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Abstract

The participation of wind energy in electricity markets and strategic bidding in

the day-ahead market has been investigated with growing interest in recent years.

However, markets adopting a single-price imbalance settlement — where partici-

pants can increase their profits if they help to put the system back into balance

— have received very limited attention in the academic literature. In this The-

sis, new probabilistic models forecasting the short-term value of wind power are

developed and their use in bidding in these types of markets is investigated. The

proposed strategies are designed for participants who want to bid strategically in

the day-ahead market to increase the value of the energy generated at a wind farm,

where value is measured in terms of revenue and exposure to risk. Following an

extensive analysis of the available market data, two alternative approaches are de-

veloped to generate day-ahead forecasts of the market quantities of relevance for

the work. These forecasts are then combined with short-term predictions of wind

power in a probabilistic framework. Bids are formulated to reflect the participant’s

risk profile, conditioned upon the uncertainty in future wind power generation and

electricity market conditions. The methodology is applied to a case study where

the participation of a real wind farm in the new Irish electricity market is simulated

over a test period. The benefits of the proposed models are clearly demonstrated as

the strategies successfully improve the value of wind power for the participant by

increasing their revenue while reducing the exposure to risk. Moreover, the market

quantity forecasts developed in this work prove to be more valuable than a wind

power forecast of higher accuracy for a risk-seeking participant.
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Chapter 1

Introduction

1.1 Preface

In recent years, wind energy has been playing a leading role in meeting the targets

set by the Paris Agreement, aimed at achieving a low-carbon future and fighting

global warming [1]. With a total of 650 GW installed as of 2019, wind power is

the largest non-hydropower source of renewable electricity by installed capacity

in the world [2]. In 2019, wind energy covered almost 5.6% of the world’s global

electricity production, provided 15% of EU’s electricity demand, and was China’s

third largest energy source [3]. Thanks to its rapidly falling costs per kilowatt-hour,

wind energy has become the cheapest source of new power generation across more

than two thirds of markets around the world [4]. However, three aspects distinguish

wind from traditional generators:

• variability, as wind varies in both time and space, with fluctuations occurring

over time scales ranging from minutes to more than a year, and variations in

space depending on terrain, ground cover and height [5];

• uncertainty, due to the limited predictability of the renewable energy source

(i.e. wind) and thus, of the power output of wind-based units; and

• asynchronicity, as modern wind turbines are interfaced with the grid through

power electronics instead of a rotating generator [6], and an increase in wind
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generation has the effect of reducing the inertia from synchronous generators.

Wind power’s success therefore comes with new challenges. Electricity markets

were historically designed for large-scale, dispatchable and centralised fossil power.

As the share of renewable but variable and uncertain resources becomes more

prevalent in the generation mix, serious issues in terms of security of supply and grid

stability arise, driving significant changes in the design and operation of electricity

systems and markets. Grid flexibility and transmission systems must be improved,

and transmission system operators need to pay increasing attention to operational

challenges such as grid imbalances, penetration of non-synchronous sources and

curtailment of renewable generation.

It is in this context that wind power forecasting is essential to the renewable

energy transition. By reducing the uncertainty of supply, forecasting constitutes a

non-generating technology that is able to mitigate the undesirable effects of wind

power’s variability on system operations. Electricity markets are increasingly in-

centivising accurate predictions of the generation for the next minutes, hours and

days, as their use is considered necessary for the integration of large-scale wind

power, as advocated by Holttinen and Hirvonen in [7]. In particular, short-term

wind power forecasts — where the forecast horizon ranges from 6 to 36 hours [8]

— are now commonly employed for unit commitment and energy trading pur-

poses in markets with a significant penetration of wind, as recent work from the

International Energy Agency (IEA) Task 36 on Forecasting for Wind Energy has

highlighted [9]. Indeed, the value of short-term forecasting at the system level grows

as the share of variable renewable energy in power systems increases, as argued by

Hodge et al. in [10]. In this study, the authors find that more accurate forecasts

improve the system flexibility and lead to larger production cost savings, with the

trend becoming more pronounced as the penetration rate increases. Similar find-

ings are obtained by Wang et al. in [11], who also highlight how the economic

value of forecasting improvements depends largely on the generation mix of the

system. Moreover, wind curtailment is reduced as a result of improved short-term

2
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forecasting, as Wang et al. find in [12] in a related study.

1.2 Background

Ireland1 has a unique power system, in that it is a small island system with little

interconnection and a high penetration of wind energy. The Republic of Ireland

(ROI) and Northern Ireland (NI), when compared with the rest of Europe, form a

relatively small synchronous system, i.e. a power grid where electricity is generated

at a single synchronised frequency of 50Hz. The transmission system shown in

Figure 1.1 is linked to European markets through Great Britain (GB) via two 500-

MW interconnectors. The project for a new 700-MW interconnector with France,

the so-called “Celtic Interconnector”, is currently undergoing the planning phase,

with the construction phase expected to start in 2022 and to be completed by

2026 [14, 15]. The import dependence on oil and gas is high compared to the

European Union (EU) average (see Figure 1.2), resulting in Ireland being a de

facto price-taker on these commodities, as noted in the “Energy in Ireland 2019

Report” by the Sustainable Energy Authority of Ireland (SEAI) [16]. Electricity

prices to business consumers have been higher than the EU and Euro Area since

the second half of 2011 (see Figure 1.3a), with the average price in Ireland in the

first half of 2019 being 7.4% and 8.2% above the EU and Euro Area, respectively.

To household consumers, on the other hand, prices have mostly been above the EU

and close to those in the Euro Area, as shown in Figure 1.3b.

The construction of new wind farms on the island has seen remarkable growth in

wind generation capacity over the last two decades, as seen in Figure 1.4, reaching

a total installed wind capacity of 5,403 MW in December 2019. In 2019, the total

wind generation was 11,958 GWh, accounting for 32.3% of demand and representing

the second largest source of electricity generation after natural gas at 50.2%, as

reported in Table 1.1. The source of these data is EirGrid’s “System and Renewable

1When used alone, the term “Ireland” will refer in this manuscript to the all-island of Ireland,
a union of the markets of Republic of Ireland and Northern Ireland.
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Figure 1.1: All-island of Ireland transmission system. Source: EirGrid [13].

Data Summary Report” for year 2019 [18]. According to the “Renewables 2019

Global Status Report” by REN21 [3], in 2018 Ireland was ranked third in the world

by share of electricity generation from variable renewable energy, after Denmark

and Uruguay (see Figure 1.5), and the second in the world for wind power capacity

per capita after Denmark in 2018.

In 2019, renewables made up 11% of Ireland’s total energy consumption, with

a target of 16% set for 2020. In order to achieve this, the Irish Government has set

a 40% renewable electricity target for 2020 [19], the highest for any synchronous

4
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Figure 1.2: Import dependence of Ireland and the EU. Note the sharp drop for
Ireland in 2016 following the start of natural gas production from the Corrib gas
field. Source: “Energy in Ireland 2019 Report” by the SEAI [16].
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Figure 1.3: Electricity prices per kWh in Ireland, the EU, and the Euro Area.
Source of data: SEAI [17].

system in Europe (see Figure 1.6). To increase the amount of renewable energy

in the Irish power system in a secure and reliable manner, the “DS3 Programme

– Delivering a Secure, Sustainable Electricity System” has been undertaken [20].

The aim of the programme is to address the factors that influence the System Non-
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Figure 1.4: Total and annual installed wind generation capacity in Ireland. Source
of data: “System and Renewable Data Summary Report” for year 2019 by Eir-
Grid [18].

Figure 1.5: Top 10 countries for share of electricity generation from variable
renewable energy in 2018. Source: “Renewables 2019 Global Status Report” by
REN21 [3].

Synchronous Penetration2 (SNSP) limit, with the final goal of increasing this limit

from 50% to 75%. Since April 2018, the DS3 Programme has enabled the system

2This is the real-time measure of the percentage of electricity generation coming from non-
synchronous sources relative to the system demand.
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Fuel type %

Gas 50.2

Wind 32.3

Peat 5.6

Coal 3.8

Hydro 2.4

Net Imports 2.1

Other Renewables 1.8

Other Non-Renewables 1.4

Oil 0.4

Table 1.1: Electricity fuel mix in Ireland in 2019 as percentage of demand. Source
of data: “System and Renewable Data Summary Report” for year 2019 by Eir-
Grid [18]
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Figure 1.6: Penetration of non-synchronous renewables in each European syn-
chronous system from 2010 to 2020. Source of data: “The National Renewable
Energy Action Plans” [19].

operators to handle up to 65% of variable renewable energy on the grid at any given

time, making the Irish power system the first in the world to reach this level [21];

this has made it possible to increase the percentage of time where the SNSP is

higher than 50%, as seen in Figure 1.7. Nevertheless, part of the wind-generated

electricity is still curtailed due to exceeding the SNSP limit, as shown in Figure 1.8.
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Figure 1.7: Percentage of month with SNSP higher than 50% (top) and SNSP
limit (bottom) in Ireland. Source of data: “System and Renewable Data Summary
Report” for year 2019 by EirGrid [18].
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1.3 Motivation

It is in this setting that the new Irish electricity market, the so-called Integrated

Single Electricity Market (I-SEM), has come into operation in October 2018. The

new market arrangements have been designed to allow the efficient coupling of the

all-island electricity market with the wholesale markets across Europe through a

single marketplace with common rules and free trade across borders [22]. There

are two main objectives: to increase competition in the market in order to apply

downward pressure on the cost of electricity to consumers, and to achieve greater

levels of security of supply for users [23].

One of the major changes brought in by the new regulations is that balance

responsibility was introduced for all participants, including wind power generators,

to ensure that their notifications of generation or demand best reflect their actual

expectations [24]. As participation is at unit level, traders need to establish their

position for each wind farm within their portfolio individually. Bids are submitted

for every trading period in the day-ahead market and participants are financially

responsible for any deviation from their contracted position. Short-term predictions

of wind energy generation serve as the basis to formulate these bids. The problem

of trading wind energy in the day-ahead and balancing markets will be formulated

in mathematical terms in Section 4.1.

The I-SEM is also adopting a single-price imbalance settlement, meaning that

deviations are set at the balancing market (or imbalance) price regardless of their

direction. This price is higher or lower than the day-ahead (or spot) price if the

system is in up- or down-regulation, respectively. This means that participants

can increase their profits if the direction of their energy imbalances is opposite

to that of the system imbalance, that is, if they help to put the system back

into balance. A detailed discussion on price formation mechanisms and deviation

penalties will be presented in Section 2.1. It follows that the two variables of

primary relevance for a participant who wants to bid strategically are wind power

generation and the sign of the difference between day-ahead and balancing market

9
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prices. Directly bidding the point forecasts of wind generation is the most basic

approach to trading. Currently, this is common practice among many utilities in

Europe and the USA, as the work by Möhrlen et al. in [25] within the frame

of the IEA Task 36 has highlighted. However, a more accurate point forecast

does not necessarily translate to a higher profit. Indeed, a wind farm operator

who bids as closely as possible to the actual production would not obtain the

highest possible revenue in a single-price imbalance market. In other words, a

wind energy forecast of higher accuracy does not necessarily imply higher profits,

and vice versa. For example, in a market where spot prices are on average lower

than imbalance prices, a producer would benefit from bidding systematically less

than the actual generation, that is, employing a positively biased point forecast.

This is demonstrated, for instance, by Bessa et al. in [26], as the results from

the case study show that when price penalties are asymmetric, a biased model

leads to higher incomes than a neutral model. Moreover, a point prediction of

wind energy alone does not provide any information on the uncertainty in future

power generation or market conditions. This does not allow the decision-maker

to manage the risk of participating in the electricity market. Referring to the

types of forecast “goodness” defined by Murphy in [27], rather than a forecast of

higher quality, wind energy traders are mostly interested in prediction methods

that can maximise their benefits; that is, forecasts of higher value. However, such

advanced offering strategies tailored to the end-user’s needs cannot be designed

using wind power point forecasts only. For this purpose, it is necessary to move

to a probabilistic framework and/or to integrate in the decision-making process

information on future market conditions (cf. Pinson et al. in [28]).

The participation of wind energy in electricity markets and strategic bidding

in the day-ahead market has been investigated with growing interest in recent

years, with studies considering various power systems and prediction methodolo-

gies. However, the majority of the published works concentrates on markets adopt-

ing a dual-price imbalance settlement, while single-price markets have received very
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little attention in the academic literature. The developments in the present Thesis

contribute to filling this gap by advancing the discussion on the subject.

1.4 Aim of Research

The aim of this research is to develop new probabilistic models forecasting the

short-term value of wind power and investigating their use in bidding in electricity

markets adopting a single-imbalance pricing scheme. The perspective adopted here

is that of a participant who wants to bid strategically in the day-ahead market to

increase the value of the energy generated at a wind farm. Value will be measured

in terms of revenue and exposure to risk. The proposed models combine short-

term predictions of wind power and of relevant electricity market quantities in a

probabilistic framework. Offers are then formulated to reflect the participant’s

appraisal of future uncertainties in wind power generation and electricity market

conditions. The objective of these bidding strategies is to improve the value of wind

power for the participant, increasing the revenue while controlling risk exposure.

In order to implement these strategies, together with forecasts of the wind farm’s

power generation, predictive models need to be developed to forecast the electricity

market quantities of interest. In turn, this entails the detailed analysis of the market

data from the power system under study.

1.5 Contributions to Knowledge

The contribution to knowledge of this research is three-fold. Firstly, novel proba-

bilistic value forecasting models are developed for wind farms operating in electric-

ity markets with single-imbalance price settlement. The bidding strategies enable

the participant to improve the value of their energy generation and are designed

for wind farms whose size is small relative to the power system . Indeed, value is

improved as a result of larger energy imbalances and this is in conflict with the

objective of the system operator, who would prefer imbalances to be minimised.
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The strategies are novel in that they use probabilistic forecasts of both wind power

and market quantities to define the bid while explicitly integrating the participant’s

risk profile. The methodology is implemented using wind power and market data in

Ireland as an example. However, the work is relevant to other markets with similar

trading arrangements in countries such as the USA, Great Britain, Germany, and

The Netherlands.

Secondly, this work advances the discussion on short-term forecasts of electricity

market quantities by proposing a new method to predict the probability of the

sign of the difference between spot and imbalance prices. The proposed two-stage

methodology employs dynamic regression models and Monte Carlo simulations,

and is successfully applied to a new electricity market where the availability of

historical data to train the models is extremely limited.

Finally, a detailed description and analysis of market data from the new Irish

electricity market are provided. The market commenced trading in October 2018

in a power system characterised by many unique features. The exploratory and

statistical analysis performed on the available data give valuable insights into a

number of processes for modelling and forecasting purposes, including: day-ahead

and balancing prices, direction of system imbalances, the occurrence of anomalous

imbalance prices, and the impact of predicted wind power penetration on various

market quantities. Such a systematic study on the new Irish market data has not

been undertaken previously.

1.6 Thesis Layout

In order to define the general context of the Thesis, wholesale electricity markets

and their functioning are described in Chapter 2. Particular attention is dedicated

to the new Irish electricity market, with a detailed description and analysis of

market data from the first months of its operation. The characteristics of the data

and the analysis outcomes provide the motivation for the modelling approaches

adopted within the methodology of this work.
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Chapter 3 gives a summary of the current methods used for time series fore-

casting and forecast evaluation, followed by a review of the academic literature

of relevance for this work. The state-of-the-art in short-term forecasting of wind

power, electricity prices and value of wind energy is presented. Also, the motivation

and aim of this research are justified by highlighting the gaps in the literature.

The aim of Chapter 4 is to describe the methodology used in developing the

value forecasting models. The problem of trading wind energy in day-ahead and

single-price balancing markets is detailed initially, followed by a description of the

wind power forecasts available in the study. Then, the two alternative approaches

developed to forecast market quantities are explained. Finally, the various bidding

strategies are formulated.

The methodology is applied to a case study where the participation of a real

wind farm in the Irish electricity market is simulated and the results are presented

and discussed in Chapter 5. The performance of the wind power and market quan-

tity forecasts is evaluated and benefits and limitations deriving from the application

of the proposed strategies are evaluated.

The overall conclusions from the present work are summarised in Chapter 6

together with perspectives for further research.
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Chapter 2

Electricity Markets

This Chapter provides a description of electricity markets and their functioning,

paying particular attention to the operation of the Integrated Single Electricity

Market (I-SEM), the Irish wholesale electricity market. Firstly, the general features

and mechanisms in electricity markets are discussed in Section 2.1, with the focus on

the main energy trading platforms. Then, the specific case of Ireland is analysed in

Section 2.2: the market’s structure is outlined in Section 2.2.1, while the outcomes

from the first seven months of its operation are described and analysed in detail in

Section 2.2.2.

2.1 Market Organisation

Electricity markets have developed various structures and arrangements across dif-

ferent countries and regions [29–31], but it is still possible to identify some common

rules and features that characterise them. The models are classified by increasing

levels of competition in: monopoly, purchasing agency, wholesale competition, and

retail competition [32]. The focus here will be on wholesale electricity markets,

currently the most diffused model in industrialised countries [33]. Here, the activi-

ties of generation, transmission, distribution, and retail are separated. Generation

and retail are performed in a competitive environment, while the operation of the

spot market and of the transmission network remain centralised. The following
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entities can be identified:

• Regulator : the independent governmental body responsible for the market

design and its specific rules; it also carries out monitoring activities to identify

misbehaviours in the market.

• Market Operator (MO): organises and operates the market place, matching

bids and offers submitted by buyers and sellers, and taking care of the set-

tlement of the accepted bids and offers.

• System Operator (SO): is responsible for system security by ensuring that

the system is always in balance. In Europe, this takes the form of the Trans-

mission System Operator (TSO), who also owns and operates the network.

In the USA, it can take the form of the Independent System Operator (ISO),

where SO and MO are within the same body, or of the Regional Transmis-

sion Organisation (RTO), for non-market locations which usually encompass

multiple states.

• Distribution System Operator (DSO), or distribution companies: owns and

operates the distribution grid and often acts as a retailer as well.

• Retailers : buy electricity in bulk on the wholesale market in order to sell it

to consumers.

• Generating Companies : own the production assets (from a single generator

to a portfolio of plants of various technologies) and sell the electrical energy

generated from them; they can also sell ancillary services like regulation,

voltage control and reserve.

• Consumers : buy the electricity from a retailer (or directly from the wholesale

market, in the case of large consumers) and use it for any purpose.

An electricity market generally comprises various markets, which can be grouped

as:
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• Capacity market, a mechanism developed by the SO to ensure that the gen-

eration capacity in the system is sufficient to meet the demand in future

years.

• Energy markets, which constitute the main place for the optimal scheduling

and settlement of energy exchanges; here, participants pay or get paid in

proportion to the actual amount of energy drawn from or injected into the

grid.

• Ancillary services, which include all the services purchased directly by the

SO to maintain the integrity and stability of the electricity supply and the

power quality, such as frequency control, voltage control, and system restart

services.

Depending on their timeline, energy markets are divided into:

• Futures, where financial instruments (future contracts) are traded with time

horizons up to a few years with the aim of reducing risk and hedging against

volatile prices.

• Day-ahead, the central, highly liquid energy trading platform for schedul-

ing and matching of electricity bids and offers; the auction submission gate

usually closes at midday of the day before delivery.

• Intraday, a continuous trading platform between the closure of the day-ahead

market and real time allowing traders to adjust their positions following

changes in market conditions; for example, an unscheduled plant outage or

an updated forecast of wind power generation.

• Balancing, a managed spot market for the SO to balance load and generation

close to real time.

The last three markets are the most relevant for wind power trading and therefore

will be presented in more detail in the next Sections. The focus will be on the

European type of power exchanges.
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2.1.1 Day-ahead Market

The day-ahead market (DAM) is an electricity pool based on a two-sided auction

mechanism which provides a centralised form of system management. This is also

referred to as spot market in Europe and as forward market in the USA. Trading

always refers to a certain amount of megawatt-hours to be delivered over a fixed

period of time, also referred to as trading period. The length of such period depends

on the specific market but is usually set at one hour, 30 minutes or 15 minutes. For

each trading period, all bids and offers are placed at the same time and participants

are unaware of others’ behaviour. Note that in this text, a generation (or supply)

offer is referred to as a bid and a consumption offer as an offer. Bids and offers

consist of a set of quantity-price pairs, specifying the amount of energy to be sold

or bought and the corresponding price. Bids submitted by generating companies

to supply a certain volume of electricity at a certain price are ranked in order of

increasing price, following the merit order principle; this way, the market supply

curve is constructed. On the other hand, offers from consumers are ranked in order

of decreasing price forming the demand curve; at times, this passage is omitted and

the value of demand is determined directly through a forecast. If constraints on

the transmission grid are not considered, the intersection between these two curves

represents the market equilibrium and determines the scheduled generation and

consumption levels and the market clearing price, or day-ahead price (πDAM), as

illustrated in Figure 2.1. This is also referred to as spot price or as system marginal

price (SMP), since it represents the price of supplying one additional megawatt-

hour of energy. However, if constraints on the lines are considered, a different price

is associated with each node in the grid and is called the locational marginal price.

This nodal price rationale is adopted in most of the markets in the USA, as opposed

to the zonal pricing rationale which is popular in Europe. It is worth mentioning

at this stage that in many markets, participants are allowed to submit bids with

negative prices. This, for example, can happen when the cost of shutting down and

ramping back up a unit is higher than the loss from receiving a negative price for
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the generation. When the demand is very low or the production from renewable

sources is very high (or both), negatively priced bids can potentially lead to the

formation of negative clearing prices.
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Figure 2.1: Day-ahead market clearing where the equilibrium is found at level
PDAM and day-ahead price πDAM .

The clearing of the market is usually determined through the running of a

centralised algorithm that determines which bids and offers are retained to calculate

the SMP. Once this clearing process is complete, the SO is informed about the

trades that occurred. In European systems, participants can usually self-schedule

their units after clearing according to their portfolio-based position. In the USA,

on the other hand, schedules are financially binding at the unit level.

After the market clearing, the settlement process occurs, that is, establishing

who should pay what, and who should get paid and what amount. The two settle-

ment options are:

• pay-as-bid, where everyone gets paid or pays the price they submitted before

market clearing; or

• uniform pricing, where generators are paid the SMP for every MWh they pro-

duce and consumers pay the SMP for every MWh they consume, irrespective
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of the bids and offers that they had submitted.

The latter is generally preferred and is currently more diffused in the markets [34].

As mentioned earlier in this Chapter, the DAM gate closure occurs several

hours before delivery. Therefore, deviations will often arise between the amount of

energy contracted and the amount that is actually needed or that can be produced.

These energy deviations are called imbalances and can be handled by each market

participant in different ways:

• re-dispatch of own units, by compensating with other generation/consumption

means within their portfolio;

• adjust their position in the intraday market through agreements with other

players; or

• let the SO put the system back to balance in the balancing market.

If, for example, a generator fails to produce the amount of energy that it has

contracted to sell, the TSO — who has the ultimate responsibility to keep its trans-

mission system in balance — buys replacement energy on the balancing market.

Similarly, if a large user or retailer consumes less than it has bought, the TSO sells

the excess on the balancing market. These balancing activities carry a cost and

the parties that are responsible for the imbalances should pay this cost. Normally,

market participants are balance responsible, meaning that they assume the financial

responsibility for keeping their own position balanced over a given time frame.

2.1.2 Intraday Market

The intraday or adjustment market gives participants the possibility to modify

their position between day-ahead market gate closure and delivery. The market is

still centrally organized but is based on bilateral contracts. These are contracts

for a direct exchange of power between a buyer and a seller (who may both be

producers and/or consumers) where the system operator is informed about the

trades that occurred. The types of bilateral trading are:
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• customised long-term contracts, very flexible contracts with typically large

transaction costs and large amounts of energy traded over long periods of

time;

• over-the-counter trading, involving standard contracts with lower transaction

costs, smaller amounts of energy and shorter lead times; and

• electronic trading, fast and cheap trading mechanism based on a computerised

platform that consistently matches supply and offer bids.

The need for corrective actions may vary significantly depending on how new

information is disclosed between day-ahead market clearing and actual operation.

It may be difficult to foresee the actual imbalance that would eventually need to

be fixed and decision-making in such adjustment markets can be very complex. A

practical consequence is that, in general, traded volumes and liquidity in intraday

markets are low — meaning that participants do not find counter-parties to trade

with easily — as shown by Weber in [35] for the main European markets.

2.1.3 Balancing Market

The balancing market (BM) (also referred to as “real-time imbalance market” or

“regulation market”) takes place shortly before energy delivery (generally one hour

or 30 minutes before, depending on the market) to ensure that energy supply meets

demand at all times. Its function is to match the residual load and generation by

adjusting the production of flexible generators and curtailing the demand of willing

consumers. The energy adjustment needed is called net imbalance volume (NIV).

There are three possible imbalance situations for both the system as a whole and

for a single supply (or demand) participant. For the system, there can be:

• NIV < 0 when there is a power surplus, as in the overall supply is larger

than the overall demand. In this case, the system is said to be long and there

is a need for downward regulation.
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• NIV > 0 when there is a power deficit, as in the overall demand is larger

than the overall supply. In this case, the system is said to be short and there

is a need for upward regulation.

• NIV = 0 when there is no imbalance, i.e. supply matches demand. Then,

there is no need for regulation.

Similarly, for a single generator there can be three imbalance cases:

• the actual generation is larger than the contracted quantity;

• the actual generation is smaller than the contracted quantity; and

• actual and contracted generation match.

Let us assume that from the previously cleared day-ahead market, the equi-

librium for a certain trading period is found at generation and consumption level

PDAM and day-ahead price πDAM . When reaching the balancing market (i.e. real

time), there are NB dispatchable generators, called balancing generators, able to

move both up (↑) and down (↓). They offer:

• upward regulation P ↑j at price π↑j , for j = 1, . . . , NB; and

• downward regulation P ↓j at price π↓j , for j = 1, . . . , NB.

where one necessarily has:

• π↑j > πDAM for j = 1, . . . , NB; and

• π↓j < πDAM for j = 1, . . . , NB.

The market is cleared through an auction in a similar way to the day-ahead market

(cf. Figure 2.1), except that:

• offers are for adjustments (both upward and downward) from the day-ahead

quantity PDAM ; and

• demand is here seen as inelastic (that is, the demand curve is near-vertical).
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The clearing of the auction determines the NIV and the balancing market marginal

price, also called imbalance price (πimb). As shown in Figure 2.2, it will result that:

• when the system is long, NIV < 0 and πimb < πDAM ; and

• when the system is short, NIV > 0 and πimb > πDAM .
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(a) Positive imbalance volume.
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(b) Negative imbalance volume.

Figure 2.2: Balancing Market clearing: imbalance prices when the system is
short (left) and long (right), corresponding to upward and downward regulation,
respectively.

While balancing generators simply sell or buy at πimb, there are different con-

sequences on settlement for stochastic generators (such as wind power plants) dis-

patched through the DAM, depending on whether a one-price or two-price imbal-

ance settlement is adopted in the specific system.

One-price imbalance settlement

In the one-price (or single-price) imbalance settlement, the balancing price πimb

is used directly for the settlement. For a stochastic generator j, let us indicate

with yDAMj the quantity contracted in the DAM and with yj the quantity actually
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produced. Depending on the direction of the system imbalance, the following

scenarios are possible:

A) NIV > 0 :

1. generator j producing less than scheduled must buy yDAMj − yj at price

πimb;

2. generator j producing more than scheduled must sell yj−yDAMj at price

πimb.

B) NIV < 0 :

1. generator j producing less than scheduled must buy yDAMj − yj at price

πimb;

2. generator j producing more than scheduled must sell yj−yDAMj at price

πimb.

Meanwhile, in-merit balancing generators simply sell or buy at πimb regardless of

their offer prices π↑j and π↓j for upward and downward regulation, respectively.

The total payment/revenue of day-ahead market participants for deviations from

schedule equals the revenue/payment of the balancing generators.

The rationale behind one-price balancing markets implies that if one’s deviation

contributes to setting the system off-balance, this leads to a revenue loss; this is the

case for scenarios A.1 and B.2 described above. On the contrary, if one’s deviation

is helping the system go back to balance — regardless if such deviations are wanted

or not — this leads to additional profit; this is the case for scenarios A.2 and B.1. In

fact, if the system has a shortage of production, generators producing more power

than contracted in the DAM (and loads consuming less than contracted) receive a

price higher than the DAM price for their sales in the BM. Conversely, when the

system has an excess of production, generators that produce less than contracted

(and loads consuming more than contracted) pay a balancing price that is lower

than the DAM price.
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Two-price imbalance settlement

In the two-price (or dual-price) imbalance settlement, there are different conse-

quences on settlement for participants dispatched through the DAM.

A) NIV > 0 :

1. generator j producing less than scheduled must buy yDAMj − yj at price

πimb;

2. generator j producing more than scheduled must sell yj−yDAMj at price

πDAM .

B) NIV < 0 :

1. generator j producing less than scheduled must buy yDAMj − yj at price

πDAM ;

2. generator j producing more than scheduled must sell yj−yDAMj at price

πimb.

Meanwhile, balancing generators still simply sell or buy at price πimb.

Under the two-price imbalance settlement, those putting the system off-balance

are to be penalised (cases A.1 and B.2). However, those supporting the system

unintentionally — that is, stochastic producers like wind units — do not get extra

rewards (cases A.2 and B.1); only wanted deviations from dispatchable produc-

ers opposite in sign from the system imbalance are rewarded financially with an

imbalance price that is more favourable than the day-ahead one.

2.2 I-SEM, the Irish Electricity Market

2.2.1 Market Structure

The Integrated Single Electricity Market (I-SEM) is the all-island wholesale elec-

tricity market for Ireland that came into operation on the 1st October 2018 to

integrate the Irish electricity market with the European ones. Recall that in this
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text, the term “Ireland” is used to refer to the all island of Ireland, a union of the

markets of Republic of Ireland (ROI) and Northern Ireland (NI). The SEM Com-

mittee is the governing body for the I-SEM, while the regulatory authorities are the

Commission for Regulation of Utilities (CRU) for ROI and the Utility Regulator

for NI. The distribution system operator is ESB Networks and the transmission

system operators (TSOs) are EirGrid for ROI and SONI for NI. EirGrid and SONI

are also the Nominated Electricity Market Operators: they operate as the Single

Electricity Market Operator Power Exchange (SEMOpx) for the Day-ahead and

Intraday markets, and as the Single Electricity Market Operator (SEMO) for the

Balancing market. The synchronous transmission system is linked to European

markets through Great Britain via two interconnectors:

• the East-West Interconnector (EWIC), a high-voltage direct current (HVDC)

submarine and subsoil power cable linking Republic of Ireland to Wales, with

a capacity of 500 MW and owned by EirGrid Interconnector DAC; and

• the Moyle Interconnector, an HVDC submarine and subsoil cable linking

Northern Ireland and Scotland, with a total capacity of 500 MW and owned

by Mutual Energy.

The I-SEM comprises:

• a Capacity Market, where capacity is traded up to five years in advance of

the trading day;

• two markets for financial instruments, the Forward Market and the Financial

Transmission Right auction, where trading occurs from over a year to one

month ahead of the trading day;

• two physical ex-ante (or spot) markets for energy trading, the Day-Ahead

Market (DAM) and the Intraday Market (IDM);

• a Balancing Market (BM), where energy and non-energy services (e.g. voltage

control, energy reserves) are offered for system balancing before and into real
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time.

Participation in the DAM occurs through coupling with the European market;

participants can then refine their position in the IDM before entering the BM, where

participation is mandatory for most generators. Typically, generators and suppliers

will establish a physical position in the non-mandatory ex-ante markets to reduce

their exposure in the BM. While participants can own a portfolio of resources,

participation in the I-SEM is at unit level. A participant unit’s net energy position

is the accumulated volume of all its trades in the physical markets and any energy

balancing action taken by the TSO in the balancing market. All physical trades in

the ex-ante markets are firm, meaning the participant is financially exposed in the

balancing market if it cannot adhere to its commitments. Wind power generators

are not allowed to trade quantities above their firm access, i.e. the wind farm’s

installed capacity.

Generator units are classified as either dispatchable, non-dispatchable but con-

trollable, or non-dispatchable and non-controllable. Wind power units are con-

sidered non-dispatchable but controllable, in that they can limit their output to

set-point instructions issued by the TSO; they are also given priority dispatch,

whereby the TSO is obliged to take energy from these units ahead of other genera-

tors, conditional on system security considerations. At times, in fact, the TSO can

require reducing the output of controllable wind power units to maintain system

security. If the reduction is required for a system-wide reason, for example if the

SNSP limit is reached, this is referred to as curtailment. If the reduction is required

to manage a local issue, for example a grid constraint or network congestion, this

is referred to as a constraint.

The trading day (D) in the I-SEM is from 23:00 local time the day before (D–

1) to 23:00 local time on the day (D), which corresponds to midnight in Central

European Time (CET). Note that daylight saving is observed in these regions, so

23:00 local time corresponds to 23:00+00:00 UTC in the winter (GMT), but to

22:00+00:00 UTC in the summer (IST). Where not specified otherwise, time in
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this work is local and expressed in 24-hour format.

