Synbiotic Smallanthus Sonchifolius (Yacon) and Streptococcus Salivarius inhibit Candida Albicans biofilm formation

Cite as: AIP Conference Proceedings **2562**, 070006 (2023); https://doi.org/10.1063/5.0112484 Published Online: 21 February 2023

Nurul Alia Risma Rismayuddin, Syarifah Nurhikmah Izzati Syed Nasarudin, Nurul Ruziantee Ibrahim, et al.

ARTICLES YOU MAY BE INTERESTED IN

A decision tree-based classification of fetal health using cardiotocograms AIP Conference Proceedings **2562**, 020003 (2023); https://doi.org/10.1063/5.011194

Recognition of plant diseases by leaf image classification using deep learning approach AIP Conference Proceedings **2562**, 020001 (2023); https://doi.org/10.1063/5.0112725

Clinical validation of 3D mesh reconstruction system for spine curvature angle measurement AIP Conference Proceedings **2562**, 050003 (2023); https://doi.org/10.1063/5.0113998

APL Machine Learning

Machine Learning for Applied Physics Applied Physics for Machine Learning First Articles Now Online!

AIP Conference Proceedings **2562**, 070006 (2023); https://doi.org/10.1063/5.0112484 © 2023 Author(s). 2562, 070006

Synbiotic Smallanthus Sonchifolius (Yacon) and Streptococcus Salivarius Inhibit Candida Albicans Biofilm Formation

Nurul Alia Risma Rismayuddin^{1, 2, a)}, Syarifah Nurhikmah Izzati Syed Nasarudin^{1, 3, b)}, Nurul Ruziantee Ibrahim^{1, 4, c)}, Ali Alnuaimi^{5, d)}, Mohd Hafiz Arzmi^{1, 2, e)}

¹Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan Campus, 25200 Kuantan, Pahang, Malaysia.

²Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan Campus, 25200 Kuantan, Pahang, Malaysia.

³Department of Biomedical Sciences, Kulliyyah of Allied health Sciences, International Islamic University Malaysia, Kuantan Campus, 25200 Kuantan, Pahang, Malaysia.

⁴Department of Oral Maxillofacial Surgery and Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan Campus, 25200 Kuantan, Pahang, Malaysia.

⁵La Trobe Rural Health School, La Trobe University, 3086 Victoria, Australia.

^{a)}aliarismayuddin@gmail.com ^{b)}syarifahnurhikmah951@gmail.com ^{c)}drnurulruziantee@iium.edu.my ^{d)}doctorali74@gmail.com ^{e)}Corresponding author: hafizarzmi@iium.edu.my

Abstract. Oral biofilms are comprised of extracellular polysaccharides and polymicrobial microorganisms. The objective of this study was to determine the effect of synbiotic *Smallanthus sonchifolius* (yacon) with *Streptococcus salivarius* K12 (K12) on polymicrobial biofilm formation of *Candida albicans* with the hypothesis that polymicrobial biofilm biomass of *C. albicans* is inhibited by synbiotic *S. sonchifolius* with K12. Initially, disk diffusion and well diffusion assay were conducted to determine the susceptibility of *C. albicans* towards *S. sonchifolius* and K12. Following that, *C. albicans* was mixed with *S. salivarius* in nutrient broth (NB) or RPMI-1640 to determine the effect of probiotic on the polymicrobial biofilm. To determine the effect of synbiotic, similar protocol was repeated by adding 800 mg mL-1 of *S. sonchifolius* aqueous extract extract into the same followed by a 72 h incubation. Finally, biofilm biomass was measured using a crystal violet assay. *C. albicans* ATCC MYA-4901, ALC2 and ALC3 were found to be susceptible to *S. sonchifolius* extract and *S. salivarius* K12. However, the biofilm of all of *C. albicans* strains ATCC MYA-4901, ALC2 and ALC3 were found to reduce ranged in between 20% to 39.4% when co-cultured with synbiotic compared to prebiotic culture in NB. In conclusion, synbiotic *S. sonchifolius* with K12 inhibit polymicrobial biofilm. This indicates the potential use of synbiotic in dental application for the prevention *C. albicans* infection.

