
sociated with the patient ID [Kaufman et al., 2012] The is-
sue of spurious patterns also moderately impacts the out-of-
distribution (OOD) generalization of models that are trained
on independent identical distribution (IID) data, resulting in
performance degradation when the distribution shifts.

Researchers recently have found that the decay in model
performance, as well as social bias in NLP, appear out-of-
domain due to sensitivity towards spurious signals. One of
the solutions to deal with such vulnerability in NLP models
is data augmentation with counterfactual samples [Kaushik
et al., 2020], which can help the model with learning real
causal correlations between input and labels. For instance, a
man-made counterfactual sample of the last example could be
Nolan’s films are always boring mostly because of his poor
direction. Inserting such counterfactual data into the origi-
nal training sets has shown to be beneficial for learning real
causal correlation thereby improving the robustness of the
model [Kaushik et al., 2020]. However, augmentation with
counterfactual data usually relies on a human-in-the-loop sys-
tem to generate sentiment-flipped samples. For this process,
humans are asked to make minimal and believable edits to
generate counterfactual samples. Even though such an addi-
tion of data makes the model robust against spurious correla-
tions, completing a human-in-the-loop process is costly and
time-consuming.

The main reason behind the failure of DNNs on coun-
terfactual data during inference is still unclear because of
their black-box nature [Rudin, 2018]. What they learn from
the data that limits the models’ robustness against differ-
ent distribution samples is currently an open research ques-
tion. Some researchers argue that the attention mecha-



nism provides an explanation of DNN models, which as-
signs soft weights to the input representations, and then ex-
tracts highly weighted tokens as rationales [Bahdanau et al.,
2015]. However, these attention weights do not provide faith-
ful explanations for classification [Serrano and Smith, 2019;
Brunner et al., 2020]. In addition, DNNs fail to conduct log-
ical reasoning in various tasks. Logical reasoning is one of
the most important prerequisites in NLP that supports various
practical applications such as legal assistants, medical deci-
sion support, and personalized recommender systems. Due
to these issues, DNNs have failed to demonstrate their ro-
bustness on counterfactual data. On the other hand, a rule-
based knowledge system is a powerful tool that offers log-
ical reasoning because of its explainability. However, most
rule-based systems rely on static rules that are hand-crafted.
Without learning capability, the performance and general-
ization is limited. Keeping these two challenges in consid-
eration, we employ a recent architecture called Tsetlin ma-
chine (TM), which is an interpretable rule-based model that
learns both simple and complex correlations via conjunctive
clauses [Granmo, 2018]. Unlike DNNs and simple rule-based
architectures, TM learns rules with logical reasoning as a hu-
man does and it also offers a transparent and interpretable
learning [Yadav et al., 2021a]. Such rule-based logical rea-
soning is important for processing counterfactual data, and
we here study the TM robustness towards counterfactual test
data compared with DNNs. In addition, we demonstrate how
TM supports reasoning with negation, which is completely
different from attention-based DNN models. The main con-
tributions of the paper are as follows:

• We design a TM-based approach that is robust to spu-
rious correlations on counterfactual and out-of-domain
data, without any data augmentation.

• Our in-depth analysis of TM specificity parameter s
records transparent learning and explainable predictions
on counterfactual data.

2 Related Work
Many recent papers have shown that the DNN-based NLP
models do not seem to learn the aspects that humans seem
important for a particular classification. The state-of-the-
art models have been vulnerable to fabricated transforma-
tions. Effective fabrications include distractor phrases, adver-
sarial example generation with paraphrasing, and template-
based modifications. As the result, researchers develop coun-
terfactual data augmentation approaches for building robust
classifiers [Lu et al., 2020] to eliminate the effect of spuri-
ous correlations. In attempt to augment counterfactual data,
[Kaushik et al., 2020] develops a human-in-the-loop sys-
tem using crowd-sourcing methods [Kaushik et al., 2020].
It is shown that such augmented data makes the trained
model robust not only to counterfactual data but also to out-
of-domain datasets. However, due to the fact that crowd-
sourcing is time-consuming and expensive, an automatic aug-
mentation of counterfactual data with causal identification is
proposed [Wang and Culotta, 2020]. Here, causal words are
employed to generate counterfactual data using BERT sen-
tence similarity.