2.2.1.1 Ex-ante Markets

The Day-Ahead Market (DAM) is a highly liquid, pan-European energy trading

platform which constitutes the core of European market integration. Bids and

offers and interconnector flows across participating regions of Europe are scheduled

through a single centralised price-coupling algorithm (EUPHEMIA). In Ireland,

participants submit their bids and offers to SEMOpx through the EPEX Spot

trading system. In turn, SEMOpx interacts with the Market Coupling Operator,

who runs the EUPHEMIA price-coupling algorithm.

Trades from one bidding zone to another are only restricted by cross-border

capacity. In theory, with market coupling, there will be a single price as long

as energy can flow freely, where as when the network is congested prices diverge.

Physical flows on Moyle and EWIC Interconnectors are linked to the day-ahead

markets in Ireland and in Great Britain (GB) and the price difference between the

two. Where the DAM price is higher in the I-SEM than in GB, the interconnectors

will import power into the I-SEM. Where on the contrary the I-SEM price is lower,

the interconnectors will export power to GB. In general, if there are high levels of

wind in Ireland, then interconnectors flow out of I-SEM; if the level of wind is low,

on the contrary, interconnectors flow into I-SEM.

Participants can submit orders in the DAM for each of the 24 (one-hour) trading

periods in trading day D. The submission window opens 19 days before D and closes

at 11:00 on D–1. The market is then cleared and schedules are published at 13:00 on

D–1. The market is settled daily by SEMOpx and for each hourly trading period k,

all transactions are settled at the DAM marginal price, or day-ahead price, πDAMk .

The long-term model for a single European intraday trading platform is based

on the continuous trading across interconnectors known as Cross Border Intraday

(XBID). However, as an interim solution, intraday trading is continuous only within

Ireland at the moment. Three cross-border intraday auctions are also run allowing
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trades between I-SEM and BETTA, the bidding zone of GB.

The Intraday Market (IDM) trading day is divided into 48 (30-minute) trading

periods. The submission window for the continuous trading opens at 11:45 on D–1

and closes one hour before real time (t–1). The submission window for cross-border

trades opens on D–19 and closes:

• for auction 1, at 15:30 D–1 for all 48 trading periods on the trading day;

• for auction 2, at 08:00 on day D for the 24 periods from 11:00 to 23:00 D;

and

• for auction 3, at 14:00 on day D for the 12 periods from 17:00 to 23:00 D.

2.2.1.2 Balancing Market

The Balancing Market (BM) reflects the actions taken by the TSO to keep the

system balanced and secure. The market determines the imbalance settlement

price to settle the TSO’s balancing actions and any uninstructed deviations from

a participant’s contracted ex-ante position. The TSOs are responsible for the

safe, secure and reliable operation of the power system and have the obligation

to maximise priority dispatch generators while minimising the cost of deviation

from physical notifications of participants (i.e. the expected output of generating

units that reflects the participant’s best estimate of its intended level of generation).

SEMO is responsible for the settlement, billing, and credit risk management.

The BM trading day is divided into 48 (30-minute) imbalance settlement periods

(ISP). Within each ISP, there are six (5-minute) imbalance pricing period. Note

that the BM imbalance settlement period and IDM trading period are aligned and

will be referred to simply as trading period in the remainder of this text. The

submission window opens on D–19 and closes one hour before the start of each

30-minute ISP (t–1). The timing of the three markets in the Irish system discussed

above is shown in Figure 2.3, where duration, trading period resolution and gate

closing times of each market are also illustrated.
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Figure 2.3: Timeline of day-ahead, intraday, and balancing markets in the Irish
system.

Although not used directly in settlement of the BM, the imbalance prices for

each 5-minute imbalance pricing period are used to calculate the imbalance settle-

ment price, or balancing price, πimb for each 30-minute trading period. A rules-

based, flagging-and-tagging process is used to determine the initial imbalance price

in each 5-minute period. The process prevents bids and offers that were scheduled

due to system constraints or where units were operating at a unit constraint from

influencing the imbalance price. The imbalance settlement price for each 30-minute

trading period is then found as the average of the six corresponding imbalance pric-

ing period prices. A detailed description of the imbalance pricing mechanisms is

given in Appendix A.

The BM is settled weekly based on a single-price approach. Any imbalance

which is not due to a balancing action (i.e. uninstructed) is settled at the imbalance

settlement price, while any imbalance due to a balancing action (i.e. instructed)

is settled at the better of the imbalance settlement price and the bid/offer price.

For wind power generators, if the unit is constrained due to local issues, it is com-

pensated based on the market’s decremental curve. However, if it is curtailed due

to system-wide reasons, the unit is compensated at a curtailment price determined
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for each unit based on their undelivered day-ahead market commitments. Further

information on curtailment prices and payments can be found in Section E and F

of the I-SEM Trading and Settlement Code [36].

2.2.2 Market Operation

This Section provides a description and detailed analysis of I-SEM market data

from the first seven months of its operation, starting on the 1st October 2018 until

the 25th April 2019, to give a comprehensive picture of the electricity market data

available at the time this work was conducted.

The value forecasting models that will be developed in this thesis require the

modelling and forecasting of a number of market processes, namely the formation

of day-ahead prices, imbalance prices, and system imbalance direction. There-

fore, a wide range of exploratory analyses were performed on the available market

data to gain insight into these processes and improve the modelling quality and

forecasting performance. Day-ahead prices are explored in Section 2.2.2.1, while

the time series of imbalance volumes and prices from the Balancing Market are

studied in Section 2.2.2.2. The substantial occurrence of anomalous imbalance

prices during the first months of operation of the I-SEM is investigated in more

detail in Section 2.2.2.3. Finally, a range of statistical analyses are carried out in

Section 2.2.2.4 to investigate the impact of wind power penetration on a number

of market quantities, namely: day-ahead prices, system imbalance direction, and

anomalous imbalance prices.

The outcomes of these analyses and the characteristics of the data presented

and discussed in the remainder of this Section will provide the motivation and

justification for the modelling approaches adopted within the methodology of this

work presented in Chapter 4.
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2.2.2.1 Day-Ahead Market

The day-ahead market (DAM) was the dominant energy market in terms of liq-

uidity, with more than 93% of the total ex-ante volumes being traded there. The

average price was 64.35 e/MWh, the lowest –10.29 e/MWh and the highest 365

e/MWh. The average volume was 4.56 GW, with a minimum of 2.72 GW and a

maximum of 6.84 GW. The time plots of cleared prices and volumes are shown in

Figure 2.4. The Figure shows the presence of zero or even negative prices as well as

price spikes; their occurrence will be analysed in more detail later in this Section.
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Figure 2.4: Day-ahead cleared prices (top) and volumes (bottom).
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The cumulative and 30-day rolling average of prices and volumes are shown in

Figure 2.5; it can be observed that prices increased during the month of January,

decreased consistently in February and then stabilised from mid-March onwards;

volumes, on the other hand, had a generally increasing trend, although there was a

marked dip around January. The cumulative and 30-day rolling standard deviation

of prices and volumes are shown in Figure 2.6, showing how the volatility of prices

increased constantly during the first three months and then experienced two sharp

drops at the start of February and March, followed by a decreasing trend; the

volatility of volumes increased steeply in the first two months, with marked drops

in mid-January and mid-April.
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Figure 2.5: Cumulative (solid line) and 30-day rolling (dashed line) average of
day-ahead prices (top) and volumes (bottom).

The time series of price and volume are hourly data (recall that the trading

period is one hour in the DAM) with two underlying seasonality: a daily pattern

and a weekly pattern. The presence of some seasonal components can already

be noticed in Figure 2.4 but it is hard to distinguish their periodicities at this

resolution, which are instead illustrated clearly by the seasonal plots in the following

graphs. The weekly seasonal plots of price and volume shown in Figures 2.7 and
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Figure 2.6: Cumulative (solid line) and 30-day rolling (dashed line) standard
deviation of day-ahead prices (top) and volumes (bottom).

2.8 highlight the weekly patterns of both variables. Prices and more markedly

volumes were in general lower during the weekend; zero or negative prices occurred

with higher incidence in the last three days of the week, while price spikes occurred

regardless of the day of the week but were lower in value during the weekend.
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Figure 2.7: Weekly seasonal plot of day-ahead prices.
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Figure 2.8: Weekly seasonal plot of day-ahead volumes.

Figures 2.9 and 2.10 show the daily seasonal plots of price and volume, high-

lighting a marked daily pattern for both variables. The daily seasonality of prices

is further analysed in Figure 2.11, where box-and-whisker plots are used to show

the distribution of prices for each hour of the day. From Figures 2.9 and 2.11, one

can see how zero and negative prices occurred only in the early hours of the day

(when demand is low), while price spikes occurred between 16:00 and 19:00 (when

demand is high). This is displayed with more clarity in Figures 2.12 and 2.13,

where the number of instances with zero or negative prices and with prices above

150 e/MWh are shown, respectively. To further investigate the hourly behaviour

of prices, the time plot of each one-hour trading period is shown separately in Fig-

ures 2.14 and 2.15. The plots show how the variance of the series decreases when

considering each trading period separately (cf. Figure 2.4).

The average values of price and volume for each hour of the day are shown

in Figure 2.16. The daily pattern of volumes is clear: values are low during the

night, increase during the morning with a first peak around 09:00 and then again

during the evening with a second, larger peak around 18:00. Prices have a more

accentuated peak in the evening but overall follow a parallel trend. This is a
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Figure 2.9: Daily seasonal plot of day-ahead prices.
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Figure 2.10: Daily seasonal plot of day-ahead volumes.

consequence of more expensive generation being required to meet higher demands

and the application of the merit order principle employed in the formation of the

supply and demand curves in the day-ahead market clearing (cf. Figure 2.1).

Prices and volumes however do not have similar trends in terms of standard

deviation, as shown in Figure 2.17. The variance of prices is constant during the
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Figure 2.11: Boxplots of day-ahead prices for each hour of the day. The diamond
marker indicates the mean of the distribution.
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Figure 2.12: Number of instances with zero or negative prices for each hour of
the day.

day but becomes noticeably larger in the evening (as visible also in Figures 2.9 and

2.11); volume displays more variability and has the greatest variance during the

morning load rise.
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Figure 2.13: Number of instances with prices above 150 e/MWh for each hour
of the day.

2.2.2.2 Balancing Market

During the first seven months of operation, the Balancing Market (BM) has been

characterised by extremely volatile and often counter-intuitive imbalance prices

and the tendency of participants to leave the system systematically short. As

the analysis in the “Modification Proposal Mod 06 19” [37] has shown, balancing

market outcomes in the I-SEM have been considerably more volatile than in Great

Britain, where the market structure is comparable to Ireland. In the document,

it was argued that the higher volatility could be a consequence of the smaller size

of the system, the more variable generation within it, grid constraints and limited

market experience of the participants.

In this Section, a detailed analysis of some key outcomes from the operation

of the BM is performed. First, it is recalled that the trading period in the BM

— called Imbalance Settlement Period (ISP) — has a duration of 30 minutes. A

positive imbalance volume corresponds to the system being short, thus leading to

up-regulation; conversely, a negative imbalance volume corresponds to the system

being long, thus leading to down-regulation.

39



2.2. I-SEM, the Irish Electricity Market

The time plot of imbalance volumes is shown in Figure 2.18. The mean absolute

volume was 21.56 MWh and the mean volume 2.94 MWh, indicating a positive bias

in the series. This bias is also visible from the histogram in Figure 2.19 showing

the distribution of the series. Up-regulation occurred 51.9% of the times, with

an average upward imbalance volume of 23.62 MWh and a maximum of 134.11

MWh. Down-regulation occurred 42.5% of the times, with an average downward

imbalance volume of –21.88 MWh and a minimum of –108.75 MWh. The system

was in balance and thus no regulation was needed 5.6% of the times.
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Figure 2.14: Time plot of DAM prices (expressed in e/MWh) for each one-hour
trading period (part 1).
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Figure 2.15: Time plot of DAM prices (expressed in e/MWh) for each one-hour
trading period (part 2).
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Figure 2.16: Average day-ahead price (top) and volume (bottom) for each hour
of the day.
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Figure 2.17: Standard deviation of day-ahead price (top) and volume (bottom)
for each hour of the day.
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Figure 2.18: Time plot of imbalance volumes.
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Figure 2.19: Distribution of imbalance volumes.

Analysing the distribution of imbalance volumes for each ISP, it was found

that the tendency to leave the system short was in fact limited to the evening

hours corresponding to peak demand. The boxplots in Figure 2.20 clearly show

how distributions have their mean and median around zero for most trading periods

except for those between ISP 34 and 43, i.e. from 16:30 to 21:00, where distributions

are positively biased.

The cumulative and 30-day rolling frequency of up-regulation are plotted in

Figure 2.21 to provide a more dynamic picture of how the variable has changed over

time. The graph highlights how the tendency to leave the system systematically

short has been very marked in the first months, but with a clear decreasing trend

afterwards.

The imbalance price time series is plotted in Figure 2.22 (note the y-axis is

broken in the graph). The graph shows the high volatility of the series and the oc-

currence of negative prices as well as very high prices. In particular, the strike price

fixed at 500 e/MWh was exceeded in nine trading periods: twice on 2/10/2018 and

9/10/2018, once on 23/11/2018, and four times on 24/01/2019 where the record

price of 3,773.69 e/MWh was registered. The causes leading to this specific event
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Figure 2.20: Boxplots of imbalance volumes for each Imbalance Settlement Pe-
riod. The diamond marker indicates the mean of the distribution.
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Figure 2.21: Cumulative (solid line) and 30-day rolling (dashed line) frequency
of up-regulation.

are illustrated in detail in Appendix B. Whenever the imbalance price exceeds the

strike price, the price is effectively capped at 500 e/MWh for all participants, with

suppliers having to pay the system back the difference between the energy price
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and the strike price. Therefore, imbalance prices above 500 e/MWh will be capped

at this value for use in all the analysis performed in the remainder of the work, as

producers are eventually remunerated at this price for their generation.

The scatter plot of imbalance prices versus volumes in Figure 2.23 shows the

positive correlation between the two variables and that negative prices occurred

mainly for negative imbalance volumes. It is also interesting to note that three

of the nine instances where the strike price was exceeded (highlighted in orange)

happened during down-regulation.
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Figure 2.22: Time plot of imbalance prices. Note the y-axis is broken for a clearer visualisation of the time series while including very
high prices.
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Figure 2.23: Scatter plot of imbalance prices vs imbalance volumes. Periods
where the strike price was exceeded are highlighted in orange.

The distributions of imbalance prices during up- and down-regulation are shown

in Figures 2.24 and 2.25, respectively. As expected, the histograms show how

prices were generally higher when the system was short; as already noted from

the previous scatter plot, negative prices occurred mainly when the system was

long. During up-regulation, the average price was 92.78 e/MWh, with a minimum

of –281.16 e/MWh and a maximum of 1,453 e/MWh (capped at 500). During

down-regulation, the average price was 25.92 e/MWh, with a minimum of –280.45

e/MWh and a maximum of 3,773.69 e/MWh (capped at 500).

The weekly seasonal plot of BM prices and volumes are shown in Figures 2.26

and 2.27. As opposed to the case of DAM quantities, prices and volumes in the

BM do not show any evident seasonal pattern. Nevertheless, Figure 2.26 highlights

that during weekdays (i.e. Monday to Friday) negative prices occur more in late

night/early morning hours.

Although BM quantities did not show any particular seasonality, imbalance

prices on average followed a similar daily pattern to day-ahead prices, as shown in

Figure 2.28: lower during the night, increasing during the day, and highest during
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Figure 2.24: Distribution of imbalance prices during up-regulation.
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Figure 2.25: Distribution of imbalance prices during down-regulation.

peak demand hours. The bottom panel of the same Figure shows the average imbal-

ance volumes for each ISP, from which the evening positive bias discussed earlier is

evident. Evening hours are also those characterised by the highest variance of both

prices and volumes, as displayed in Figure 2.29. The hourly behaviour of prices

is further investigated by plotting prices during each 30-minute ISP separately, as
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Figure 2.26: Weekly seasonal plot of imbalance prices.
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Figure 2.27: Weekly seasonal plot of imbalance volumes.

shown in Figures 2.30 through 2.33. The plots show that the variance of the series

can change considerably depending on the time of the day. Moreover, the variance

of imbalance prices over a single trading period is substantially higher than that of

day-ahead prices (cf. Figure 2.14 and 2.15).

The distribution of prices during up- and down-regulation for each ISP is shown
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Figure 2.28: Average imbalance prices (top) and volumes (bottom) for each
Imbalance Settlement Period.
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Figure 2.29: Standard deviation of imbalance prices (top) and volumes (bottom)
for each Imbalance Settlement Period.

via the boxplots in Figure 2.34, where it can be observed, as expected, that prices

are generally higher during up-regulation across all trading periods.
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Figure 2.30: Time plot of BM prices (expressed in e/MWh) for each 30-minute
trading period (part 1).
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Figure 2.31: Time plot of BM prices (expressed in e/MWh) for each 30-minute
trading period (part 2).
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Figure 2.32: Time plot of BM prices (expressed in e/MWh) for each 30-minute
trading period (part 3).
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Figure 2.33: Time plot of BM prices (expressed in e/MWh) for each 30-minute
trading period (part 4).
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Figure 2.34: Boxplots of imbalance prices during up-regulation (green) and down-regulation (purple) for each Imbalance Settlement
Period.
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Zero and negative prices occurred more often at night and early morning, as

shown in Figure 2.35, while prices above 150 e/MWh tended to occur more during

the evening and especially around 18:00, as shown in Figure 2.36. Note that when

negative imbalance prices occur, generators who have a day-ahead position are

impacted depending on their own imbalance: if generators are decremented (due

to a generation surplus), they are charged at a negative price, which translates to

getting paid to reduce generation. If generators are incremented, on the contrary,

they are paid the negative price, which results in a cost.

1 11 21 31 41

Imbalance Settlement Period

0

10

20

30

40

co
u

n
t

0:00 06:00 12:00 18:00 23:00

hour of day

Figure 2.35: Number of instances with zero or negative prices for each Imbalance
Settlement Period in the day.

As shown in Figure 2.37, the average prices and absolute value of imbalance

volumes showed a decreasing trend through the last three months of the analysed

period, with prices remaining more consistently at lower levels. The volatility of

prices has also fallen over time, as shown by the decreasing trend in price variance

from the second month of operation onwards in the top panel in Figure 2.38. The

moving averages of imbalance volumes plotted in Figure 2.39 also show that over

time, the tendency to have a positive imbalance (short system) in the balancing

market has decreased, confirming the patterns observed in Figure 2.21. These
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Figure 2.36: Number of instances with prices above 150 e/MWh for each Imbal-
ance Settlement Period in the day.

trends suggest that the initially limited market experience of participants has been

one of the main drivers for the high volatility of outcomes.
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Figure 2.37: Cumulative (solid line) and 30-day rolling (dashed line) average of
imbalance prices (top) and absolute imbalance volumes (bottom).
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Figure 2.38: Cumulative (solid line) and 30-day rolling (dashed line) standard
deviation of imbalance prices (top) and absolute imbalance volumes (bottom).
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Figure 2.39: Cumulative (solid line) and 30-day rolling (dashed line) average of
imbalance volumes.

2.2.2.3 Anomalous Imbalance Prices

With the implementation of the new market design, a number of issues have arisen

which have generally been related to the operation of the Balancing Market. In
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particular, the first months of operation of the I-SEM have been characterised by an

unusually high number of counter-intuitive imbalance prices. More specifically, the

imbalance price was frequently higher than the day-ahead price when the market

was long, or vice versa, the imbalance price was lower than the day-ahead price

when the market was short.

As explained in detail in Appendix A, the marginal energy action price (PMEA)

is the most “expensive” price1 that can contribute to setting the imbalance price,

so that when the system is short, the final price can be set equal to or lower than

PMEA, and when the system is long, the price can be set equal to or higher than

PMEA. The existing pricing mechanism uses offers or bids to set the PMEA and

thus determine the imbalance price, regardless of whether they are on the correct

side of the energy imbalance of the system as a whole. During the market design

phase, the scenario where the PMEA would be set by an action on the wrong side

of the energy imbalance was envisaged to take place in a small number of periods,

but in actual market operation this has not been the case. In a high number of 5-

minute imbalance pricing periods (IPP), there have been no offers or bids available

on the correct side of the energy imbalance to set the PMEA. As a result, those IPP

(and often, after the averaging, the corresponding imbalance settlement periods)

have been set at a counter-intuitive price, thus not providing an effective signal for

participants to balance their positions.

To facilitate the analysis, the difference between the imbalance and day-ahead

prices is defined as price difference (sometimes referred to as price penalty or bal-

ancing premium):

πdiff = πimb − πDAM (2.1)

One would normally have that:

• price difference is zero (πimb = πDAM) when there is no regulation, i.e. when

the system is balanced (imbalance volume is zero);

1The most expensive price is the highest priced offer during up-regulation and the lowest
priced bid during down-regulation.
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• price difference is positive (πimb > πDAM) during up-regulation, i.e. when the

system is short (positive imbalance volume); and

• price difference is negative (πimb < πDAM) during down-regulation, i.e. when

the system is long (negative imbalance volume).

Table 2.1 summarises the possible balancing market states and the corresponding

imbalance volume, need for regulation, imbalance price and price difference.

system imb. volume regulation price difference

balanced zero no πimb = πDAM → πdiff = 0

short positive up πimb > πDAM → πdiff > 0

long negative down πimb < πDAM → πdiff < 0

Table 2.1: Balancing Market states and corresponding market quantities.

In Figure 2.40, price difference is plotted against the corresponding imbalance

volume for each trading period during the first seven months of I-SEM operation.

The numerous instances of anomalous imbalance prices, corresponding to the points

in the second and fourth quadrants, are highlighted in orange.

During up-regulation, price anomalies were very frequent, as shown in the his-

togram in Figure 2.41, with price difference being negative 37% of the times. The

scatter plot in Figure 2.42 shows that there was no particular correlation between

the occurrence of price anomalies (again, highlighted in orange), and the value of

day-ahead prices.

During down-regulation, price anomalies were less frequent but still noticeably

high, as shown in the histogram in Figure 2.43, with price difference being positive

14% of the time. Once more, no particular correlation was found between the

occurrence of price anomalies (in orange), and the value of day-ahead prices, as

visible from the scatter plot in Figure 2.44.

Figure 2.45 shows the cumulative and 30-day rolling frequency of counter-

intuitive prices since the start of market operations: a significant drop around
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Figure 2.40: Scatter plot of price difference vs imbalance volume. The instances
of anomalous imbalance prices are highlighted in orange.
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Figure 2.41: Histogram of price difference during up-regulation.

February and an overall decreasing trend are evident, with anomalous prices oc-

curring on average 25% of the time after seven months. The trend is due to the

falling number of anomalous prices when the system is short, as shown in Fig-

ure 2.46, where the cases of up- and down-regulation are visualised separately.
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Figure 2.42: Scatter plot of imbalance prices vs day-ahead prices during up-
regulation. Price anomalies are highlighted in orange, while the diagonal indicates
the 45-degree line where πDAM = πimb.
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Figure 2.43: Histogram of price difference during down-regulation.

The graph also shows how price anomalies are consistently more frequent during

up-regulation.

The possibility of a daily pattern in the occurrence of anomalous imbalance
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Figure 2.44: Scatter plot of imbalance prices vs day-ahead prices during down-
regulation. Price anomalies are highlighted in orange, while the diagonal indicates
the 45-degree line where πDAM = πimb.
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Figure 2.45: Cumulative (solid line) and 30-day rolling (dashed line) frequency
of imbalance prices anomalies.

prices was also investigated. The frequency and count of instances with counter-

intuitive prices for each imbalance settlement period are plotted in Figure 2.47,

showing that anomalies tend to occur slightly more during the evening, but overall
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Figure 2.46: Cumulative (solid line) and 30-day rolling (dashed line) frequency of
imbalance prices anomalies during up-regulation (top) and down-regulation (bot-
tom).

there is no obvious temporal trend.
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Figure 2.47: Frequency of anomalous imbalance prices for each Imbalance Settle-
ment Period. The black dots indicate the count of instances, with values readable
on the right y-axis.

Detailed studies carried out by the SEMO [38] found that the application of
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locational constraints in the imbalance price calculation where these same restric-

tions are not present in the ex-ante markets was one of the major contributing

factors to the numerous counter-intuitive prices registered since the start of the

market operations under the new arrangements. Locational constraints are not

considered in the ex-ante market design of the I-SEM. However, these same con-

straints were able to influence the calculation of the imbalance price. In fact, any

units whose output could be identified as constrained for non-energy reasons —

thus including the units subject to transmission system based constraints — were

to be flagged out of the pricing process (see the Flagging step in Appendix A). This

has impacted the formation of imbalance prices to a level beyond that expected

during the market design, leading to extreme price events and counter-intuitive

prices in the Balancing Market. Following the SEM Committee Decision for the

Regulatory Authorities in relation to the “Modification Proposal Mod 09 19” [38],

locational constraints have been removed from imbalance pricing calculation from

the 2nd May 2019.

2.2.2.4 Impact of Wind Power Penetration on Market Quantities

The penetration of an energy source is the fraction of the total demand that

the source covers. Due to the variable and uncertain nature of renewable en-

ergy sources, when their penetration in a power system is at significant levels, the

operation and outcomes of the electricity markets can be impacted in various ways.

The variability of stochastic generation due to meteorological reasons can be

very high within the time scales of relevance in both the day-ahead and balancing

markets. For example, wind power generation can change substantially from one

hour to the next, thus affecting the variability of system net demand and eventually,

that of the wholesale electricity prices. On the other hand, unpredicted variations

at shorter time scales (from 5 to 30 minutes) have to be compensated through the

balancing market. Consequently, stochastic generation and variability thereof can

impact the need for and direction of balancing actions, as well as the magnitude of
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the net system imbalance.

The level of stochastic renewable energy penetration also has a direct impact on

the clearing of day-ahead auctions via the so-called “merit-order effect”, presented

in detail by Sensfuß et al. in [39]. As discussed in Section 2.1.1, prices and volumes

in the day-ahead market are determined through auction-based mechanisms. Each

generation bid is defined by a quantity-price pair, where the price depends directly

on the short-run marginal cost of the generating plant, i.e. the cost of producing

another unit of energy. Bids are then ranked in order of increasing price following

the merit-order principle and form the market supply curve. Renewable energy

producers generally have no short-run marginal costs and thus bid at zero price.

Consequently, renewable energy sources like wind and solar are prioritised in this

competitive market framework because their offers are the first to be accepted

(unless other generators bid at negative prices). When clearing the day-ahead

market, the result is that increased levels of renewable energy penetration “shift”

the supply curve to the right, yielding higher cleared volumes and lower system

marginal prices.

In fact, what impacts the electricity markets is not the actual generation from

stochastic sources, but rather the forecast generation and its associated uncer-

tainty [40] together with the zero marginal cost of the renewable energy. Indeed,

bids and offers placed in the day-ahead market are based, among other factors, on

the knowledge at that time about future power generation. Approaching delivery

time, then, the need for balancing stems from the deviation between day-ahead

accepted bids and the actual generation. Therefore, it is the forecasting errors

that affect the market quantities in the balancing market, rather than the actual

generation from renewable energy sources. The variable of interest then becomes

the predicted wind power penetration, which for a given trading period is defined

as the ratio between the forecast wind power generation in the system and forecast

demand.

During the period under analysis, wind power generation on the system was
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1,629 MW on average, with a maximum of 3,950 MW and a minimum of 31 MW.

Wind power penetration, i.e. the ratio of wind power generation to total demand,

was equal to 38.0% on average and ranging from a minimum of 0.8% to a maximum

of 85.2% for a single period, as shown in Figure 2.48. Note that this includes exports

of wind energy to GB via the interconnectors, hence values can be higher than the

65% SNSP limit discussed in Section 1.2. The average values of predicted wind
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Figure 2.48: Instantaneous (solid) and cumulative average (dashed) observed
penetration of wind power generation.

power penetration for each Imbalance Settlement Period (half-hour) are shown in

Figure 2.49. It is not surprising to see how the trend is somewhat the inverse of

average demand (cf. Figure 2.16): penetration is highest at night with peaks in the

early morning, then decreases during the morning and reaches the lowest values in

the evening.

The aim of this thesis is to develop forecast models for the value of wind energy.

Therefore, it is important to understand the impact of system-level wind generation

on the market quantities of relevance for wind energy trading. In the remainder

of this Section, statistical analyses are carried out to investigate the impact of

predicted wind power penetration, hereinafter also predicted penetration, on three
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Figure 2.49: Average predicted wind power penetration for each ISP.

different quantities in the Irish electricity market:

• day-ahead prices,

• balancing direction (or imbalance sign), and

• imbalance price anomalies.

These ex-post analyses are carried out on the I-SEM market data described

in the previous Sections of this Chapter, covering a seven-month period from the

start of market operations in October 2018 to the end of April 2019. Day-ahead

and balancing market quantities have hourly and half-hourly temporal resolution,

respectively. Forecasts of wind power generation and demand for the all-island of

Ireland are point forecasts issued before day-ahead gate closure for each trading

day of interest.

Impact on Day-Ahead Prices

The first empirical study aims at investigating the impact of predicted wind power

penetration on day-ahead prices. Because of the merit-order effect described earlier,

prices are expected to decrease as penetration increases.
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As highlighted in Section 2.2.2.1, the hour of the day has a strong influence

on wholesale prices. Therefore, to establish the empirical relationships between

day-ahead prices and predicted penetration, the price time series was segmented

into intervals based on the hour of the day to obtain better fits. Data were split

into three 8-hour groups as follows:

• from hour 7 to 14 (H07–H14),

• from hour 15 to 22 (H15–H22), and

• from hour 23 to 6 (H23–H06).

These ranges were chosen using a heuristic approach based on similar levels of

penetration and price (depicted in Figure 2.50) and correlation between the two

variables (shown in Figure 2.51).

0 4 8 12 16 20

30

40

50

p
en

et
ra

ti
on

[%
] H23-H06 H07-H14 H15-H22

Penetration

0 4 8 12 16 20

hour of day

60

80

100

pr
ic

e
[€

/M
W

h
]

DAM prices

Figure 2.50: Average predicted wind power penetration (top) and day-ahead
prices (bottom) for each hour of the day. Each time group is highlighted in a
different colour.

For each time group, price values were binned by wind penetration level into

intervals of width 0.10 (i.e. 10% wind penetration as a percentage of total demand).

The empirical mean, standard deviation, and quantiles with nominal levels 0.05 and
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Figure 2.51: Scatter plot of the hourly averages of predicted wind power pene-
tration against day-ahead price. Each time group is plotted in a different colour.

0.95 were then calculated for each interval and quadratic spline functions fitted to

these values to find the trends presented below. Figures 2.52 to 2.54 illustrate

the results of the analyses for the three groups, with the observed values plotted

as grey dots and the fitted mean and quantile trends as black and orange curves,

respectively. The mean and quantile values for various penetration levels are also

reported in Table 2.2.

predicted

penetration

mean q5%q5%q5% q95%q95%q95%

07-14 15-22 23-06 07-14 15-22 23-06 07-14 15-22 23-06

0% 86.00 110.91 59.71 54.13 53.70 44.05 141.31 265.75 76.00

20% 67.33 78.17 57.75 42.16 47.41 40.21 93.36 132.54 75.71

40% 62.09 67.00 54.61 44.65 43.92 37.35 76.87 95.05 68.43

60% 54.42 54.41 47.45 35.79 35.00 31.83 69.29 80.77 63.72

80% 31.09 33.65 19.03 –1.57 22.48 –5.28 48.60 41.87 47.27

100% 0.00 - 2.66 0.00 - –0.06 0.00 - 8.00

Table 2.2: Mean, 0.05- and 0.95-quantile of day-ahead prices for each group of
hours at various levels of predicted wind power penetration. Values are expressed
in e/MWh.
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Figure 2.52: Impact of predicted wind power penetration on day-ahead prices
between hours 7 and 14.
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Figure 2.53: Impact of predicted wind power penetration on day-ahead prices
between hours 15 and 22.

It is evident from Figures 2.52 and 2.53 that high prices occur less and less

for larger values of penetration, as visible from the steep initial drop of the 0.95-

quantile trends. At night, on the other hand, prices are often equal to zero for
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Figure 2.54: Impact of predicted wind power penetration on day-ahead prices
between hours 23 and 6.

penetration levels above 70% and at times take even negative values, as shown

in Figure 2.54.This occurs because thermal plants with long start-up times might

want to stay on during such periods of low demand and high wind generation, and

can be willing to pay to operate at their minimum output in these intervals. Note

that due to the lower demand, night time is the period when predicted wind power

penetration goes above 80% most often and reaches the highest values.

The mean trends in day-ahead prices reported in Table 2.2 are shown together in

Figure 2.55 to allow a better comparison across the three time groups. As expected,

average prices decrease for increasing levels of predicted wind power penetration

for all hours. The extent of this reduction, however, does change with the time

of the day as well as the level of penetration. During late afternoon and evening

hours — corresponding to the H15–H22 group — average prices drop steeply for

penetration up to 20% and keep decreasing at a lower rate. In the morning and

early afternoon hours — that is, the H07–H14 group — average prices show a

very similar behaviour. The observed behaviour for values of penetration above

80% should be interpreted with caution, since the number of observations used to
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derive the trend was particularly low within those intervals. During night hours —

corresponding to the H23–H06 group — the reduction in average price is moderate

for penetration levels up to 50% but becomes more and more accentuated for larger

values.
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Figure 2.55: Average day-ahead price trends as a function of predicted wind
power penetration for each group of hours. Transparent dashed lines indicate that
the number of observations used to derive the trend was low and that the pattern
should be interpreted with caution.