INTRODUCTION

Probiotics are living microorganisms that, when given in an adequate amount, bring a health benefit to the host. Probiotics have been reported to promote oral health by preventing periodontal illnesses, oral cavities, halitosis, and oral candidiasis [1]. *Streptococcus salivarius* is a normal inhabitant of the human oral cavity and gut, and its effect on oral health was previously discussed [2–4]. The murine experimental oral candidiasis also showed that *S. salivarius*

International Conference on Biomedical Engineering (ICoBE 2021) AIP Conf. Proc. 2562, 070006-1–070006-6; https://doi.org/10.1063/5.0112484 Published by AIP Publishing. 978-0-7354-4409-6/\$30.00 K12 was dose-dependent in protecting against severe fungal infection. In addition, prebiotics is oligosaccharides, nondigestible carbohydrates commonly used to improve and stimulate a balanced microbiome [5].

Smallanthus sonchifolius (yacon) is an underutilised plant consumed as a traditional root-based fruit in South America and is mainly known as an abundant source of fructooligosaccharides (FOS) [6]. FOS are considered prebiotics, and *S. sonchifolius* FOS prebiotic effects have been demonstrated in vitro, showing that they were selectively fermented by *Bifidobacteria* and *Lactobacilli*.

The growth and activity of probiotics are enhanced by non-digestible oligosaccharides, namely, prebiotics [7-8], which are unable to be digested by the host but do enhance the beneficial effects of probiotics by selectively stimulating the growth and activities of the probiotics [9]. Thus, the combination of these two is known as synbiotic. A previous study has also demonstrated synbiotics' action in suppressing oral pathogens without interfering with a safe oral environment where it neutralises the growth of oral pathogenic microorganisms [7].

The microbiome in the oral cavity is a group of microorganisms that play an important role in the normal oral physiological system [10]. However, oral pathogenesis can occur under conditions where the oral surroundings are imbalanced (also known as dysbiosis) [11]. About 700 kinds of microorganisms inhabit the human oral cavity. *C. albicans* is part of a normal microbiome and does not cause any harm [12]. However, when the host defences are compromised, they can become pathogenic and cause serious problems [13]. *C. albicans* can cause oral candidiasis due to an overgrowth of the pathogenic fungus in immunocompromised individuals under several situations, for instance, in HIV-infected patients [14]. Therefore, maintaining an optimum environment in the oral cavity is essential for a healthy oral microbiome.

This study aimed to determine the effect of synbiotic *S. sonchifolius* with *S. salivarius* K12 on polymicrobial biofilm formation of *C. albicans* with the hypothesis that the synbiotic *S. sonchifolius* and *S. salivarius* K12 inhibit polymicrobial biofilm.

MATERIALS AND METHODS

Growth of Microorganisms

C. albicans American Type Cell Culture (ATCC) MYA-4901, genotype B isolated from HIV patient (ALC2), and oral cancer isolate (ALC3) were used in this study (Fig. 1). *C. albicans* strains were revived in yeast peptone dextrose (YPD) broth (Difco, USA) and incubated at 37°C aerobically for 24 h. To grow bacteria, stock cultures of *S. salivarius* K12 were revived by sub-culturing onto brain heart infusion (BHI) broth (Difco, USA). The agar plates were incubated at 37°C for 48 h.

Well Diffusion Assay

Well diffusion assay was carried out to determine the susceptibility of *C. albicans* towards *S. salivarius* K12 and *S. sonchifolius* [15]. In brief, a sterile swab was used to transfer *C. albicans* colonies onto the Mueller Hinton agar plates illustrated in (Fig.1). Following that, a five-millimetre diameter hollow tube was used to prepare the wells on the agar. Later, 100 μ L of supernatant of probiotic *S. salivarius* was added into the wells. All the samples were tested in three biological replicates. Finally, the zone of inhibition of *C. albicans* was measured after 18 h incubation at 37°C. A similar protocol was repeated by replacing *S. salivarius* with 100 μ L of 800 mg mL-1 of *S. sonchifolius* water-based extract [16].

