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Abstract—This paper analyses the performance of two of
the most well known deep learning-based point cloud coding
solutions, considering the training conditions. Several works have
recently been published on point cloud machine learning-based
coding, following the recent tendency on image coding. These
codecs are typically seen as a set of predefined trained machines.
However, the performance of such models is usually very depen-
dent of their training, and little work has been considered on
the stability of the codecs’ performance, as well as the possible
influence of the loss function parameters, and the increasing
number of training epochs. The evaluation experiments are
supported in a generic test set with point clouds representing
objects and also more complex scenes, using the point to point
metric (PSNR D1), as several studies revealed the good quality
representation of this geometry-only point cloud metric.

Index Terms—Point cloud coding, machine learning-based
codecs

I. INTRODUCTION

The usage of 3D data formats has been increasing recently,
most notably in virtual (VR), augmented (AR) and mixed
reality applications, but also in a wide variety of other fields,
such as computer graphics, 3D printing, construction, man-
ufacturing, robotics, automation, medical applications, retail,
cultural heritage, remote sensing, and geographical informa-
tion systems.

Point cloud technology is one of the most popular solutions
for 3D data representation, which maps surfaces on a Cartesian
coordinate system (x, y, z). Each mapped point might have
a list of associated attributes, including RGB components,
reflectance, physical sensor information, or normal vectors.
Point clouds can provide accurate representations of both
objects and scenes, from any viewing position or distance.

The models of data representation and their associated
quality play an essential role in point cloud applicability,
as 3D content often creates huge amounts of information.
Accurate point cloud representations of landscapes, buildings
or artefacts typically contain several millions of points, each
with one or more associated attributes. Thus, depending on
the represented object or scene, the size of raw point clouds
may become impractical, especially in real-time applications.
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For that reason, efficient point cloud compression and decom-
pression solutions are needed.

Two of the most recognized and used coding solutions were
developed by MPEG, i.e., the Video-based Point Cloud Com-
pression (V-PCC) [1] and the Geometry-based Point Cloud
Compression (G-PCC) [2]. Authors in [3] provide a quality
study of both codecs. Google developed DRACO1, which
provides both lossless and lossy point cloud encoding. As
shown in [4], the MPEG codecs perform better than DRACO,
in terms of quality vs bit rate.

Recently, machine learning-based point cloud coding so-
lutions have been emerging, following this trend on image
and video coding. The Multiscale Point Cloud Geometry
Compression (PCGC) was proposed by Wang et al. [5], and
further developed in [6]. In [7] the Deep Point Cloud Geometry
Compression (PCC GEO CNN) was presented, with an im-
proved version proposed in [8]. Adaptive Deep Learning Point
Cloud Compression was presented in [9]. In [10], a point cloud
lossy attribute auto encoder is proposed, directly encoding and
decoding attributes with the help of geometry. In [11], a deep
convolutional autoencoder is proposed that directly operating
on the points. It also considers a deconvolution operator in
order to upsample point clouds, allowing decompression to an
arbitrary density.

When dealing with learning-based methods, it is well known
that the performance of the final learned model may vary,
even with similar training conditions, due to the stochastic
nature of the learning process. However, most research ef-
forts in deep learning-based coding report their results as
unique. In this work, the performance of two learning-based
codecs is assessed based on the robustness of the compression
performance from different training processes, under similar
conditions. More specifically, the stability of PCGC [6] and
PCC GEO CNN [8] is assessed, based on the resulting coding
performances. For each step of the learning progression, a set
of six point clouds is encoded and the point to point metric
(PSNR D1) [12] is computed. The PSNR D1 metric was
chosen, as the codecs only encode geometry. The obtained
results are analysed to verify if there is a convergence to a
stable operating point. The point cloud point to point metric
(PSNR D1) is used in this work as it revealed to be always
one of the best that uses the geometry only [3], [4].