Another interesting effect is on the variance of prices, as shown in Figure 2.56,

where the trend of the standard deviation of prices for each time period is plotted

against the predicted penetration. During the morning, afternoon, and evening

hours, the variability of prices decreases for increasing levels of predicted penetra-

tion, sharply at first and then more slowly. Again, the trend of the H07–H14 group

for values above 80% should be dealt with caution. At night, on the contrary, the

variance of prices is relatively constant for penetration levels up to 60%, while for

larger values it increases noticeably as a consequence of the frequent instances of

zero and negative prices.
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Figure 2.56: Standard deviation trends of day-ahead prices as a function of
predicted wind power penetration for each group of hours. Transparent dashed
lines indicate that the number of observations used to derive the trend was low and
the pattern should be interpreted with caution.

predicted

penetration [%]

st.dev.

07-14 15-22 23-06

0 24.32 58.51 11.23

20 15.24 25.58 11.48

40 10.83 15.27 9.69

60 10.22 14.01 11.66

80 17.79 9.55 19.37

100 - - 4.01

Table 2.3: Standard deviation of day-ahead prices for each group of hours at var-
ious levels of predicted wind power penetration. Values are expressed in e/MWh.

Impact on Imbalance Direction

A second ex-post analysis was carried out to investigate the impact of predicted

wind power penetration on the conditional probability of the imbalance direction,

stet the system is not balanced. The study is performed following a similar ap-

proach to that applied on day-ahead prices. The analyses in Section 2.2.2.2 high-

lighted the tendency to have a positive imbalance during certain ISPs, i.e. trading

periods (cf. Figure 2.20). Therefore, the half-hourly time series of imbalance vol-
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umes was segmented based on the time of the day. For continuity with the previous

study, the same ranges were used, that is:

• from hour 7 to 14 (H07–H14), thus including ISPs 15 through 30;

• from hour 15 to 22 (H15–H22), i.e. ISPs 31 through 46; and

• from hour 23 to 6 (H23–H06), i.e. ISPs 47, 48, and 1 through 14.

Having excluded the periods where the system was balanced and regulation was not

needed, data in each group were binned by predicted penetration level into 0.10-

wide intervals. For each interval, the number of trading periods with positive and

negative imbalance volumes were counted and the results for the three time groups

are presented in Figures 2.57, 2.59 and 2.61. Recall that a positive/negative imbal-

ance volume means the system was short/long and, over the trading period, there

was a net need for up/down-regulation. The observed frequency of up-regulation

was then calculated for each penetration interval, and quadratic spline functions

fitted to these values to find the trends plotted in Figures 2.58, 2.60 and 2.62.

A frequency of 50% indicates that up- and down-regulation are equally frequent.

Therefore, up-regulation is more frequent when the curve is above the dashed grey

line in the graphs, and vice versa when the curve is below. Note that where the

green curve is dashed and transparent, this indicates that the number of obser-

vations used in the calculations were low and that limited significance should be

given to the resulting trends.

The results show that overall up-regulation is prevalent at low values of pre-

dicted penetration, and then become less frequent as penetration gets larger. Pos-

sibly, this could be caused by wind units bidding cautiously and selling less than

their expected generation in the ex-ante markets. As penetration levels increase,

this leads to the system being long and a growing need for down-regulation.

Again, the specific trends vary depending on the time of the day. Between hours

7 and 14 (Figure 2.58), the observed frequency of up-regulation decreases almost

linearly for increasing levels of predicted penetration; up-regulation is prevalent for
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Figure 2.57: Number of trading periods with net up-regulation (green) and down-
regulation (purple) as a function of predicted wind power penetration between
hours 7 and 14.
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Figure 2.58: Frequency of up-regulation as a function of predicted wind power
penetration between hours 7 and 14.

values of penetration up to 36%, with down-regulation then becoming more fre-

quent. Between hours 15 and 22 (Figure 2.60), up-regulation is more frequent for

values of penetration below 30%, while for higher values up- and down-regulation
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Figure 2.59: Number of trading periods with net up-regulation (green) and down-
regulation (purple) as a function of predicted wind power penetration between
hours 15 and 22.
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Figure 2.60: Frequency of up-regulation as a function of predicted wind power
penetration between hours 15 and 22.

are equally frequent. The overall predominance of up-regulation during this time

period can be explained by the tendency for the system to be left systematically

short during these hours (cf. Figure 2.20). Between hours 23 and 6 (Figure 2.62),
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Figure 2.61: Number of trading periods with net up-regulation (green) and down-
regulation (purple) as a function of predicted wind power penetration between
hours 23 and 6.
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Figure 2.62: Frequency of up-regulation as a function of predicted wind power
penetration between hours 23 and 6.

up-regulation is again more frequent for low values of predicted penetration. With

penetration levels between 25% and 72%, up-regulation is only slightly more fre-

quent than down-regulation, and for larger values the latter becomes dominant.

80



2.2. I-SEM, the Irish Electricity Market

predicted

penetration [%]

up-regulation

[%]

07-14 15-22 23-06

0 73.3 78.5 64.3

20 64.2 58.0 52.4

40 45.2 49.2 55.7

60 36.1 48.6 52.9

80 - - 34.2

100 - - 11.8

Table 2.4: Frequency of up-regulation (expressed as %) for each group of hours
at various levels of predicted wind power penetration.

Impact on Anomalous Imbalance Prices

In the third ex-post analysis, the impact of predicted wind power penetration on the

occurrence of price anomalies in the Balancing Market is investigated. Recall that

imbalance prices are deemed “anomalous” when they are lower than the day-ahead

price when the system is short, and vice versa when the system is long. Otherwise,

they are deemed “regular”. The investigations carried out in Section 2.2.2.3 high-

lighted the overall high frequency of anomalous prices (see for example Figure 2.45)

as well as the lack of any clear hourly pattern (cf. Figure 2.47). Therefore, while

the approach followed in this study is similar to the previous two studies, here,

data were not divided based on the time of the day. On the other hand, anomalies

occurred significantly more when the system was short rather than long (see for

example Figure 2.46). For this reason, the analyses were performed not only on

the complete data set, but also considering the cases of up- and down-regulation

separately. Trading periods were binned by predicted wind power penetration into

intervals with width equal to 0.10. For each interval, the number of periods where

anomalous prices occurred were counted, and results for the complete data set are

shown in Figure 2.63. The frequency of anomalous prices was calculated over each

interval for the complete data set and for the up- and down-regulation cases sepa-

rately. Quadratic spline functions were then fitted to these values to find the trends

illustrated in Figure 2.64. The overall trend is plotted as a solid orange line, while
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the up- and down-regulation cases are plotted as dash-dotted green and purple

lines, respectively. Note that for higher penetration levels, trends were calculated

using a relatively low number of observations, and therefore are plotted as dashed

transparent lines to remark their limited significance.
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Figure 2.63: Number of periods with regular (blue) and anomalous (orange)
imbalance prices at different levels of predicted wind power penetration.

predicted

penetration [%]

price anomalies

overall up-regulation down-regulation

0 39.3 50.3 9.2

20 27.7 39.6 14.6

40 24.5 33.4 17.9

60 11.5 23.3 3.9

80 18.9 11.2 27.5

100 - - -

Table 2.5: Frequency of imbalance price anomalies (expressed as %) at various
levels of predicted wind power penetration.

The results of the empirical analysis show that the overall frequency of price

anomalies was highest for small values of predicted penetration, with anomalies

occurring 39% of the time when no generation from wind was expected in the

system. As penetration levels increase, the frequency decreases almost linearly
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Figure 2.64: Overall frequency of imbalance price anomalies (solid black line)
as a function of predicted wind power penetration. Trends are also shown sepa-
rately for the up- and down-regulation cases (green and purple dash-dotted lines,
respectively).

until it reaches a minimum of 12% when penetration is equal to 59%. When the

forecast percentage of wind power in the system increases further, the overall trend

reverses and price anomalies become more frequent again.

The analysis in Section 2.2.2.3 showed that price anomalies occur significantly

more during up-regulation (cf. Figure 2.41). The results in the previous Section

also show that up-regulation is prevalent for low levels of predicted penetration

across all hours (Figures 2.58, 2.60 and 2.62). As a consequence of these two

features, the frequency of anomalies is highest when there is no wind in the system

and decreases as the penetration level increases (since, in parallel, the frequency of

up-regulation decreases).

As the percentage of wind power becomes more significant, down-regulation

becomes relatively more frequent. At the same time, price anomalies during down-

regulation become more frequent, too, as shown by the dash-dotted purple line in

Figure 2.64. In fact, with high penetration of wind power in the system, the net-

work becomes more and more constrained. Most units are flagged out during the
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“flagging-and-tagging” process (see Appendix A), leaving few and often very expen-

sive units available for the imbalance price calculations. During down-regulation,

this results in the marginal energy action price being set in the opposite direction

of the system imbalance, resulting in an imbalance price above the day-ahead price.

As a result, the overall frequency of price anomalies increases again for large levels

of predicted penetration.

2.2.2.5 Summary of Results

The analyses of market data from the first seven months of operation of the I-SEM

have highlighted a number of key features which are summarised here. The DAM

was the dominant energy market in terms of liquidity, with more than 93% of the

volumes being traded there. Prices have followed volumes closely, showing marked

daily and weekly seasonality. Both variables followed the usual daily pattern,

with values being low during the night, increasing in the morning with a first peak

around 09:00 and then again in the evening with a second, larger peak around 18:00.

Weekly effects were observed as well, with values for both variables being generally

higher during week days and lower during the weekend. The DAM price time series

has also been characterised by non-constant mean and variance. Volatility has been

relatively high in general, with several instances of zero or negative prices at night

(when demand is low) and price spikes in the evening (when demand is high).

In the BM, the imbalance volume time series was found to be positively biased

with a tendency for the system to be left short (need for up-regulation), especially

during the evening hours. This tendency has been very evident at the start of

market operations, but with a clear decreasing trend over time. Neither the imbal-

ance price nor the imbalance volume time series showed any marked seasonality.

Values for both series have decreased on average over time. Imbalance prices have

been extremely volatile during the period under analysis, although such volatility

has been decreasing through the months, possibly reflecting the initially limited

market experience of participants. A summary of some descriptive statistics for
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the relevant variables from the DAM and BM is presented in Tables 2.6 and 2.7.

mean min max st.dev.

Day-Ahead Market

Price [e/MWh] 64.35 –10.29 365.00 29.50

Volume [GW] 4.56 2.72 6.84 0.79

Balancing Market

Imbalance volume [MWh] 2.94 - - 28.24

Absolute imbalance volume [MWh] 21.56 - - -

Up-regulation volume [MWh] 23.62 - 134.11 18.75

Down-regulation volume [MWh] –21.88 –108.75 - 17.51

Price [e/MWh] 62.07 - - 79.24

Up-regulation price [e/MWh] 92.78 –281.16 1,453.00 61.27

Down-regulation price [e/MWh] 25.92 –280.45 3,773.69 51.89

Table 2.6: Mean, minimum and maximum values, and standard deviation of
variables from the Day-Ahead and Balancing Markets.

up-regulation down-regulation no regulation

51.9% 42.5% 5.6%

Table 2.7: Empirical probability (frequency) of regulation direction.

The first months of operation of the I-SEM have also been characterised by an

unusually high number of counter-intuitive imbalance prices, thus not providing an

effective signal for participants to balance their positions. Price anomalies occurred

on average 25% of the time and while no clear hourly pattern was found, anomalies

were noticeably more frequent during up-regulation (37%) than down-regulation

(14%). The overall frequency of anomalous imbalance prices has considerably de-

creased over time.

Finally, the impact of predicted wind power penetration on three market quan-

tities of relevance for wind energy trading was investigated. Day-ahead prices

decreased on average for increasing levels of predicted penetration across all hours

during the day. Their variability also decreased for increasing amounts of wind in

the system during morning and evening hours, but increased during night hours.

Up-regulation was prevalent for low values of predicted penetration, becoming less
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frequent as penetration increased. The frequency of imbalance price anomalies was

highest for low levels of predicted penetration, decreasing for penetration levels up

to 60% and then increasing again.
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Chapter 3

Literature Review

Firstly, this Chapter provides a summary of the current methods used for time series

forecasting and forecast evaluation in Section 3.1. Then, the academic literature of

relevance for this work is reviewed. The state-of-the-art in short-term forecasting

of wind power generation is presented in Section 3.2, followed by an analogous

description for day-ahead forecasting of electricity prices in Section 3.3. A review

of the academic literature on short-term value forecasting of wind power for energy

trading is finally provided in Section 3.4.

3.1 Time Series Forecasting

In this Section, an overview of the general aspects of time series forecasting is

given. The main typologies of forecast are presented in Section 3.1.1. The general

framework for the evaluation of forecast quality is then discussed in Section 3.1.2,

including the definition of benchmarks and error measures for point and probabilis-

tic forecasts.

3.1.1 Forecast Types

Let us define Y as the random variable that needs to be forecast and y its realisation

(or observation). A series of random variables each associated with a time point

defines a stochastic process {Yt : t = 1, . . . , N}, and the realisation of the stochastic
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process is a time series {yt : t = 1, . . . , N}. The probability density function (PDF)

f(y) defines the probability of observing a given value of the random variable Y

and has to satisfy the following properties:

f(y) ≥ 0 ∀y ∈ R

∫ ∞
−∞

f(y)dy = 1

P [a < Y < b] =

∫ b

a

f(y)dy

where P[·] indicates the probability. The cumulative distribution function (CDF)

F (y) of the continuous random variable Y with density function f(y) is given by:

F (y) = P [Y ≤ y] =

∫ y

−∞
f(t)dt for −∞ < y <∞ (3.1)

where

F (y) ≥ 0 ∀y ∈ R

lim
y→−∞

F (y) = 0

lim
y→∞

F (y) = 1

Due to this definition, one can also write

P [a < Y < b] = F (b)− F (a) and f(y) =
dF (y)

dy

if the derivative exists [41]. The expectation (or mean value) E of the continuous

random variable Y with probability density function fY is:

E [Y ] =

∫ ∞
−∞

yfY (y)dy

A forecast ·̂t+h|t is an estimate for time t + h conditional on information up to

time t. That means that being at time t, the goal is to predict what will happen
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at time t + h, where h is referred to as the forecast horizon (or lead time, or

look-ahead time). Forecasts are usually issued for regularly spaced horizons, that

is h = 1, 2, . . . , H, where H is the forecast length and the regular spacing is the

forecast temporal resolution [40].

A point forecast informs on the conditional expectation of the variable:

ŷt+h|t = E
[
Yt+h|t |Ωt,M, θ̂

]
(3.2)

where Ωt is the information set available at time t, M is the model, and θ̂ is

the vector of estimated parameters. The prediction is the average of the possible

values that Yt+h could take conditional on the knowledge at time t. Point forecasts

are often referred to as “deterministic”. This terminology, however diffused, is

conceptually incorrect since it implies that there is no uncertainty associated with

the realisation of the prediction.

A probabilistic forecast, on the other hand, provides more information about

potential future outcomes through a prediction of the PDF (or CDF) of Yt+h or of

some summary features. A density forecast f̂t+h|t (or F̂t+h|t for the CDF) provides

a full description of the PDF (or CDF) of Yt+h:

Yt+h ∼ f̂t+h|t or Yt+h ∼ F̂t+h|t (3.3)

where f̂t+h|t and F̂t+h|t are the predicted PDF and CDF for Yt+h, respectively, given

the information available at time t.

A quantile forecast q̂αt+h|t is an estimate of the quantile q
(α)
t+h for the random

variable Yt+h:

q̂αt+h|t = F̂−1
t+h|t(α) (3.4)

where α ∈ [0, 1] is the nominal level and F̂ is the predicted CDF for Yt+h. It can be

seen as a probabilistic threshold level for the variable, meaning that the predicted
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probability of Yt+h to be less than or equal to q̂αt+h|t is equal to α:

F
(
q̂αt+h|t

)
= P

[
Yt+h ≤ q̂αt+h|t

]
= α (3.5)

A prediction interval (or interval forecast) defines a range of values within which

the variable may lie with a certain probability β ∈ [0, 1], which is defined by its

lower and upper bounds:

Îβt+h|t =
[
q̂αt+h|t, q̂

ᾱ
t+h|t

]
(3.6)

where q̂αt+h|t and q̂ᾱt+h|t are the quantile forecasts representing the bounds, and β =

ᾱ− α is called the nominal coverage rate, so that:

P
[
Yt+h ∈ Îβt+h|t

]
= β (3.7)

The intervals are commonly centered on the median of the PDF, resulting in the

so-called central prediction intervals, so that:

α = 1− ᾱ =
1− β

2
(3.8)

Scenarios issued at time t for a set of forecast horizons h ∈ {1, 2, . . . , H} consist

in a set of J time trajectories:

ẑ
(j)
t =

{
ŷ

(j)
t+1|t, ŷ

(j)
t+2|t, . . . , ŷ

(j)
t+H|t

}
for j = 1, . . . , J (3.9)

The time trajectories can be seen as equally likely samples of F̂Zt , the predictive

CDF of the multivariate random variable Zt = {Yt+h |h = 1, . . . , H}. Note that

since Zt is a vector formed by the random variables that characterise the stochastic

process for the following H lead times, it covers their marginal densities and their

interdependence structure.
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3.1.2 Forecast Evaluation

The performance of a forecast can be evaluated in multiple ways depending, for

example, on the criteria and measures adopted in the evaluation, what the appli-

cation of the forecast is, or the features of the forecast that one is interested in

assessing. Murphy in [27] identified three types of “goodness” for the verification

of weather forecasts, although the same principles apply for most kinds of forecasts:

• consistency : “the correspondence between forecasters’ judgements and their

forecasts”;

• quality : “the degree of agreement between forecasts and observations”; and

• value: “the benefits (economic or other) realised by end users through the

use of the forecast as input for decision-making”.

It should be noted that while forecast quality is independent of the case under

analysis, forecast value does depend on the operational problem at hand. Forecast

quality will be discussed in the remainder of this Section, while forecast value will

be addressed in Section 3.4.

The objective of forecast quality evaluation is to appraise the accuracy of the

predictions; for this reason, the first fundamental recommendation is to perform

the assessment on an independent evaluation period, that is, on data that were

not used in any way to identify, train or estimate the model. The most common

procedure is to split the available data set into a training (or in-sample) and a

test (or out-of-sample) period. The model is fitted to the values in the training set

and then evaluated on the test set. An alternative approach is time series cross-

validation as defined by Hyndman and Athanasopoulos in [42] (also referred to as

“evaluation on a rolling forecasting origin”). At every time step, the test set consists

of a single period (the one being forecast) and the training set includes all previous

observations. Forecast errors are then computed for each test set and their average

determines the accuracy of the forecast. This strategy is particularly useful when

dealing with a data set of limited length. However, since model parameters are
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re-estimated at every step, it can be time consuming and computationally heavy,

especially with non-linear models. Other strategies adopting a similar principle

are used to perform model selection in regression models, such as leave-k-out and

k-fold cross-validation [43], but their implementation is more difficult with time

series since data are not independent.

In almost every study, data contain erroneous or abnormal values, missing en-

tries or incomplete information [44], all of which can corrupt the quality of the data

and hence the quality of the analysis [45]. Therefore, it is important to perform a

set of preliminary actions on the data before any analysis is carried out to obtain a

set of the highest possible quality and reflective of the functioning and conditions of

the observed system [46]. This process is referred to as data preparation (also data

cleaning, cleansing, or pre-processing). A detailed discussion on the preparation of

data for forecast evaluation is provided in [47].

To contextualise evaluation results, the performance of advanced forecasting

methods can be compared against that of some benchmarks. These are usually

simple methods that can still provide competitive forecasts, which advanced meth-

ods are expected to outperform. In time series forecasting, the most relevant ones

include:

• persistence (also “näıve method”): at time t, the forecast for all lead times

is equal to the latest measurement available.

ŷt+h|t = yt ∀h (3.10)

• moving-average predictor : the forecast is the average of the last n measured

values.

ŷt+h|t =
1

n

n−1∑
i=0

yt−i ∀h (3.11)

• climatology : at time t, the forecast is the average of all available measure-

ments.

ŷt+h|t = ȳ ∀h (3.12)

92



3.1. Time Series Forecasting

• seasonal näıve method : a time series has a seasonal pattern when its values

are affected by factors with a known and fixed period (for example, the day

of the week or the hour of the day). When data exhibit a seasonality with

period S, the forecast for time t+ h is:

ŷt+h|t = yt+h−S(k+1) ∀h (3.13)

where S is the seasonal period and k is the integer part of (h−1)/S [42]. For

example, having daily data with weekly seasonality (S = 7), the forecast of

future Monday values is equal to the last observed Monday value.

A first qualitative assessment of a forecast can be carried out through the visual

inspection of predictions and associated errors. For example, time plots of forecast

and observed values can help identify periods in the time series where the forecast

performed particularly badly or well. A scatter plot of the same two series could

show if the accuracy of the forecast is dependent on the variable level. Histograms

and boxplots1 can be used to analyse the distribution of prediction errors. These

representations contain more information concerning the error dispersion and vari-

ation than a single statistic like standard deviation or root mean square error, and

help to identify features like bias, symmetry, skewness, tails, quartiles and outliers.

Moreover, histograms allow to quantify the frequency of occurrence of errors below

or above a certain level [48].

Point forecasts

At the base of any quantitative analysis of point forecasts is the concept of forecast

error [49], defined as the difference between the observation at time t+ h and the

forecast for that same time issued at time t:

et+h|t = yt+h − ŷt+h|t (3.14)

1A boxplot normally shows the median, the first and third quartiles Q1 and Q3 (i.e. the 25th

and 75th percentiles) and thus the inter-quartile range (IQR), and the outliers (i.e. values that
exceed Q1 and Q3 by 1.5 times the IQR).
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Scores are used to summarise aspects of the forecast accuracy and are usually

expressed as a function of the look-ahead time h. Considering an evaluation period

of length T , the most common scores include:

bias: bias(h) =
1

T

T∑
t=1

et+h|t (3.15)

mean absolute error: MAE(h) =
1

T

T∑
t=1

∣∣et+h|t∣∣ (3.16)

root mean square error: RMSE(h) =

√√√√ 1

T

T∑
t=1

e2
t+h|t (3.17)

standard deviation: SDE(h) =

√√√√ 1

T − 1

T∑
t=1

(
et+h|t − ēh

)2
(3.18)

The bias indicates the systematic error in the forecast, while MAE, RMSE, and

SDE are negatively oriented scores (i.e. the lower, the more accurate the forecast).

Bias and MAE are directly related to the values of the variable since they are

associated with the first moment of the forecast error. RMSE and SDE, on the

other hand, reflect the variance of the forecast error since they are associated

with its second moment, and are more impacted by large errors. These scores are

normalised by the length of the evaluation period and therefore are independent

of it. Nevertheless, if the length of the period is limited, the forecast quality

assessment can be subject to significant uncertainty.

In order to have scale-independent errors and compare the performance of fore-

casts across different data sets, percentage errors can be calculated as:

pt+h|t =
et+h|t
yt+h

Scores are calculated in the same way, with a commonly used score being the mean
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absolute percentage error:

MAPE(h) =
1

T

∣∣pt+h|t∣∣
These type of measures, however, have several disadvantages: they assume a mean-

ingful zero, the error is undefined when yt+h = 0, and distributions are heavily

skewed when yt+h is close to zero. For these reasons, their use is generally not rec-

ommended in the literature (see [50–52] for a discussion on this) and errors should

be normalised by a fixed value (for example, the wind farm’s max capacity). As

a robust alternative to percentage errors, Hyndman and Koehler in [50] advocate

the use of scaled errors, where the forecast error is divided by the in-sample MAE

from the persistence forecast (cf. Equation (3.10)):

qt+h|t =
et+h|t

1
n−1

n∑
i=2

|yi − yi−1|
(3.19)

where yi, i = 1, . . . , n are the in-sample values. Related measures such as the Mean

Absolute Scaled Error (MASE) and the Root Mean Square Scaled Error (RMSSE)

can be calculated directly from this definition. However, these errors have not been

employed much in the literature to date, as pointed out by Weron in [34].

As discussed earlier, when evaluating an advanced model, its performance is

usually compared to that of a benchmark or simpler model. The relative improve-

ment is quantified through a skill score given by:

Imp(h) = 1− Scadv(h)

Scref (h)
(3.20)

where Imp ≤ 1, Scadv is the score value for the advanced method and Scref the

score for the reference model. Note that Sc can be any of the statistics introduced

earlier (e.g. MAE). Another skill score introduced by Madsen et al. [48] is the
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coefficient of determination for each look-ahead time:

R2(h) =
MSEclim(h)−MSEadv(h)

MSEclim(h)
(3.21)

where MSEclim is the mean squared error for the climatology method (cf. Equa-

tion (3.12)). This coefficient represents the ability of the model to explain the

variance of the data, ranging from 0 for useless predictions to 1 for perfect pre-

dictions. Therefore, its use should be limited to the training data set for model

selection rather than on the test set for forecast evaluation.

When two competing forecasts are evaluated to find which one is more accurate,

the Diebold-Mariano (DM) test [53, 54] should be used. Indeed, the scores intro-

duced so far such as the MAE give an indication of the forecast accuracy on the

test data set. However, the fact that forecast A had a lower MAE than forecast B

on the test set under analysis does not imply that forecast A is more accurate than

B in population. In the DM test, forecast errors are taken as primitives and a loss

function is defined by assigning a penalty to the errors (typically, the loss function

is quadratic or linear). The null hypothesis is that the two competing forecasts

have equal predictive accuracy, i.e. the expected loss is equal. Then, testing for

the null hypothesis corresponds to doing an asymptotic z-test of the hypothesis

that the mean of the loss differential series is zero. The result of the DM test

determines if the difference in accuracy between the two forecasts is statistically

significant.

Probabilistic forecasts

For probabilistic forecasts, the quantitative evaluation is less straightforward since

forecasts take the form of probability distributions while observations are real-

valued series. The assessment of the predictive ability of probabilistic forecasts

builds on two main properties that are required of them: calibration and sharp-

ness [55]. Calibration (also referred to as reliability) refers to the consistency be-

tween forecast and observed probabilities by verifying if the forecast respects the
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probabilistic contract. For a quantile forecast q̂αt+h|t with nominal level α ∈ [0, 1],

one expects that observations yt+h are less than q̂αt+h|t (α × 100) percent of the

time (see Equation (3.5)). For an interval forecast Îβt+h|t with nominal coverage

rate β, one expects observations to be covered by the interval β × 100 percent of

the time; since an interval forecast is in fact composed by two quantile forecasts,

one has to evaluate the calibration of these two quantiles. Therefore, calibration

is a joint property of forecasts and observations. In practice, it is assessed taking

a frequentist approach by assessing the reliability of each of the quantile forecasts

defining the prediction. For a given quantile forecast q̂αt+h|t and the corresponding

observation yt+h, the indicator variable is defined as:

ξαt,h = 1
{
yt+h < q̂αt+h|t

}
=


1 if yt+h < q̂αt+h|t

0 if yt+h ≥ q̂αt+h|t

(3.22)

The empirical level of the quantile forecast is then calculated as the mean of the{
ξαt,h
}

time series over the set of T quantile forecasts in the evaluation period:

ξ̄αh =
1

T

T∑
t=1

ξαt,h (3.23)

The difference between nominal and empirical levels of the forecast can be in-

terpreted as its probabilistic bias [56]. When multiple quantiles are evaluated for

various nominal levels, the calibration assessment can be summarised in a Quantile-

Quantile diagram [57] where empirical quantiles are plotted against the forecast

ones, or in a reliability diagram [58] where the empirical level is plotted against the

nominal level. In both diagrams, points are connected with a curve and the closer

this is to the diagonal line the more reliable the forecast is.

Sharpness measures the concentration of probability by evaluating how tight

the prediction densities are, and is thus a property of the predictive distribution

only. Narrow predictive intervals are more informative than wide ones and enable

end-users to make decisions more easily. The width of an interval forecast is given
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by the distance between its two quantile bounds:

sβt,h = q̂ᾱt+h|t − q̂
α
t+h|t (3.24)

The sharpness of the interval forecast is then calculated as the average width over

the evaluation period:

s̄β(h) =
1

T

T∑
t=1

sβt,h (3.25)

Sharpness can also be visually evaluated via boxplots of the predictive intervals, as

proposed by Bremnes in [59] (also called “sharpness diagram” by Gneiting et al.

in [55]).

As mentioned earlier, the quality of a probabilistic forecast needs to be de-

termined by calibration and sharpness [60]. However, when the forecast end-user

wants a single evaluation criterion to describe the quality of the forecast method,

skill scores can be used. In this context, a skill score needs to provide information

on both reliability and sharpness simultaneously. Moreover, the score has to be

proper [61], meaning that the perfect forecast obtains the best possible score, and

a forecast with higher skills gets a better score [62]. Two of the most common skill

scores currently employed are the Continuous Ranked Probability Score [55] and

the pinball loss function [60]. Both scores are negatively oriented, with a lower

score indicating a better forecast, and admit a minimum value of 0 for a perfect

probabilistic forecast. The Continuous Ranked Probability Score (CRPS) is used

to evaluate predictive densities and is calculated as:

CRPSt,h =

∫
y

(
F̂t+h,t(y)− 1 {yt+h ≤ y}

)2

dy (3.26)

where F̂t+h,t(y) is the predictive density for y, and yt+h the corresponding obser-

vation. The value corresponds to the area between the predictive and observed

CDFs. The CRPS score value is then calculated as the average for each of the
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predictive densities and corresponding observations over the evaluation period:

CRPS(h) =
1

T

T∑
t=1

CRPSt,h (3.27)

This skill score, which has the same unit as the variable of interest, can be seen

as the generalisation of the MAE score (cf. Equation (3.16)) in a probabilistic

framework.

The pinball loss function (also referred to as the negative quantile-based score

(NQS)) is the other main proper scoring rule for probabilistic forecasting. This

skill score was chosen as the single error measure at the Global Energy Forecasting

Competition in 2014 [63]. For a quantile forecast q̂αt+h|t with α ∈ [0, 1] as the target

quantile, the score is defined as:

L
(
q̂αt+h|t, yt+h

)
=


(1− α)

(
q̂αt+h|t − yt+h

)
if yt+h < q̂αt+h|t

α
(
yt+h − q̂αt+h|t

)
if yt+h ≥ q̂αt+h|t

(3.28)

where yt+h is the observation used for the evaluation. When evaluating a quantile

forecast, the score is averaged over all periods in the evaluation set over the same

forecast horizon:

L(h) =
1

T

T∑
t=1

L
(
q̂αt+h|t, yt+h

)
(3.29)

To evaluate a full predictive density, the average of the scores for each of the

quantiles defining the density is calculated.

Note that, as advocated for example by Gneiting et al. in [55] or Pinson et al.

in [60], the evaluation of probabilistic forecasts should be based on the paradigm

of “maximising the sharpness of the predictive distribution subject to calibration”.

In other words, one should start from evaluating the calibration. Once the model is

proved to be calibrated, then its performance can be compared with that of other

models in terms of sharpness and skill scores.

When probabilistic forecasts are employed to predict binary events, they can be
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considered as “probabilistic classifiers” and evaluated by examining their Receiver

Operating Characteristics (ROC) curves [64]. Given a classifier, the true-positive

rate is the ratio between true positives and total positives, and the false-positive

rate is the ratio between false positives and total negatives. A ROC graph is a two-

dimensional graph with false-positive rate on the x-axis and true-positive rate on

the y-axis, and provides a graphical illustration of the trade-off between hit rates

and false alarm rates of classifiers [65]. It follows that point (0,1) represents perfect

classification, while the diagonal y = x represents the strategy of randomly guessing

a class, for which false and true positive rates are equal. The graph can be used

to visualise and compare the performance of different models, as the ROC curve

of a superior forecast will lie above and to the left of that of an inferior forecast.

Classifiers in the lower left-hand side of the graph are considered “conservative”,

as they require strong evidence to classify positives; conversely, those in the upper

right-hand side are considered “liberal” because positive classifications are made

with weak evidence. A single-valued measure of accuracy that can be extracted

from the graph is the area under the curve (AUC), i.e. the portion of the area that

lies between the curve and the x-axis. Therefore, AUC = 0.50 for a random guess

and AUC = 1.00 for a perfect classifier, and the greater the area, the better the

performance of the classifier. An example of ROC curves is presented in Figure 3.1,

from which one can conclude that both models A and B perform better than random

guessing, and that model B (AUC = 0.68) is more skilful than A (AUC = 0.57).

When evaluating the predictive accuracy of binary forecasts, performances can

be compared using the Brier Score (BS) defined by Brier in [66]. For n predictive

probabilities pi ∈ [0, 1] and corresponding realisations oi ∈ {0, 1}, the score is

defined as the mean squared forecast error and is given by:

BS =
1

n

n∑
i=1

(pi − oi)2 (3.30)

where the variable oi denoting the binary outcome takes the value 1 or 0 depending

on whether the event occurred or not. As a proper scoring rule, the BS rewards
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Figure 3.1: Example of ROC curves. The diagonal dotted line represents the
performance of a random forecast.

simultaneously reliability and sharpness, since it depends on both the correlation

between forecast and observed probabilities, and the frequency distribution of the

binary predictions, as demonstrated by Murphy in [67]. The score is negatively

oriented with a lower result indicating a superior model [68], and has a minimum

value of 0 for a perfect forecast and a maximum of 2 for the worst possible forecast.