Apart from data augmentation, there has been little re-
search on studying the reason for the failure of ML models
for counterfactual data. Perception and reasoning are two cru-
cial abilities a model needs for successful problem-solving.
Recent ML models such as DNNs have shown extraordinary
performance in various perception tasks [Krizhevsky et al.,
2012]. However, such models hardly exploit refined domain
knowledge in symbolic form in order to support reasoning.
Despite the recent DNNs’ ability to consider relational and
differential knowledge representation, they still lack compre-
hensive logical reasoning across the dataset [Jia and Liang,
2017]. Hence, there has been an increasing interest in com-
bining ML with logical reasoning especially in the field of
NLP. For instance, Fuzzy Logic [Goguen, 1973], Statistical
Relational Learning [Getoor and Taskar, 2007], and Proba-
bilistic Logic Programming [Raedt and Kimmig, 2015] have
come into the picture to enhance traditional logic-based meth-
ods. However, they often require handcrafted symbols as in-
put from humans. There has been little research on alternative
ML models that have a learning ability comparable to DNN
and also possess human-like logical reasoning.

Since counterfactual inference is all about understanding
the logical reasoning behind the training data, we here in-
corporate a recent ML model, TM [Granmo, 2018], which
not only offers a transparent learning mechanism but also
facilitates human-level model interpretation [Yadav et al.,
2021a]. Unlike DNN attention weights that arguably explain
predictions after training, the TM learning process itself is
fully transparent and produces logically explainable predic-
tion [Yadav et al., 2021b]. Indeed, TM has been widely ac-
cepted for its interpretability and logical reasoning [Lei et al.,
2021; Abeyrathna et al., 2021]. Hence, in this paper, we pro-
pose and investigate how TM can deal with counterfactual test
data as well as out-of-domain distributions. We further show
that it produces rules as human-like logical reasoning and is
more robust than DNNs. In particular, we explore its inter-
pretability in-depth contrasting the logic-based rules with the
attention weights utilized by DNNs. Thereby, we analyse the
reasons that explain TM’s robustness against spurious corre-
lations. To our knowledge, this is the first time that a rule-
based human-level interpretable model is used to tackle spu-
rious correlations.

3 Detailed Implementation
3.1 Tsetlin Machine
TM is a recent ML model that learns correlations between
features and labels using propositional logic [Granmo, 2018].
A propositional logic formula in TM, namely a clause, is
a conjunction of negated and non-negated forms of the in-
put features. The negated or non-negated forms of the input
features are known as literals and are controlled by a set of
Tsetlin Automata (TA). In a simple way, each input feature
corresponds to two TAs, i.e., TA and TA’. TA controls the
original (non-negated) form of the literal whereas TA’ con-
trols its negation. Each TA decides either to include or ex-
clude the literal, and has two actions (Include/Exclude) with
2N states. When a TA moves from state 1 to N , action Ex-
clude is performed. When a TA moves from state N + 1



to 2N , it performs the Include action. Each move of TA is
triggered by feedback in the form of Reward, Penalty, or In-
action [Granmo, 2018].

The most important component of TM is the clause, which
represents a certain sub-pattern among a particular set of pat-
terns. This sub-pattern is in propositional AND-form mak-
ing it highly interpretable and amendable for logical under-
standing of the task. To have a clear comprehension of
what a clause looks like, let us consider a bag-of-words in-
put X = [x1, · · · , xn], xk ∈ {0, 1}, k ∈ {1, . . . , n} where
xk = 1 means the presence of a word in the sentence and
n is the size of the vocabulary. Let us assume there are γ
classes in total. If each class needs α clauses to learn the pat-
tern, altogether the model is represented by γ×α clauses Cκ

ι ,
1 ≤ κ ≤ γ, 1 ≤ ι ≤ α, as:

Cκ
ι =

 ∧
k∈Iκ

ι

xk

 ∧

 ∧
k∈Īκ

ι

¬xk

 , (1)

where Iκι and Īκι are non-overlapping subsets of the input
variable indices, Iικ, Īικ ⊆ {1, · · · , n}, Iικ ∩ Īικ = ∅. Iκι rep-
resents the set of indices of the features that the TAs include
in original form, while the set Īκι contains the indices of the
features that the TAs include in negated form.