1https://github.com/google/draco978-1-6654-6623-3/22/$31.00 ©2022 IEEE



II. CODECS ARCHITECTURE DESCRIPTION

A. Multiscale Point Cloud Geometry Compression

The Multiscale Point Cloud Geometry Compression
(PCGC) model [6] features a mirrored encoder-decoder ar-
chitecture, which performs consecutive downsampling to mul-
tiple scales. The encoder consists of three sparse convolution
modules in sequence, each containing two convolutional layers
with 3x3x3 kernels and ReLU activations. In the second convo-
lution layer, a stride of 2x2x2 is used for downsampling. After
the sparse convolution modules, a residual feature extraction
step is added, consisting of three instances of the Inception
Residual Network [13]. The final latent representation Y is
given by an additional sparse convolution layer, with 8 3x3x3
filters.

At the bottleneck, the two components of Y , i.e., the
geometry coordinates (CY) and feature attributes (FY) are
encoded separately, using the lossless octree codec [2] and
entropy coding, respectively. In the decoding process, CY
and FY are merged and upsampled through a convolutional
branch that mirrors the encoder. In each module, transposed
convolutions with stride 2x2x2 are used to upsample the sparse
point clouds. After each upsampling step, a single 3x3x3
convolution with sigmoid activation is used to obtain the voxel
occupation probability (pi), which is in turn used to compute
a scale-specific binary cross-entropy (BCE) loss:

LBCE = − 1

N

N∑
i

(yi log(pi) + (1− yi) log(1− pi)) (1)

where yi is ith-voxel true label (1 if occupied, 0 otherwise).
The model training aims at optimizing the following La-

grangian loss function:

L = R+ λD (2)

where D refers to the geometrical distortion and R is the
resulting bit rate of feature attribute encoding (F̂y). D is
obtained from the multi-scale BCE loss, which is the average
of the BCE losses computed at each scale. Finally, the λ
parameter sets the rate-distortion trade-off. Each time the λ
value decreases, the training model will define a new working
point where the bit rate is lower but the distortion measure
will also decrease, as it has lost weight in the loss function.

B. Deep Point Cloud Geometry Compression

The Deep Point Cloud Geometry Compression
(PCC GEO CNN) model [7] has a fairly straightforward
learning-based approach, which proposes to reduce the
blocking effect typically introduced by other learning-based
codecs.

The model architecture features an encoder part (fa) with
three sequential convolutional layers, each with 32 filters. The
first layer uses a 9x9x9 kernel with stride 2x2x2, whereas the
other two use a 5x5x5 kernel with stride 2x2x2. A ReLU acti-
vation is used in the first two layers. The latent representation
y = fa(x) is given by the linear output of the third layer. This
latent representation is then quantized (ŷ = Q(y)) through

element-wise integer rounding. ŷ compression is performed
using the Deflate algorithm, which is a combination of LZ77
and Huffman coding [14].

The decoder branch fs consists of three transposed convo-
lutional layers, which mirror the encoder in terms of number
of filters (except for the last layer), kernel size and stride.
All layers in the decoder use a ReLU activation function.
The last layer uses a single filter and provides the distorted
point cloud x̃, using element-wise minimum, maximum and
rounding functions. In the decoding process, ptz is the prob-
ability of a point z being occupied. The global loss function
of the PCC GEO CNN model is the same as the Eq. 2. The
distortion component is given by the overall of the focal loss
(Eq. 3),

LFocal(x, x̃) = αz(1− ptz)
γ log(ptz) (3)

which allows to compensate for the imbalanced ratio be-
tween occupied and non-occupied voxels. Given the balance
parameter α, αz is 1 if the corresponding voxel in the original
point cloud is occupied, and 1-α otherwise.

III. EXPERIMENTAL SETUP AND RESULTS

The experiments carried out will study the evolution of the
codecs through the learning process. For that, the test data
set will be coded/decoded after each epoch and the PSNR D1
is computed. The process is repeated three independent times
to observe the stability of the codecs. The complete test will
allow to understand the stability of the codecs with the same
training conditions.