If they are correct, confident forecasts (i.e. those close to 0 or 1) obtain a lower score

than prudent forecasts (i.e. close to 0.5); on the other hand, they are penalised

more severely if they are on the wrong side of 0.5 (the loss function is quadratic).

3.2 Short-term Wind Power Forecasting

One of the most significant challenges for the integration of wind power in the elec-

trical grid is the variability of wind resources at time scales ranging from minutes

to days, and wind power forecasting represents one of the key tools to address this

challenge. For example, market operators and TSOs need system-level forecasts of

wind power generation for unit commitment and economic dispatch; utilities and
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energy traders use forecast information to participate in the day-ahead (or spot)

and balancing (or real-time) markets.

At a high level, wind power forecasting models can be divided into two groups:

• time series models, which use purely statistical approaches to forecast wind

speed and power from recent observations of the relevant variables; no actual

weather forecasts are used.

• models using forecast values obtained from numerical weather prediction

(NWP) models as an input to predict wind power through different ap-

proaches.

The former perform better for forecast horizons from a few minutes up to 3-6 hours

— in what is referred to as very short-term forecasting — and for predictions of

monthly, seasonal, or yearly averages. Models using numerical weather predictions

work best for forecast horizons from a few hours up to two days, where the influence

of atmospheric dynamics becomes more important, as shown by Landberg in [69].

Within this time frame, that is with forecast horizons up to 48 hours, we talk of

short-term forecasting.

To maximise the use and value of electricity generated from wind, the trading

platform of primary interest is the day-ahead market. The relevant forecast horizon

generally ranges between 12 and 48 hours, where according to Giebel et al. in [70]

the best performances are achieved by models including NWP inputs. Therefore,

these will be the models reviewed in the remainder of this Section.

3.2.1 Short-term Forecasting using NWP

As explained by Manwell et al. in [5], short-term wind power forecasts generally

need two broad categories of input data:

• forecasts of wind speeds and other relevant weather variables at the location

of interest; and
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• information on the wind farm, such as technical characteristics of the installed

wind turbines, wind farm layout, description of the terrain (orography, rough-

ness, obstacles, etc.), and historical observations from the site (if available).

The former are obtained from the NWP models. The latter entail the modelling

(explicit or implicit) of the power system’s behaviour in response to a number of

external and internal factors, typically in the form of a power curve. Generally, the

forecasting process consists of (at least) the following two steps:

• forecasts of the explanatory variables are obtained from a single or multiple

NWP models; and

• forecast wind speed is converted into electric power.

Depending on the theoretical approach followed in the method, these steps might

be formulated more or less explicitly within the process, or directly combined into

a single passage. The work by Jensen et al. [71] shows that the use of wind speed

predictions with subsequent conversion to wind power using autoregressive models

is effective for horizons up to 8-12 hours. Beyond this, the use of separate wind

speed forecasts does not provide any advantage over the direct estimation of wind

power.

NWP model

An NWP model is usually characterised by three main components: the dynamical

centre, which deals with the equations of the adiabatic flow; the physics pack,

including the equations that describe the variability of meteorological processes;

and the data assimilation code [72]. The choice of the NWP model is critical and

depends on several criteria: the spatial and temporal resolution required, the timing

of forecast updates, forecast horizon, geographical area, the accuracy required, and

computational costs. The output is a comprehensive forecast of the overall state

of the atmosphere. A list of currently available global and regional NWP models

is presented by Foley et al. in [73].
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Generally, however, the grid resolution of the model is larger than the area of

the wind farm of interest. Kariniotakis et al. in [74] and Giebel et al. in [75]

found that estimating the wind speed at the wind farm location can provide more

accurate inputs to the wind power forecast and therefore improve its performance.

For this reason, physical or statistical downscaling is often performed to get more

precise local conditions from coarse NWP outputs [76]. The physical approach

employs meso- and micro-scale models similar to the NWP but run at a higher

resolution over a limited area, which return wind speed data at the hub height of

the turbines. The statistical approach uses a transfer function generated with data

from an actual wind farm in the region to predict wind power generation at other

wind farms within the same area.

Power curve

Most forecasting tools involve the conversion of meteorological forecasts (in partic-

ular, of wind speed) into electrical power using a power curve. The quality of the

power curve modelling can strongly affect the accuracy of the wind power forecast,

contributing to 10 to 15% of the prediction error, as found by Paiva et al. in [77].

The power curve provided by the manufacturer of the wind turbine gives the

relationship between wind speed and power at a particular air density; its typical

shape is shown in Figure 3.2. The minimum speed at which the turbine starts

generating useful electrical power is known as the cut-in speed ; the wind speed at

which the rated power, i.e. the maximum output power of the electrical generator,

is generated is called rated speed ; the maximum wind speed at which the turbine is

allowed to generate power and is usually limited by engineering design and safety

constraints is called cut-out speed. This power curve is usually calculated following

the procedure designed in the International Standard IEC 61400-12-1 [78], where

the “method of bins” is applied.

The use of the manufacturer’s power curve represents the easiest approach to

converting forecast wind speed to power. The curve, however, is neither site-

specific [79] nor does it take into account the wear and tear of the turbine [80]
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Figure 3.2: Typical power curve of a wind turbine.

and therefore its blind application to different sites cannot be completely correct.

The probability density function of the power curve is in fact affected by various

environmental parameters as discussed by Jafarian et al. in [81], and the modelling

of a site-specific curve can be highly advantageous. This is particularly the case for

large wind farms, where advanced methods that take into account heterogeneous

flow fields and wake effects can significantly reduce the forecast error, as illustrated

by Collins et al. in [82].

The various power curve modelling techniques presented in the literature can be

classified into parametric and non-parametric. The former employ mathematical

formulations to express the relationship between wind speed and power output.

Available techniques include polynomial expressions [83,84], the maximum princi-

ple method [85], dynamic and probabilistic approaches [86, 87], the “ideal power

curve” approach [79] and logistic functions [88]. Whereas, non-parametric tech-

niques aim at finding the empirical relationship without necessarily developing

characteristic equations. Possible modelling approaches include the use of Copula

distributions [89], spline interpolation [90], and artificial intelligence [91]. Broad re-

views of power curve modelling methodologies are presented by Lydia et al. in [92]
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and by Carrillo et al. in [93].

Upscaling

If the objective is to predict wind power generation for an area rather than for a

single wind farm, upscaling is eventually performed. The forecast power output

from a sample number of wind farms in the region of interest serves as input

for an upscaling algorithm that estimates the generation in the whole region. This

avoids the time-consuming and computationally costly task of predicting the output

for each individual wind farm and then summing them together. As proven by

Focken et al. in [94] and [95], the forecast error for distributed wind farms is

reduced compared to that of a single site thanks to the so-called “spatial smoothing

effects”: the fluctuations of combined power output from distributed wind farms

are damped, resulting in decreased fluctuations of the overall power output for

the region. In the same vein, the studies by Hasche in [96] and by Miettinen and

Holttinen in [97] find that both average and largest errors reduce when forecasts

are aggregated over large geographical regions. The correlation between forecast

errors is generally weak with distance, so the magnitude of the error reduction scales

with the size of the region, i.e. the larger the region the larger the reduction [98].

Similarly, Miettinen et al. in [99] observe that while the forecasting skill for an

aggregated wind farm fleet is heavily impacted by the accuracy of a single site,

the site-specific accuracy becomes less significant as the number of sites aggregated

together increases.

Forecasting Approaches

Adopting the classification used by Wang et al. in [100], forecasting models can be

categorised into physical, statistical, and hybrid based on their approach. Physical

methods use physical considerations as far into the process as possible to obtain

a detailed description of the lower atmosphere and the best possible estimates of

local wind speeds [101]. Global databases of meteorological measurements or at-

mospheric meso-scale models are used for this purpose. Wind speed values are then
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converted into power based on a power law such as those described in the previous

Section. Alternatively, computational fluid dynamics (CFD) is used to simulate

the wind aerodynamics and calculate the power production of the wind turbines

with the actuator disc model [102]. The physical approach is ideal when no his-

torical data are available. However, large computational systems are required to

run the simulations and the acquisition of physical data can be challenging. Often,

statistical post-processing techniques are applied to remove any systematic errors

in the forecast. Popular techniques include model output statistics (MOS) [103],

Kalman filtering [104], artificial neural networks [105], and combination of individ-

ual forecasts [106,107].

In the statistical approach, historical data are analysed to find the empirical

relationship between a set of explanatory variables (e.g. wind speed, wind direction,

temperature, etc.) and power output measurements. Forecasts of the explanatory

variables are obtained from the NWP model and the fitted relationship is used to

estimate future values of the power output. With this approach, meteorological

processes are not represented explicitly, as input variables are mapped to power

outputs in only one step. For this reason, these models are also referred to as

“black box”. On the other hand, historical data are needed to estimate the model’s

parameters.

The relationship between explanatory variables and power generation is often

modelled using statistical techniques employed in time series analysis. Sometimes,

this is referred to as the conventional statistical approach [108, 109]. Widely dif-

fused techniques include: autoregressive integrated moving average (ARIMA) and

its subsets (AR, MA, ARMA), Kalman filtering, and the Box-Jenkins methodology.

If online data are available, recursive techniques can be highly advantageous to re-

tune the model with more recent measurements. Alternatively, learning approach

methods can be used. Sometimes, these are referred to as artificial intelligence

(AI) or “grey box” methods. Rather than being expressed analytically, the rela-

tionship between the output and input variables is learned (hence, the name) from
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the historical time series. For this reason, a very large amount of historical data

is required to train the model, making this approach unsuitable for newly or re-

cently installed wind farms. The main machine learning approaches are artificial

neural networks (ANN), fuzzy systems, support vector machines (SVM), and more

recently decision tree techniques and Bayesian methods.

Hybrid methods combine together different approaches to take advantage of the

strengths of each modelling technique. Methods can result from the combination

of physical and statistical approaches, or of different statistical approaches. The

objective is to improve the forecast accuracy. Moreover, the combination approach

often reduces the risk of large errors during extreme events, as found by Hibon and

Evgeniou in [110].

An exhaustive review of the state-of-the-art approaches for wind power fore-

casting is provided by Jung and Broadwater in [109]. An overview of physical

and statistical methods is also given by Lei et al. in [108], while recent publica-

tions employing learning approaches are discussed by Foley et al. in [73]. Finally,

comprehensive reviews of commercially available models are given by Giebel and

Kariniotakis in [8] and by Monteiro et al. in [72].

3.2.2 Uncertainty Forecasting

The wind power forecasting methods discussed so far produce a single value for

each look-ahead time, corresponding to the conditional expectation of the wind

power output. In the literature, these are referred to as point (or, less prop-

erly, deterministic) forecasts. Wind power uncertainty forecasting, on the other

hand, provides additional probabilistic information on future wind power gener-

ation. Such information, for example, can bring advantages in decision-making

processes [28, 111,112] and power system operation [113,114].

Following the classification used by Zhang et al. in [115], the three main repre-

sentations of uncertainty in the context of wind power forecasting are: probabilistic

forecasting, risk index, and scenario forecasting. Probabilistic forecasts are the most
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common representation of forecast uncertainty, where the power output is treated

as a random variable and the associated uncertainty can be expressed by:

• probability density functions (PDF) or cumulative distribution functions (CDF);

• quantiles and intervals;

• discrete probabilities; and

• moments of the probability distribution (for example, mean, median, vari-

ance, skewness).

PDF and CDF are the most general representation and all others can be derived

from them. Interval forecasts give the range of values where the output can lie

in with a specified probability. This is the representation that has attracted the

most attention among end-users thanks to the intuitiveness of its visualization, as

observed by Dobschinski et al. in [116].

The two main approaches for the construction of predictive distribution are the

parametric and non-parametric approach. In the parametric approach, the forecast-

ing error is assumed to follow a pre-defined distribution and very few parameters

are involved, making the estimation process simple and the computational costs

low. Gaussian and Beta distributions are common choices (see for example [117]

and [118]). However, due to the non-linear shape of the power curve, the distri-

bution of wind power forecast errors depends on the wind speed regime [119] and

can be skewed and heavy-tailed [120]. For this reason, other distributions are also

employed, like in the work by Hodge et al. in [121] who find that hyperbolic distri-

butions are better suited to model errors from day-ahead wind power forecasts, as

they represent more accurately the skewness, narrower peak, and fatter tails of the

distribution. Otherwise, multiple distributions can be combined; this is the case,

for example, of the work by Miettinen et al. in [99], where beta and Laplace dis-

tributions are used together to model the forecast uncertainty. On the other hand,

the assumption of the distribution shape may not be reasonable in some cases, and

the shape can change significantly with the forecast horizon. In non-parametric
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(or distribution-free) approaches, no assumption on the distribution is made. The

predictive PDF or CDF of wind power are viewed as a set of density or quantile

forecasts, respectively, and each forecast is estimated separately. As a consequence,

computational costs are considerably higher compared to the parametric case. Nu-

merous non-parametric methods are proposed in the literature, including adaptive

resampling [122], quantile regression [123], kernel density estimation [124], artificial

intelligence [125], and ensemble forecasting [126, 127]. Beside these statistical and

machine learning approaches, the employment of stochastic differential equations

to generate probabilistic forecasts are starting to be investigated (for example,

see [128]). Stochastic differential equations enable capturing the dynamics in the

input information, allowing to describe the wind power dynamics better.

Probabilistic forecasts are generally more complicated than point predictions

and their direct use in decision making is more difficult; for this reason, risk indices

have been developed to give a more simplified form to the uncertainty information.

A risk index is defined as a single value reflecting the expected level of error of the

wind power forecast, with higher risk values corresponding to less reliable (more

uncertain) forecast outputs. For example, Meteo-Risk Index (MRI) [129] and Nor-

malised Prediction Risk Index (NPRI) [130] have been proposed in the literature

to quantify the spread of members in an ensemble forecast.

Since the uncertainty associated with a forecast is generated for each horizon

independently, the correlation between points at different times is not considered.

It follows that probabilistic forecasts do not provide any information on how uncer-

tainty varies over the forecasting horizon. In many time-dependent and multi-stage

decision-making processes, however, spatio-temporal dependencies have to be taken

into account. For this reason, scenario forecasting has been developed as an alter-

native approach [131]. A scenario is formed by a series of point forecasts over a

period of look-ahead times and a set of scenarios (also referred to as “time trajecto-

ries”) produces the desired time-dependent information among different prediction

horizons [132]. Therefore, scenarios constitute the most suitable input for dynamic
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stochastic optimisation problems, while also allowing the visualisation of the mul-

tivariate probabilistic distribution of forecast wind power.

A complete review of state-of-the-art wind power uncertainty forecasting can

be found in the work by Zhang et al. in [115]. The results of the wind power

forecasting track in the 2014 Global Energy Forecasting Competition2 also provide

an overview of probabilistic methodologies. The main features of the winning

methods are summarised by Hong et al. in [63]. In this article, it is also highlighted

that within the energy forecasting field (which includes wind power, solar, price,

and demand), wind power is the domain where probabilistic forecasting is more

mature.

As part of its activities, the IEA Task 36 on Forecasting for Wind Energy has

been working to investigate the current use of uncertainty forecasts in the electric

power industry. As discussed by Bessa et al. in [9], point forecasts are still pre-

dominant in utility practice, even though truly optimal decisions and risk hedging

are only possible with the adoption of uncertainty forecasts. In fact, uncertainty

in weather forecast and power production is one of the primary causes of volatil-

ity in electricity markets and a driver for competition, as well as playing a role

in security constraints and risk management. Nevertheless, despite uncertainty

forecasts being widely available, current business practice is at best focused on the

so-called “multiple-supplier” approach, where different point forecasts from various

providers are used; this approach, however, cannot be considered as probabilistic,

since the spread of a set of point forecasts seldom reflects a realistic weather or

wind power production uncertainty.

In an earlier study conducted by Möhrlen et al. in [25], the authors carried out

a combination of interviews and questionnaires with different players in electric-

ity markets of various countries. The outcomes of this study showed that a gap

exists in the understanding of probabilistic forecasts and their use in the business

practice, and it is mainly this lack of understanding that leads to mistrust towards

2Website: http://www.drhongtao.com/gefcom
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these solutions. For example, one common misconception diffused among end users

is that if a decision has to be a Boolean yes/no or a single value, then the fore-

cast information should come as a single value, too. There is also a lack of trust

towards uncertainty information, often connected with the erroneous perception of

probabilistic forecasts being associated with speculation. On the contrary, there

is little to no concern among end users for the overwhelming amount of informa-

tion that the use of probabilistic forecasts might introduce; but again, they are

concerned with how to make use of such additional information. Another relevant

finding is that a large penetration of renewable sources in the electricity market is

significantly correlated with the use of uncertainty forecasts by market players, as

for example in the case of Denmark or Portugal. Since renewables are increasing

their share in the electricity generation mix of most countries in the world, it is

thus fair to assume that the demand for uncertainty forecasts will rise in the near

future.

3.2.3 Performance of Forecasts

Errors in forecasts of renewable energy generation (but also, for example, of load or

electricity prices) are most often driven by weather forecast errors. In wind power

forecasting, the largest part of the prediction error comes from the NWP models,

as explained by Giebel et al. in [8]. The uncertainty in the meteorological forecast

is amplified or dampened by the conversion into power, i.e. the power curve, which

also determines the shape of the forecast error distribution. Due to the shape of the

power curve (cf. Figure 3.2), wind power forecast errors do not follow a Gaussian

distribution and prediction intervals are usually not symmetric around the point

prediction, as found by Lange in [117]. Moreover, the level of predicted wind speed

introduces some non-linearities to the estimation of the intervals. For example, near

the cut-out speed, where power can vary dramatically for small variations in the

wind speed. Typical error patterns are: amplitude errors, where the magnitude of

the power output is misjudged; and phase errors, where the changes in generation
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are not timed correctly. The latter have a much larger influence on error scores

such as those presented in Section 3.1.2.

It is not possible to draw any conclusion as to which one forecasting approach

or model performs best, since site dependencies are always significant. Indeed, a

model performing well for one wind farm might not perform as accurately on an-

other. However, there are some features that can be observed in the performance

of any model. The first, more obvious one, is that forecast accuracy decreases for

increasing forecast horizons [70]. This is evident for example from Figure 3.3, where

the root mean square error of the forecasts increases for all models as the forecast

length increases; the rate of increase varies significantly depending on the model

and forecast length. Persistence (cf. Equation (3.10)) and the so-called “new refer-

ence model” (NewRef in the Figure) introduced by Nielsen et al. in [133] are very

simple approaches which outperform more complex models for very short prediction

horizons (less than three hours). However, their errors increase steeply with fore-

cast length. Climatology (cf. Equation (3.12)), the other basic approach consisting

of predicting the mean value for all times (Mean in the Figure), outperforms persis-

tence for lead times higher than 15 hours. The two NWP-based models (HWP and

HWP/MOS in the Figure) outperform all other models for forecast horizons larger

than four hours, and their accuracy degrades much less rapidly as forecast length

increases. Moreover, it can be noted that the use of simple postprocessing tech-

niques (MOS) in the HWP/MOS model (known commercially as Prediktor [134])

results in marked improvements.

The performance of models also changes with the type of terrain the wind farm

is located in. Generally, smaller error values are observed in a flat terrain wind

farm compared to a complex terrain farm. Mart̀ı et al. found in [135] that there

is a significant increase of the magnitude and dispersion of prediction errors when

the terrain complexity increases. Furthermore, offshore wind farms have slightly

higher error values than flat terrain wind farms. Similar conclusions are drawn by

Kariniotakis et al. in [136], where it is also highlighted that the spatial resolution of
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Figure 3.3: Root mean square error at different forecast lengths for various pre-
diction models. Source: Giebel et al. [70].

the NWP models is critical for complex terrains. The impact of seasonal variability

in Germany on forecast error was investigated by Lange and Focken in [137], who

found that errors are larger in winter due to the higher levels of wind speed and

larger uncertainty associated with storms, connected in particular with low pressure

systems and their frontal zones. In summer, the main source of error is thermal

stratification and especially at sunset in high pressure situations, when the large

increase in wind speed is hard to predict. Errors also increase for more unstable

atmospheric situations, as found by Pinson and Kariniotakis in [129]. On the other

hand, the work by Lange and Heinemann [138] shows that forecasting uncertainty

is not correlated with the magnitude of the wind speed forecast but does depend

on the pressure, with errors being larger in low pressure situations.

The widely cited article by Madsen et al. [48] proposes a standardised protocol

for evaluating wind power forecasts. The authors recommend that forecasts are

assessed on a test set which was not used to train the model and that the evaluation
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framework is defined clearly before any analysis is carried out. A minimum set of

error measures are then suggested as well as some strategies for the visual inspection

of errors. The persistence, moving-average, and climatology benchmark methods

are also presented (cf. Equations (3.10), (3.11), and (3.12)). In the context of wind

power forecasting, persistence is difficult to outperform for short lead times (0–6

hours) due to the quasi-stationarity of the atmosphere [69], while climatology is

hard to beat after 24 hours. To take advantage of these aspects, another benchmark

model was proposed by Nielsen et al. in [133] (sometimes referred to as the “new

reference model”), which is in fact a weighting between the persistence and the

mean methods.

Forecast errors and derived scores can be normalised by the installed capacity

of the wind farm Pnom so that results are independent of its size, hence allowing

for comparison among different sites. Alternatively, errors can be normalised by

the average power production measured over the test period. This normalisation

allows better assessment of the monetary consequences of the model errors as a

function of the capacity factor of the wind farm, that is the ratio of the energy

actually produced by the farm to the energy that could have been produced if the

turbines ran at nominal power over a given time period [5].

The review article [8] by Giebel and Kariniotakis reports that typical forecast

accuracies as measured by RMSE are in the range of 9-14% of the installed capacity

for a 24 hour horizon. When the forecast upscales to regional or national areas,

RMSE is in the order of 3-5% of installed capacity. The article [139] by Sperati et

al. also provides a good picture of the accuracies of state-of-the-art deterministic

forecasts. The work reports the outcomes of the benchmarking exercise conducted

on two different wind farms. The first one is located in Abruzzo (Italy) on complex

terrain and has a nominal power of around 100 MW; the second one is located

in Klim (Denmark) on flat terrain and has a nominal power of 21 MW. Partici-

pants were required to issue forecasts from 0 to 72 hours ahead with three-hourly

resolution and were evaluated over a test period of one year. The values of the
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mean absolute error for each look-ahead time for the various forecasts are shown

in Figure 3.4 for the two wind farms. For the complex terrain test case (Abruzzo,

Figure 3.4a), errors have quite similar trends with nearly all models showing a no-

ticeable daily cycle, and errors being larger during evening and night hours. Note

how for some models, the dispersion of error values can be significant. For the

flat terrain test case (Klim, Figure 3.4b), errors again have similar trends, but the

dispersion of error values is lower. Moreover, the tendency of forecast errors to

increase for larger forecast horizons is very evident.

3.3 Short-term Electricity Price Forecasting

Prices in both day-ahead and balancing markets determine the financial obligations

of market participants, as will be discussed in detail in Chapter 4. Therefore,

price forecasting is of critical importance for power producers and energy traders,

especially in the case of stochastic units like wind farms. Short-term electricity

price forecasting (EPF) generally involves look-ahead times between a few hours

and a few days. There is a significant body of literature on EPF, with extensive

and detailed reviews to be found in the articles by Weron [34] and by Aggarwal

et al. [140]. However, a large majority of the published papers are concerned

with point forecasts only. Moreover, the focus has been primarily on day-ahead

(or spot) market prices, with the forecasting of prices from the balancing market

having received very little attention so far.

An overview of the literature on day-ahead market price forecasting is presented

in Section 3.3.1, including a detailed review of statistical approaches, a discussion

on their accuracy and on the approaches to forecasting series with multiple sea-

sonalities. The literature on balancing market price forecasting is then reviewed

in detail in Section 3.3.2. Note that although none of the papers cited in the next

Sections investigate prices from the Irish electricity market, the framework consid-

ered is the same as that of interest in this work, that is, forecasting day-ahead and

balancing market prices for the next day in wholesale electricity markets.
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(a) Abruzzo (complex terrain) test case.

(b) Klim (flat terrain) test case.

Figure 3.4: Mean absolute errors for the Abruzzo (top) and Klim (bottom) wind
farms. Values on the left y-axis are normalised by the nominal power (NP), while
those on the right y-axis are normalised by the mean power (MP). Source: Sperati
et al. [139].

3.3.1 Forecasting Day-Ahead Market Prices

Following the same classification criteria used by Weron in [34], EPF models can

be categorised as:

• multi-agent models;

• fundamental models;

• reduced-form models;
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• computational intelligence techniques; and

• statistical models.

A brief description of each approach is provided below, although the last two ap-

proaches are by far the most popular, with their share in the literature being

somewhat equal.

Multi-agent models, which include production-cost, static equilibrium and agent-

based models, simulate the behaviour of the electricity market system as a result of

the interactions between its participants — referred to as “heterogeneous agents”.

They are flexible tools used to assess strategic behaviours in electricity markets be-

cause the competition between participants can be represented without limitations.

In some cases (see the static equilibrium models developed by Ruibal and Mazum-

dar in [141]), these models can be employed to predict prices when no historical

values are available but supply costs are known. On the other hand, they require

the identification of the relevant players and of their bidding strategies, and how

they interact with each other, which can be a difficult task and introduces signif-

icant modelling risk. While pricing processes are generated by matching demand

and supply in the market, the main objective of these models is to simulate the

mechanics and operations of the power system. Hence, their application is more

focused on qualitative rather than quantitative results.

Fundamental models include the two subclasses: parameter rich; and parsimo-

nious structural models [142]. They attempt to capture the functional associations

between fundamental physical and economical drivers (for example, load, weather,

etc.) and the price of electricity to describe the price dynamics. Predictions of

the prices are then obtained by modelling and forecasting independently these

fundamental inputs. The construction of these models is highly dependent on

the availability of data from the market. Since some of the fundamental inputs

may be collected with monthly or weekly frequency, fundamental models are more

suitable for medium-term forecasts and are mainly employed in risk-management

and derivative pricing [143]. Moreover, models are constructed under specific as-
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sumptions about physical and economical relationships in the system. Violations

of these assumptions significantly affect the price predictions, therefore making it

very challenging to incorporate stochastic input fluctuations in the model.

Reduced-form models are finance-inspired models that aim to describe price dy-

namics in a simplified but realistic way. They are generally unable to provide accu-

rate price forecasts at the hourly time scale, but can reproduce the main features

of electricity prices (such as marginal distributions, price variations) at the daily

level [144]. Mean-reverting jump-diffusion and Markov regime-switching models

are two of the more popular alternatives since they provide a balance between the

capacity to capture the main features of prices and model parsimony, so that the

computational burden does not impede their online use in trading. A review and

extended discussion on these models can be found in the book [144] by Benth et

al.. Their common use is in derivatives pricing and risk analysis, although their ap-

plication in volatility or price spike forecasting is reportedly good (see for example

References [145] and [146]).

Computational intelligence (CI), or artificial intelligence (AI), techniques use a

combination of learning, evolution and fuzziness to develop models able to adapt to

complex dynamic systems. The most popular classes of CI techniques are artificial

neural networks (ANN), fuzzy systems, support vector machines and evolutionary

computation. Within the EPF literature, ANN have received the most atten-

tion [140, 147]. The main strength of CI models is their flexibility and ability to

model complex and non-linear processes [34]. These models have an advantage over

statistical ones when modelling the usually highly volatile, spiky, and non-linear

electricity price processes. Often, however, this advantage in modelling ability does

not translate into better forecasting skills, as found by Aggarwal et al. in [148].

Another significant limitation of CI techniques is that they require large amounts

of historical data for training and calibration, which makes them unsuitable when

historical data are unavailable or their size is limited.

Statistical models forecast the price through a mathematical combination of
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historical prices and/or historical or present values of exogenous factors. These

factors are typically system-level consumption (i.e. demand) and generation (for

example, wind power), weather variables (for example, temperature, wind speed,

precipitation, solar radiation), fuel costs and reserve margin (or surplus generation,

i.e. the difference between available generation and predicted demand). Statistical

EPF models have originated directly from the load forecasting literature, often sim-

ply by substituting prices for loads and loads for temperatures in the mathematical

expressions of the model. Models can be categorised as additive or multiplicative,

depending on whether the forecast variable is the sum or the product of a number of

components. Within the EPF field, the former are significantly more popular [34].

The model’s components can often have some physical meaning (for example, if

load or temperature are used as predictors), a desirable feature which allows prac-

titioners to better understand their behaviour. The main limitation of statistical

models is the ability to model the usually non-linear and spiky behaviour of electric-

ity prices; nevertheless, their performance in practical applications is comparable

to that of computational intelligence models, which represent their non-linear al-

ternative [148]. Given the data driven approach, the forecasting accuracy does not

depend just on the algorithms employed and their numerical efficiency, but also

on the quality of the processed data and the capacity to include fundamental fac-

tors (e.g. historical and forecast demand, weather forecasts, fuel prices) into the

model [149].

The implementation of the trading strategies described in Chapter 4 requires

day-ahead forecasts of electricity prices (specifically, prices from the day-ahead

and balancing markets) with half-hourly resolution. The data available for the

training and testing of the potential model include historical values of DAM and

BM prices (since the start of the I-SEM) as well as forecast and observed values

of some fundamental price drivers, namely demand and system-level wind power

generation. However, due to the recent formation of the new market, the length

of the data set is limited (seven months, overall). For the aforementioned reasons,
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a statistical approach is chosen to forecast electricity prices in this work. Hence,

the existing literature on this class of models is reviewed in more detail in the next

Section.

3.3.1.1 State-of-the-art of statistical approaches

The similar-day method is one of the simplest statistical approaches in EPF. The

rationale behind the method is to look into historical data for days which have

similar characteristics to the day that needs to be forecast (for example, same day

of the week, day of the year, holiday type), and then use those historical values as

forecasts. A popular implementation of this approach is that proposed by Conejo,

Contreras et al. in [150] (called the “näıve method” in the paper) where:

• a Monday is similar to the Monday of the previous week, and the same rule

applies for Saturdays and Sundays; and

• a Tuesday is similar to the previous day, and the same rule applies for Wednes-

days, Thursdays, and Fridays.

This method is commonly used as a benchmark when developing a new model

and, as argued by the authors, advanced forecasting procedures that are not well

calibrated fail to outperform this simple method with surprising frequency.

Another basic method which is very often used as a benchmark in load fore-

casting but less in EPF is exponential smoothing [151]. Here, the prediction is

constructed from an exponentially weighted average of past observation:

ŷt = νyt + (1− ν)st−1 = st

Each smoothed value st is the weighted average of the previous observations, where

the weights decrease exponentially depending on the value of parameter ν ∈ [0, 1].

AutoRegressive Moving Average (ARMA) models are at the heart of all ad-

vanced time series methods in EPF. An ARMA(p, q) model, where p is the order

of the autoregressive part and q that of the moving average part, accounts for
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both the random nature and the time correlations in the electricity price time

series. This approach assumes the (weak) stationarity of the time series under

analysis, which otherwise needs to be transformed first. The most simple and com-

mon transformation is differentiation, which was introduced by Box et al. in [152]

and results in the so-called AutoRegressive Integrated Moving Average (ARIMA)

or Box-Jenkins model. When the time series exhibits one or more seasonality (e.g.

daily, weekly) and it is necessary to differentiate at lags longer than one, seasonal

ARIMA (SARIMA) models can be used. The model parameters in all these AR-

type models are generally estimated with a two-step process:

• model identification using information criteria (e.g. Akaike’s Information Cri-

terion, Schwarz’s Bayesian Information Criterion) to find the optimal trade

off between improvement in fit and model complexity/overfitting; and

• estimation of the coefficients, for example by least squares regression, recur-

sive least squares, maximum likelihood, or prediction error method.

While there are some applications of ARIMA models or their variations3 in EPF,

they are most commonly used in combination with other approaches which will be

presented next.

Electricity prices are heavily influenced by various exogenous factors, in par-

ticular load profiles, generation capacity, and weather conditions (for instance,

temperature, wind). AR-type models relate the forecast variable (i.e. the price) to

its own past, but are not able to capture the relationship with these fundamental

variables. For this purpose, AR models can be combined with linear regression to

form the so-called AutoRegressive Moving Average models with eXogenous vari-

ables (ARMAX). These are among the most popular approaches in EPF and, in

the literature, they are also referred to as dynamic regression, transfer function,

Box-Tiao, intervention or interrupted time series models.

Recall that the general purpose of regression is to determine the mathematical

relationship between a number of independent (or predictor) variables and a depen-

3Here, variations refers to AR, ARMA, and SARIMA models.
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dent (or forecast) variable. In its classical form, the relationship between variables

is assumed to be linear and the coefficient estimation is based on least squares or

maximum likelihood methods. An ARMAX model can in fact be interpreted as

a multiple regression model where the error series is assumed to follow an ARMA

process. The inclusion of exogenous variables follows the same mechanism for all

ARMA-type models: the present value of the price is expressed as a linear combi-

nation of its past values, past values of the noise, and present and past values of

the exogenous variable(s). The model’s coefficients are then estimated using least

squares, maximum likelihood, instrumental variable techniques or prediction error

methods.

