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Systematic Review

Hydrogel on a Smart Nanomaterial Interface to Carry
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2 School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University,
Singapore 639798, Singapore

* Correspondence: bilal.javed@tudublin.ie (B.J.); furong.tian@tudublin.ie (F.T.)

Abstract: Glioma is considered the primary brain tumor to cause brain illnesses, and it is difficult
to treat and shows resistance to various routine therapeutics. The most common treatments to cure
glioma are the surgical removal of tumors followed by adjuvant chemotherapy and radiation therapy.
The latest biocompatible interfaces have been incorporated into therapeutic modalities such as the
targeted delivery of drugs using hydrogels to treat and manage brain glioma. This review illustrates
the applications of the multimodal hydrogel as the carrier of therapeutics, gene therapy, therapeutic
tactics, and glioma devices. The scientific articles were retrieved from 2019 to 2022 on Google Scholar
and the Scopus database and screened to determine whether they were suitable for review. The
20 articles that fit the study are summarized in this review. These studies indicated that the sizes
of the hydrogel range from 28 nm to 500 nm. There are 16 out of 20 articles that also explain the
post-surgical application of hydrogels, and 13 out of 20 articles are employed in 3D culture and other
structural manifestations of hydrogels. The pros of the hydrogel include the quick formulation for
a sufficient filling of irregular damage sites, solubilizing hydrophobic drugs, continuously slowing
drug release, provision of a 3D cell growth environment, improving efficacy, targetability of soluble
biomolecules, increasing patient compliance, and decreased side effects. The cons of the hydrogel
include difficult real-time monitoring, genetic manipulations, the cumbersome synchronized release
of components, and lack of safety data. The prospects of the hydrogel may include the development
of electronic hydrogel sensors that can be used to enhance guidance for the precise targeting patterns
using patient-specific pathological idiosyncrasies. This technology has the potential to revolutionize
the precision medicine approaches that would aid in the early detection and management of solid
brain tumors.

Keywords: glioma; hydrogel; gene therapy; biosensor; digitalized; precision medicine

1. Introduction

Glioblastoma multiforme is categorized as a fast-growing grade four brain glioma. It
develops in star-shaped glial or non-neuron cells (astrocytes and oligodendrocytes) that
do not produce electrical impulses. Glial cells play a significant supportive role to the
neuron cells in the brain and perform important physiological functions. Glioblastoma
multiforme (GBM) accounts for 60% of brain tumors, and the median reported survival
of GBM patients after its first diagnosis is, unfortunately, only about 16 months due to
the unstoppable proliferation of glioma cells, poor diagnosis, disease prognosis, and a
high-grade metastasis [1]. Glioma patients are treated with surgery to remove the tumor or
the tumor-carrying site, followed by chemotherapy and radiation therapy to slow or stop
the tumor growth [2,3]. Various scientific studies have been carried out to discover new
therapies and approaches to regulate tumor progression. These practices involve new ways
to treat patients with glioma precisely due to drug resistance and recurrence of glioma
tumors [4].

Gels 2022, 8, 664. https://doi.org/10.3390/gels8100664 https://www.mdpi.com/journal/gels

https://doi.org/10.3390/gels8100664
https://doi.org/10.3390/gels8100664
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gels
https://www.mdpi.com
https://orcid.org/0000-0001-7038-1433
https://orcid.org/0000-0002-9566-1498
https://orcid.org/0000-0002-4953-1131
https://doi.org/10.3390/gels8100664
https://www.mdpi.com/journal/gels
https://www.mdpi.com/article/10.3390/gels8100664?type=check_update&version=1


Gels 2022, 8, 664 2 of 13

Recently, nano-assisted therapies such as nano-immunotherapy, nano-stem cell ther-
apy, and nano-gene therapy have been investigated for brain cancer treatment [5–7]. The
safety of GBM treatments has been considered as a priority. Hydrogel is a network of
three-dimensional crosslinked polymers that can absorb and retain water. The biodegrad-
able polymeric gels contain encapsulated therapeutics that can be deployed locally in the
resection cavity. They have diverse physical and chemical properties which make them
a suitable candidate for multiple biomedical applications. Hydrogels have emerged for
efficacious intracavity drug delivery in preclinical brain tumor models to circumvent some
of these limitations [5].