Here, clauses with odd indexes in each class are allocated
positive polarity (+), whereas those with even indexes are as-
signed negative polarity (-). Positive polarity clauses vote in
favor of the target class, while negative polarity clauses vote
against it. As demonstrated in Eq. (2), a summation operator
aggregates them by subtracting the total number of negative
votes from the total number of positive votes.

fκ(X) = Σα−1
ι=1,3,...C

κ
ι (X)− Σα

ι=2,4,...C
κ
ι (X). (2)

For γ classes, the final output ŷ is given by the argmax
operator to classify the input based on the highest net sum of
votes, as shown in Eq. (3).

ŷ = argmaxκ (f
κ(X)) . (3)

3.2 Learning Rule-based Clauses for
Counterfactual Inference

The step-by-step explanation for the learning process of TM
can be found in [Yadav et al., 2021b]. Here we explain briefly
the learning of the rule-based clauses in TM for counterfac-
tual inference via an example. Let the sentence “Long, bor-
ing, blasphemous. Never have I been so glad to see ending
credits roll.” be the training sample that has negative senti-
ment. Each of the input words in the sentence is controlled
by two TAs where TA controls non-negated literal such as
“Long”, and TA’ controls the negated form such as “¬Long”.
The input that represents this particular sample is a sparse
Boolean bag-of-words. All the vocabulary words that are
present in the given sentence get the truth value 1, while those
absent get the truth value 0. By explicitly representing miss-
ing words in vector form like [0, 0, 0, 1, 0, · · · , 0, 1, 0, 0, 0, 1],
the representation becomes dense. However, logically, such
representation not only captures the presence of a particular
word, but also equally well represents those words that are
not present. This explicit bag-of-words representation is ideal

Input Clause 1 0
Literal 1 0 1 0

Include Literal P(Reward) s−1
s NA 0 0

P(Inaction) 1
s NA s−1

s
s−1
s

P(Penalty) 0 NA 1
s

1
s

Exclude Literal P(Reward) 0 1
s

1
s

1
s

P(Inaction) 1
s

s−1
s

s−1
s

s−1
s

P(Penalty) s−1
s 0 0 0

Table 1: The Type I Feedback.

Input Clause 1 0
Literal 1 0 1 0

Include Literal P(Reward) 0 NA 0 0
P(Inaction) 1.0 NA 1.0 1.0
P(Penalty) 0 NA 0 0

Exclude Literal P(Reward) 0 0 0 0
P(Inaction) 1.0 0 1.0 1.0
P(Penalty) 0 1.0 0 0

Table 2: The Type II Feedback.

for TMs. This is because the TM can then pick informative
negated features in the very first hundred iterations of learn-
ing using the selection parameter specificity (s). We detail
the role of s next.

In TM, each TA that controls a literal decides the action
“Include” or “Exclude” based on the feedback it receives.
There are two types of feedback: Type I Feedback and Type II
Feedback, shown in Tables 1 and 2 [Granmo et al., 2019].
Type I Feedback is activated when a given input feature is
either correctly assigned to the target label (true positive) or
mistakenly ignored (false negative), while Type II Feedback
is activated when an input feature is wrongly assigned to the
target label (false positive). From Tables 1 and 2 we can
see that parameter s, s ≥ 1, plays a very important role in
the learning process, as it controls how strongly the model
favours the action “Include”. It also determines how many
“fine-grained” sub-patterns the clauses will acquire. The
greater the value of s, the more the TAs are encouraged to
include literals in their clauses. Since s decides which literals
take part in the clause for classification, it is vital to fine-
tune it for reducing the vulnerability against spurious corre-
lation. For the above-mentioned training example, when s is
large, the states for the corresponding TAs in a clause after
training are shown in Fig. 1. As seen, the high value of s
enforces TA to include many literals in the clause, such as in-
cluding “ending”, “boring”, “credits”, “¬friendly”, “¬good”,
and “¬like”. Among the included literals, spurious correla-
tions that do not carry sentiment information, such as “end-
ing” and “credits”, indeed influence the model’s prediction on
counterfactual data.

When we have a small s, as shown in Fig. 2, the number of
included literals is reduced and the majority, if not all, of the
included literals are in the negated form. One can see from



Figure 1: States of TAs when s is high for a particular clause.