A. Test data selection

In this work, the performance of the tested point cloud
codecs was assessed on a test set comprised of six point
clouds, available at the JPEG Pleno database2. Three of
these point cloud depict objects and the other three depict
landscapes. The chosen object point clouds were the Ro-
manoillamp, from the University of Sao Paulo Database3,
the Guanyin from the EPFL dataset, and frame 1300 of the
Longdress dynamic point cloud. The selected landscapes are
three point clouds from the University of Sao Paulo Database,
namely Citiusp, IpanemaCut and Ramos. The six selected
point clouds are shown in Figure 1.

B. PCGC Model Training

A study of the influence of model training on the perfor-
mance of the PCGC codec [6] is established. This model
was selected because information is given on the training
procedures and even the training datasets are shared4.

In [5], different coding bit rates are targeted, by varying the
rate-distortion trade-off parameter λ between 0.75 and 16. In
the code made available, the global loss function J depends
on two parameters, α and β, such that J = αD+ βR. In this
experiment, β was fixed at 1, so that α becomes equivalent to
λ in Eq. 2.

2http://plenodb.jpeg.org/pc/8ilabs
3http://uspaulopc.di.ubi.pt
4available at https://github.com/NJUVISION/PCGCv2



(a) Longdress (b) Guanyin (c) Romanoillamp (d) Citiusp (e) IpanemaCut (f) Ramos

Fig. 1: Point Cloud test set.

(a) Longdress (b) Guanyin (c) Romanoillamp

(d) Citiusp (e) IpanemaCut (f) Ramos

Fig. 2: PSNR D1 vs. bpp plots for PCGC, trained with α = {16, 4, 0.75}.

The model was trained with densely sampled data from the
ShapeNet [15], a database containing ≈ 51.300 3D surface
models. The final training set was obtained by random rotation
and quantization with 7-bit precision. Also, the number of
points in each point cloud was also randomized. In this paper,
PCGC was trained with α = {16, 4, 0.75}, each for 50 epochs,
with a constant learning rate of 10−5. For faster convergence,
the learned weights with α = 16 were used to initialize the
training with both α = 4 and α = 0.75, as recommended
in [5]. This training routine was ran three times with similar
conditions. The result of the training sessions is shown in

figure 2, with zoomed areas of interest.

The PCGC codec shows an acceptable level of stability
for the Citiusp, Longdress, IpanemaCut and Ramos. In all of
these cases, the D1 metric shows a similar behaviour across
the training process. For the Citusp case, when α = 16,
some instability is shown between different epochs, across
the different training sessions. For the point cloud Guanyin, a
high level of instability is observed when α = 16 for the first
training session. In this case, D1 shows an inconsistent be-
haviour across the first training session, while the second and
third sessions, a different, more stable behavior is observed,



(a) Longdress (b) Guanyin (c) Romanoillamp

(d) Citiusp (e) IpanemaCut (f) Ramos

Fig. 3: PSNR D1 vs. bpp plots for PCC GEO CNN, trained with λ = {3× 10−4, 10−4, 5× 10−5, 2× 10−5, 10−5}.

although some instability is found in higher bit rates. This is
not observed for α = 4, 0.75, where all the training sessions
show very little D1 variation. In the encoding process of the
Romanoillamp point cloud, the codec shows a high amount of
instability. The D1 metric shows inconsistent behaviour across
different training sessions. Contrary to what is observed for
the other contents, the bit rate does not converge to a stable
operating point, except for α = 16.

In most cases, the codec reveals a good level on the encod-
ing performance stability. Across all training sessions epochs,
the bit rates converge to similar operating points. However,
some content might show some undesirable change in the
encoding performance, depending on the training process.
Moreover, there is the assumption that none of the point clouds
used in this test is present in the training data as they are
not included in the Shape Net database, up to the authors
knowledge.