Static Biofilm Formation

Biofilm formation was analysed under static conditions by using a quantitative assay according to a previously published protocol [17]. *C. albicans* and *S. salivarius* K12 were grown on YPD and BHI agar, respectively, for 24 h at 37°C (Fig.1). Several single colonies of *C. albicans* and *S. salivarius* K12 were resuspended in nutrient broth (NB) and RPMI-1640 to an absorbance of 0.5 at 620 nm wavelength (OD_{620nm}) to standardised to a final density of 10⁵ cells mL⁻¹ and 10⁷ cells mL⁻¹, respectively. To determine the effect of *S. salivarius* K12 on polymicrobial biofilm of *C. albicans*, the bacterium and the yeast were mixed thoroughly using a vortex mixer for 30 sec. To determine the effect of synbiotic to *C. albicans* polymicrobial biofilm, a similar protocol was repeated by adding 800 mg mL-1 of *S. sonchifolius* extract into each well of a sterile 96-well plate. The plates were incubated for 72 h at 37°C to mimic the

dynamic of the oral environment. The medium was replenished aseptically every 24 h. Mono-culture *S. salivarius* biofilm was also developed as the negative control.

Crystal Violet Assay

Crystal violet (CV) assay was performed according to the protocol outlined by the previously established study [18]. Initially, the biofilm in each well of the 96-well plate was washed twice with sterile PBS to remove non-adherent cells (Fig. 1). 200 μ L of methanol was added to each well for fixation and incubated for 15 min at 25°C. The supernatant was then discarded, and the plate was air-dried for 45 min. 200 μ L of 0.1% (w/v) CV solution was added into each well and incubated for a further 20 min at 25°C. The plate was washed gently twice using running distilled water, and 200 μ L of 33% (v/v) acetic acid was added to de-stain the biofilm. The plate was incubated for five minutes at room temperature. A 100 μ L aliquot of this solution was transferred to a new sterile 96-well plate, and the absorbance was measured at OD_{620 nm} using a microtiter plate reader (TECAN Sapphire, M200 Pro).

Statistical Analysis

All experiments were conducted in three biological and three technical replicates (N=9). Using SPSS software version 25.0, all data were statistically analysed using One-way analysis of variance (ANOVA) associated with post hoc Dunnet and Tukey's test (Fig. 1). This test was used to compare biofilm biomass between *C. albicans* strains in prebiotic *S. sonchifolius* and synbiotic *S. sonchifolius* with K12. Independent T-test was conducted to compare biofilm biomass between prebiotic and synbiotic. Data were considered significant when P < 0.05.

Created in BioRender.com bio

FIGURE 1. Summary of flow chart to assess the susceptibility and biofilm forming ability of *Candida* spp. The studies were conducted in three biological and three technical replicates.

RESULTS AND DISCUSSION

Antifungal Activity of Prebiotic S. Sonchifolius and Probiotic S. Salivarius K12

S. sonchifolius aqueous extract showed no antifungal activity against all *C. albicans* strains when tested using the well diffusion assay. In addition, American Type Cell Culture (ATCC) MYA-4901, genotype B isolated from HIV patient (ALC2), and oral cancer isolate (ALC3) *C. albicans* were also resistant towards probiotic *S. salivarius* K12 supernatant when tested using the well diffusion assay. This data indicated that *C. albicans* is resistant towards probiotic *S. sonchifolius* and probiotic *S. salivarius* K12. These findings are similar to a previous study in which *C. albicans* was found to be resistant to *S. sonchifolius* [19].

Effect of Prebiotic S. Sonchifolius and Synbiotic S. Sonchifolius with S. Salivarius K12 on C. Albicans Biofilms Biomass

The effect of prebiotic and synbiotic on the polymicrobial biofilm formation of *C. albicans* was assessed using crystal violet (CV) assay (Table 1, Fig. 2). The biofilm of NB-grown *C. albicans* ATCC MYA-4901, ALC2, and ALC3 culture with *S. sonchifolius* showed total biomass of 0.289 ± 0.053 , 0.454 ± 0.275 and 0.833 ± 0.389 , respectively. In comparison, NB-grown *C. albicans*, when treated with *S. sonchifolius* and *S. salivarius*, had total biofilm biomass of 0.230 ± 0.064 , 0.485 ± 0.028 and 0.666 ± 0.476 for *C. albicans* ATCC MYA-4901, ALC2 and ALC3, respectively. Higher biomass was observed in clinical strains compared to the lab strain, with ALC3 was significantly higher than *C. albicans* ATCC MYA-4901 in prebiotic. In comparison, ALC2 was found to be significantly more biofilm biomass compared to the lab strain when co-cultured in synbiotic (P < 0.05).