Figure 2: States of TAs when s is low for a particular clause.

the figure that the non-negated literals are now not enforced
to be included in the clause. The states in TA for “ending”,
“boring”, and “credits” have not reached to action “Include”.
Nevertheless, TM still learns negated features easily in con-
trast to non-negated features due to sparse input representa-
tion thereby not affecting the states of “¬friendly”, “¬good”,
and “¬like”.

3.3 Robustness against Counterfactual Sample
In this subsection, we will detail the reason why a trained
TM model is robust and insusceptible to spurious correla-
tions. Let us consider a model trained with a low value of
s = 2 and two sentences with different sentiment labels: S1

with positive and S2 with negative sentiment. From Fig. 3,
we can see the behavior of trained clauses for the negative
class and the positive class for the original samples. The rule-
based logic that is formulated by TM is in propositional form,
ANDing several literals. The clause associated with proposi-
tional logic becomes 1 if an input satisfies the conjunction.

When context S1 is received by the model, it correctly pre-
dicts negative sentiment because it triggers all the five clauses
in the negative class, whereas only one clause for the positive
class. Similarly, when S2 is given, it predicts positive senti-
ment because the input triggers all five clauses in the positive
class compared to only one clauses in the negative class.

Now consider two human generated counterfactual sam-
ples Scf

1 for S1 and Scf
2 for S2 as shown in Fig. 4. For S1, the

word “boring” is replaced by “fascinating”; “blasphemous” is
replaced by “soulful”; and “glad” is replaced by “sad”. Simi-
larly, for S2, the word “friendly” is replaced by “depressing”;
“charming” is replaced by “charmless”; and “unpretentious”
is replaced by “pretentious”. This means that the labels for
the corresponding counterfactual samples are now flipped.
When Scf

1 is sent to the trained TM model with s = 2, it
only triggers two clauses from the negative class and three
clauses in the positive class. Similarly, when Scf

2 is given to
the model, it triggers four clauses in the negative class but
only one clause in the positive class. Even though the prob-

ability of being in a class decreases due to the reduction in
clause score, it still manages to predict such counterfactual
samples correctly.

Since most of the entries in the sparse bag-of-word repre-
sentation are zeros, the majority of literals presented in the
clause will be in the negated form after a few iterations. With
a comparatively small number of included literals due to the
small s, the majority of clauses most likely becomes mono-
tone in the negated form. Negated literals provide a more
general form of the features that are not presented in a par-
ticular input sample thereby being less sensitive to spurious
correlations as compared with the non-negated literals. We
can clearly observe from Fig. 4 that the non-monotone clauses
that have non-negated features are the ones that fail to capture
counterfactual reasoning. This means monotonous clauses
that have only negated features are more insusceptible to such
modified data.

4 Experiments and Results
In this section, we present experimental results for analyzing
the performance of TM on counterfactual data. As we have
already discussed the significance of s for inheriting robust-
ness in the model, we experiment with different values of s on
the dataset designed by [Kaushik et al., 2020] 1. This dataset
has been developed using IMDB reviews that consist of 50k
samples divided equally across train/test splits after remov-
ing 20% of reviews. Among them, 2.5k reviews have been
split into training, validation, and testing of 1707, 245, and
488 respectively. These reviews are modified using Amazon’s
Mechanical Turk crowdsourcing so that the labels are flipped
to generate counterfactual samples. In addition, to evaluate
the out-of-domain performance of the proposed model, we
used Amazon reviews [Ni et al., 2019] on data aggregated
over six domains, i.e., beauty, fashion, appliances, gift cards,
magazines, and software, SemEval Twitter sentiment analysis
[Rosenthal et al., 2017], and Yelp challenge dataset.

We used the original 1.7k samples as the training dataset
to evaluate the robustness of the model on human-generated
counterfactual test data of size 488. We also train the model
using counterfactual data of size 1.7k and evaluate it on the
original test samples of size 488. The performance of the
model for various values of s is shown in Table 3. Other
parameters of TM are the same for all the training datasets
selected in the paper, with 3000 clauses per class and the
threshold (T ) value of 80 × 16. These parameters are se-
lected by trial and error. For evaluating the behavior of s, we
only validate on the test samples that are not from the same
training data, and the complete performance evaluation is de-
tailed later in the paper. Here, we use the features extension
technique as the preprocessing as in [Yadav et al., 2021a]. As
seen in Table 3, the accuracy of the model trained on orig-
inal training samples achieves 72.1% on counterfactual test
data when s = 2, and it decreases as s increases. Similarly,
the accuracy of the model trained on counterfactual training
samples achieves 65.20% when s = 2 and decreases as s in-
creases. This indicates that lowering the value of s fine grains

1https://github.com/acmi-lab/counterfactually-augmented-data

https://github.com/acmi-lab/counterfactually-augmented-data


Figure 3: Clause triggered by original samples S1 and S2 on both classes when s = 2.