C. PCC GEO CNN model training

In [8], the authors train four individual models for each
Rate-Distortion tradeoff. They chose four values for λ (eq. 2),
notably 3× 10−4, 10−4, 5× 10−5, 2× 10−5). In the software

provided by the authors5, an additional value is considered,
λ = 10−5. This experiment followed the sequential training
approach described in [8], where each training using λi is
initialized with the trained weights of the previous model (i.e.,
using λi−1). The first training uses λ1 = 3×10−4, and targets
a low distortion, high bit rate model. Subsequent training uses
λ values in descending order, which results in a progressive
reduction of the target bit rates, while attempting to minimize
the increase in distortion. The α and γ parameters of the focal
loss function were set to 0.9 and 2, respectively, which were
the default values in the provided code.

The test point clouds were encoded at each 500 training
steps, which is the validation interval defined in the provided
code. In the original code, the model checkpoint was saved
at a given validation point, only if there is an improvement
in the loss from the last validation point. However, for this
experiment, the code was adapted to bypass this definition and
save the checkpoints at every 500 training steps, to encode
the test point clouds. An early stopping condition was also
implemented in the original code, which interrupts the training

5avaliable at https://github.com/mauriceqch/pcc geo cnn v2



(a) Guanyin cropped area of
the original

(b) 1st training session,
epoch=50, α = 0.75, PSNR
D1=64.808

(c) 2nd training session,
epoch=50, α = 0.75, PSNR
D1=65.55

(d) 3rd training session,
epoch=50, α = 0.75, PSNR
D1=64.5461

(e) 1st training session, step
31500, λ = 10−5, PSNR
D1=66.4068

(f) 2nd training session, step
28000,λ = 10−5, PSNR
D1=66.4068

(g) 3rd training session, step
27000,λ = 10−5, PSNR
D1=66.3627

Fig. 4: Decompressed Guanyin (Cropped area) for the low bit rate (final epoch) of each codec training. The first row shows
the decoded point clouds for PCGC, and the second row for PCC GEO CNN.

(a) Romanoillamp cropped
area of the original

(b) 1st training session,
epoch=50, α = 0.75, PSNR
D1=64.808

(c) 2nd training session,
epoch=50, α = 0.75, PSNR
D1=65.55

(d) 3rd training session,
epoch=50, α = 0.75, PSNR
D1=64.5461

(e) 1st training session, step
31500, λ = 10−5, PSNR
D1=66.4068

(f) 2nd training session, step
28000, λ = 10−5, PSNR
D1=66.4068

(g) 3rd training session, step
27000, λ = 10−5, PSNR
D1=66.3627

Fig. 5: Decompressed Romanoillamp (Cropped area) for the low bit rate (final epoch) of each codec training. The first row
shows the decoded point clouds for PCGC, and the second row for PCC GEO CNN.

process if the loss does not improve for more than 4 validation
steps.

The models are trained on a subset of the ModelNet40 [16]
dataset. First, the mesh data is voxelized with resolution 512×
512×512 and the 200 largest point clouds are selected. Then,
the point clouds are divided into blocks with resolution 64×
64× 64 and the 4000 largest blocks are selected.

Three different training sessions were carried out, using the
five λ values described above. Figure 3 shows the results of
the three training sessions, with zoomed areas of interest. The
codec shows a high level of stability across the two additional
training sessions, although in most cases, the D1 metric has a
slight variation in the intermediate λ values. When analysing

the training plots for Citiusp, the second and third training are
highly similar when λ = 3×10−4 and 10−5. For λ = 5×10−5,
the D1 value for the first training session is above the achieved
in the other two training sessions. The same can be observed
when λ = 10−4. This behaviour is found across the tested
point clouds. Some small degrees of instability can also be
found in the point clouds Ramos when λ = 10−4 and in the
point cloud Guanyin when λ = 10−5.