The biofilm biomass of RPMI-grown *C. albicans* ATCC MYA-4901, ALC2 and ALC3 varied with biofilm biomass of 0.087 ± 0.015 , 0.182 ± 0.128 and 0.374 ± 0.399 , respectively when co-cultured with prebiotic. Meanwhile, *C. albicans* that were co-cultured with synbiotic *S. sonchifolius* and K12 exhibited biofilm biomass of 0.286 ± 0.127 (ATCC-MYA-4901), 0.330 ± 0.095 (ALC2) and 0.861 ± 1.074 (ALC3). These results showed that C. albicans grown with prebiotic in NB exhibited higher biofilm biomass compared to C. albicans grown in RPMI (P < 0.05).

Media	Strains	Means biofilm biomass	
		Prebiotic	Synbiotic
NB	ATCC MYA-4901	0.289*#	0.230#
		(0.053)	(0.064)
	ALC2	0.454*	0.275#
		(0.485)	(0.028)
	ALC3	0.833#	0.666
		(0.389)	(0.476)
RPMI	ATCC MYA-4901	0.087*	0.286
		(0.015)	(0.127)
	ALC2	0.182*	0.330
		(0.128)	(0.095)
	ALC3	0.374	0.861
		(0.399)	(1.074)

TABLE 1. The effect of prebiotic and synbiotic on the biofilm biomass Candida species.

Data were absorbance measured at OD_{620nm} . Data were means from three biological ant three technical replicates. SD are given in parenthesis. Mono-culture *S. salivarius* K12 exhibited biofilm biomass of 0.180 ± 0.030 and 0.404 ± 0.177 , respectively. Prebiotic represents *C. albicans* grown in with *S. sonchifolius* extract while synbiotic represents *C. albicans* cultured with *S. sonchifolius* extract and *S. salivarius* K12. NB: Nutrient broth and RPMI: RPMI-1640. ATCC: *C. albicans* ATCC MYA-4901,

ALC2: *C. albicans* HIV isolates, and ALC3: *C. albicans* oral cancer isolates. The results indicate the mean values in reduction of biomass in percentage compared to the control group. Significant differences were observed between media (*) and *C. albicans* strains (#) (P < 0.05). Data were analysed using one-way analysis of variance (ANOVA) associated with *post hoc* Tukey and Dunnet's test and considered significantly different when P < 0.05.

FIGURE 2. Data were absorbance measured at OD_{620nm}. Prebiotic represents *C. albicans* that was grown in with *S. sonchifolius* extract while synbiotic represents *C. albicans* cultured with *S. sonchifolius* extract and *S. salivarius* K12. NB: Nutrient broth and RPMI: RPMI-1640. ATCC: *C. albicans* ATCC MYA-4901, ALC2: *C. albicans* HIV isolates, and ALC3: *C. albicans* oral cancer isolates. The results indicate the mean values in reduction of biomass in percentage compared to the control group. Significant differences were observed between media grown *C. albicans* and between *C. albicans* strains (P<0.05). Data were analysed using One-way analysis of variance (ANOVA) associated with *post hoc* Tukey and Dunnet's test and considered as significantly different when P < 0.05.

S. salivarius was found to produce urease enzymes that contribute to the stability of oral communities [20]. Another study showed that exo-beta-D-fructosidase (FruA) produced by *S. salivarius* plays an essential role in developing oral biofilm formation by commensal bacteria and may regulate microbial pathogenicity in the oral cavity [21]. *S. sonchifolius* is well known to have a prebiotic effect. Its ability to ferment fructooligosaccharides has been proven by different probiotic strains such as *Lactobacillus acidophilus* NRRL-1910, *Lactobacillus plantarum* NRRL B-4496 and *Bifidobacterium bifidum* ATCC 1569 [22]. Thus, the increased biofilm in synbiotic is suggested due to the increase of *S. salivarius* in biofilm. In addition, NB has been shown to produce yeast form, while RPMI-1640 can produce a hyphal form of *C. albicans*. In a healthy oral cavity, yeast form is more important in initiating *C. albicans* adhesion to the oral surface, both hard and soft tissues. Thus, our study indicated that the synbiotic is more efficient in preventing *C. albicans* biofilm in the oral cavity. Nevertheless, further study is required to identify the distribution of microorganisms in this consortium.