Figure 4: Clauses triggered by counterfactual samples Scf
1 and Scf

2 on both classes when s = 2.

the pattern in the clause with negated literals, which confirms
the robustness against counterfactual data as discussed earlier.

To compare the performance of our model with the state of
the art, extensive experiments have been carried out. Since
s = 2 performs the best against counterfactual samples, we
utilize this value for performance comparison. In addition to
DNN based models, we also include typical interpretable lin-
ear models in our comparison. The models are mainly taken
from [Kaushik et al., 2020], as: •Standard Methods: We
train linear standard model such as SVM and Naive Bayes
(NB) for sentiment classification using “scikit-learn” [Kim et
al., 2016]. •Bi-LSTM: For training Bi-LSTM, Kaushik et al.
[Kaushik et al., 2020] restricted vocabulary of 20k, replac-
ing out-of-vocabulary as UNK tokens. The model consists
of bidirectional LSTM with hidden dimension 50, recurrent
dropout 0.5, and global max pooling following the embed-
ding layer. •ELMo: Kaushik et al. [Kaushik et al., 2020]
computed contextualized word representation (ELMo) using
character based word representation and bidirection LSTM
[Peters et al., 2018] using weighted sum of representation of
1024 dimensions. •BERT: Kaushik et al. [Kaushik et al.,
2020] used an off-the-shelf uncased BERT Base model to fine
tune each task. In order to consider the BERT’s sub tokeniza-
tion, token length is set at 350 and trained for 20 epochs.

As we can see from Table 4, when the original data is
used as the training samples, SVM’s accuracy on CF test data

drops to 51.0% compared with that of the original test data,
i.e., 80%. A similar trend is observed for NB, Bi-LSTM,
and ELMo. Interestingly, the performance of BERT suffers
less perhaps due to the benefit of large pretrained informa-
tion. However, disregarding the pre-trained language model
of BERT, our proposed TM reaches 73.56% and outperforms
all of the remaining models including 66.7% of ELMo. In
the case of CF data as the training samples, the accuracy on
original test samples by previous best model ELMo is 63.8%
except BERT. Again, our proposed TM model outperforms all
of them except BERT, achieving 65.98%. Although the main
aim of the paper is to evaluate TM on different/counterfactual
distribution and it is not necessary to augment both original
and CF data, we still show the performance using augmented
data as well as the remaining IMDB data of size 19k as train-
ing samples, and it can be seen that the performance of TM is
on par with the other models.

Here, we demonstrate the performance of various mod-
els trained using original and counterfactual data on out-of-
domain balanced test data, as shown in Table 5. For a compar-
ison, we again use preprocessing for feature extension from
Glove embedding as in [Yadav et al., 2021a]. The results of
other models such as SVM, NB, Bi-LSTM, ELMo and BERT
have been taken from [Kaushik et al., 2020]. Here when
original data is used as the training sample, understandably,
BERT outperforms the other models in all the cases because



Training Data s = 2 s = 3 s = 5 s = 10 s = 15 s = 20 s = 30 s = 50
Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF

Orig (1.7k) - 72.1 - 71.1 - 68.87 - 65.53 - 64.73 - 60.64 - 58.63 - 54.31
CF (1.7k) 65.20 - 63.92 - 62.45 - 62.92 - 61.01 - 59.01 - 57.70 - 54.27 -

Table 3: Accuracy of TM on Counterfactual (CF) test data using Original (Orig) training samples and vice-versa for various values of s.