Hydrogels have diverse physical and chemical properties which make them a suitable
candidate for multiple biomedical applications. Hydrogel is a tissue-like material that
provides the system foundation to build up the next-generation flexible biosensors [8].
Hydrogels are built up with purely synthetic components or cellular–synthetic hybrid
components. Tissue-like hydrogels are designed to mimic the naturally occurring biological
components from the morphological and structural level, which enables them to acquire
biomimetic mechanical, chemical, physical, and electrical properties [8]. The sophisticated
and highly integrated tissue-like materials and systems hold great potential to achieve bio-
functions and can be applied to a wide variety of body parts with different tissue types [9].
The hydrogels are considered the most promising carriers for the targeted delivery of drugs
to cancerous sites and have the potential to act as an integrated biosensor interface with
excellent sensitivity, accuracy, high conformability, and extended durability [10].

Hydrogels have been made up of covalently bonded subunits that define their proper-
ties. Additionally, the functional groups of the monomers provide a convenient location
for loading therapeutics [10]. Hydrogels, as nanocarriers, have been designed to carry a
stimulating drug delivery system [11]. Research has shown that hydrogel has the advantage
to act as a carrier in chemotherapy medicine to deliver drugs using a wide range of small
molecules, drugs, gene therapy, or immunotherapy using the same nanomaterial platform
with minor alterations [12]. Hydrogel as a smart biomaterial has been employed to carry
lipid carriers, polymer nanoparticles (NPs), metal nanoparticles (MNPs), biobased NPs,
and injectable or implantable 3D scaffolds [2,12]. The scaffold/polymer layers are loaded
with different therapeutic modalities used against glioma cells. Nanomaterials also allow
the continuous release of many medicinal compounds in response to external stimuli such
as acidic, mechanical, electrical, magnetic, light, and thermal pH [13]. NPs have been
embedded in a heat-sensitive hydrogel that has the capabilities to rapidly increase tem-
perature and help to improve the site-specific retention of NPs in tumors [2]. Low-density
lipoprotein receptor (LDLR), EGFR receptors, mesenchymal–epithelial transition factor
(MET), transferrin, and HER2/EGFR-tagged/decorated NPs have been invested at the site
of glioma injury [14]. The nanocarriers have been coated with peptides or antibodies spe-
cific to brain endothelial cells (BEC) [11]. The hydrogel has a cell-mimicking ability to avoid
the interaction of NPs with immune cells in the reticuloendothelial system (RES) resulting
in phagocytosis [2]. The scaffold around the NPs can cause a slow release to provide a
sustained and regulated release of cargo at the tumor site in response to different stimuli.

2. Result and Discussion
2.1. Analysis of Hydrogel as a Drug Carrier for the Treatment of Glioma

Twenty papers were identified and reviewed on Google Scholar and Scopus related
to hydrogel as the drug carrier due to having the treatment properties of glioma cancer.
The articles retrieved were published from 2020 to 2022. The 20 articles were evaluated or
described using the investigative technique for the parameters of post-surgical or not, cell
culture type (3D/2D), with/without glioma stem cell seeding, drugs delivered, particle
size (nm), sensor type, pros, and cons, which are all illustrated in Table 1.
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Table 1. A summary of hydrogel as a drug carrier for glioma cancer treatment.

Hydrogel Type Post-Surgical Cell Culture Glioma
Stem Cell Drug Delivered Particle

Size (nm) Sensor Pros Cons Reference

PCL-PEG Yes 3D Yes Carmustine, 597 No Easy synthesis, safe
effective treatment N/A [15]

Hyaluronic
acid/sodium alginate Yes 3D Yes Histamine N/A No

Sufficient filling of
irregular damage sites,

provision of 3D cell
growth environment

N/A [16]

PTX PLGA-NPs-loaded Yes 3D Yes Paclitaxel N/A No N/A N/A [17]

PLGA-PEG-PLGA Yes 3D Yes Temozolomide 35 No

Enhance cellular
internalization in GBM

cells, improve low
biological stability and

drug’s efficacy

Undesirable monocyte
migration, localization

to systemic tissue
[18]

Hyaluronic acid Yes 3D Yes No N/A No Ease, low cost, and rapid
setup

Difficult real time
monitor and genetic

manipulations
[19]

PVA Yes 3D Yes Gemcitabine N/A No
Controlled and constant
drug release, enhanced

dosage at the targeted site
N/A [20]

CP and CL@ RNP PTXb Yes 3D No Luminol 80 No N/A N/A [21]

PNPPTX and MNP
CpG Yes 3D No Paclitaxel 127 No

Quickly cross-linked to
form a hydrogel, cellular

targeted nanoparticles
reach the lesion directly

N/A [22]

Hyaluronic
acid/Cucurbit Yes 3D No Doxorubicin 100 No

A higher survival rate,
improved drug
bioavailability

N/A [23]

PCLA-PEG-PCLA Yes 3D No Paclitaxel 500 No

Solubilization of
hydrophobic drugs,

implanted after surgical
resection of a tumor

Difficult synchronized
release of components,

lack safety data
[24]
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Table 1. Cont.