AR processes can also be coupled with regime-switching models, where the price

series is represented by a set of separate states (or regimes), each modelled with

a different process, and the regime is determined by an unobservable (latent) or

observable variable. The former case corresponds to the Markov regime-switching

models introduced earlier. Within the latter case, Threshold AutoRegressive (TAR)

models and extensions thereof are most commonly used. In the basic case, the

regime is determined by an observable variable in relation to a threshold value [153].

If the threshold variable is chosen as a lagged value of the price series itself, this

results in the so-called Self Exciting TAR (SETAR) model [154]. Exogenous vari-

ables can also be included by simply replacing the AR process with an ARX one,

leading for example to TARX [155] and SETARX [156] models.

The linear AR(X)-type models discussed so far assume a constant variance and

covariance function (i.e. homoskedasticity). Price time series, however, exhibit

non-linearities which in some cases are related to a non-constant conditional vari-

ance, or heteroskedasticity. The first model developed to address this issue was the

AutoRegression Conditional Heteroskedastic (ARCH) by Engle in [157], where an

autoregressive process is used to represent the conditional variance of the series.

This approach was then extended by Bollerslev in [158] into the Generalised Au-

toRegressive Conditional Heteroskedastic (GARCH) model, where the conditional
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variance additionally depends on a moving average of past conditional variances.

GARCH models have been employed in short-term EPF in combination with AR-

type processes with contrasting results, as will be discussed next.

Comparison of statistical forecasting techniques

As stated earlier, the cases where forecast models are based exclusively on an

AR-type process are relatively rare in the literature. One example is in the work

conducted by Cuaresma et al. in [159], where various AR and ARMA processes

are used to forecast hourly spot prices from the German Leipzig Power Exchange.

Conejo, Plazas et al. propose a model in [160] where the historical prices are first

decomposed in a set of constitutive series using the wavelet transform, then values

are forecast using ARIMA models fitted on the constitutive series, and finally the

series of forecast prices is reconstructed through the inverse wavelet transform.

A mixed model is proposed by Garćıa-Martos et al. in [161] to forecast market-

clearing prices in Spain, where each of the 24 hourly time series of price is modelled

separately using ARIMA models. The models are identified and estimated on

training sets formed by either the whole hourly time series or by weekday prices

only (i.e. from Monday to Friday). Prices on weekdays are then forecast with the

models calibrated on weekdays only, while prices on weekends are forecast with the

models calibrated on the whole time series (weekdays and weekends together).

Contreras et al. use ARIMA and ARIMAX models in [162] to predict day-

ahead electricity prices in California and Spain. Both models are estimated on

the full time series, i.e. on all hours, and explanatory variables are demand for

the Californian market, and demand and available daily production of hydro units

for the Spanish market. The two models give similar errors for the Spanish case,

while the ARIMAX performs better in the Californian market. The same case

study is considered by Nogales et al. in [163]. Here, the authors use ARMAX

(called “transfer function” in the paper) and ARX (called “dynamic regression”

in the paper) models to predict prices and consider only demand as the explana-

tory variable. Both models perform considerably better than the ARIMA used
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by Contreras et al. in [162]. The same approach is used by Nogales and Conejo

in [164] on a one-year data from the Pennsylvania-New Jersey-Maryland (PJM)

Interconnection market in the USA. Again, the results indicate that the ARMAX

model with demand as the explanatory variable (called “transfer function” in the

paper) outperforms the standard ARIMA process. In a related work by Conejo,

Contreras et al. [150], prices from the PJM Interconnection market are forecast us-

ing several models, including ARIMA, dynamic regression (ARX), transfer function

(ARMAX), a multilayer perceptron (CI model) and a wavelet regression technique.

In the study, the best performance is achieved by the AR-based models including

exogenous variables.

Several models are considered by Knittel and Roberts in [165] to forecast spot

prices in the Californian market: mean-reverting diffusions, jump diffusions, a sea-

sonal ARMA model, an AR-EGARCH process (with demand as explanatory vari-

able), and a seasonal ARMA model incorporating a polynomial of the temperature

of order 3 as explanatory variables (i.e. a SARMAX model). This last model has

the lowest errors as measured by RMSE, although the difference from the SARMA

model is small. The authors also observe that the GARCH-based specification out-

performs the other time series models during the California market crisis period

(i.e. from May to August 2000). The same model, however, yields the worst of all

forecasts in the two years before the crisis. A similar conclusion is reached by Gar-

cia et al. in [166], who find that models including GARCH components outperform

other statistical approaches only during highly volatile and spiky periods.

Weron and Misiorek in [167] compare a number of different time series models

including TAR and TARX (with the exogenous variable being demand), and find

their forecasting performance to be quite poor. In a similar study two years later,

Weron and Misiorek [168] investigate the accuracy of 12 time series models for day-

ahead EPF in the Californian and Nord Pool markets. The approaches include

AR(X) models and their extensions, and mean-reverting jump diffusions. One

of the two main findings of this work is that models using system demand or
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air temperature as the exogenous variable perform better than pure time series

models. The other finding is that semi-parametric models provide better point

and interval forecasts and can perform well under various conditions. Interestingly,

TARX models have, on average, the largest errors during the regular and less spiky

test periods despite often being one of the best forecasts on single weeks, indicating

that when the forecast is off, the associated error is large. Kristiansen proposes

in [169] an ARX model based on that by Weron and Misiorek in [168], but where

prices are modelled across the whole time series rather than on each single hour

separately. Moreover, system wind power is considered together with demand as

exogenous variables. However, the data period used is larger and more recent, so

results are not directly comparable.

Extending the work by Weron and Misiorek in [170], Misiorek et al. develop

in [171] a simple ARX model with lags of 24, 48 and 168 hours (corresponding to

one, two, and seven days, respectively) and demand forecast as exogenous variable.

Evaluated together with AR(X)-GARCH, TAR(X), and Markov regime-switching

models, the model has the best or second best accuracy over different test periods.

Jonsson et al. adopt a similar approach in [172] using an ARX model with the

same lags as in [171] to account for residual autocorrelation and seasonal dynamics.

System demand and wind power generation are included as explanatory variables

based on a non-parametric and time-varying regression model to account for their

non-linear and non-stationary influence on spot prices.

Forecasting multiple seasonal patterns

When forecasting hourly (or half-hourly) prices, both the daily and weekly season-

ality of the series have to be captured (see Section 2.2.2.1). This can be achieved

by using seasonal models (i.e. SARIMA(X)) or combining the autoregressive struc-

ture of the model with dummy variables, as for example in the works by Weron

and Misiorek in [168] and by Kristiansen in [169]. Since each load period displays

quite a distinct price profile due to the daily variation of demand, costs and opera-

tional constraints, another approach is to perform the forecasts across each period
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separately. This results in 24 (or 48) separate models and consequently sets of pa-

rameters to be estimated, as done for example in References [147], [173], and [174].

The inspiration for this solution comes from the extensive literature on demand

forecasting, where this so-called multi-model specification is usually favoured for

short-term predictions (see, for example, References [175–177]).

Weron and Misiorek in [170] consider simple time series models, namely ARMA

and ARMAX processes, to forecast market clearing prices in the Californian Power

Exchange. The modelling was implemented separately across the hours, resulting in

better forecasts compared to the single ARIMA specification for all hours proposed

by Contreras et al. in [162]. A similar conclusion is reached in the study described

earlier by Misiorek et al. in [171]. The mixed model by Garćıa-Martos et al. in [161]

described above, where each hour is modelled separately, has a better accuracy

than those by Contreras et al. in [162] and Conejo, Plazas et al. in [160], where

all hours are modelled together. The results in the above-mentioned work [159] by

Cuaresma et al. also showed that modelling each hour of the day separately brings

a significant improvement compared to modelling the whole time series.

3.3.2 Forecasting Balancing Market Prices

As mentioned at the start of Section 3.3, the literature on balancing market price

forecasting is very limited. Moreover, many of the works touching upon this topic

concentrate only on forecast horizons of a few hours and after the clearing of the

day-ahead market. In many cases, time-series-based models are borrowed from

the literature on day-ahead price forecasting and adapted to the balancing market

framework. Following the classification used by Klæboe et al. in [178], balancing

price forecasting methods can generally be divided into two types: those that

model the future balancing state (that is, whether the system will be long, short,

or balanced) explicitly and those that do not include state information or do so

implicitly. Many authors have pointed out the difficulty to forecast balancing

market prices, especially when issuing predictions for the next day. In their review
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of price forecasting statistical models [140], Aggarwal et al. observed that models

for spot price forecasting generally achieve higher accuracy levels compared to those

for balancing price forecasting.

A neural-network-based method is developed by Ma et al. in [179] to forecast

day-ahead and real-time (i.e. balancing market) LMPs in the PJM and New Eng-

land markets in the USA. The model consists of multilayer perceptron networks

using the Decomposed Extend Kalman Filter. Since real-time prices are heavily

affected by market congestions, a heuristic method is also developed to capture

system transmission outages using published information on future outages. Real-

time prices are forecast before and after the day-ahead market is cleared using

two different neural networks. Results from the second network are more accurate,

indicating that information from the cleared day-ahead market can improve bal-

ancing market forecasting. The authors observe that accurate predictions of these

prices are hard due to their strong dependence on many unforeseeable factors, such

as real-time demands, system operations, errors in demand or weather forecasting

and behaviours of market participants.

Olsson and Söder present in [180] a model for the generation of balancing market

price scenarios in the Nordic market. The simulated scenarios are used to construct

scenario trees for trading tools which consider uncertainties based on stochastic

optimisation. The price forecasting model is based on SARIMA and discrete non-

time homogeneous Markov processes. Prices for upward and downward regulation

are treated separately, and the assumption is made that these prices are constrained

by the spot (i.e. day-ahead) price. Although not explicitly stated in the paper,

this seems to imply that there is knowledge of day-ahead prices when forecasting

balancing market prices; in other words, balancing prices are forecast after the day-

ahead market closure. The authors observe that factors affecting the prices are the

level of water in hydro systems, the market structure, and the demand for real-time

balancing power (i.e. the imbalance volume). This demand, in turn, depends on

unforeseen events in the system (e.g. production unit outages) and forecast errors
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(e.g. wind power production, load, and temperature).

In a related work [181], Brolin and Söder extend the applicability of the previous

model and improve the performance of the price simulations by including exogenous

variables in the model. The probabilistic price model proposed in this paper is

based on non-linear price series processes and uses day-ahead prices and real-time

balancing demands as input variables. Again, the forecasts are issued after day-

ahead market prices are published.

Jaehnert et al. develop a method in [182] to forecast balancing prices in south-

ern Norway in order to investigate the use of interconnections for the trading of

regulating power. The model takes into account the regulating volume and is split

into a long-term and a short-term part. The long-term model describes the price-

volume dependence in the balancing market and is based on the statistical model

developed by Skytte in [183], although price difference is modelled here (instead

of the balancing price). It includes a deterministic and a stochastic part and the

three different states of upward, downward and no regulation are modelled sepa-

rately. The deterministic part is based on linear regression, while the stochastic

part is modelled by a normal distribution in the case of no regulation, and by the

Extreme Value distribution in the upward and downward regulation cases. A short-

term model based on the SARIMA process is then used to forecast the regulating

states and generate volume scenarios in the next 48 hours. Given the forecast reg-

ulating states and volume scenarios, the price difference is finally estimated based

on the statistical relationship found in the long-term model.

Ji et al. analyse the PJM 5-bus system in [184] and observe that the main

challenge in forecasting real-time LMPs stems from the electricity prices being

location dependent. Determining the LMPs then requires the optimisation of the

power flow conditional on several transmission and generation constraints. A prob-

abilistic technique is proposed to forecast real-time prices for forecast horizons of

6-8 hours. Prices are modelled as a time non-homogeneous Markov chain and a

Monte Carlo technique is used to estimate transition probabilities, based on which
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the future price distribution is computed. The technique is compared against two

benchmarks: a deterministic baseline using the mean value of load to compute

price trajectories and an ANN with two hidden layers. The proposed technique

is the most accurate on average over the five buses, although the neural network

performs better in the bus with the least spiky prices.

A stochastic programming model is developed by Boomsma et al. in [185] to

analyse the potential of coordinated bidding for market participation trading in

sequential markets, namely the Nordic day-ahead and balancing markets. Within

this work, a method for the generation of market price scenarios is formulated.

First, autoregressive models are fitted to day-ahead and balancing prices, which

are described by a SARIMA process and an ARMAX process with spot prices

as exogenous variables, respectively. Then, scenario tree sampling and reduction

is used to obtain spot price scenario paths and balancing price scenario values.

Balancing price forecasting, however, is developed only for 1-hour ahead horizons,

and cleared day-ahead prices are used as an input to the forecasting model.

To the best of our knowledge, the survey by Klæboe et al. in [178] constitutes

the only review of time-series-based methods for forecasting of balancing market

prices. Five previously published (and in some cases extended) models are bench-

marked for day-ahead point and interval forecasts. In fact, rather than the bal-

ancing market price, the models are developed here to predict the price difference

(called “balancing penalty” in the paper). The analysed models are:

• an ARMA(1,1) model based on the approach used by Jaehnert et al. in [182];

• an ARX model based on that proposed by Boomsma et al. in [185] using

current and past values of the day-ahead price as input variable;

• a regime-switching autoregressive model (ARM) based on that developed by

Olsson and Söder in [180], with the Markov model that determines the switch

being hour-specific rather than duration-dependent like in the original work;

• a regression model (EXO) based on that presented by Jaehnert et al. in [182]
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using the balancing volume, the day-ahead price, and the overall power pro-

duction in the zone as regression variables; and

• a similar-day (näıve) forecast based on that defined by Conejo et al. in [150].

The ARMA and ARX models forecast the price directly, with the balancing market

state being defined implicitly. The ARM and EXO models, on the other hand,

use explicit information on the balancing state. The study focuses on the Nord

Pool NO2 price zone in Norway and a 13-week period is used for out-of-sample

verification. The results for the point forecasts show that all four advanced models

had a similar performance and provided better forecasts than the näıve model in all

weeks except two. More interestingly, however, the authors observe that the average

errors from these models are of the same magnitude as those that would be obtained

from a constant forecast of the price difference equal to zero. This suggests that the

information available before the day-ahead market closure is already reflected in the

day-ahead prices, thus negating the value of generating forecasts of balancing prices

at all. Indeed, these are issued based on the same a priori knowledge. The results

for the probabilistic forecasts show that models without an explicit formulation

of the balancing market state tended to overestimate the variance and therefore

produced interval forecasts that are too wide. On the other hand, models including

the balancing market state information explicitly reflected the distribution more

closely and produced better interval forecasts. The authors conclude by stating

that “it is hard to predict the balancing market before the closure of the day-

ahead market” and recommend using models with balancing state information for

probabilistic forecasting.

The forecasting of imbalance prices in the framework of day-ahead energy trad-

ing is considered by Jónsson et al. in [186], who propose an approach to predict

the price difference (called “imbalance penalties” in the paper) in the Nord Pool

market. Due to the dual pricing scheme adopted in the market for regulating

power, the net balance of the system (i.e. the imbalance direction) induces a

regime-switching behaviour in the prices depending on whether the system is in
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up- or down-regulation. Consequently, the proposed forecasting approach consists

of two parts: the estimation of the probability of the imbalance direction and the

forecasting of the penalties conditional on the imbalance direction. Holt-Winters

(exponential smoothing) models with a daily seasonal cycle are used to model both

variables, and the two predictions are then combined with the law of total expec-

tation to yield the expected imbalance costs. The exponential smoothing models

are employed either in their standard formulation or conditioned on a number of

exogenous variables, namely forecasts of day-ahead price, system load, and wind

power penetration. The models are fitted on the whole time series, resulting in the

estimation of one set of parameters for each model. Their performance is evaluated

on a two-year period and they are found to outperform the climatology benchmark

by a substantial margin.

A method based on hidden Markov models (HMM) is presented by Dimoulkas

et al. in [187] to forecast balancing market volumes and prices 12-36 hours ahead.

The focus again is on the Nordic market and the forecast variable is the price

difference (called “BM premium” in the paper). Two separate models are trained

for up- and down-regulation on the one-year data with a moving window approach

and a forward-backward algorithms based on that by Kouemou and Dymarski

in [188] is employed to find similar patterns in historical data and use them as

forecasts. This model is compared against the Markov-SARIMA one developed by

Olsson and Söder in [180], with results showing a slightly better accuracy than the

former. Nevertheless, the authors observe that the scores obtained are still quite

poor and the models are unable to capture well the balancing market movements,

and conclude that factors influencing the BM prices need to be identified in further

research.

To summarise, the review of the literature on day-ahead price forecasting has

highlighted that CI and statistical models are the two most popular approaches.

Due to the limited amount of historical data in the present study, CI techniques

were discarded and the focus was restricted to statistical models. Within this class,
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ARMAX models tend to achieve the best performance, and modelling each load

period separately improves the forecast accuracy in comparison to having a single

specification for all hours. On the other hand, the literature on imbalance price

forecasting for the next day is very limited and mostly concerned with Scandinavian

markets, and the evidence for one class of models outperforming the others is scarce.

As will be discussed extensively in Chapter 4, the interest is primarily in fore-

casting the sign of the difference between day-ahead and balancing market prices,

rather than their value. In single-price balancing markets, this information can

normally be deduced directly from the balancing state, as up-regulation (down-

regulation) corresponds to a positive (negative) price difference (see Section 2.1.3).

However, one of the highlights from the analyses performed on the I-SEM market

data in Section 2.2.2 was the significant occurrence of price anomalies in the bal-

ancing market. During these instances, the sign of price difference would not be

consistent with the direction of the system imbalance.

In light of this, two alternative approaches are developed within this work to

forecast the sign of price difference. In one, the system imbalance is modelled as a

binomial distribution and forecast with logistic regression models; the sign of price

difference is then deduced directly from this forecast. In the other approach, a new

method is proposed, where day-ahead and balancing market prices are forecast

individually and these predictions are then combined to estimate the sign of price

difference. ARMAX processes are chosen to forecast day-ahead and imbalance

prices, with the multi-model approach being implemented to model the time series.

The methodology used in the two approaches will be presented and explained in

detail in Section 4.3.

3.4 Short-term Value Forecasting of Wind Power

The structure and operation of wholesale electricity markets were described in

Chapter 2, explaining that participants are required to establish their position in

the day-ahead market to sell their production. As discussed in Section 3.2, short-
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term wind power forecasting represents one of the fundamental tools to enable the

participation of wind power producers in electricity markets where the penetration

of stochastic renewable sources is significant. In addition, knowledge of future

market conditions can be beneficial to participants and enables them to trade

strategically.

The most basic approach to trading consists of directly bidding the point fore-

casts of wind generation, and will be referred to as the baseline strategy. Currently,

this is the common practice among most utilities in Europe and USA, as found by

Möhrlen et al. in [25]. However, a more accurate forecast does not necessarily

translate to a higher profit, as demonstrated by Pinson in [189], particularly in

single-price imbalance markets where energy deviations can receive a more prof-

itable price if they help bringing the system back to balance. Referring to the types

of goodness defined by Murphy in [27], rather than a forecast of higher quality, wind

energy traders are mostly interested in prediction methods that can maximise their

benefits; that is, forecasts of higher value. For example, wind farm operators might

want to apply a trading strategy that reflects their target trade-off between return

and risk. However, advanced offering strategies tailored to the end-user’s needs

cannot be designed using wind power point forecasts only. For this purpose, it is

necessary to move to a probabilistic framework and/or to integrate information on

future market conditions (such as the direction of the system imbalance or electric-

ity prices) in the decision-making process. Moreover, the participant’s risk attitude

should be modelled appropriately and included in the strategy. The definition of

(acceptable and unacceptable) risks is provided by Artzner et al. in [190], where

a framework is presented for the analysis and implementation of measures of risk.

Risk attitudes for individuals are presented by Clemen in [191]; the author also

discusses various approaches to representing preferences in decision-analysis that

incorporate such attitudes. The work by Conejo et al. [192] provides an insight

into risk management and the modelling of the uncertainties which affect trading

decisions; risk measures such as variance, expected shortage, value-at-risk and con-
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ditional value-at-risk are defined, and risk-neutral and risk-averse decision making

are discussed in the context of stochastic problems. The market participants’ at-

titudes towards risk and the measures relevant to this work will be presented in

detail in Section 4.1.3.

The participation of wind energy in electricity markets and strategic bidding

in the day-ahead market has been investigated with growing interest in recent

years, with studies considering various power systems and prediction methodolo-

gies. However, the majority of the published works concentrates on markets adopt-

ing a dual-price imbalance settlement. Strategies developed for this type of markets

account for the fact that energy deviations cannot lead to an extra profit; indeed,

as discussed in Section 2.1.3, the participant’s imbalances are paid the day-ahead

price if they help to balance the system, otherwise they are penalised. A selection

of the most cited works on this subject is reviewed next.

3.4.1 Dual-price Markets

The work by Pinson et al. in [28] is one of the first to show that the integration

of uncertainty information in the decision-making process can increase the market

value of wind power forecasts. The authors propose a revenue-maximising strategy

in a stochastic optimisation framework where the optimal bid is derived based on

probabilistic forecasts of wind power, quarterly or annual average values of prices,

and a loss function designed heuristically to model the sensitivity of the market

participant to penalties. In the paper, the participation of a wind farm in the Dutch

market is simulated over one year. The results show that the revenue obtained with

the proposed strategy is higher than that obtained by only using point forecasts of

wind generation, and that further improvements can be obtained by increasing the

resolution of the price forecasts. Interestingly, the authors observe that reducing

the amount of energy in imbalance does not increase the participant’s revenue, and

in fact, the opposite is true.

The approach used by Pinson et al. in [28] is generalised by Zugno et al.
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in [193] by including probabilistic rather than point forecasts of market prices.

First, the revenue maximising strategy referred to as “Expected Utility Maximiza-

tion” (EUM) is formulated by revisiting the “optimal quantile” strategy derived by

Bremnes in [123]. The performance of the EUM strategy is tested by simulating

the participation of a wind farm portfolio in the Nord Pool market over a 10-month

period. The proposed strategy performs better than the baseline in terms of rev-

enue but is quite volatile, with the participant incurring large isolated losses when

price forecasts are inaccurate. Hence, the constraining of bids is proposed, whereby

the bid is limited within a certain interval around the point forecast of wind power.

With this approach, extreme bid values and consequently large imbalances — which

could be penalised by the system operator or violate the price-taker assumption

— are avoided. Moreover, the reduced level of expected imbalance results in a

decreased exposure to the risk of significant losses for the market participant. It

should be noted, however, that while the EUM bid is derived using the probabilistic

forecasts of wind power and market prices, the constrained strategies do not use the

uncertainty information associated with those forecasts, with the allowed interval

being a function of the point forecast of wind power only. Tested over the same

10 months, the constrained strategies outperform both the point forecast and the

EUM bids, showing that setting a constraint on the expected deviations can effec-

tively control the risk of severe losses and reduce the impact of forecasting errors

on long-term revenues. Nevertheless, the benefits introduced by these advanced

strategies are relatively small: the revenue obtained with the best of the proposed

strategies is 0.37% higher than that obtained employing the baseline strategy; put

into context, a perfect wind power forecast would have increased the revenue by

4.32%.

A bidding strategy aimed at minimising the imbalance costs is formulated by

Matevosyan and Söder in [194] as a stochastic optimisation problem. A large num-

ber of scenarios are generated for wind power generation and spot and imbalance

prices, and mixed integer programming is employed to find the optimal bid. The
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proposed strategy is tested in the Nordic power market over six and 29 days and

in both cases, the profit yielded is higher than or equal to that obtained from the

baseline strategy.

A computationally simpler alternative to stochastic optimisation is proposed

by Dent et al. in [195], where the analytical expressions to determine the optimal

day-ahead market bids for risk-neutral generators are derived. For the general case

of unknown prices and wind generation, a sloped bid curve that reflects the oppor-

tunity cost of trading in the day-ahead rather than real-time market is optimal; in

other words, the optimal quantity is a function of the ratio of the expected short

and long penalties (i.e. the price differences). The closed form methods outlined

here require only the specification of the expected values of the random variables,

rather than their full joint distributions or a scenario tree, and numerical methods

are sufficient to solve the optimisation problem. The proposed strategy is applied

to the British market but results from the example are very limited and a com-

parison with alternative approaches is not offered, impeding a critical appraisal of

the outcomes. The risk-averse case is also investigated in the same work but only

under the assumption of known spot prices, which is an unrealistic condition in

day-ahead trading.

Deterministic and stochastic offering strategies are empirically assessed by Rahi-

miyan et al. in [196] by simulating the participation of a 100-MW wind farm in the

Iberian Peninsula electricity market on an out-of-sample data set of four months

(one month per season). The stochastic processes are described using seasonal

ARIMA models and the strategies include the possibility of trading energy in the

intraday (“adjustment” in the paper) market and consider risk management. The

results show that in terms of expected profit and profit volatility, strategies based

on a stochastic approach generally outperform the deterministic cases. The lat-

ter, however, are found to be more conservative overall, leading to higher values

of the conditional value at risk (CVaR) (its definition and formulation are given

in Section 4.1.3). Moreover, the performance of the stochastic programming ap-
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proaches is significantly impacted by how accurately the market-related processes

are modelled. Finally, the authors point out that the possibility of trading in the

adjustment market would have beneficial effects not only for wind producers, who

would increase their profit and the total energy traded, but also for the system as

a whole, thanks to the reduction of wind energy deviation.

3.4.2 Single-price Markets

As mentioned earlier, strategic bidding in markets with a single-price imbalance

settlement has received very limited attention. The optimal offering strategy for

a risk-neutral producer in this type of markets is derived by Mazzi and Pinson

in [197]. The solution — sometimes referred to as the Zero/Max strategy — is

trivial and completely decoupled from the forecast wind power production. In fact,

the bid maximising the expected revenue is price-inelastic and equal either to zero

or to the whole wind farm capacity, depending only on the sign of the expected

difference between imbalance and day-ahead prices. The same solution for a risk-

averse participant is found by Morales et al. in [40], where the authors present also

a risk-averse strategy that aims at maximising the CVaR rather than the expected

profit but only for the dual-price case. Although mathematically correct, the profit-

maximising Zero/Max strategy is hardly employable in practice for a number of

reasons. Firstly, for a wind farm or a portfolio of wind farms of significant size,

this strategy would cause large imbalances on the system which would inevitably

impact the formation of prices, in particular those for the settlement of balancing

actions. This way, prices would become endogenous variables, thus violating the

price-taker assumption whereby the participant is too small to affect prices, and

making the model of the market inconsistent. Secondly, to achieve the optimal

scheduling of all units, bid quantities are expected to match the actual delivery as

closely as possible; frequent and systematic large deviations caused by a market

player would be unwanted by the system operator, and could lead to warnings and

penalties from the market authorities. Finally, the potentially very large losses on
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a single contract deriving from a wrong forecast of the sign of the price difference

could cause financial problems to the participant.

Bidding strategies for participants with different levels of risk aversion are de-

veloped by Botterud et al. in [198], where the trading of wind energy in U.S.

electricity markets with locational marginal prices is investigated. Uncertainties

in wind power generation and prices are considered. Kernel density estimation is

used to produce the probabilistic wind power forecast, while prices are forecast

with rather basic models where weekdays and weekend days are modelled sepa-

rately and a 4-week rolling window is used to estimate the necessary parameters.

Expected profit, conditional value at risk, or utility function are then chosen as the

decision criterion to reflect the risk attitude of the trader. The resulting optimiza-

tion problem is solved using a generalised reduced gradient algorithm. The results

from the four-month case study show that bids are lower under risk aversion, a

tendency amplified with increasing volatility in imbalance prices. This is explained

by the day-ahead prices being on average higher than the imbalance (here called

“real time”) prices and due to self-curtailment being allowed when imbalance prices

become negative. Without a deviation penalty, the bids for profit-maximising and

risk-taking strategies are directly defined by the difference between forecast im-

balance and day-ahead prices and are independent of the wind power forecast, in

accordance with Mazzi and Pinson in [197]. When a deviation penalty is applied,

on the other hand, the optimal bids tend towards the average forecast wind power.

The results, however, show that the baseline strategy not only yields similar results

in terms of total profit (1.1% less than the profit maximising strategy), but also

gives significantly lower risk exposure compared to any of the advanced strategies.

The authors attribute the poor outcome from the latter to the inaccuracies in the

price forecasts, although information on their performance are limited to a few

summary statistics.

To address the issues related with the practical implementability of the Zero/Max

strategy, Browell in [199] proposes a number of risk-constrained strategies based
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on a probabilistic assessment of the sign of the net system imbalance (“system

length” in the paper). Here, the forecast wind power generation is adjusted by a

certain amount to exploit favourable imbalance prices while limiting the size of the

expected imbalance. The adjustment factor is fixed a priori based on the partici-

pant’s aversion to risk and the direction of the adjustment depends on whether the

forecast probability of the system length is higher or lower than a critical value.

This critical value is in turn a function of the point forecasts of day-ahead and

imbalance prices obtained with ARMAX models. The proposed strategies were

evaluated over a six-month period using data from the GB electricity market. The

results show that when the allowed adjustments are modest, some strategies are

able to increase the revenue while simultaneously reducing the participant’s risk.

Moreover, all strategies perform better when coupled with advanced rather than

simple price forecasting models and can generate more revenue than the baseline

strategy.

The attention on forecasting the value of wind energy for operators who trade

in the day-ahead market has grown over the recent years. Nevertheless, the works

that address electricity markets adopting a single-price imbalance settlement are

few, and it is the objective of this research to advance the discussion on this subject.

The profit-maximising strategy proposed by Mazzi and Pinson in [197] does

not account for risk aversion and is unfeasible in practice. The benefits obtained

through the advanced strategies developed by Botterud et al. in [198] are rela-

tively small compared to the baseline strategy, making it difficult to justify the

adoption of such a complex approach. In some cases, the strategies proposed by

Browell in [199] achieve results valuable to wind farm operators in terms of revenue

and risk exposure. However, while the methodology is developed in a probabilistic

framework, uncertainties in future market conditions are not fully integrated, as

only point predictions of prices are used and adjustment factors are fixed before-

hand.

In the present work, novel probabilistic value forecasting models are developed
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for wind farms operating in electricity markets with single-imbalance price settle-

ment. Value is measured in terms of revenue and exposure to risk, and the bidding

strategies are designed for wind farms whose size is small relative to the power sys-

tem so that their practical implementability is guaranteed. The proposed models

combine probabilistic short-term predictions of wind power and of relevant electric-

ity market quantities. Offers are then formulated to reflect the participant’s risk

profile, conditional on the uncertainty in future wind power generation and elec-

tricity market states. The objective is to enable wind farm operators to improve

the value of their energy generation by increasing the revenue while simultaneously

controlling their exposure to risk.
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Chapter 4

Methodology

This Chapter concentrates on the methodology used to develop the value forecast-

ing models for day-ahead trading of wind energy in markets adopting a single-

imbalance pricing scheme.

The proposed models employ forecast information on wind power generation

and electricity market conditions under a fully probabilistic framework to increase

the producer’s revenue while controlling its risk exposure. The flowchart in Fig-

ure 4.1 illustrates the steps involved in the methodology, which are discussed in

detail in the following Sections. First, the problem of trading wind energy in the

day-ahead and balancing markets is outlined in Section 4.1. Section 4.2 describes

the main characteristics of the wind power forecasts available for the wind farm

under study. Then, the two alternative approaches developed to forecast the sign of

price difference are explained in Section 4.3. Finally, the different bidding strategies

are formulated in Section 4.4.

4.1 Problem Formulation

The aim of this Section is to present the problem of trading wind energy in markets

with a single imbalance pricing scheme. The assumptions made in this study are

outlined and justified in Section 4.1.1. The revenue for a wind power producer is

derived in Section 4.1.2 and the rationale behind strategic bidding explained. The
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Figure 4.1: Flowchart of the methodology.

risk attitudes of market participants and measures of risk are then discussed in

Section 4.1.3.

4.1.1 Assumptions

In this study, the following assumptions are made:

a. The participant trades only in the day-ahead and balancing markets. Intra-

day markets give stochastic producers the opportunity to refine their con-

tracted position taking advantage of forecast information issued closer to

delivery time and thus generally more accurate. However, these markets are

often characterised by very low liquidity (see the work by Weber in [35] as well

as the analysis of markets’ liquidity in Ireland in Section 2.2.2.1) and there-

fore the possibility of taking any corrective action in these trading platforms
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is discarded here.

b. The participant is considered as a price-taker, meaning that market prices

are not impacted by its bidding strategies. For this assumption to hold, the

strategies developed in this work are aimed at wind farms whose size is small

in comparison to the average system imbalance volume.

c. Traders cannot offer above the wind farm’s installed capacity Emax. This is

a common constraint in most markets.

d. Wind energy is bid at zero marginal cost. This is common practice for wind

farm operators since they don’t have short-run marginal costs.

e. Support mechanisms for renewable electricity such as feed-in tariffs, power

purchase agreement (PPA)1, or price premia are not considered in the revenue

calculation, so that wind energy is treated like any other type of energy.

f. Wind power producers do not apply any control strategy on their own gen-

eration (for example, self-curtailment, storage). This assumption is made to

focus on the value of forecasts in the market, where value here is intended as

the benefits resulting from the use of predictions.