Training Data SVM NB ELMo Bi-LSTM BERT TM
Orig CF Orig CF Orig CF Orig CF Orig CF Orig CF

Orig (1.7k) 80.0 51.0 74.9 47.3 81.9 66.7 79.3 55.7 87.4 82.2 85.65 73.56
(84.30 ± 0.78) (72.1 ± 0.40)

CF (1.7k) 58.3 91.2 50.9 88.7 63.8 82.0 62.5 89.1 80.4 90.8 65.98 92.20
(65.20 ± 0.80) (91.09 ± 0.55)

Orig (19k) 87.8 60.9 84.3 42.8 86.5 64.3 86.3 68.0 93.2 88.3 88.14 73.77
(87.94 ± 0.16) (72.46 ± 0.70)

Orig + CF (3.4k) 83.7 87.3 86.1 91.2 85.0 92.0 81.5 92.0 88.5 95.1 84.22 91.2
(83.45 ± 0.42) (89.95 ± 0.75)

Table 4: Experiment results of various models trained using Original and Counterfactual training dataset on their respective opposite test data.
The upper results show the best reproducible accuracy and lower ones represent the mean and standard deviation of the last 50 epochs when
running the model for five times.

Training Data SVM NB ELMo Bi-LSTM BERT TM
Accuracy on Amazon Reviews

Orig (1.7k) 74.7 66.9 79.1 65.9 80.0 76.2
Orig + CF (3.4k) 77.1 82.6 78.4 82.7 85.1 78.5

Accuracy on Semeval 2017 (Twitter)
Orig (1.7k) 61.2 64.6 69.5 55.3 79.3 65.2
Orig + CF (3.4k) 66.5 73.9 70.0 68.7 82.9 66.2

Accuracy on Yelp Reviews
Orig (1.7k) 81.8 77.5 82.0 78.0 85.3 82.5
Orig + CF (3.4k) 87.6 89.6 87.2 86.2 89.4 85.7

Table 5: Results on out-of-domain balanced test data.

of its access to huge data and better language understand-
ing than traditional models. Disregarding BERT and ELmo
as these have huge pretrained information, TM outperforms
all the cases of out-of-domain datasets when trained on only
original 1.7k samples as intended. However, when the CF
data is added to the original training sample, the performance
of all the models increases by a big margin but the change for
TM is not very significant compared with other models. This
results in some lower accuracy compared to SVM and NB in
Semeval and Yelp reviews. This is because TM has been ini-
tialized with a low value of s = 2 and most of the features
in the clauses are generally in the negated form. For this rea-
son, TM is already less sensitive to spurious correlations and
the additional CF training data does not impact much. Hence,
only with original training sample of 1.7k, TM outperforms
all the previous model combating spurious correlations.

5 Global Interpretation of TM on Spurious
Correlation

The fundamental of TM is the clauses in propositional logic
that learn the sub-pattern for a particular task. Hence, TM can
be accessed to have multiple forms of interpretation. Gener-
ally, two forms of interpretation are highly accepted, namely
Global Interpretation and Local Interpretation.

• Global Interpretation: From Eq. (2), we can obtain
the clause score for each feature of a trained model. This
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Figure 5: Visualization of words’ weightages of attention based
model vs TM on a counterfactual sample.

clause score provides the weightage of each input on the
model. It has been employed in many applications such
as word scoring mechanism [Bhattarai et al., 2022] and
novelty detection [Bhattarai et al., 2020].

• Local Interpretation: Local interpretation is achieved
by analyzing the form of propositional logic. It can be
observed by visualizing each clause that votes for the
particular input. This interpretation is an important fea-
ture of TM since it offers rule-based logic to explain the
prediction, such as for sentiment analysis [Yadav et al.,
2021b]. This is explained in detail in Section 3.

Since we have already shown the local interpretation pre-
viously in Figs. 3 and 4 when learning is introduced, here
we demonstrate the benefit of our approach against the spu-
rious correlation using the global interpretation of the model.
We examine how the weightage of each feature changes as a
function of s. In more detail, we calculate the clause score
of each word in the selected vocabulary via Eq. (2). Since
the vocabulary is huge, for ease of illustration, we select the
highest weighted 20 words for illustration. When we train
the model using s = 20, words such as bad, worst, horror, 1,
and 2 are the most important features that represent the neg-
ative class as shown in Table 6. However, there are certain
words such as minutes, money, instead, reason, and plot that