Hydrogel Type Post-Surgical Cell Culture Glioma
Stem Cell Drug Delivered Particle

Size (nm) Sensor Pros Cons Reference

Gelatin Yes 2D Yes Thymidine
kinase 283 No

High glioma stem cell
loading capacity, more
shielded from hostile

resection

Increased intracranial
pressure, toxic

degradation byproducts
[25]

CSH:
TCEP-immobilized

agarose
Yes 2D No TCEP N/A No

Improved efficacy and
targetability of soluble

biomolecules

low therapeutic
efficiency, inevitable

drug resistance
[26]

Pig diemel,
N,N-cyclohexyl carbide

diimine, N-
hydroxybutylphthalimine

Yes 2D No Carmustine 275 No

Readily adopted by body
system, slow release,

continuously released by
hydrogel

N/A [27]

Fmoc-F–FF-DOPA Yes 2D No CXCL10 164 No
Low IDO1 expression,

high IDO1 protein levels
in tumor tissues

N/A [28]

Triglycerol
monostearate/PPS60 Yes 2D No Temozolomide N/A No

Good biocompatibility,
broad cancer treatment

application
N/A [29]

Chitosan-b-
glycerophosphate Yes 2D No Paclitaxel 100 No

Protects niosomes against
external tonicity

fluctuation, prevents
uncontrollable release of

paclitaxel

N/A [30]

Collagen No 3D No No N/A Yes *

High sensitivity,
nondestructive, real-time

monitor of reactive
oxygen species from

microglial cells

N/A [31]

PEGDA No 3D No Doxorubicin 28 No
Raise local dose drug at
tumor site, will not pass

blood–brain barrier
N/A [32]

PCLA-PEG-PCLA No 3D No Curcumin 189 No
Increased patient

compliance, decreased
side effects

N/A [33]

Hyaluronic acid No 2D No Irinotecan 107 No N/A N/A [34]

* Enzymatic 3D Lactate.
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2.2. Hydrogel Application for the Blood–Brain Barrier (BBB)

There are many types of hydrogel, such as poly(ε-caprolactone)-poly(ethylene glycol)
(PCL-PEG), hyaluronic acid, poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-
caprolactone-co-lactide) (PCLA-PEG-PCLA), and poly(vinyl alcohol) (PVA) [15–20,24,32,33].
Natural products such as gelatin, triglycerol monostearate, pig diesel, and collagen have
been employed as hydrogel scaffolds [25,27,29,31]. The most significant question in the
treatment of glioma is what happens when nanocarriers (carrying the drugs) succeed in
gaining access to the central nervous system via the BBB. The Blood–Brain Barrier (BBB)
represents the structural differences that exist between the endothelia of the brain capillaries
and endothelia in other capillaries, such as tight junctions between adjacent endothelial cells.
The drug carrier’s size is essential for drug delivery design for glioma cancer. Semmler-
Behnke et al. have reported the uptake of 1.4 nm of gold NPs in secondary target organs
such as the brain following intra-tracheal or intravenous application [35]. A nanoparticle
size bigger than 1.4 nm cannot pass the BBB via tight junctions (Figure 1a). There is a rare
chance for the nanoparticle to pass the BBB via endocytosis and exocytosis [35]. Figure 1a
has been designed to explain the anatomic structure of the Blood–Brain Barrier (BBB),
and the number of articles with data included in this review on hydrogel particle size,
post-surgery, cell culture, and glioma stem cell from Table 1 is incorporated in Figure 2b.
The number of articles related to post-surgical application, 3D cultures, and stem cell
application is against a total of 20 articles.
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The particle sizes have been summarized in column 6 in Table 1. The size range of
the hydrogel reported in the scientific studies was between 28 nm and 500 nm (Table 1).
The designed hydrogel as a drug carrier is to maintain the drug release and does not travel
through the BBB. Only the particle size of less than 1.4 nm can pass the BBB (see the blue
arrow in Figure 1a). There are 16 out of 20 articles on hydrogel as a post-surgical application
(Figure 2b). It is concluded that hydrogel is selected for drug release for glioma cancer
treatment through local delivery by post-surgery. Local delivery of chemotherapeutic drugs
(to bypass the blood-brain barrier) via hydrogels in the resection cavity is recommended [36].
The drugs can be released within the endothelium cells and undergo further transportation
into the brain by diffusion or transcytosis [37]. In total, 13 out of 20 articles employ 3D
culture (Figure 2b). Once administered, the anti-cancer agent drugs cross BBB. Once they
cross the BBB, the specific drugs, such as carmustine, histamine, paclitaxel, temozolomide,
gemcitabine, luminol, doxorubicin, thymidine kinase, and irinotecan, become attached to
the specific surface markers expressed on the 3D tumor models.