4.1.2 Revenue

For each trading period t+h, a wind power producer contracts at time t an amount

of energy EDAM
t+h in the day-ahead market, which is paid at the day-ahead (or spot)

price πDAMt+h . At the time of delivery, the energy actually generated is Et+h and if

this quantity differs from the contracted one, this results in an energy imbalance:

dt+h = EDAM
t+h − Et+h (4.1)

1In Ireland, this is a contract under the Renewable Energy Feed-in Tariff (REFIT) under
which the supplier agrees to purchase all of the output from the generator [200].
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In a one-price balancing market, as explained in Section 2.1.3, this deviation is

priced at the imbalance price πimbt+h independently of its direction. The revenue for

the producer for trading period t+ h then is:

Rt+h = EDAM
t+h · πDAMt+h −

(
EDAM
t+h − Et+h

)
· πimbt+h (4.2)

where the first term on the right-hand side is the day-ahead market revenue and the

second term is the balancing market revenue. This equation can be reformulated to

isolate the revenue from the actual energy generated and the costs due to energy

imbalances, yielding:

Rt+h = Et+h · πDAMt+h −
(
EDAM
t+h − Et+h

) (
πimbt+h − πDAMt+h

)
(4.3)

The first term on the right-hand side is called the perfect forecast revenue, since

this would be the revenue obtained having perfect predictions of the wind energy

generation. The difference between imbalance and day-ahead prices was defined in

Section 2.2.2.3 as price difference, although terms like “price penalty” or “balancing

premium” are also used in the literature (see Section 3.3.2). Let us then define the

last term in Equation (4.3) as the balancing costs :

Ct+h =
(
EDAM
t+h − Et+h

) (
πimbt+h − πDAMt+h

)
(4.4)

so that the revenue now writes:

Rt+h = Et+h · πDAMt+h − Ct+h (4.5)

From this last equation, it is clear that to maximise the revenue, balancing costs

have to be minimised.

It is important at this point to underline that in a single-price market, balancing

costs can be positive or negative. Indeed, looking at Equation (4.4), both factors in

the product can have either a positive or negative sign. As a result, the producer’s
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revenue can be higher than the perfect forecast one if the energy imbalance has

the opposite sign of the price difference. This is represented visually in Figure 4.2,

showing that a producer’s revenue decreases when the signs of price difference and

energy imbalance are the same, but increases when the two signs are opposite.

Figure 4.2: Balancing costs can be positive, hence resulting in a profit loss (red),
when the signs of price difference and energy imbalance are the same, or negative,
resulting in an extra profit (green), when the signs are opposite.

The expected revenue, also referred to as expected monetary value (EMV) in

decision analysis [40], is found by taking the expectation E [·] of Equation (4.3).

Under the assumptions made in the previous Section 4.1.1, it results:

E
[
R̃t+h

]
= E

[
Ẽt+h

]
· E
[
π̃DAMt+h

]
−
(
EDAM
t+h − E

[
Ẽt+h

])
· E
[
π̃imbt+h − π̃DAMt+h

]
(4.6)

where the ·̃ accent indicates a random variable. Note that the first term on the right-

hand side is outside the control of the producer and can be regarded as a “fatal”

component. In fact, the only decision variable in Equation (4.6) is the energy

contracted at the day-ahead market EDAM
t+h since prices are exogenous variables

under the price-taker assumption.

If the objective of the producer then is to increase the expected revenue, the
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expected balancing costs

E
[
C̃t+h

]
=
(
EDAM
t+h − E

[
Ẽt+h

])
· E
[
π̃imbt+h − π̃DAMt+h

]
=

= E
[
d̃t+h

]
· E
[
π̃imbt+h − π̃DAMt+h

] (4.7)

ought to be minimised. In particular:

• when E
[
π̃imbt+h − π̃DAMt+h

]
> 0, the producer should bid less than the expected

power generation, so that E
[
d̃t+h

]
< 0;

• when E
[
π̃imbt+h − π̃DAMt+h

]
< 0, the producer should bid more than the expected

power generation, so that E
[
d̃t+h

]
> 0; and

• when E
[
π̃imbt+h − π̃DAMt+h

]
= 0, any bid yields the same expected revenue.

This highlights that the two variables of primary relevance for a producer who

wants to bid strategically are the expected wind power generation and the sign of

the expected price difference.

Two alternative approaches to estimate the sign of the price difference will be

investigated in Section 4.3, and the term market quantity forecast will be used to

refer to either of these approaches. In the first one, the probability distribution of

the difference between imbalance and day-ahead prices is forecast. The methodol-

ogy is presented in detail in Section 4.3.1. Writing the probability at time t of the

price difference being positive on trading period t+ h as:

δ̂t+h|t = Pt
[
πimbt+h − πDAMt+h > 0

]
(4.8)

where δ̂t+h|t ∈ [0, 1], it follows that:

• if δ̂t+h|t > 0.5, the price difference is forecast positive, i.e. E
[
π̃imbt+h − π̃DAMt+h

]
>

0;

• if δ̂t+h|t < 0.5, the price difference is forecast negative, i.e. E
[
π̃imbt+h − π̃DAMt+h

]
<

0; and
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• if δ̂t+h|t = 0.5, the price difference is forecast null, i.e. E
[
π̃imbt+h − π̃DAMt+h

]
= 0.

In the second approach, the sign of the net imbalance volume of the system

NIVt+h is forecast. Hereinafter, this will also be referred to as the imbalance

sign. The methodology is presented in detail in Section 4.3.2. As discussed in

Section 2.1.3, the imbalance price is expected to be higher than the day-ahead

price when the system is short, and lower when the system is long. Writing the

probability at time t of the system being short on trading period t+ h as:

γ̂t+h|t = Pt [NIVt+h > 0] (4.9)

where γ̂t+h|t ∈ [0, 1], it follows that:

• if γ̂t+h|t > 0.5, the system is forecast short, hence E
[
π̃imbt+h − π̃DAMt+h

]
> 0;

• if γ̂t+h|t < 0.5, the system is forecast long, hence E
[
π̃imbt+h − π̃DAMt+h

]
< 0; and

• if γ̂t+h|t = 0.5, the system is forecast in balance, hence E
[
π̃imbt+h − π̃DAMt+h

]
= 0.

4.1.3 Modelling Risk Attitudes

The attitudes of individuals towards risk are generally categorised in [191]:

• risk-averse if the individual is afraid of risk;

• risk-taking if he/she is seeking it; and

• risk-neutral if he/she is indifferent to it.

If expected values are used to make decisions, only the average outcome is con-

sidered while ignoring the range of possible values. The decision maker ignores

the risk aspects associated with these possible alternatives and consequently is risk

neutral, as explained by Clemen in [191]. Therefore, a producer who wishes to

maximise their long-term expected revenue (i.e. the EMV in Equation (4.6)) while

disregarding possible large balancing costs in the short term is considered to be

risk-neutral.
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Risk-averse producers, on the other hand, consider the variance of revenues or

how far the revenue can decrease below the expected value. The objective sought is

different from the maximisation of the expected revenue. Commonly, the objective

function in this case penalises the lowest revenues, that is the left tail of the revenue

distribution. The measures most commonly used to quantify risk in trading are

the Value at Risk (VaR) and the Conditional Value at Risk (CVaR), also known

as expected shortfall [40]. For a confidence level α ∈ [0, 1], the V aR1−α is the is the

(1− α)-quantile of the empirical distribution of revenue over the period:

V aR1−α(R̃) = max
{
R ∈ S : P

[
R̃ < R

]
≤ 1− α

}
(4.10)

where P [·] indicates the probability and S is the support of the distribution. In

other words, the V aR1−α is a threshold value such that there is a (1−α) probability

that the revenue will be lower than that threshold.

The CV aR1−α is the expected value of the revenues that are lower than or equal

to V aR1−α:

CV aR1−α(R̃) = E
[
R̃|R̃ ≤ V aR1−α(R̃)

]
=

=

∫ 1−α

0

V aRxdx

(4.11)

In other words, this metric gives the expected revenue in the worst (1 − α) × 100

percent of cases.

When evaluating risk-averse trading strategies, CVaR is generally preferred to

VaR because it accounts for heavy tails in the probability distribution and is a

“coherent” risk measure, as demonstrated by Artzner et al. in [190]. A possible

objective function for a risk-averse producer is the maximisation of the CVaR1−α.

Note that if α = 0, this coincides with the risk-neutral case, while increasing values

of α correspond to higher aversion to risk.
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4.2. Wind Power Forecasts

4.2 Wind Power Forecasts

The wind farm under study is located in Ireland on complex terrain. Day-ahead

forecasts of wind power generation were provided by an anonymous wind farm

operator. Four distinct sets of predictions are available: three consist of point

forecasts only, and one of point and 80% interval forecasts (i.e. the 10th and 90th

quantiles). All forecasts are at the wind farm level with 30-minute resolution,

and were issued at 09:00 on the day before realisation. Owing to confidentiality

restrictions, further information regarding the models cannot be discussed. The

accuracy of the point and interval forecasts will be evaluated in Section 5.1.

4.3 Market Quantity Forecasting

As discussed in Section 4.1.2, the financial obligations of market participants de-

pend on prices in both the day-ahead and balancing markets (cf. Equation (4.3)).

In fact, it is primarily the sign of the price difference that is relevant to the producer

in order to develop any advanced bidding strategy (cf. Equation (4.7)). In this

Section, the two alternative approaches developed to forecast the sign of the price

difference are explained. The first approach, where the probability distribution of

price difference is derived from the individual forecasts of DAM and BM prices,

is presented in Section 4.3.1. The second approach, where the sign of the system

imbalance is directly forecast, is presented in Section 4.3.2.

The predictions generated with the methodologies explained in this Section

will serve as inputs for the bidding strategies presented in Section 4.4, where risk-

constrained trading of wind energy in the Irish market is investigated. In the

forecasting procedures developed next, the practical constraints of participating in

the day-ahead market (such as data availability and timing of bid submissions) are

considered. Recalling that in the I-SEM the day-ahead gate closure for trading

day D is at 11:00 on the previous day D–1, all models were fit in order to issue

the forecasts at 10:00 on the day before realisation. The information available for
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4.3. Market Quantity Forecasting

the estimation process includes historical data up to 10:00 of D–1 and day-ahead

predictions of relevant variables for trading day D.

The data available for the study cover approximately seven months of operation

of the Irish electricity market, from the 1st October 2018 to the 25th April 2019,

this period being the maximum available at the time. The data set includes:

• historical DAM prices and volumes;

• historical BM prices and volumes;

• observed and forecast demand in Ireland; and

• observed and forecast wind power generation in Ireland.

All the above time series have half-hourly resolution except the DAM prices, whose

values are hourly. To take advantage of the higher resolution of the other informa-

tion and because market settlement occurs on a half-hourly basis, the DAM price

series is discretized to this resolution, with the same value repeated for the two 30-

minute periods in each hour. The demand and wind power forecasts are predictions

issued at 09:00 for the next day and were obtained from an anonymous industry

partner. They consist of point forecasts for the demand, and point forecast and

10th and 90th quantiles for the wind power generation.

Data were split into training and test sets, with model estimation performed on

the former and out-of-sample evaluation on the latter. The initial training set covers

a four-month period from the 1st October 2018 to the 28th January 2019 included

(120 days, 58% of the total sample). The independent test set is almost three

months long, ranging from the 29th January to the 25th April 2019 (87 days, 42%

of the total sample). The partitions into training and test sets for the electricity

price and net imbalance volume data are shown in Figures 4.3 and 4.4, respectively.

We acknowledge that this partition is somewhat arbitrary and does not follow the

more commonly employed 80/20 ratio. However, no strict guidelines exist in this

regard and the minimum length of training and test sets can vary depending on

152



4.3. Market Quantity Forecasting

the total sample size and the forecast horizon of interest [42]. In the report on

recommended practices for the evaluation of forecasts [201] by the IEA Task 36,

the authors suggest a sample size of at least 90 days for an adequate evaluation.

Given this recommendation and the total size of the data available for this study,

the ratio discussed above was selected.

2018-10 2018-11 2018-12 2019-01 2019-02 2019-03 2019-04 2019-05
−400

−300

−200

−100

0

100

200

300

400

500

pr
ic

e
[€

/M
W

h
]

training set test set

BM price

DAM price

Figure 4.3: Training and test sets used for electricity price forecasting.

4.3.1 Electricity Prices Forecasting

The purpose of this Section is to explain the methodology developed to forecast the

sign of price difference, where day-ahead and balancing market prices are forecast

individually. First, the theoretical formulation of ARIMAX models is presented

in Section 4.3.1.1. Then, in Section 4.3.1.2, the implementation of these mod-

els to forecast day-ahead and balancing market prices is described. Finally, the

methodology used to combine the resulting quantile forecasts using the Monte

Carlo method to obtain a probabilistic forecast of the price difference is explained

in Section 4.3.1.3.
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Figure 4.4: Training and test sets used for imbalance sign forecasting.

4.3.1.1 ARIMAX models

Auto-Regressive Moving Average (ARMA) models are, together with exponential

smoothing, the most popular approaches to time series forecasting [42]. Moreover,

as highlighted in the literature review in Section 3.3, models based on ARMA

processes are very well established in electricity price forecasting. As the name

suggests, the distinguishing feature of AR-type models is their ability to describe

the autocorrelation in the data.

ARMA models are usually restricted to stationary data. Here, stationarity

means that the properties of the time series do not change over time. Then, if yt

is a stationary time series, the distribution of {yt, . . . , yt+h} does not depend on

t for all h. Such a time series will show a stable mean and constant variance. It

follows that time series with seasonality or trends are non-stationary. In these cases,

differencing — i.e. computing the difference between consecutive observations —

can remove the changes in the level of the variable values and stabilise the mean,

thus making the time series stationary. The differenced series can be written as:

y′t = yt − yt−1.
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Sometimes, it can be useful to perform seasonal differencing, whereby the difference

is calculated between an observation and the previous observation from the same

season:

y′t = yt − yt−S

where S is the number of seasons, i.e. the number of time periods until the sea-

sonal pattern repeats again. For example, this value is equal to 12 for a monthly

series with yearly periodicity, or 7 for a daily series with weekly periodicity. To

stabilise the variance of the series, mathematical transformations can be helpful,

with common choices being logarithmic and Box-Cox transformations [202].

The full Auto-Regressive Integrated Moving Average (ARIMA) model (where

integration is the reverse of differencing in this context) can be written as:

(1− φ1B − · · · − φpBp)(1−B)dyt = c+ (1 + θ1B + · · ·+ θqB
q)et (4.12)

and indicated as ARIMA(p, d, q), where p is the order of the autoregressive part,

d the number of first differencing, and q the order of the moving average part. In

the Equation:

• B is the backshift operator, defined so that Byt = yt−1;

• (1−φ1B−· · ·−φpBp) is the autoregressive part AR(p), consisting of a linear

combination of past values of the variable defined by parameters φ1, . . . , φp

2;

• (1+θ1B+· · ·+θqBq)et is the moving average partMA(q), using a combination

of past forecast errors et defined by parameters θ1, . . . , θq; and

• c = µ(1 − φ1 − · · · − φp), where µ is the mean of the differenced series

y′t = yt − yt−1.

It is also possible to model seasonal data through seasonal differencing with

2In fact, an AR(p) model can be seen as a multiple regression where lagged values of yt are
the predictors.
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the so-called Seasonal ARIMA (or SARIMA) models, which are defined by simply

adding seasonal terms to an ARIMA model. The general notation in this case is

ARIMA(p, d, q)× (P,D,Q)S, where:

• the term (p, d, q) represents the order of the non-seasonal part;

• the term (P,D,Q)S represents the order of the seasonal part; and

• S is the number of seasons.

Therefore, the model equation will have the same form as Equation (4.12) but with

each term multiplied by its seasonal counterpart, namely:

• seasonal AR(P ): 1− Φ1B
S − · · · − ΦPB

PS;

• seasonal MA(Q): 1−Θ1B
S + · · ·+ ΘQB

QS;

• seasonal differencing: (1−BS)D.

Model selection and estimation

In this work, the model order for each time series will be selected using the forecast

package [203] in R with a procedure based on the Hyndman-Khandakar algorithm

described in [203]. To determine the value of d (that is, whether differencing is

needed or not) objectively, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit

root test [204] is used. In this test, evidence is sought to reject the null hypothesis

of the data being stationary. The values of p and q are then selected by minimising

a chosen Information Criterion. The most widely used is the Akaike’s Information

Criterion (AIC) [205], which can be written as:

AIC = −2 log(L) + 2(p+ q + k + 1) (4.13)

where log(L) is the log likelihood of the data — i.e. the logarithm of the probability

that the observed data come from the estimated model — and k is 0 if c = 0 (cf.

Equation (4.12)) and 1 otherwise. The general idea is that the fit of the model (L)
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is penalised with the number of parameters that need to be estimated to prevent

over-fitting. However, the AIC can be misleading if the sample size is small and

the use of the bias-corrected version of the AIC is recommended (see for example

the book [41] by Walpole et al.). This is defined as:

AICc = AIC +
2(k + 2)(k + 3)

(n− k − 3)
(4.14)

where n is the number of observations used for estimation. In this work, given the

limited length of data available, the model order is selected by minimising the AICc.

The Hyndman-Khandakar algorithm then considers different possible combinations

of p and q by varying their value in a stepwise search until the AICc can no longer

be reduced. Once the model order is identified, the model parameters are estimated

via the maximum likelihood estimation (MLE) technique. In practice, R finds the

parameters that maximise the log likelihood function, given the selected values of

p, d and q.

Forecasting

To calculate an h-step ahead point forecast from an ARIMA model, the model

equation is expanded, t is replaced with t + h, future observations are replaced

with their forecasts, past errors with the observed residuals, and future errors with

zero. For example, let us consider an ARIMA(1, 1, 1) model with no constant

(c = 0):

(1− φ̂1B)(1−B)yt = (1 + θ̂1B)et

where φ̂1 and θ̂1 are the estimated parameters. The one-step ahead forecast then

is:

ŷt+1|t = (1 + φ̂1)yt − φ̂1yt−1 + θ̂1εt
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where εt is the residual at time t, i.e. the difference between the observed value

and the corresponding fitted value. The two-step forecast is:

ŷt+2|t = (1 + φ̂1)ŷt+1|t − φ̂1yt

and so on for any forecast horizon.

Under the assumption of uncorrelated and normally distributed residuals, one-

step prediction intervals are simply calculated as:

ŷt+1|t ± cσ̂

where σ̂ is the standard deviation of the residuals, and the coefficient c depends on

the coverage percentage of the interval (see Table 4.1 for some indicative values).

The calculation of multi-step prediction intervals is complicated and goes beyond

the scope of this work, and we refer to the book [206] from Brockwell and Davis

for the mathematical details. If either of the assumptions on the residuals does not

hold, then bootstrapping can be used to calculate the intervals [207].

Percentage Coefficients

99 2.58

95 1.96

90 1.64

80 1.26

70 1.04

50 0.67

Table 4.1: Coverage percentages of prediction intervals and associated coefficients
c for one-step forecasts.

The ARIMA models discussed above are time series models which allow the

inclusion of information from past values of the series. Regression models, on the

other hand, allow the inclusion of information from other relevant variables which

may affect the system that has to be predicted. By combining the features of

these two approaches, ARIMAX (or dynamic regression) models extend the purely
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time series models with information from exogenous variables. To facilitate their

mathematical formulation, a brief overview of regression models is presented first.

In a multiple linear regression model, the forecast variable y (also referred to

as regressand or dependent variable) is assumed to have a linear relationship with

a number of predictor variables x1, . . . , xm (also referred to as regressors, indepen-

dent, exogenous or explanatory variables):

yt = β0 + β1x1,t + · · ·+ βmxm,t + et (4.15)

where x1, . . . , xm are the m predictor variables, β0 is the intercept, β1, . . . , βm

are the coefficients (obtained via least square estimation) measuring the marginal

effects of the predictors, and et is the error. In these models, errors are assumed to

be white noise, that is: have zero mean, not be autocorrelated and not have any

correlation with the predictor variables.

In ARIMAX models, errors from the regression are allowed to be autocorrelated.

The error term in Equation (4.15) is assumed to follow an ARIMA(p, d, q) process

and is denoted as ηt instead of et, so that the final model is given by:

yt = β0 + β1x1,t + · · ·+ βmxm,t + ηt (4.16)

(1− φ1B − · · · − φpBp)(1−B)dηt = c+ (1 + θ1B + · · ·+ θqB
q)et (4.17)

where only the error term et from the ARIMA model is assumed to be white noise.

As discussed earlier, the model order for the ARIMA part of the model is

selected by minimising the AICc. This principle is also followed for the selection

of the exogenous variables. Model parameters are then estimated using the MLE

technique.

Recalling that forecasts from a regression model are obtained as:

ŷt+h|t = β̂0 + β̂1x1,t+h + · · ·+ β̂mxm,t+h (4.18)
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future values of the regressors need to be estimated. In order to forecast using an

ARIMAX model, it is necessary to predict both the ARIMA and the regression

parts of the model and combine the outcomes. Therefore, predictions of the exoge-

nous variables are needed to forecast the regression part. It should be noted that

the uncertainty associated with the forecasts of the predictors is not accounted for

in the final prediction intervals; in other words, the forecasts of the predictors are

treated as deterministic and consequently, prediction intervals should be considered

as being conditional on those estimated values.

4.3.1.2 Forecasting DAM and BM prices

The analyses of historic market data presented in Section 2.2.2 have highlighted a

number of aspects which should be considered when modelling the price processes

with the purpose of forecasting their future values. Relevant features include: the

impact of exogenous variables, seasonality and patterns at the weekly and daily

timescales, and the volatility and heteroskedasticity of the time series. In this

Section, the implementation of the ARIMAX models is presented while explaining

how these features are accounted for in the construction of the models.

Two separate sets of models are developed to forecast the day-ahead and balanc-

ing market price time series, although the same approach and available information

are used. The small number (nine in total) of extreme values observed in the im-

balance price time series (see Figure 2.22) would have a large undesired influence

on the estimated parameters of the models. Therefore, such outliers are capped at

the strike price (i.e. 500 e/MWh) as this is the price effectively used in the market

to pay and charge participants (see Section 2.2.2.2). The imbalance prices are fore-

cast directly by fitting a single set of models to the time series, thus defining the

balancing market state implicitly. The alternative approach would be to fit two sets

of models, one for up-regulation and one for down-regulation prices, and selecting

which one to use based on the expected regulating state (see the discussion on this

in Section 3.3.2). However, here the aim is to develop an approach to forecasting
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the sign of price difference which is different to that developed in Section 4.3.2,

where the forecast sign of price difference is conditional on — and in fact, directly

determined by — the estimated imbalance sign.

The variables included as predictors in the regression part of the ARIMAX

models (that is, the exogenous variables) are:

• forecast demand;

• point and 80% interval forecast of the wind power generation, where the

interval is calculated as the difference between the 90th and 10th quantiles

(cf. Equation (3.6)); and

• predicted wind power penetration, calculated as the ratio between the (point)

forecasts of demand and wind power generation (see Section 2.2.2.4 for the

study on the impact of this variable on various market quantities).

In the analyses in Section 2.2.2, electricity prices show rather distinct profiles

and features depending on the day of the week (see for example Figure 2.7 for DAM

prices and Figure 2.26 for BM prices). Therefore, prices are modelled separately

based on the day type, distinguishing between:

• weekday : from Monday to Friday; and

• weekend : Saturday and Sunday.

Furthermore, the price processes display characteristic daily patterns in re-

sponse to the hourly variations of demand, spot prices, wind penetration, and

behaviour of market participants. In particular, day-ahead prices exhibit a clear

daily seasonality (see Figures 2.9 and 2.11) correlated with the changes in demand

at the same timescale (see Figure 2.16). Despite a considerably higher volatility,

an analogous pattern is followed on average by BM prices (see Figure 2.28). These

prices tend to be negative more often at night (see Figure 2.35) and higher in

the evening (see Figure 2.36). The influence of predicted wind power penetration
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also varies with the time of the day (see the results of the empirical analyses in

Section 2.2.2.4).

In light of these features, the modelling is implemented separately across the

imbalance settlement periods. That is, instead of calibrating a single ARIMAX

process for all hours, the time series for each half-hour are modelled individually,

leading to 48 ARIMAX models per day type. This multi-model approach generally

yields better performances for day-ahead predictions, as highlighted in the review

of the literature in Section 3.3.1.1, and has multiple advantages which are described

below.

• The separate time series have larger homogeneity compared to the complete

one, resulting in simpler models (and generally more accurate forecasts).

• The daily seasonality is removed, since each element of the series now refers

to the same hour of a different day; this way, the difficulty of dealing with

multiple seasonal patterns is avoided.

• The impact of exogenous variables on the forecast variable can be modelled

differently depending on the hour of the day.

• Instead of estimating next-day values with a single model with forecast hori-

zons between 12 and 36 hours, predictions are computed as one or two step-

ahead forecasts from the 48 individual models. This generally allows an im-

provement of the forecast accuracy. Recall that forecasts for trading day D

are estimated using information available up to 10:00 on D–1. Hence, prices

for settlement periods before 10:00 are calculated as one-step forecasts from

the corresponding model. On the other hand, two-step forecasts are used for

prices at 10:00 and later because the corresponding prices on D–1 are not yet

available, the most recent information being from D–2. A visual explanation

of this concept is given in Figure 4.5.

The drawbacks of the multi-model approach are due to the considerably higher

number of models that need to be identified and the associated large number of
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Figure 4.5: Use of one and two step-ahead forecasts depending on the hour of
day.

parameters estimated. Indeed, for each day type, 48 models are selected, each

requiring a set of parameters to be calculated. The main disadvantages are that:

• the modelling task can be computationally intensive; and

• it is impractical to investigate in depth the performance of each model sepa-

rately.

To recap, the overall number of price sequences to be modelled is equal to

192: one for each of the 48 (half-hourly) settlement periods in either day-type

group (weekday and weekend) for each market (day-ahead and balancing). This is

depicted schematically in the tree chart in Figure 4.6.

Another relevant feature of the market data highlighted in Section 2.2.2 is the

high volatility of the price series (see the time plots in Figures 2.4 and 2.22) with

evidence of heteroskedasticity (see the variations of the moving standard deviation

in Figures 2.6 and 2.38). In an attempt to accomodate the time-varying nature

of these processes when estimating model parameters, two alternative dynamic

approaches are implemented to train the forecasts:

• recursively expanding (also called “time series cross-validation” by Hyndman

and Athanasopoulos in [42]), and
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Figure 4.6: Overview of the multi-model approach adopted for electricity price
forecasting, showing the segmentation of models based on market, day type, and
imbalance settlement period (half-hour).

• rolling (also referred to as “moving window”).

In the first, the length of the training set increases with each iteration, as illustrated

schematically in Figure 4.7, and the ARIMAX model is re-selected and re-estimated

at each step before the forecast is computed. This approach allows the use of more

observations as they become available, a desirable feature given the limited size

of the data set. In the second approach, the length of the training set is fixed

and as new observations become available, they replace older ones, as illustrated

in Figure 4.8. Again, the ARIMAX model is re-selected and re-estimated before
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Figure 4.7: Recursively expanding approach: training and test sets at each itera-
tion, with one- and two-step forecasts highlighted in dark orange.

computing the forecast at each step. This way, for a given window size N , only the

N -latest observations are used, preventing previous observations from influencing

the model selection and estimation. In this study, the window length is set equal

to 120 days, resulting in a test set of 87 days.

The output from each model consists of half-hourly one and two step-ahead

point forecasts and quantiles of the forecast distribution with 5, 10, 25, 75, 90 and

95% nominal levels. From these quantiles, having assumed normally distributed

forecast errors, it is possible to calculate the central prediction intervals with 50,

80, and 90% nominal coverage rates (cf. Equation (3.6)). An example of the point

and interval forecasts generated by a model is shown in Figure 4.9.

The source code developed to generate the forecasts of day-ahead and balancing

market prices can be found in Appendix C.1.

The various forecasts are then evaluated. First, the point forecasts obtained

from the two approaches for both DAM and BM prices are assessed against a

variation of the benchmark method proposed by Conejo et al. in [150]. Even

though balancing market prices are generally less seasonal then day-ahead ones,
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Figure 4.8: Rolling approach: training and test sets at each iteration, with one-
and two-step forecasts highlighted in dark orange.
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Figure 4.9: Example of point and interval forecasts and observed prices for a
sample day.

this method is commonly used as a benchmark for next-day forecasts of both types

of electricity price (see for example References [34] and [178]).

Recall that in the original version of the “similar-day” method already outlined
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in Section 3.3.1.1:

• forecasts for Monday are equal to the values observed on Monday of the week

before, and the same applies for Saturday and Sunday;

• forecasts for Tuesday are equal to the values observed on the previous day,

and the same applies for Wednesday, Thursday and Friday.

However, in the context of our work, values for Tuesday are forecast at 10:00 on

Monday and not all the necessary data are available for the previous day (Monday)

so data from the previous weekday (i.e. Friday) are used as required. Similarly

for Wednesday forecasts, values for periods after 10:00 are taken from the previous

Monday, and the same applies for Thursdays and Fridays. Denoting the price at

time T on day D as πT,D, the method can be expressed in mathematical terms as:

π̂T,D =



πT,D−1 if T < 10:00, D ∈ {Tuesday, Wednesday, Thursday, Friday}

πT,D−4 if T ≥ 10:00, D = Tuesday

πT,D−2 if T ≥ 10:00, D ∈ {Wednesday, Thursday, Friday}

πT,D−7 if ∀T,D ∈ {Monday, Saturday, Sunday}
(4.19)

This is also represented visually in the chart in Figure 4.10, where the darker blocks

represent the group of settlement periods before 10:00. The source code developed

to implement the benchmark model can be found in Appendix C.1.

Once it is verified that both forecasting approaches outperform the benchmark,

DM tests [53] are performed to determine which approach is more accurate for each

market price.

Quantile forecasts are then examined. For each half hour, climatology is used

as the benchmark, as suggested by Winkler in [208]; that is, the historical quan-

tiles of the price distributions calculated on the training data set. The quantile

forecasts from the two approaches are evaluated against the benchmark in terms of
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Figure 4.10: Variation of the “similar-day” benchmark method for short-term
electricity price forecasting proposed by Conejo et al. in [150]. For each day, the
darker block represents the group of periods before 10:00.

reliability and sharpness, and the pinball loss score is calculated to determine the

best approach.

168



4.3. Market Quantity Forecasting

4.3.1.3 Monte Carlo simulations

In a second stage, Monte Carlo simulations are executed to estimate the probability

of the price difference being positive from the quantile forecasts of DAM and BM

prices. The use of quantile rather than point predictions as input to the simulations

allows for the estimation of the sign of price differences in a probabilistic framework.

Monte Carlo methods are computational algorithms that use repeated random

sampling to obtain numerical results [209]. The accuracy of the results is inversely

proportional to the number of samples. Indeed, these methods rely heavily on the

“law of large numbers” and the “central limit theorem”, by which the distribution

of large samples converges towards the underlying population’s distribution [210].

For any trading period t+ h, the proposed method consists of the steps below.

1. Two quadratic spline functions are interpolated to the forecast quantiles of

DAM and BM prices, respectively, to represent their probability pseudo-

distribution (a similar procedure, for example, is employed by Zugno et al.

in [193]).

2. Two random numbers are generated to assign values to the DAM and BM

prices through their interpolated distributions.

3. The difference between the two prices is calculated and stored.

4. Steps 2 and 3 are repeated 10,000 times and the sequence of results generated

is transformed into a frequency distribution, from which the frequency of

positive price difference can be calculated.

Through this algorithm, an estimate of the probability of positive price difference

(cf. Equation (4.8)) is obtained for each trading period t+ h, that is:

δ̂t+h|t = E
[
δt+h|t

]
= E

[
Pt
[
πimbt+h − πDAMt+h > 0

]]
(4.20)

The simulations are run using the random module [211] and the pandas li-

brary [212] in python. The source code developed to perform this task can be
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found in Appendix C.1.

The outcomes and the evaluation of the price forecasting methods developed in

this Section will be presented in Section 5.2.

4.3.2 Forecasting the Imbalance Sign

In this Section, the methodology used to forecast the system imbalance sign is

explained. Recall that a positive imbalance (NIV > 0) corresponds to a need for

up-regulation, meaning that the system is short. Consequently, balancing price is

expected to be higher than the day-ahead price, yielding a positive price difference.

Vice versa, a negative imbalance (NIV < 0) means that the system is long and

down-regulation is needed, yielding a negative price difference. These conditions

were summarised earlier in Table 2.1, which for convenience is re-proposed here

in Table 4.2. Therefore, the forecast probability of the system being short will be

used as a proxy for the probability that the price difference will be positive.

system imb. volume regulation price difference

balanced zero no πimb = πDAM → πdiff = 0

short positive up πimb > πDAM → πdiff > 0

long negative down πimb < πDAM → πdiff < 0

Table 4.2: Balancing Market states and corresponding market quantities.

Logistic regression models

Let us assign the values 0 and 1 to the (half-hourly) trading periods where the

system is long and short, respectively, so that the imbalance sign time series follows

a binomial distribution. The process can then be modelled with a logistic regression

model, a case of the Generalized Linear Model which fits responses that follow a

binomial distribution [213]. The objective is to estimate the probability γt+h that

the imbalance will be positive (i.e. the system will be short) at time t + h (cf.