Negative Class Positive Class
Words Clause Score Words Clause Score
bad 1218 great 2483
worst 560 wonderful 2052
horror 344 romantic 2038
terrible 229 excellent 1951
boring 233 perfect 1913
awful 281 love 1910
waste 310 family 1883
poor 494 young 1863
worse 609 best 1834
stupid 644 beautiful 1801
horrible 660 especially 1788
1 705 enjoyed 1768
minutes 769 loved 1748
money 769 lives 1736
instead 821 life 1734
reason 831 performances 1710
poorly 844 highly 1710
plot 864 performance 1708
dull 876 amazing 1705
2 881 gives 1697

Table 6: Clause scores (weightages) of top 20 words for each senti-
ment class when the model is trained using s = 20.

do not necessarily carry the sentiment of the context but are
still highly correlated to negative sentiment. Similarly, words
such as family, young, performances, especially, lives, life,
and gives that do not carry positive sentiment are present as
highest weighted words in positive class. On the other hand,
when the model is trained using s = 2, we can see that such
words are removed from the given list as shown in Table 7.
Table 8 shows the detail of genuine and spurious correlation
for two different values of s for the top 50 words. It clearly
shows that the number of spurious correlations reduces sig-
nificantly, making the model robust.

6 A Case Study of TM vs Bi-LSTM
In this section, we will compare the weightage of each word
in the sentence responsible for a particular prediction. We
here visualize the attention weight to explain the model’s pre-
diction. For TM, we use the clause score for each word in
the sentence and visualize it in a similar way to the atten-
tion model. To have a clear interpretation of how s impacts
the counterfactual data, we represent two scenarios where the
model is trained with s = 2 and s = 20. From Fig. 5,
we can see that a particular sample has been predicted in-
correctly by the Bi-LSTM model. The scoring of the word
shows that Bi-LSTM assigns the highest weightage to spu-
rious correlations such as ever, seen, Alien, Blob, with, and
wash. Although it gives attention to some genuine correla-
tions such as crazy, worth, and beautiful, the weightage is
low compared with spurious correlations thereby making a
wrong prediction. For TM with s = 20, it has high clause
scores on spurious correlations such as really, movie, acting,
plot, and woman. Although the TM assigns weightage to
words such as beautiful, good, and engaging, the weightage
for negative sentiment words such as don’t, absurd, and nasty
are much higher thereby predicting it incorrectly to negative
sentiment. On the other hand, for TM with s = 2, it assigns
high scores to genuine correlations such as beautiful, engag-
ing, best, good, comedy and great as compared with spurious

Negative Class Positive Class
Words Clause Score Words Clause Score
worst 2057 romantic 1875
horror 2027 perfect 1418
terrible 1518 wonderful 1335
waste 1515 excellent 1057
awful 1443 enjoyed 948
bad 1254 romance 874
boring 1254 great 871
worse 1131 loved 856
poor 1077 favorite 743
poorly 834 heart 683
horrible 802 8 671
1 796 lives 660
stupid 791 beautiful 657
pointless 685 recommended 657
pathetic 580 wonderfully 645
effort 566 highly 642
dull 562 feelings 641
badly 522 drama 617
lacks 515 amazing 611
money 487 performances 586

Table 7: Clause scores (weightages) of top 20 words for each senti-
ment class when the model is trained using s = 2.

s=20 s=2
Sentiment
Label

Genuine
Correlation

Spurious
Correlation

Genuine
Correlation

Spurious
Correlation

Negative 30 20 39 11
Positive 22 18 41 9

Table 8: Statistics of genuine and spurious correlation into 50 words
for different s values for each sentiment label.

correlations such as movie, woman, Blob, time, and watch
thereby correctly predicting a positive sentiment.

7 Conclusion
In this paper, we employ TM to design a robust text classifica-
tion against spurious correlations. TM learns the pattern us-
ing a set of clauses that are in the form of propositional logic.
Such propositional logic is a combination of features in either
non-negated or negated form. Since the propositional logic is
human interpretable, it is easy to extract rule-based reasoning
from TM. Our methods demonstrate that such a rule can be
controlled or fine-tuned by modifying the parameter speci-
ficity s. We show that by keeping the value of s small, we
can filter the clause from non-monotone to monotone where
a majority of features are in the negated form thereby remov-
ing spurious correlations and forcing the model to rely on
genuine correlations. Experiments results have shown that
the proposed s-controlled TM outperforms various existing
models on counterfactual test data. In addition, unlike DNNs,
the human-level interpretation obtained from the rule-based
reasoning of TM gives a complete understanding of how the
model achieves its robustness.
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