Overall, this codec shows a higher degree of stability than
PCGC. When encoding the Guanyin, the training sessions with
α = 16 reveal a small degree of instability. Other points where
different training processes reach different Rate-Distortion
relations are observed mostly to Guanyin and Romanoillamp.



However, these differences are very small and this codec
always find working points that reveal a higher level of
stability than PCGC.

D. Visual Examples

It is also important to visualize some examples to under-
stand the variation of each training session in the decoded
point clouds. Figure 4 shows a cropped area of the decoded
Guanyin point clouds for each training session for both codecs.
All training sessions of PCGC show some artifacts in the
torso area. Small parts seem to be missing, always in different
locations on the torso of the point cloud. In the face area, the
second training session produced almost no artifacts, while the
first and third training produced some holes. PCC GEO CNN
reveal much more noticeable artifacts for the lower bit rate.
All sessions produced a number of distortions in the face,
especially training session two, where cracks can be seen in the
nose area. In the torso area, some artefacts can be identified,
like the ones found in PCGC, but in a larger scale.

Figure 5 also shows a cropped area of the decoded Ro-
manoillamp point clouds for each training session for both
codecs. PCGC creates an enormous amount of artifacts across
the point cloud. The figure shows that it was impossible for
the codec to find a good rate/distortion trade-off. All training
sessions produced the same type of artifacts, PCC GEO CNN
shows a similar behaviour to PCGC, albeit in a smaller scale.
All training sessions created similar artifacts in the handle area
of the point cloud. In the central area, some variation in the
location of the artifacts can be observed.

IV. DISCUSSION AND CONCLUSIONS

A stability analysis of the training process of two machine-
learning based codecs, namely PCGC and PCC GEO CNN is
reported. According to our analysis, both codecs show a high
level of stability in the coding performance. PCC GEO CNN
reveals the most stable across the training sessions. In the
training of PCGC, the training dataset is randomly selected
from the provided database, while in PCC GEO CNN, a
static database is used. Given that, it was expected that
PCC GEO CNN to be the most stable across the conducted
training sessions.

When the desired rate-distortion points are reached for each
codec, some instability is observed for both codecs. This effect
is more visible for the PCGC. However, PCC GEO CNN
has a stopping mechanism that prevents this effect to become
visible. While PCGC has training session with a fixed number
of 50 epochs, PCC GEO CNN never reaches that value. The
number of training epochs is dynamically computed and the
training session is stopped.

The observed instability near the limits of the training
sessions might be due to some over-fitting mechanism, that
does not allow to improve anymore the rate-distortion relation.
This causes that different training sessions might have variable
performance for the last training epochs of a training process,
causing the observed instabilities for some content.

Moreover, it was also observed that different training ses-
sions create different artifacts for the selected working points,
although the PSNR D1 metric has similar values. The point to
point metric is used for optimization, in both codecs leading
to this result. However, it is likely to happen that different
metrics can have different values. It is also important to
understand if different training can lead to different perceptual
quality. That requires to perform subjective evaluation, that
has several problems that need to be considered. For instance,
how to render the color in the point clouds, as that will have
tremendous impact in the perceived quality and might mask
any other quality analysis. The authors plan to consider this
analysis in future studies.

Nevertheless, both codecs revealed a very reasonable sta-
bility on the performance for different training sessions,
showing a high reliability. This is mostly observed for the
PCC GEO CNN where the reached Rate-Distortion work-
ing points have only slight variations for different training
processes. Nevertheless, PCGC also reveals a high level of
stability, and can also be considered a reliable codec. It is
expected that different training sessions will tend to create
different artifacts, although the PSNR D1 metric is kept similar
as it was used in the cost function for the codec optimisation.

REFERENCES

[1] V. Zakharchenko, ““Algorithm description of mpeg-pcc-tmc2”,”
ISO/IEC JTC1/SC29/WG11 MPEG2018/N17767, Jul 2018.

[2] K. Mammou, P. A. Chou, D. Flynn, and M. Krivokuća,
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