Equation (4.9)) conditional on a set of m predictors (or explanatory variables)
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x1,t+h, . . . , xm,t+h which are related to the responses, that is:

γt+h = P [NIVt+h > 0|xi,t+h, i = 1, . . . ,m] (4.21)

The model to be fitted is a multiple linear regression of the binomial probability

on the m predictors:

γt+h = β0 + β1x1,t+h + · · ·+ βmxm,t+h

To relate the predictors to the mean of the responses, the logit link function is used

so the logistic model is given by:

log

(
γt+h

1 + γt+h

)
= ~β × ~xt+h (4.22)

where ~β is the vector of parameters βi to be estimated and ~xt+h is the vector of

predictors xi,t+h.

The predictors can be defined a priori or be selected with a backward selection

procedure where the model with the smaller AIC is chosen in a stepwise search,

as described by Venables and Ripley in [214]. The backward selection algorithm

proceeds as follows:

1. The AIC is calculated for the model including all possible predictors (full

model).

2. Each predictor is considered for removal from the model one at the time.

3. The predictor removed from the model is the one whose removal results in

the largest decrease in AIC. Note that once a predictor is removed it is not

considered for re-entry.

4. Steps 2 and 3 are repeated until the removal of any of the remaining predictors

fails to reduce the AIC.

Once the model is selected, the parameters ~β are estimated with the method of
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MLE. The probabilities can then be forecast using the parameter estimates ~̂β and

predictions of the explanatory variables ~xt+h by solving Equation (4.22) for γ̂t+h

(inverse logit function):

γ̂t+h =
exp

(
~̂β × ~xt+h

)
1 + exp

(
~̂β × ~xt+h

) (4.23)

From the analyses in Section 2.2.2.2, imbalance volumes show a distinct profile

depending on the hour of the day, with a marked tendency to have positive imbal-

ances in the evening (see the boxplots in Figure 2.20). A multi-model approach is

adopted analogous to that implemented when forecasting prices in Section 4.3.1:

a separate logistic regression model is fit for each (half-hourly) settlement period.

Again, one-step predictions will be used for imbalance signs before 10:00 and two-

step predictions for imbalance signs after 10:00 (cf. Figure 4.5).

Predictors are chosen from the following range of variables:

• forecast demand;

• point and 80% interval forecasts of the wind power generation;

• predicted wind power penetration; and

• day of the week.

Note that the day of the week is included as a categorical predictor to capture

any possible weekly seasonality. Models are then selected with two alternative

strategies:

1. the full model (i.e. including all explanatory variables) is fit for all settlement

periods;

2. the model with the smaller AIC is chosen via backward selection.

The first strategy is straightforward but more exposed to the risk of overfitting, a

risk avoided with the second strategy, which is computationally more intensive.
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Another relevant characteristic of the imbalance volumes time series is its non-

stationarity (see for example Figures 2.21 and 2.39). Similarly to the price forecast-

ing case, two alternative approaches are implemented to train the logistic regression

models in order to capture these non-stationary effects:

• recursively expanding (see Figure 4.7); and

• rolling (see Figure 4.8).

In both cases, models are re-estimated at each iteration. This results in the devel-

opment of four forecasting methods:

• recursively expanding with model re-estimation;

• recursively expanding with stepwise model re-selection and re-estimation;

• rolling with model re-estimation; and

• rolling with stepwise model re-selection and re-estimation.

In this work, models are selected and estimated using the glm and step func-

tions from the package stats [215] in R. The source code developed to generate

the forecasts of imbalance sign can be found in Appendix C.2.

Firstly, each of these models is tested against a benchmark and then their ac-

curacies are compared. For each settlement period, the historic proportion of the

system being short (calculated on the training set) constitutes the benchmark fore-

cast. This corresponds to what Brier calls the “climatological probabilities” in [66]

and is employed as a benchmark, for example, by Browell in [199] (where is referred

to as “empirical proportions”) and by Jónsson et al. in [186]. The performance

of the forecasts is evaluated by examining their ROC curves and calculating the

Brier scores, as explained in Section 3.1.2. The outcomes and the evaluation of the

imbalance sign forecasting methods developed in this Section will be presented in

Section 5.3.
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4.4. Bidding Strategies

4.4 Bidding Strategies

In this Section, two benchmark and three novel bidding strategies for a market

participant trading wind energy in the day-ahead market are presented. First,

the two limit cases of seeking to minimise and maximise energy imbalances are

presented. Then, the three risk-constrained strategies specifically developed in this

work are described. The strategies that require a prediction of the price difference

sign, E
[
π̃imbt+h − π̃DAMt+h

]
, can be implemented using either of the two probabilistic

market quantity forecasts developed in Section 4.3, namely the probability of the

price difference being positive δ̂t+h|t and the probability of the system imbalance

being positive γ̂t+h|t.

4.4.1 Imbalance Minimisation

The Imbalance Minimisation (ImbMin) strategy aims to minimise the exposure to

balancing costs regardless of their sign. The participant concedes the opportunity

of making extra profits when their energy imbalance has the opposite sign of that

of the system; on the other hand, losses are limited when the two imbalances go in

the same direction. The objective is to minimise the energy imbalances in absolute

terms; in other words, to have imbalances as close to zero as possible. Since the

loss function is symmetric piecewise linear, the optimal bid is the median of the

predictive distribution of wind power generation (as demonstrated by Gneiting

in [216]):

EDAM
t+h = Êt+h|t (4.24)

Note that this strategy does not require any market quantity forecast but only

the forecast of wind power generation. In fact, a point forecast is sufficient for

this purpose as long as the model produces the median, rather than the mean,

of the distribution. As mentioned in Section 3.4, this strategy constitutes the

current industry practice among most utilities in Europe and the USA. In the case

study in Chapter 5, it will therefore establish a benchmark to examine possible
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improvements of the advanced strategies.

4.4.2 Imbalance Maximisation

The Imbalance Maximisation (ImbMax) strategy aims to maximise the exposure to

balancing costs to take advantage of the arbitrage opportunities arising when the

producer’s energy imbalance goes in the opposite direction of the system imbalance.

Given that the producer cannot bid above its installed capacity, the optimal bid is:

EDAM
t+h =


0 if E

[
π̃imbt+h − π̃DAMt+h

]
> 0

Emax if E
[
π̃imbt+h − π̃DAMt+h

]
< 0

(4.25)

Note that this strategy requires a market quantity forecast to estimate the sign of

the price difference but no forecast of the wind power generation.

As previously discussed in Section 3.4, this strategy — which in the literature

is sometimes referred to as the “Zero/Max” strategy — can only be implemented

if the size of the producer’s portfolio is small compared to the average system

imbalance volume, otherwise the price-taker assumption is violated. Moreover,

the producer is exposed to potentially large losses whenever the market quantity

forecast is incorrect. Finally, the system operator might not accept the frequent

and systematic large deviations caused by the market player, leading to warnings

and penalties from the market authorities. Nevertheless, as this strategy represents

the state-of-the-art in academic research, it will establish a second benchmark for

comparative purposes with the novel strategies.

In the following Sections, the three novel advanced bidding strategies are pre-

sented, where both wind power and market quantity forecasts are used to define

the bid in order to increase the revenue while controlling the exposure to imbalance

charges.

175



4.4. Bidding Strategies

4.4.3 Scalar Adjustment

In the Scalar Adjustment (Scal) strategy, the bid quantity is equal to the forecast

wind power increased or decreased by a fraction of the installed capacity:

EDAM
t+h = Êt+h|t + ρ · f (x) · Emax (4.26)

where ρ ∈ [0, 1] is the risk factor, x ∈ [0, 1] is the market quantity forecast, f : x ∈

[0, 1] → f (x) ∈ [−1, 1] is the adjustment function, and EDAM
t+h ∈ [0, Emax]. Note

that the bid quantity has to be bounded between 0 and Emax, so negative values

of EDAM
t+h are set equal to zero and values exceeding the installed capacity are set

equal to Emax. The maximum possible adjustment is defined a priori based on the

risk appetite of the trader via the parameter ρ. The direction and magnitude of the

adjustment are determined by the adjustment function f(·), which in turn depends

on the market quantity forecast x. This function gives great flexibility of use

since it can be defined to reflect the sensitivity of the producer to the uncertainty

associated with the market quantity forecast. Figure 4.11 shows two examples of

possible functions. On the left, f is a linear curve where the size of the adjustment

increases linearly in value when the prediction is more confident — that is, closer

to 0 or 1 — and tends to zero when the prediction is uncertain — that is, around

the value of 0.5. On the right, f is a simple step (or piecewise constant) function,

resulting in the size of the adjustment being fixed and equal to ρEmax. Both the

linear and the step functions give a positive adjustment when x < 0.5 and a negative

one when x > 0.5. It should be noted that the case where ρ = 0 corresponds to the

ImbMin strategy; on the other hand, if the step function in Figure 4.11b is chosen

and ρ = 1, this corresponds to the ImbMax strategy.

4.4.4 Proportional Adjustment

In the Proportional Adjustment (Prop) strategy, the bid quantity is equal to the

forecast wind power increased or decreased by a factor proportional to the forecast
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Figure 4.11: Examples of adjustment functions f(x).

generation itself:

EDAM
t+h = Êt+h|t · (1 + ρ · f (x)) (4.27)

where ρ ∈ [0, 1], f : x ∈ [0, 1] → f (x) ∈ [−1, 1], EDAM
t+h ∈ [0, Emax]. Again, the bid

quantity has to be bounded between 0 and Emax, so values exceeding the installed

capacity are set equal to Emax. Similarly to the Scal case, the maximum adjustment

is defined a priori based on the appetite for risk of the producer via the parameter ρ,

while the direction and size are determined through the adjustment function f(x).

The same principles discussed earlier for f apply here. Furthermore, it should be

noted that, regardless of how this function is defined, the size of the expected energy

imbalance is proportional to the expected generation. This is a desirable feature

of the strategy, as observed by Browell in [199] (where an homologous strategy is

called “Multiplicative Adjustment”), as it implies that the exposure to balancing

costs and therefore to risk is large only when the expected revenue is large as well,

and vice versa.
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4.4.5 Quantile Bid

Recall from Section 3.1.1 that the forecast quantile q̂α, where α ∈ [0, 1] is the

nominal level, is the value of the distribution for which:

P [E ≤ q̂α] = α (4.28)

so that α is the probability that the actual energy will be below q̂α (cf. Equa-

tion (3.5))3. It also follows that:

P [E > q̂α] = 1− α = P
[
E < q̂1−α] (4.29)

Writing Equation (4.28) in terms of the energy imbalance d = EDAM − E:

α = P
[
E − EDAM ≤ q̂α − EDAM

]
= P

[
−d ≤ q̂α − EDAM

]
If the quantity q̂α is offered, it results that:

P
[
d ≥ 0 |EDAM = q̂α

]
= α

Therefore, bidding the quantile q̂α, the probability that the expected energy im-

balance d will be positive is equal to α. Similarly from Equation (4.29), it can be

shown that:

P
[
d < 0 |EDAM = q̂1−α] = α

That is, bidding the quantile q̂1−α results in a probability α that the energy imbal-

ance d will be negative.

In the Quantile Bid (Quant) strategy, the offered quantity is a function of the

market quantity forecast and of the forecast quantiles q̂αt+h|t and q̂1−α
t+h|t of wind power

generation, where α is the probability that the realisation of dt+h|t has positive or

3In this paragraph, time indices are discarded in order to lighten the notation.
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negative sign, as shown above. The strategy can be written as:

EDAM
t+h =


q̂αt+h|t if x < a

g
(
q̂αt+h|t, q̂

1−α
t+h|t, x

)
if x ∈ [a, b]

q̂1−α
t+h|t if x > b

(4.30)

The value of α is set based on the desired trade-off between revenue and risk,

giving this strategy the valuable property of modelling explicitly the uncertainty

associated with the wind power forecast. The function g(·) and parameters a and

b can be defined heuristically based on the sensitivity of the participant to the

uncertainty of the market quantity forecast x. Figure 4.12 shows two examples

of possible implementations of the strategy. On the left panel, the bid quantity
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(b) Piecewise linear (a=0.4; b=0.6).

Figure 4.12: Example of two implementations of the Quant strategy. On the left,
a = b = 0.5, hence no function g(·) is actually defined. On the right, a = 0.4 and

b = 0.6 and g = q̂α − q̂α−q̂1−α
b−a · (x− a)

.

is simply q̂α or q̂1−α depending on whether the price difference is expected to be
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positive (x ≤ 0.5) or negative (x > 0.5), respectively. On the right panel, the bid is

a piecewise linear function with the two quantiles being interpolated linearly in the

central region of the market quantity forecast x delimited by parameters a and b

to hedge against price uncertainty when the forecast is more cautious (i.e. around

0.5).
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Chapter 5

Results and Discussion

This Chapter evaluates the results of the methodology developed in this Thesis. In

the case study, the day-ahead trading of wind energy in the Irish electricity market

is simulated over a test period. Energy is traded employing the bidding strategies

and associated market quantity forecasts developed in this work. First, the wind

power forecasts for the wind farm under study are assessed in Section 5.1. Next,

the two market quantity forecasts are evaluated. Results for the price difference

forecasts are presented in Section 5.2, and for the imbalance sign forecasts in Sec-

tion 5.3. Finally, the performance of the various bidding strategies is analysed in

Section 5.4.

5.1 Wind Power Forecasts

This Section evaluates the accuracy of the wind power forecasts introduced in

Section 4.2. The forecasts are evaluated over the seven-month period from the 1st

October 2018 to the 25th April 2019 and all the analyses that follow are based

on the framework and error measures defined in Section 3.1.2. Values of observed

and forecast wind power are normalised by the installed capacity of the wind farm

Pnom and thus lie between 0 and 1; forecast errors and derived scores are then

expressed as a percentage of the installed capacity. The four prediction models are

indicated as A, B, C and D, with the first three consisting of point forecasts only
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and the last including point and 80% interval forecasts. Owing to confidentiality

restrictions, further information regarding the models and the forecast providers

cannot be discussed.

First, the point forecasts are assessed. The histograms and boxplots in the next

three Figures allow the visual inspection of the errors from each model. Figure 5.1,

where the distribution of forecast errors as well as the maximum likelihood Gaussian

distribution fit are displayed, shows that errors from all four models do not follow

a normal distribution and are positively skewed (i.e. the right tail is longer). The

four models are all positively biased (i.e. on average they forecast lower energy

output than is realised), and the largest errors (both positive and negative) are

observed for models B and C, as seen in Figure 5.2. The boxplots in Figure 5.3

show the distribution of forecast errors by hour of the day. There is no visible

pattern in any of the four subplots, suggesting that there is no clear dependence

of errors on the hour of the day and hence, on the forecast horizon. This is not

surprising, as the wind farm is located on complex terrain.
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Figure 5.1: Distribution of wind power forecast errors for each model. The black
dash-dotted line corresponds to the maximum likelihood Gaussian distribution fit.
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Figure 5.2: Boxplots of wind power forecast errors for each model. The squares
indicate the mean of the distribution (i.e. the forecast bias).
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Figure 5.3: Boxplots of wind power forecast errors by hour of the day for each model.
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Model bias MAE RMSE

A 1.35 9.36 13.12

B 1.79 9.42 13.41

C 3.23 10.35 14.57

D 1.42 8.85 12.68

Table 5.1: Evaluation scores of the wind power point forecasts. All scores are
expressed as a percentage of the installed capacity Pnom.

Table 5.1 presents the bias, MAE and RMSE of the forecasts calculated over

the whole evaluation period, while Figures 5.4 and 5.5 show the MAE and RMSE,

respectively, calculated for each hour separately. These results indicate that D is

the most accurate model as measured by MAE and RMSE and across all hours. To

confirm the observation made earlier in Figure 5.3 on the errors not depending on

the hour of the day, it is worth noting from Figures 5.4 and 5.5 that the accuracy

of the four models does not degrade with a clear trend for larger look-ahead times.
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Figure 5.4: Mean Absolute Error of wind power forecasts as a function of the
hour of day.

The cumulative and 30-day rolling MAE is also calculated for the four models

and results are shown in Figures 5.6 and 5.7, respectively. In both Figures, model D

emerges as the most consistently accurate of the four throughout the entire period.
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Figure 5.5: Root Mean Square Error of wind power forecasts as a function of the
hour of day.

It is worth noting that the accuracies of the models follow similar patterns, possibly

indicating the use of the same NWP model by the various forecast providers.
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Figure 5.6: Cumulative MAE of wind power forecast models.

Finally, the DM test is applied to model D versus the three others to verify

whether the methods have significantly different accuracy over each of the 48 fore-
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Figure 5.7: 30-day rolling MAE of wind power forecast models.

cast horizons1. When testing D versus A, B and C, the null hypothesis that the

models have the same accuracy is rejected in 12, 14, and 31 cases, respectively. A

second DM test is applied on these periods to verify the null hypothesis that the

other model is significantly better than D. The results of this second DM test are

tabulated in Table 5.2. In all cases, the p-values returned by the tests are lower

than the 5% significance level, meaning that the hypothesis of the alternative model

being more accurate than D can be rejected. Hence, it can be concluded that model

D is the more accurate of the four point forecasts.

Next, the 80% prediction interval from D is evaluated. The calibration is as-

sessed by calculating the empirical levels of the 10th and 90th quantile forecasts

defining the interval. The results are presented in the reliability diagram in Fig-

ure 5.8, showing that the reliability curve is flatter than the 45-degree line, with

the 10th quantile being systematically overestimated (probabilistic bias equal to

–7%) and the 90th quantile systematically underestimated (probabilistic bias equal

to 13%). This means that the quantiles are not perfectly calibrated and intervals

1Recall that the forecast resolution is 30 minutes, and therefore forecasts are issued for 48
distinct look-ahead times.
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5.1. Wind Power Forecasts

hour A vs D B vs D C vs D hour A vs D B vs D C vs D

00:00 - - - 12:00 0.01908 - 0.01392

00:30 - 0.01008 - 12:30 0.02128 - 0.00956

01:00 - - - 13:00 - - -

01:30 - 0.00439 - 13:30 - - 0.02300

02:00 - - - 14:00 - 0.02263 0.01031

02:30 - - - 14:30 - - 0.01942

03:00 - - - 15:00 - - -

03:30 - - - 15:30 0.01920 0.00933 0.00701

04:00 - - 0.02166 16:00 0.01533 0.02380 0.00131

04:30 - - - 16:30 0.00967 0.00535 0.00164

05:00 - - - 17:00 0.00055 0.00786 0.00264

05:30 - - - 17:30 - 5.92E-05 0.00907

06:00 - - 0.00800 18:00 - - 0.00016

06:30 - - - 18:30 - - 1.89E-08

07:00 - 0.00265 0.00047 19:00 - 0.02424 2.59E-06

07:30 0.01395 0.00389 0.00023 19:30 0.00741 - 7.59E-09

08:00 0.00744 - 4.07E-07 20:00 - - 2.20E-14

08:30 - - 2.72E-05 20:30 - - 0.00047

09:00 0.01388 - 9.88E-16 21:00 - - 0.00043

09:30 - - 3.05E-06 21:30 - - 0.01188

10:00 - - 1.72E-09 22:00 - - 0.01669

10:30 - - 1.33E-08 22:30 - 0.02013 -

11:00 0.02471 - 0.00107 23:00 - 0.00303 -

11:30 0.00694 - 0.00800 23:30 - 0.01166 -

Table 5.2: p-values returned by the DM tests applied to models A, B, and C
versus D. The null hypothesis is that the first model is significantly more accurate
than D.
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are on average too narrow.
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Figure 5.8: Reliability diagram of the 80% interval forecast. The dashed line is
the diagonal indicating a perfectly calibrated forecast.

To examine the sharpness, the boxplots of the prediction intervals for each hour

of the day are shown in Figure 5.9, and the average widths (cf. Equation (3.25))

are tabulated in Table 5.3. It can be observed that while there is no clear pattern in

the variation of the medians, the mean and the range of the distributions increase

with the forecast horizon, resulting in an increasing trend for the sharpness. This

indicates that the uncertainty associated with the predictions increases with larger

look-ahead times.

Point and quantile forecasts from model D will be employed in Section 5.4 to

implement the bidding strategies described in Section 4.4.

5.2 Electricity Price Forecasts

This Section evaluates the electricity price forecasting methods developed in Sec-

tion 4.3.1. The ARIMAX models for DAM and BM prices were trained on a

4-month period from the 1st October 2018 to the 28th January 2019 and are eval-
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Figure 5.9: Boxplots of the 80% predictive intervals by hour of day. The squares
indicate the mean of the distribution (i.e. the sharpness).

uated on the 3-month test period from the 29th January 2019 to the 25th April

2019. The forecasting processes were implemented using R and python and run

on an Intel Core i7 processor with 3.4 GHz CPU and 16 GB memory. The total

processing time to produce the DAM and BM price forecasts was under three and

a half hours, while running the Monte Carlo simulations took under one and a half

hours. As for the evaluation of wind power forecasts, the analyses are based on the

framework and error measures defined in Section 3.1.2. Results are presented for

DAM prices first, and then BM prices. In both cases, an overview of the ARIMAX

models’ fit is given first, followed by the evaluation of the point forecasts and of the

quantile forecasts. Finally, the results of the Monte Carlo simulations are presented

and evaluated.

5.2.1 Day-ahead Market Prices

As explained in Section 4.3.1.2, in both the “Rec. expanding” and “Rolling” ap-

proaches, the ARIMAX model is re-selected and re-estimated at each iteration.

Figures 5.10 and 5.11 display the occurrence of models with the same order for the
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5.2. Electricity Price Forecasts

hour sharpness hour sharpness

0 17.8 12 22.2

1 17.9 13 22.1

2 18.3 14 21.9

3 18.8 15 21.2

4 19.2 16 20.4

5 19.4 17 20.0

6 19.6 18 20.0

7 19.8 19 20.3

8 20.3 20 20.7

9 21.0 21 20.8

10 21.7 22 20.7

11 22.1 23 19.5

Table 5.3: Sharpness of the 80% predictive intervals by hour of day. Values are
expressed as a percentage of Pnom.

“Rec. expanding” and “Rolling” approaches, respectively. For both cases, models

of order (0,1,1) are the most common and account for more than 30% of the fitted

models. Interestingly, the second most common models are those of order (0,0,0).

These are in fact multiple linear regression models (cf. Equation (4.18)), where

future prices are estimated exclusively through the predictions of the exogenous

variables. Recall that the variables included as predictors in the regression part

of the ARIMAX models are: forecast demand, point and 80% interval forecasts of

wind power generation at system level, and predicted wind power penetration.

Point forecasts

The forecast errors from the two advanced methods are displayed in Figures 5.12

and 5.13. The histograms and the boxplots show that errors have very similar

distributions, although large negative errors are more frequent in the “Rolling”

approach. Both approaches are also negatively biased, meaning that they tend to

overpredict prices.

The performance of the two advanced methods is compared to that of the

benchmark — the “similar-day” method presented in Section 4.3.1.2 (cf. Equa-

tion (4.19)) — in terms of model fit and accuracy scores. First, the three methods
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Figure 5.10: Frequency of DAM models with the same ARIMA order for the
“Rec. expanding” approach.

are analysed through scatter plots, as illustrated in Figure 5.14. Here, forecast

prices are plotted against the corresponding observed values; the red diagonal is
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Figure 5.11: Frequency of DAM models with the same ARIMA order for the
“Rolling” approach.

the y = x line representing the perfect forecast, and the coefficient of determination

(R2) is displayed in blue for each model. From the Figure, it can be observed that
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Figure 5.12: Distribution of DAM price forecast errors for the “Rec. expanding”
(top) and “Rolling” (bottom) approaches.
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Figure 5.13: Boxplots of DAM price forecast errors for each approach. The
squares indicate the mean of the distribution (i.e. the forecast bias).

the two advanced methods are better fits than the benchmark, as points lie closer

to the diagonal and the value of R2 is higher. Moreover, the two advanced methods

tend to underpredict when prices are high (i.e. larger than 100 e/MWh).
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Figure 5.14: Scatter plot of observed vs forecast day-ahead prices for each fore-
casting method. The coefficient of determination of each model is reported in blue.
The red line represents the perfect forecast.
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The bias, MAE, RMSE, MASE and RMSSE of the three methods calculated

over the test period are given in Table 5.4. The accuracy of the two advanced

methods is almost identical and markedly better than that of the benchmark, as

measured by MAE and RMSE and their scaled homologous. The MASE and

RMSSE (cf. Equation (3.19) are also calculated separately for each half-hour pe-

riod — namely, the Imbalance Settlement Period2 — and the results are shown

in Figures 5.15 and 5.16, respectively. The graphs confirm that the two advanced

methods perform similarly and both better than the benchmark over all periods.

Interestingly, scaled errors from all three methods follow similar trends both in

terms of magnitude and dispersion: lower in the morning and evening, and highest

at night. Finally, since separate sets of models have been developed for weekdays

and weekend days, the MAE and RMSE are calculated for each day of the week

separately and results are shown in Figures 5.17 and 5.18. Again, the “Rec. ex-

panding” and “Rolling” methods consistently perform better than the benchmark.

Even more interestingly, the errors are low and very similar between Tuesday and

Friday, but almost twice as large on Monday and on the weekend. The reason for

this is that forecasts for these days are generated using less recent information:

Monday prices are predicted by the weekday models using three-day old informa-

tion (i.e. from the previous Friday), and Saturday and Sunday prices are predicted

using information from six and seven days before (i.e. the previous weekend). In

future work, this initial condition problem should be addressed by including more

recent information in the training data set. For example, the models estimating

Monday prices could include Sunday historical data; similarly, models estimating

weekend prices could include Friday historical data.

The MAE of the two methods is calculated on a moving-window basis to in-

vestigate how the accuracy has changed over the test period. Figure 5.19 shows

the cumulative MAE of the two advanced forecasts, and Figure 5.20 the two-week

rolling MAE. These graphs show that even though by the end of the test period

2Note that while DAM prices are hourly, the forecasts are half-hourly to match the resolution
of BM prices.
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Model bias MAE RMSE MASE RMSSE

Rec. expanding –1.79 9.11 14.26 0.61 0.91

Rolling –2.08 9.08 14.36 0.60 0.89

Benchmark –1.86 13.28 22.29 0.86 1.29

Table 5.4: Evaluation scores of the DAM price point forecasts. All scores are
expressed in e/MWh, except for MASE and RMSSE in per unit.
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Figure 5.15: Mean Absolute Scaled Error of DAM price forecasts for each half-
hour.

the two approaches have almost identical accuracies, the “Rec. expanding” ap-

proach is more accurate during the first half (until mid-March) and the “Rolling”

approach during the second. An explanation for this can be found by looking back

at the study of day-ahead market data in Section 2.2.2.1. A generally decreasing

trend was observed in average prices and their volatility from February onwards

(cf. Figures 2.5 and 2.6). While the larger and expanding training data set gives

an initial advantage to the “Rec. expanding” approach, the use of older historical

data for model calibration penalises its accuracy as the price level changes. The

“Rolling” approach, on the other hand, is more dynamic as models are trained

using only recent historical data, and is able to better capture the non-stationarity

of the price series.
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Figure 5.16: Root Mean Square Scaled Error of DAM price forecasts for each
half-hour.
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Figure 5.17: Mean Absolute Error of DAM price forecasts for each day of the
week.

To conclude the analysis on point forecasts of DAM prices, having shown that

both advanced methods outperform the benchmark and have very similar scores,

DM tests are applied to determine if one of the two methods is more accurate than
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Figure 5.18: Root Mean Square Error of DAM price forecasts for each day of the
week.
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Figure 5.19: Cumulative Mean Absolute Error of DAM price forecasts.

the other. First, a DM test is applied to verify whether or not the two methods

have the same accuracy. A second DM test is then applied on the periods where the

hypothesis of same accuracy is rejected. The null hypothesis in this case is that

the “Rec. expanding” method is significantly more accurate than the “Rolling”
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Figure 5.20: Two-week rolling Mean Absolute Error of DAM price forecasts.

and the results are presented in Table 5.5. The hypothesis of same accuracy is

rejected on only four out of 48 periods, and the p-values returned by the second

test are lower than the 5% significance level on three periods and higher on one.

Given the results, it is difficult to distinguish between the two models, leading to

the conclusion that they have the same accuracy.

Probabilistic forecasts

The verification of the quantile forecasts is now presented. Recalling that the

quantile forecasts generated have nominal levels equal to 5, 10, 25, 75, 90 and 95%,

the prediction intervals have 50, 80, and 90% nominal coverage rates. Figure 5.21

depicts the reliability diagram for the quantile forecasts from each method and em-

pirical levels are tabulated in Table 5.6 , while the pinball loss scores are tabulated

in Table 5.7. Both “Rec. expanding” and “Rolling” models are significantly more

reliable than the benchmark and overall, the “Rolling” quantiles are slightly better

calibrated than the “Rec. expanding” ones. Nevertheless, both advanced methods

tend to overestimate the quantiles, especially at lower nominal levels.

In future work, statistical post-processing techniques could be applied to im-
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hour Rec. exp vs Roll hour Rec. exp vs Roll hour Rec. exp vs Roll

00:00 - 08:00 - 16:00 -

00:30 - 08:30 - 16:30 -

01:00 - 09:00 - 17:00 -

01:30 - 09:30 - 17:30 -

02:00 - 10:00 - 18:00 -

02:30 - 10:30 - 18:30 -

03:00 - 11:00 0.001776 19:00 -

03:30 - 11:30 0.000082 19:30 0.024718

04:00 - 12:00 - 20:00 -

04:30 - 12:30 - 20:30 -

05:00 - 13:00 - 21:00 -

05:30 - 13:30 - 21:30 -

06:00 - 14:00 - 22:00 -

06:30 - 14:30 - 22:30 -

07:00 - 15:00 - 23:00 -

07:30 - 15:30 0.984557 23:30 -

Table 5.5: p-values returned by the DM tests applied to “Rec. expanding” models
versus “Rolling” ones for DAM price forecasting. The null hypothesis is that the
first model is significantly more accurate than the second.

nominal level

Model 5 10 25 75 90 95

Rec. expanding 15.3 22.3 40.5 80.8 89.3 92.3

Rolling 13.7 21.8 38.8 80.3 90.2 92.3

Benchmark 42.6 54.0 81.4 96.9 99.0 99.5

Table 5.6: Empirical levels of the quantile forecasts of DAM prices for each model.

nominal level

Model 5 10 25 75 90 95

Rec. expanding 1.35 2.12 3.63 3.91 2.50 1.73

Rolling 1.37 2.15 3.68 3.84 2.45 1.70

Benchmark 4.98 7.38 10.85 7.88 4.79 3.09

Table 5.7: Pinball loss scores of the quantile forecasts of DAM prices for each
model.
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Figure 5.21: Reliability diagram of the DAM price quantile forecasts. The dashed
line is the diagonal indicating a perfectly calibrated forecast.

prove the reliability of the forecasts. Adaptive short-term bias-correction [107] can

be implemented to reduce the systematic overestimation of the quantiles. The

probabilistic bias for each quantile is calculated over the previous N days, and

the bias-corrected forecast is obtained by shifting up/down the forecast quantile

depending on the bias sign and size. Typically, spot prices evolve smoothly within

a trading day. However, as prices are forecast separately for each trading period

in the multi-model approach, resulting in quantile forecasts being rather uneven

across hours. In this case, smoothing procedures can be applied to the quantile

estimates, for example, using a moving average over a N -hour window [217]. Fi-

nally, as the record of forecast prices increases, Model Output Statistics (MOS)

can be applied [103]. The basic principle behind these techniques is that by using

a forecast system long enough, additional information on its performance become

available. Assuming that the current forecasts are affected by the same miscal-

ibration, the past performance information can be incorporated in the model to

produce improved forecasts. For example, in the case of Gaussian distributions,

the mean and standard deviation of the forecast and observed prices is calculated
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over the past N days. The distribution of current forecasts can then be corrected

so that their mean and variance correspond to those of the observed prices [218].

The two advanced methods are also very similar in terms of sharpness, as shown

in Figure 5.22, with intervals always sharper than those from the benchmark. The

average interval width is investigated in more detail by calculating the sharpness

for each ISP (half-hour) separately. The results are shown in Figure 5.23, where it

emerges that the “Rolling” approach produces tighter intervals in the morning when

one-step ahead predictions are used, while the “Rec. expanding” is tighter during

the afternoon and evening when two-step predictions are used (cf. Figure 4.5). As

expected, the plots show that intervals tend to be larger (hence, the prediction is

more uncertain) during the evening peak-demand hours, where prices are higher

and more volatile.
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Figure 5.22: Sharpness of the DAM price quantile forecasts.

Complying with the paradigm of “maximising the sharpness of the predictive

distribution subject to calibration” discussed in Section 3.1.2, the benchmark model

is discarded due to its poor calibration and the overall pinball loss score is calculated

for the two advanced methods. The score is equal to 2.540 for the “Rec. expanding”

method and to 2.533 for the “Rolling” method. Again, the difference between the
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Figure 5.23: Half-hourly sharpness of the DAM price quantile forecasts from the
“Rec. expanding” (blue) and “Rolling” (orange) approaches.

methods is minimal and it is not possible to conclude which of the two advanced

approaches provides better quantile forecasts.