2.3. Stem Cell Application

Hydrogel as the therapeutics carrier can enhance the drug’s penetration and retention
at the tumor site. The high-water content made hydrogels suitable structures for loading
stem cells [15]. There are 7 out of 20 articles employing hydrogel with stem cells for
glioma cancer treatment. Of these, 6 out of the 7 articles employ stem cells in 3D model
culture to treat glioma cancer (Figure 2b). Researchers have found that glioma stem cells
(GSCs) and glioma cells participate in the angiogenesis of healthy glioma cells by directly
transdifferentiating into endothelial cells or secreting vascular endothelial growth factor
(VEGF) [8,9]. Hence, there is an urgent need to establish an in vitro or in vivo glioma
model to investigate the role of glioma cells and GSCs in healthy glioma angiogenesis.
The encapsulated human mesenchymal stem cells (hMSCs) could produce brain-derived
neurotrophic factor (BDNF) (BDNF–hMSCs), enhancing neuronic functional recovery by
reducing the neuronal death rate in the hippocampus [18]. It is generally believed that
angiogenesis is beneficial to tumor progression and migration, and anti-angiogenesis is a
common strategy for tumor therapy. Invasive glioma cells are resistant to clinical standard-
of-care chemotherapy, along with radiation [15]. The emerging molecular target implicated
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in invasive glioma biology is the TNF receptor superfamily member named fibroblast
growth factor-inducible 14 (Fn14) [5,38]. Additional, mural-like tumor cells differentiate
from GSCs. The mural-like tumor cells significantly contribute to the microvasculature of
glioblastoma. Flk-1 (human counterpart, KDR) tyrosine kinase is one of the two receptors
for Vascular Endothelial Growth Factor (VEGF). Fn14 and FIK-1 could complement current
anti-angiogenic treatment [39]. Therefore, stem cell transplantation by hydrogels could be
a potential strategy for the clinical treatment of brain disorders.

2.4. Hydrogel Carrier for Gene Therapy

Hydrogel carriers as smart materials platforms have been developed for effective lung
cancer treatments. Synthetic cancer-sensing circuits have been designed to recognize cancer
cells based on intracellular gene expression profiles [8,11]. PI3K pathway inhibitors loaded
with liposomes, cationic liposomes containing the TP53 gene plasmid, siRNAs against EGFR
and PDGFRA, siRNAPVT1, siRNAp53, siRNASTAT3, and PDL1 have been investigated
for glioma therapy [40–42]. Multi-colored RNA circuits (generating tumor suppressor
microRNAs targeting key glioma driver genes) have been employed in nanohydrogels to
produce the circuit’s logical synthetic genetics. This allows for the fine-tuning of both the
hardware platform and the genetic circuitry, as well as a patient-by-patient study of the
platform’s effectiveness in xenograft models derived from glioma patients. Researchers
can easily detect and quantify tumor heterogeneity by evaluating treatment outcomes
in each cell type that makes up the tumor microenvironment [43]. The multi-colored
MicroRNA’s (miRNA’s) circuits can be specifically expressed in each cell type of the tumor
microenvironment (cancer cells, normal cells, immune cells, tumor-associated fibroblasts,
endothelial cells, and tumor stem cells) with the help of cell type-specific promoters to
assess the cell-by-cell therapeutic efficacy. The novel deregulated miRNA targets have been
identified based on screening performed in patient-derived tumors that better describe
the different tumor microenvironments for preclinical and clinical practices [44]. As a
result, it is possible to assess tumor heterogeneity between distinct glioma cells, which
demonstrate a significant degree of variability between and within tumors, as well as
between individuals with glioma, and predict the likelihood of disease progression and
resistance to therapy.