CONCLUSION

Inhibition of synbiotic *S. sonchifolius* and *S. salivarius* K12 on *C. albicans* biofilm is media dependent. Thus, it has the potential as a natural anticandidal or antibiofilm agent that can be used in the coating of dental materials.

ACKNOWLEDGEMENT

The authors would like to acknowledge International Islamic University Malaysia for the funding (RMCG20-009-0009).

REFERENCES

- 1. A. Haukioja, Eur J Dent. 4, 348 (2010).
- 2. S. A. Ishijima, K. Hayama, J. P. Burton, G. Reid, M. Okada, Y. Matsushita et al. Appl Environ Microbiol. 78, 2190 (2012).
- 3. Y. Moon, J. Moon, M. Lee and J. Cho, Int J Clin Prev Dent. 12, 209 (2016).
- 4. K. Zupancic, V. Kriksic, I. Kovacevic and D. Kovacevic, Probiotics Antimicrob. 9, 102 (2017).
- 5. D. Davani-Davari, M. Negahdaripour, I. Karimzadeh, M. Seifan, M. Mohkam, S. J. Masoumi, et al., Foods 8, (2019).
- L. L. R. Paredes, F. R. Smiderle, A. P. Santana-Filho, A. Kimura, M. Iacomini and G. L. Sassaki, Int J Biol Macromol. 108, 1074 (2018).
- 7. Y. Kojima, T. Ohshima, C. J. Seneviratne and N. Maeda, J. Oral Biosci 58, 27–32 (2016).
- 8. R. F. Tester and F. H. Al-Ghazzewi, Nutr Food Sci. 41, 234 (2011).
- 9. P. Markowiak and K. Śliżewska, Nutrients. 9, 1021 (2017).
- 10. P. Belda-Ferre, L. D. Alcaraz, R. Cabrera-Rubio, H. Romero, A. Simon-Soro, M. Pignatelli et al. ISME J. 6, 46 (2012).
- 11. P. Gholizadeh, H. Eslami, M. Yousefi, M. Asgharzadeh, M. Aghazadeh and H. S. Kafil, Biomed Pharmacother **84**, 552–8 (2016).
- 12. R. J. Lamont, H. Koo and G. Hajishengallis, Nat Rev Microbiol. 16), 745 (2018).
- 13. A. Ramirez-Garcia, B. Arteta, A. Abad-Diaz-de-Cerio, A. Pellon, A. Antoran, J. Marquez et al. PLoS One 8, e53584 (2013).
- 14. F. L Mayer, D. Wilson and B. Hube, Virulence 4, 119–28 (2013).
- 15. M. van Essche, G. Loozen, C. Godts, N. Boon, M. Pauwels, M. Quirynen et al. J Periodontol. 84, 801 (2013).
- M. H. Arzmi, F. A Razak, W. H. A. W. Harun, W. N. F. W. M Kamaluddin and N. A. R. Rismayuddin, IIUM J Orofac Heal Sci. 1, 69 (2020).
- 17. M. H. Arzmi, A. D. Alnuaimi, S. Dashper, N. Cirillo, E. Reynolds and M. McCullough, Sabouraudia 54, 856–64 (2016).
- A. D. Alnuaimi, N. M. O'Brien-Simpson, E. C. Reynolds and M. J. McCullough, FEMS Yeast Res. 13, 689 (2013).
- 19. E. P. Padla, L. T. Solis and C. Y. Ragasa, Chin J Nat Med. 10, 408 (2012).
- 20. C. H. Haitjema, S. P. Gilmore, J. K. Henske, K. V. Solomon, R. De Groot, A. Kuo et al. Nat Microbiol. 2, 1 (2018).
- 21. A. Ogawa, S. Furukawa, S. Fujita, J. Mitobe, T. Kawarai, N. Narisawa et al. Appl Environ Microbiol.77, 1572 (2011).
- 22. D. Campos, R. Chirinos, L. G. Ranilla and R. Pedreschi, Elsevier. 287 (2018).