2.5. Pros and Cons of the Hydrogel

Hydrogel, as the therapeutics carrier, can enhance the drug’s penetration and retention
and provide scaffolds for stem cells at the tumor site. They also help to reduce the systemic
toxicity associated with the high concentrations of therapeutic agents. The pros and cons
of the hydrogels are listed in Table 1. (i) The hyaluronic acid hydrogel has an easy, low
cost, and rapid setup [19], and (ii) PNPPTX and MNP CpG are quickly cross-linked to
form a hydrogel [22]. (iii) PCLA-PEG-PCLA can solubilize hydrophobic drugs; increase
patient compliance, and decrease side effects [18,24,33]. (iv) Another pro of hydrogel
nanomaterials is that they can be used for a sufficient filling of irregular damage sites, pro-
vision of a 3D cell growth environment, and improving efficacy and targetability of soluble
biomolecules [18,22,26]. (v) The nature products such as gelatin, triglycerol monostearate,
pig diesel, and collagen have high sensitivity, have good biocompatibility, are readily
adopted by the body system, and are continuously slow released by hydrogel [25,27,29,31].
The hydrogel carriers as smart materials platforms have been developed along with the
newly identified biological targets for effective glioma cancer treatments.

On the other side of the coin, the cons of the hydrogel are also shown below. The
hyaluronic acid exhibits difficult real-time monitoring and genetic manipulations [19].
PLGA-PEG-PLGA shows undesirable monocyte migration, localization to systemic tissue,
the difficult synchronized release of components, and a lack of safety data [18,24]. The
hydrogel made by gelatin increases intracranial pressure and produces toxic degradation
byproducts [25]. The cancer cell-sticky hydrogel (CSH) made by tris (2-carboxyethyl)
phosphine and PEG shows low therapeutic efficiency and inevitable drug resistance [26].
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The heterogeneous compositional structures of the biological tissues lead to distinctive
chemical and physical processes compared to the homogeneous man-made materials,
which restricts the sensitivity, accuracy, and efficiency of signal transductions through
biosensor interfaces [45,46]. The mismatch in mechanical properties, including toughness,
flexibility, and adhesion ability, will lead to immune rejection and disable the long-term
usage of sensing devices [47,48]. in addition, whether the sensor possesses the self-healing
ability will strongly affect the service life of biosensors [47]. The conductivity mismatch
will lead to low efficiency and inaccurate signal collection and delivery [49]. Especially,
biosystems transmit physiochemical signals through water-compliant carriers such as ions
and biomolecules.

In contrast, electronic sensors rely on the controlled transportation of delocalized
electrons/holes. Such mismatches at the biosensor interfaces continuously challenge the
functionality of bioelectronic sensors [50]. The mismatch between the chemical diffusivity,
biological tissues, and man-made materials, especially at the biosensor interface, results
in signal delay and signal decay, thereby compromising the biosensor’s accuracy and
functionality [51].

Current developments mainly focus on improving single or a few particularly targeted
biomimetic material properties, such as self-healing and strain stiffening, corresponding to
the specific purpose and the application of the sensor [52]. However, these designs often
attempt to mitigate the mismatches on a case-to-case basis, while the improvement in one
property often comes at the cost of another [53]. In order to achieve efficient fabrication, new
research brought light to achieve efficient fabrication. Liu and his colleagues developed a
silver-nanowire/PVA hydrogel/melamine sponge semidry EEG electrode for long-lasting
monitoring of EEG signals [54]. Figure 3 illustrates the hydrogel sponge with nanowire
printed on the wafer. The device with more peptides can be injected into the local glioma
via post-surgical applications (Figure 3). Benefiting from the water storage capacity of
PVA hydrogel, the electrolyte solution can be continuously released to the scalp-electrode
interface during use.

The other side effects of the hydrogels can be due to their toxicity profile. The toxicity
of hydrogels depends on their scaffold and the functional groups. The wide applications
keep pace with the era of digitalization flexible hydrogel can serve a range of biological
tissues with minimized mismatches on biosensor interfaces.

2.6. Hydrogel for the Biosensor of Tissue Engineering

The functioning of the human body relies on the synergistic activities of the individual
tissues or organs. They are multifunctional, multi-component, multiscale, and contain a
wide range of heterogeneities [55,56]. These parts, with various biochemical and biophysi-
cal properties and functions, usually have unique compositional structures, mechanical
properties, electrical conductivities, and chemical diffusivities [8,57–59]. Biosensors, which
are the nodes that translate biological information into digitalized data, are based on the
communications between biological tissues and man-made materials. The third generation
of neural networks has been developed to monitor the complex dynamics of neurons [60].
The asynchronous event-based information-processing in the form of spikes to resemble
biology can be monitored [61]. The realistic hydrogel as a carrier for biosensors should
have the capacity to carry anti-cancer drugs, nanoparticles, or genes for gene therapy and
provide accurate, stable, and long-term transduce of signals across the biotic and abiotic
interface. The signal can be processed with imaging, signal process, statistical analysis, and
risk assessment. Health professionals can monitor the treatment progress with a cell phone
(Figure 3). The hydrogels could become superlative drug delivery vehicles, surpassing the
disadvantages and current limitations with the use of several conventional delivery forms
and providing a promising solution for sensor applications in the future.
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3. Conclusions

Many studies have been performed to develop new therapies that regulate tumor
progression and to find new ways to treat patients with glioma precisely because of drug
resistance and tumor recurrence. The review of the articles summarized that the sizes of
most of the hydrogels reported are between 28 nm and 500 nm. Among the 20 articles, 80%
are on using hydrogel as a post-surgical application and 65% of them employ 3D culture.
The pros of the hydrogel are: quick formulation for a sufficient filling of irregular damage
sites, solubilizing hydrophobic drugs, continuously slowing drug release, provision of
a 3D cell growth environment, improved efficacy, targetability of soluble biomolecules,
increased patient compliance, and decreased side effects. The cons of the hydrogel are:
difficult real-time monitoring, genetic manipulations, the difficult synchronized release of
components, and lack of safety data. The hydrogel carriers as smart materials platforms
have been developed along with the newly identified biological targets for effective glioma
cancer treatments. The multimodal hydrogel as the carrier can carry anticancer agents,
nanomaterials, and sensor devices to treat and monitor gliomas. The flexible hydrogel
should be developed to serve a range of biological tissues with minimized mismatches
on biosensor interfaces. The electronic sensors can be carried out to enhance guidance of
precise targeting patterns using patient-specific pathological idiosyncrasies in the future.

4. Methods
4.1. PRISMA Statement (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

We finished the PRISMA 2020 checklist and constructed a flowchart following the
PRISMA guidelines and registration information. The selection process was based on the
PRISMA statement 2020 [62], and the flowchart is shown in Figure 4.
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4.2. Research Process

Hydrogel as the therapeutics carrier can enhance the drug’s penetration and retention
at the tumor site. The systematic review was gathered through a literature search from
online databases. Relevant articles were searched on Google Scholar and the Scopus
database to identify hydrogels as carriers and pathways of drug delivery in glioma cancer.
Boolean operators “AND” and “OR” were used to broaden the search. The keywords used
for searching were “hydrogel” and “glioma cancer”. The article was identified through the
Scopus database and Google Scholar online. The citations were collected from recent studies
(2020–2022). To further ensure that we had assembled a comprehensive list of studies, we
asked researchers with relevant knowledge on the topic to review and suggest keywords.

The search focused on scientific research articles using the following protocol:

i. Publication years were between 2020 and 2022.
ii. The keywords “hydrogel” AND “glioma cancer” had to appear in the title and abstract.
iii. They had to be scientific indexed papers only.

The results were screened against inclusion criteria, i.e., articles that are not relevant
to the studies. The full text of papers for all the articles that fit into the inclusion criteria
was retrieved.

4.3. Screening

Strict criteria were used to determine the relevant articles for inclusion. For example,
articles were excluded if published in languages other than English or for which only
an abstract was available, and then each remaining search result was grouped as one of
the articles.
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i. “Primary articles” research papers appeared in the peer-reviewed literature and
reported original data or results based on observations and experiments.

ii. “Review” papers summarized the understanding of hydrogels as carriers and path-
ways of drug delivery in glioma cancer.

Throughout the screening process, the number of publications excluded in each stage
and their reasons for exclusion were noted based on the guidelines outlined in the PRISMA
statement 2020 in Figure 4.
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