The difference in performance between the two advanced methods is very small

and it is not possible to conclude that either is superior. Nevertheless, the

“Rolling” approach is found to generate slightly more accurate point predictions

as well as better quantile forecasts over the testing period. This finding suggests

that the use of historical data on a moving-window basis to train the models was

more beneficial. In fact, the spot price process is characterised by very marked

seasonalities and a strong dependence on the level of demand — which in turn

204



5.2. Electricity Price Forecasts

varies with the time of the year — and training the models using only the more

recent observations helped to better capture these seasonal variations. Therefore,

the “Rolling” method is selected as the forecasting method for DAM prices and

its predictions will be used as inputs to the Monte Carlo simulations discussed in

Section 4.3.1.3.

5.2.2 Balancing Market Prices

Following the same framework for BM prices, an overview is given of the occurrence

of models with the same order for the “Rec. expanding” and “Rolling” approaches

in Figures 5.24 and 5.25, respectively. For both cases, models of order (0,0,0) —

i.e. multiple linear regression models — are by far the most common and account

for more than 80% of the models’ fit. This result confirms the autoregressive

and seasonal components in the imbalance price process are very weak, and the

prediction of future values has to rely primarily on (forecasts of) the exogenous

variables.

Point forecasts

The forecast errors from the two advanced methods are displayed in Figures 5.26

and 5.27. The histograms and the boxplots show that errors have very similar

distributions, with both approaches being negatively biased and with large positive

and negative errors.

The performance of the two advanced methods is compared to that of the

benchmark, that is the “similar-day” method, in terms of model fit and accuracy

scores. First, the three methods are analysed through scatter plots, as illustrated

in Figure 5.28. From the Figure, it can be observed that all three models give

a poor fit, with values of R2 being close to zero or negative. The fit from the

benchmark is noticeably poorer than the advanced methods. All three forecasts

fail to predict most instances of negative prices and tend to underpredict as values

get larger than 100 e/MWh. The bias, MAE, RMSE, MASE and RMSSE of
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Figure 5.24: Frequency of BM models with the same ARIMA order for the “Rec.
expanding” approach.

the three methods calculated over the test period are given in Table 5.8. The

accuracy of the two advanced methods as measured by MAE and RMSE and their
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Figure 5.25: Frequency of BM models with the same ARIMA order for the
“Rolling” approach.

scaled homologous is markedly better than that of the benchmark, with the “Rec.

expanding” approach yielding slightly lower scores. Comparing these scores to
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Figure 5.26: Distribution of BM price forecast errors for the “Rec. expanding”
(top) and “Rolling” (bottom) approaches.
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Figure 5.27: Boxplots of BM price forecast errors for each approach. The squares
indicate the mean of the distribution (i.e. the forecast bias).

those obtained by spot price forecasts (see Table 5.4), it should be noted that while

MAE and RMSE are noticeably higher for imbalance price forecasts, results are very

similar in terms of scaled measures. The MASE and RMSSE are also calculated
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Figure 5.28: Scatter plot of observed vs forecast imbalance prices for each fore-
casting method. The coefficient of determination of each model is reported in blue.
The red line corresponds to the perfect forecast.
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Model bias MAE RMSE MASE RMSSE

Rec. expanding –9.12 39.57 55.23 0.66 0.90

Rolling –5.75 41.04 58.02 0.68 0.93

Benchmark –2.83 51.66 75.17 0.86 1.21

Table 5.8: Evaluation scores of the BM price point forecasts. All scores are
expressed in e/MWh, except for MASE and RMSSE in per unit.

separately for each half-hour period, and the results are shown in Figures 5.29

and 5.30, respectively. The graphs confirm the two advanced methods perform

similarly and both better than the benchmark across all periods. Moreover, errors

from all three methods tend to slightly increase with the forecast horizon. Finally,

the MAE and RMSE are calculated separately for each day of the week and results

are shown in Figures 5.31 and 5.32. Again, the “Rec. expanding” and the “Rolling”

methods perform consistently better than the benchmark. This time, forecasts

perform more homogeneously across different days, although errors are still higher

on the weekend.
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Figure 5.29: Mean Absolute Scaled Error of BM price forecasts for each half-hour.

The MAE of the two methods is calculated on a moving-window basis to in-

vestigate how the accuracy has changed over the test period. Figure 5.33 shows
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Figure 5.30: Root Mean Square Scaled Error of BM price forecasts for each
half-hour.
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Figure 5.31: Mean Absolute Error of BM price forecasts for each day of the week.

the cumulative MAE of the two advanced forecasts, and Figure 5.34 the two-week

rolling MAE. These graphs show that the “Rec. expanding” approach is consis-

tently more accurate than the “Rolling” approach for the whole test period. It can

also be noted that the accuracy of both methods improves over time, mainly as a
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Figure 5.32: Root Mean Square Error of BM price forecasts for each day of the
week.

consequence of the decreasing trend of average prices (cf. Figure (2.5)) and of their

volatility (cf. Figure (2.6)) over these months.
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Figure 5.33: Cumulative Mean Absolute Error of BM price forecasts.

Following the same framework implemented for spot prices, the analysis on

point forecasts of imbalance prices is concluded by applying DM tests to determine

212



5.2. Electricity Price Forecasts

2019-02-10 2019-02-24 2019-03-10 2019-03-24 2019-04-07 2019-04-21

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

M
A

E
[€

/M
W

h
]

rec. expanding

rolling

Figure 5.34: Two-week rolling Mean Absolute Error of BM price forecasts.

whether one of the two advanced methods is more accurate, having shown that

both outperform the benchmark. The results presented in Table 5.9 show that

the hypothesis of same accuracy is rejected in five periods out of 48, and in these

periods p-values are always higher than the 5% significance level. This seems to

indicate that the “Rec. expanding” method is slightly more accurate. However,

given the small difference and the limited testing data set, it is not possible to state

that this approach outperforms the “Rolling” approach. Therefore, it is concluded

that the two advanced methods are indistinguishable for point predictions of BM

prices..

Probabilistic forecasts

Next, the verification of the quantile forecasts is outlined. Figure 5.35 depicts

the reliability diagram for the quantile forecasts from each method and empirical

levels are tabulated in Table 5.10 , while the pinball loss scores are tabulated in

Table 5.11. Both “Rec. expanding” and “Rolling” approaches are well calibrated

for lower nominal levels, while they tend to overestimate the quantiles for higher

nominal levels, with the “Rec. expanding” approach giving slightly larger biases.
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hour Rec. exp vs Roll hour Rec. exp vs Roll hour Rec. exp vs Roll

00:00 - 08:00 - 16:00 -

00:30 - 08:30 0.995469 16:30 -

01:00 - 09:00 - 17:00 -

01:30 - 09:30 0.978362 17:30 -

02:00 - 10:00 - 18:00 -

02:30 0.997108 10:30 - 18:30 -

03:00 - 11:00 - 19:00 -

03:30 - 11:30 - 19:30 -

04:00 - 12:00 - 20:00 -

04:30 0.998211 12:30 - 20:30 -

05:00 - 13:00 0.981038 21:00 -

05:30 - 13:30 - 21:30 -

06:00 - 14:00 - 22:00 -

06:30 - 14:30 - 22:30 -

07:00 - 15:00 - 23:00 -

07:30 - 15:30 - 23:30 -

Table 5.9: p-values returned by the DM tests applied to “Rec. expanding” models
versus “Rolling” ones for BM price forecasting. The null hypothesis is that the first
model is significantly more accurate than the second.

The benchmark, on the other hand, shows larger deviations in reliability and a

tendency to over-forecast across all quantiles.
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Figure 5.35: Reliability diagram of the BM price quantile forecasts. The dashed
line is the diagonal indicating a perfectly calibrated forecast.
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nominal level

Model 5 10 25 75 90 95

Rec. expanding 2.6 5.9 24.4 86.3 94.0 96.0

Rolling 3.3 6.7 24.2 83.6 92.4 94.9

Benchmark 9.5 17.1 37.0 83.1 94.0 96.5

Table 5.10: Empirical levels of the quantile forecasts of BM prices for each model.

Similarly to the case of DAM price forecasts discussed in the previous Section,

the models’ calibration could be improved in future work through statistical post-

processing techniques. Adaptive bias-correction procedures can be implemented to

reduce the probabilistic bias of the higher quantiles. As the data set length increases

and past forecast performance information become available, MOS techniques can

also be applied to produce improved forecasts. Smoothing procedures, on the other

hand, may not be appropriate here as imbalance prices were shown to be extremely

volatile.

In terms of sharpness, shown in Figure 5.36, the benchmark is the forecast

providing the sharpest intervals, with the two advanced methods having similar

but always wider intervals. This is also clearly visualised in Figure 5.37, where

the sharpness values are calculated for each trading period (half-hour) separately.

Similarly to what was observed for DAM prices, the intervals tend to be larger

during the evening hours, reflecting the fact that uncertainties are larger with

longer forecast horizons. In addition, comparing the sharpness of BM price quantile

forecasts to that of DAM price (cf. Figure 5.22), it can be noted how the uncertainty

nominal level

Model 5 10 25 75 90 95

Rec. expanding 5.80 8.98 14.85 18.03 11.29 7.16

Rolling 6.09 9.47 15.71 18.39 11.53 7.40

Benchmark 6.44 9.38 15.02 17.28 11.43 7.58

Table 5.11: Pinball loss scores of the quantile forecasts of BM prices for each
model.
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associated with predictions of imbalance prices is considerably higher.

50 80 90

nominal coverage rate [%]

0

25

50

75

100

125

150

175

200

sh
ar

p
n

es
s

[€
/M

W
h

]

Rec. expanding

Rolling

Benchmark

Figure 5.36: Sharpness of the BM price quantile forecasts.

Again, the benchmark can be discarded due to its poor calibration and the

overall pinball loss score is calculated for the two advanced methods. This is equal

to 11.020 for the “Rec. expanding” approach and to 11.431 for “Rolling”. Similarly

to the case of DAM prices, the difference in pinball loss score between the two

methods is minimal and it is not possible to conclude which advanced approach

provides better quantile forecasts.

Both advanced methods for predicting BM prices outperform the benchmark,

but the difference in performance between them is very small, not allowing to

conclude that either is superior. Nevertheless, the “Rec. expanding” approach is

found to generate slightly more accurate forecasts over the testing period, with

the advantage being more evident with regards to point predictions. This finding

suggests that, given the particularly erratic behaviour of imbalance prices in the

Irish market, it was more beneficial to use as much historical data as possible to

train the models. Indeed, since the autoregressive and moving average components

of the imbalance price process are very weak, most ARIMAX models are reduced
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Figure 5.37: Half-hourly sharpness of the BM price quantile forecasts.

to multiple linear regression models and in such circumstances, the use of a larger

training data set was advantageous. In conclusion, the “Rec. expanding” approach

is selected as the forecasting method for BM prices and its predictions are used in

the Monte Carlo simulations, whose results are presented in the next Section.

5.2.3 Monte Carlo Simulations

Having generated the forecasts of DAM and BM prices, Monte Carlo simulations

are run to obtain the distribution of the price difference πdiff (cf. Equation (2.1))

for each trading period, as explained in Section 4.3.1.3. An example of the process

is displayed in Figure 5.38, with the forecast quantiles of DAM and BM prices and
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the quadratic interpolated functions shown in the top panel, and the distribution

of the 10,000 randomly sampled values of price difference in the bottom panel.

At this point, it is worth recalling that the variable of interest for the strategies

developed in this work is the sign of πdiff , rather than its value. For each trading

period, the forecast probability of positive price difference δ̂ (cf. Equation (4.20))

is obtained as the fraction of positive values in the distribution. For example, a

value of δ̂t+h equal to 0.7 means that 70% of the values in the price difference

distribution are larger than zero, hence there is a 70% expected probability that

the price difference on trading period t+h will be positive. It also follows that the

value of 0.5 corresponds to equal probabilities (50%) of the price difference being

positive or negative, indicating that the system is expected to be in balance.

The distribution of the probabilities δ̂ over the period under study is presented

in Figure 5.39, which shows a tendency to have more probabilities above the 0.5

threshold, meaning positive price differences are expected more often than negative

differences. The probability distributions are also analysed separately for each half-

hour. The boxplots in Figure 5.40 indicate that values are quite evenly distributed

around 0.5 for the early morning periods, while higher values of δ̂ become more

frequent (in other words, positive price differences are expected more often) through

the afternoon and in the evening hours. This is visualised in Figure 5.41, where

the mean value of each half-hourly distribution is plotted.

The performance of the price difference forecast is compared to that of the

“similar-day” benchmark method already discussed in the previous two Sections.

The ROC curves for the two methods are illustrated in Figure 5.42, together with

the diagonal line representing the performance of a random forecast. The graph

illustrates the trade-off between hit (true-positive) rates and false alarm (false-

positive) rates for each forecast. The Monte Carlo approach is considered as a

probabilistic classifier since its output is a strict probability. The associated curve,

which is generated from a finite but large set of instances, is in fact an interpolated

step function. On the other hand, the benchmark method is a discrete classifier
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Figure 5.38: Example of the quadratic spline functions interpolated to the fore-
cast quantiles of DAM and BM prices (top panel) and of the price difference dis-
tribution obtained from the Monte Carlo simulations (bottom panel) for a sample
trading period (2019-03-12T20:00).

because the outputs of the point forecast are binary values, that is, if the price

difference is positive or negative. Therefore, only one pair of true-positive and

false-positive rates is computed and a single point is produced in the ROC space.

The advanced method is more skillful, as its curve consistently lies above and to

the left of the benchmark. The values of AUC are 0.557 for the Monte Carlo

curve and 0.529 for the benchmark, confirming the superior performance of the

first method. From the graph, it can also be observed that the Monte Carlo curve

departs further from the diagonal in the lower left-hand side. This indicates that

the method performs better in the more conservative region of the graph, i.e. when
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Figure 5.39: Distribution of forecast probabilities of positive price difference, δ̂.
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Figure 5.40: Boxplots of forecast probability of positive price difference, δ̂, for
each half hour. The squares indicate the mean of the distribution.

strong evidence is needed to make a positive classification.

The accuracy of the forecast in terms of correct predictions (hits) of the price

difference sign is then calculated. Note that in this context, the term “accuracy”

refers to the metric calculated as true positives + true negatives
total cases

[65]. Overall, the advanced
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Figure 5.41: Average forecast probability of positive price difference for each half
hour.
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Figure 5.42: ROC curves for the price difference forecasts. The diagonal dashed
line represents the performance of a random forecast.

method predicts the sign of price difference correctly 56.5% of the time, while the

benchmark only 51.8%. The accuracy of the advanced method for each half-hour is

illustrated in Figure 5.43. Predictions tend to be more accurate in the central part
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of the day, although there is no clear hourly trend. Note that, for four periods, the

accuracy is lower than that of a random guess, that is 50%.
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Figure 5.43: Half-hourly accuracy of the price difference forecast.

5.3 Imbalance Sign Forecast

The purpose of this Section is to evaluate the imbalance sign (i.e. the direction

of system imbalance) forecasting methods developed in Section 4.3.2. The logistic

regression models were trained over a four-month period from the 1st October 2018

to the 28th January 2019 and are evaluated on the 3-month test period from the 29th

January 2019 to the 25th April 2019. The forecasting processes were implemented

using R and run on an Intel Core i7 processor with 3.4 GHz CPU and 16 GB

memory, with the total processing time being under 15 minutes.

Recall that four alternative approaches for the prediction of the sign of the

system imbalance are developed:

• recursively expanding with model re-estimation (“Rec”);

• recursively expanding with stepwise model re-selection and re-estimation (“Rec-

Step”);
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5.3. Imbalance Sign Forecast

• rolling with model re-estimation (“Roll”); and

• rolling with stepwise model re-selection and re-estimation (“Roll-Step”).

The benchmark is given by the half-hourly historic proportion of the system being

short calculated on the training set.

Moreover, recalling that the imbalance sign is described as a binary process, 0

corresponds to a negative sign and 1 to a positive sign. For each trading period

t + h, the models predict the probability γ̂t+h ∈ [0, 1] of the imbalance being

positive (i.e. the system being short). Therefore, a value of 1 (0) indicates a

perfectly confident forecast that the imbalance will be positive (negative), i.e. the

system will be short (long). It also follows that a value of 0.5 corresponds to

equal probabilities of the imbalance being positive or negative, that is, the system

is expected to be in balance. An example of forecast probabilities generated for

one day and corresponding observations is shown in Figure 5.44. Recall that a

positive imbalance sign means that the system is short and there is need for up-

regulation. Normally, this leads to the imbalance price being higher than the

spot price, hence to a positive price difference. Therefore, it is postulated that

forecasting a positive imbalance sign corresponds to forecasting a positive price

difference (see Section 4.3.2).

The distribution of the probabilities γ̂ generated by each logistic regression

model is shown in Figure 5.45. It can be observed that the average predictions

from the two “Rec”-based approaches are below 0.5, while the opposite is true

for the two “Roll”-based approaches. The distributions from the two approaches

with stepwise re-selection of the predictors, namely “Rec-Step” and “Roll-Step”,

are tighter, as indicated by the narrower inter-quantile ranges. With most values

lying in the central region of the probability spectrum (i.e. around 0.5), this also

shows that these predictions are more prudent. An in-depth investigation aimed

at identifying the reason(s) for these differences in the distributions is beyond the

scope of this research and is left for future work (see Section 6.2).
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Figure 5.44: Example of forecast and observed imbalance signs for each trading
period in one day (2019-02-23).
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Figure 5.45: Boxplots of the forecast probabilities of positive imbalance, γ̂, for
each model. The squares indicate the mean of the distribution.

The performance of the models is first evaluated by examining their ROC

curves, which are shown in Figure 5.46. All four logistic regression models con-

sistently outperform the benchmark, whose performance resembles that of random
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5.3. Imbalance Sign Forecast

guessing. Brier scores are then calculated for each model — the observation oi

is equal to 1 if the imbalance is positive, and 0 otherwise (cf. Equation (3.30))

— and the results are presented in Table 5.12. These results confirm that all ad-

vanced models perform better than the benchmark. Moreover, the scores indicate

that forecasts from the “Rec” and “Roll” approaches improve when coupled with

stepwise re-selection of the predictors. Although the scores are very close, forecast

errors from the advanced methods and the benchmark are differently distributed,

as visible from Figure 5.47, where the boxplots illustrate the distribution of the

squared forecast errors (cf. Equation 3.30) from each model. It can be observed

that while the mean of the distribution (i.e. the Brier score) is highest for the

benchmark, its distribution is tighter and there are no large errors. Finally, the

lowest score is achieved by the “Roll-Step” approach. The predictions generated

by this model are examined in more detail in the remainder of this Section, and

will be used to implement the trading strategies discussed in Section 4.4.
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Figure 5.46: ROC curves for the imbalance sign forecasts. The diagonal dotted
line represents the performance of a random forecast.
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Model Brier score

Rec 0.2720

Rec-Step 0.2680

Roll 0.2712

Roll-Step 0.2634

Benchmark 0.2758

Table 5.12: Brier scores of the imbalance sign forecasts.

0.0 0.2 0.4 0.6 0.8 1.0

γ̂

Benchmark

Roll-Step

Roll

Rec-Step

Rec

sq
u

ar
ed

fo
re

ca
st

er
ro

r

Figure 5.47: Boxplots of the squared errors for each imbalance sign forecasting
model. The squares indicate the mean of the distribution, i.e. the Brier score.

As explained in Section 4.3.2, in the “Roll-Step” approach, the predictors are

re-selected and models are re-estimated at each iteration. Figure 5.48 shows the

occurrence of models with the same set of selected predictors, where:

• Demand = forecast demand;

• Windpoint = point forecast of wind power generation;

• Windinterval = 80% interval forecast of wind power generation;

• Penetration = predicted wind power penetration; and

• Day = day of the week.
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5.3. Imbalance Sign Forecast

The results show that there is not one prevalent set of predictors. The two most

frequent sets are {Windpoint, Demand} and {Windpoint, Demand, Penetration},

each accounting for 15.6% of the total. Interestingly, in 5.0% of the cases, all

predictors are removed in the backward selection procedure. In this case (labelled

with “1”), the prediction is simply given by γ̂t+h =
exp(β̂0)

1+exp(β̂0)
, where β̂0 is the

estimated intercept in the model (cf. Equation (4.23)). Figure 5.49 shows how

often a predictor is included in a model, by itself or in combination with other

predictors. Windpoint and Penetration are selected in more than half of the models

(65.1% and 56.4%, respectively). On the other hand, Day is selected considerably

less than the other predictors, appearing only in 6.5% of models.

The distribution of the probabilities γ̂ generated by the “Roll-Step” model is

displayed in Figure 5.50. The histogram highlights the presence of more values

below the 0.5 threshold, indicating the tendency to expect the system to be long

more often and therefore to have negative price differences more frequently. This

trend is opposite to that found for the distribution of forecast price differences δ̂,

as highlighted in Figure 5.51, where a comparison between the two distributions

is offered. The distributions of forecast imbalance sign are also analysed for each

half-hour separately in Figure 5.52. It can be observed that predictions are more

cautious and distributions are tighter at night; forecasts are biased towards the

negative imbalance sign (below 0.5) in the early morning, and towards the positive

imbalance sign (above 0.5) in some evening periods.

The accuracy of the forecast in terms of correct predictions (hits) of the im-

balance sign is then calculated. Overall, the model estimates the imbalance sign

correctly in 53.5% of the cases, a result markedly better than the 46.0% obtained

by the benchmark. The percentage of correct predictions for each half-hour is also

illustrated in Figure 5.53. Predictions are more accurate in the morning and less

in the evening and night, with a number of periods where accuracy is below 50%.

However, some of the analyses performed on the first seven months of operation of

the Irish market and presented in Section 2.2.2.3 have highlighted the considerable
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Figure 5.48: Frequency of imbalance sign forecasting models with the same set
of predictors for the “Roll-Step” approach.

occurrence of counter-intuitive imbalance prices, whereby a positive imbalance sign

does not always correspond to a positive price difference, and vice versa. Due to
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Figure 5.49: Frequency of predictors selected in the imbalance sign forecasting
models for the “Roll-Step” approach.
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Figure 5.50: Distribution of forecast probabilities of positive imbalance sign, γ̂,
for the “Roll-Step” approach.

this anomaly, a correct prediction of the imbalance direction in this study does not

necessarily correspond to a correct prediction of the price difference sign. For this

reason, the accuracy of the imbalance sign forecast is also investigated in terms
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Figure 5.51: Distribution of forecast probabilities of positive price difference, δ̂,
and of positive imbalance sign, γ̂.
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Figure 5.52: Boxplots of forecast probability of positive imbalance sign, γ̂, for
each half hour. The squares indicate the mean of the distribution.

of correct predictions of the price difference sign, and it is found that the accu-

racy degrades to 51.0%. The percentage of correct predictions of the sign of price

difference for each half-hour is also illustrated in Figure 5.54. Compared to the
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Figure 5.53: Half-hourly accuracy of the imbalance sign forecast in terms of
correct predictions of the imbalance sign.

corresponding accuracy values in terms of imbalance sign (shown as dots), accura-

cies are lower across nearly all periods. Besides a few isolated periods during the

day, accuracies are actually higher between ISP 37 and 43, where it was observed

that price anomalies were slightly more frequent (cf. Figure 2.47).

5.4 Strategic Bidding

This Section presents the results from the application of the bidding strategies de-

veloped for trading wind energy in markets with a single imbalance pricing scheme

and described in Section 4.4 . The strategies are aimed at participants who want

to bid strategically in the day-ahead market to increase the value of the electricity

generated at a wind farm, where the size of the wind farm is small in comparison to

the average system imbalance volume (see the model assumptions in Section 4.1.1).

The models developed in this work employ forecast information on wind power

generation and electricity market conditions in a probabilistic framework. Offers

are then formulated to reflect the participant’s appraisal of future uncertainties and
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Figure 5.54: Half-hourly accuracy of the Imbalance Sign forecast in terms of
correct predictions of the price difference sign. The dots correspond to the accuracy
calculated in terms of imbalance sign shown in Figure 5.53.

risk appetite. The objective is to improve the value of wind power by increasing the

revenue while controlling the exposure to risk. The proposed strategies are sum-

marised in Table 5.13 together with the required types of forecasts. Both market

quantity forecasts are tested through the implementation of the proposed strate-

gies to quantify the value of forecast accuracy in monetary terms. The half-hourly

accuracy of the two market quantity forecasts, already presented in Figures 5.43

and 5.54, is compared directly in Figure 5.55, from which it is evident that the price

difference forecast δ̂ outperforms the imbalance sign forecast γ̂ over most trading

periods. In the following, when the price difference forecast δ̂ is used, the suffix

“-price” is added to the strategy’s name; when the imbalance sign forecast γ̂ is

used, then “-NIV” is added.

As previously discussed in Sections 4.4.3 and 4.4.4, the risk factor ρ and the

adjustment function f(x) in the Scal and Prop strategies need to be set by the

participant beforehand, based on the target trade-off between risk and revenue.

Here, results are provided for the range of risk factor values ρ ∈ [0, 1] and examined
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Strategy Wind power forecast Market quantity forecast

ImbMin point –

ImbMax – point

Scal point probabilistic

Prop point probabilistic

Quant probabilistic probabilistic

Table 5.13: Summary of the proposed bidding strategies and forecasts required
for their implementation.
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Figure 5.55: Accuracy in terms of correct predictions of the price difference sign
of the two market quantity forecasts. The grey lines indicate the overall average
accuracy of each method.

ex-post. On the other hand, since the adjustment function f(x) can be designed

heuristically in a number of ways to reflect the participant’s sensitivity to market

uncertainty, only the basic case of a step adjustment function (see Figure 4.11b) is

selected for demonstration and presented here.

Based on an analogous rationale, the value of α, the function g(x) and param-

eters a and b in the Quant strategy can be set in a variety of ways to reflect the

desired trade-off between revenue and risk. Here, results are presented for the case

of α being equal to 0.90 and the bid being a piecewise linear function of the market

forecast quantity (see Figure 4.12b). While all possible combinations of parame-
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ters a and b were tested, only the risk-minimising case (as measured by CVaR1%)

is illustrated to reduce redundancy. The corresponding parameter values are:

• a = 0.0, b = 0.8 for the Quant-NIV strategy; and

• a = 0.0, b = 0.9 for the Quant-price strategy.

As discussed in Section 4.4, ImbMin and ImbMax will constitute the two bench-

marks to examine the performance of the proposed novel strategies. To provide

another useful reference, results are also presented for the hypothetical case where

a perfect forecast of wind power generation is employed to bid in the market. This

case, where no energy imbalances and therefore no balancing costs arise, will be

referred to as “Perfect”.

The proposed strategies are evaluated on the 3-month independent test period

from the 29th January 2019 to the 25th April 2019 by simulating the participation

of the wind farm under study in the I-SEM and using actual data from the market.

During this period, the capacity factor of the wind farm was 31.2%. The average

price difference was 31.13 e/MWh when the system was short and –26.05 e/MWh

when it was long, indicating that on average price differences were not symmetric.

The observed mean absolute price difference for each half-hour is illustrated in

Figure 5.56, which shows the size of πdiff is on average lower in the morning,

increases in the afternoon, and is largest in the evening hours. The system was left

long more frequently than short, as shown in Table 5.14, with NIV being negative

49.6% of the time and positive 42.9%. As discussed in Chapter 2, a long system is

expected to lead to a negative price difference, and vice versa for a short system.

However, due to the significant occurrence of price anomalies already highlighted

in Section 2.2.2.3, proportions are altered and price differences were negative 54.6%

of the time and positive 43.9%.

The performance of the various bidding strategies is evaluated in terms of bid

quantities, revenue, energy imbalances, CVaR1% and CVaR5%. Recall that in all

the analyses, wind power values and related quantities are normalised by the wind
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Figure 5.56: Half-hourly observed mean absolute price difference during the test
period.

Frequency

Model positive negative zero

NIV 42.9 49.6 7.3

πdiff 43.9 54.6 1.5

Table 5.14: Frequency of positive, negative and zero net imbalance volume (NIV)
and price difference (πdiff ) during the 3-month test period between the 29th January
2019 and the 25th April 2019. Values are expressed as percentages.

farm’s installed capacity Pnom. Consequently, monetary results (i.e. revenue and

CVaRα) are expressed in e per installed MW. In the following graphs, results from

ImbMin are indicated with a cross, while those from ImbMax-price and ImbMax-

NIV are depicted as black dots. Note that where the variable of interest is plotted

against the risk factor ρ, results for the two Quant strategies are shown outside the

range of possible values of ρ since risk factor is not involved in their formulation.

First, the variation of bid quantities for each strategy is examined by looking

at the average bids in Figure 5.57. For both Quant cases, less energy is offered on

average compared to ImbMin. For the Scal and Prop strategies, the average bid

increases monotonically for increasing values of ρ when the “-NIV” forecast is em-
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ployed; indeed, the system is forecast long more often than short (see Figure 5.50)

and therefore the tendency is to increase the energy forecast. Note that values are

considerably higher for Scal-NIV due to the strategy’s formulation.

On the other hand, when the “-price” forecast is employed, trends differ between

Scal and Prop. Recalling that price difference is forecast positive more often than

negative (see Figure 5.39), the tendency is to decrease the energy forecast. For

Prop-price, this translates to the bid decreasing monotonically as ρ increases. For

Scal-price, however, the average bid decreases for ρ ≤ 0.20 and then increases for

larger values. This happens as the average forecast energy is relatively low (30.5% of

Pnom), so once the size of the adjustment becomes significant, negative corrections

are limited at zero, whereas positive corrections have margin to be applied. This

is visualised in Figure 5.58, where the distributions of bid quantities from the two

approaches are compared for increasing values of ρ. In the Scal-price case, it can

be noted that although the median consistently decreases as risk factor increases,

the mean becomes larger.
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Figure 5.57: Average bid quantity from each bidding strategy. The cross and the
dots represent the ImbMin and ImbMax strategies, respectively.

The total revenue yielded from each strategy is shown in Figure 5.59 and tabu-
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Figure 5.58: Distribution of bid quantities from Prop-price (left) and Scal-price
(right) strategies for increasing risk factor. The red lines indicate the median of
the distribution and the squares the mean, while the dashed grey line indicates the
average forecast energy.

lated in Table 5.15. The revenue is lowest for ImbMin and increases for all the ad-

vanced strategies, with Scal-price consistently outperforming the other approaches

for increasing values of ρ. It can be noted that for each strategy type, the “-price”

case is always better than the “-NIV” homologous. This is particularly notice-

able in the two Scal cases. For increasing values of the risk factor, both revenues

initially increase, but values for Scal-NIV are consistently lower due to the lower

accuracy of the market quantity forecast, which causes adjustments to be made

in the wrong direction more often. For ρ > 0.60, as the size of the adjustments

becomes substantial, these inaccuracies cause the total revenue to invert trend and

decrease.

It can be noted how some strategies are able to yield a revenue higher than

Perfect: this occurs for Scal-price when ρ ≥ 0.25, Prop-price when ρ ≥ 0.65, Prop-

NIV when ρ ≥ 0.80, and ImbMax-price. Note also that the highest revenue is

not obtained by ImbMax-price (i.e. Scal-price[ρ=1.00]), but by Scal-price[ρ=0.90] and

is equal to e 31,713, which is 15.9% higher than ImbMin and 6.9% higher than
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ImbMin ImbMax-price ImbMax-NIV Quant-price Quant-NIV Perfect

27,352 31,693 29,128 28,019 27,692 29,673

ρ Scal-price Scal-NIV Prop-price Prop-NIV

0.20 29,376 28,630 28,150 27,972

0.40 30,488 29,322 28,954 28,644

0.60 31,299 29,620 29,618 29,225

0.80 31,660 29,375 30,159 29,692

1.00 31,693 29,128 30,674 30,087

Table 5.15: Revenue from each bidding strategy. Values are expressed in e per
installed MW.
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Figure 5.59: Revenue from each bidding strategy. The cross and the dots repre-
sent the ImbMin and ImbMax strategies, respectively.

The strategies are then evaluated in terms of the size of the energy imbalances

they cause. The mean absolute energy imbalance (MAI) for each strategy calcu-

lated as

MAI = mean
(
|EDAM

t+h − Et+h|
)

is shown in Figure 5.60 and tabulated in Table 5.16. The results show that, as
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ImbMin ImbMax-price ImbMax-NIV Quant-price Quant-NIV

8.4 38.3 42.3 9.8 9.4

ρ Scal-price Scal-NIV Prop-price Prop-NIV

0.20 16.9 17.3 9.8 9.7

0.40 27.2 28.6 13.4 13.2

0.60 33.8 36.4 17.8 17.2

0.80 37.2 40.7 22.2 21.0

1.00 38.3 42.3 26.5 24.6

Table 5.16: Mean absolute energy imbalance from each bidding strategy. Values
are expressed as % of Pnom.

expected, the ImbMin strategy does minimise the size of imbalances3 and the Imb-

Max maximise them, while the MAI is always increasing for increasing values of

the risk factor. Scal strategies cause significantly larger imbalances compared to

Prop and Quant, regardless of the market quantity forecast employed; this makes

intuitive sense given how the strategies are formulated.
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Figure 5.60: Mean absolute energy imbalance from each bidding strategy. The
cross and the dots represent the ImbMin and ImbMax strategies, respectively.

3The MAI for ImbMin is in fact the MAE of the point forecast employed in the strategy.
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Next, the exposure to risk as measured by CVaR1% and CVaR5% resulting from

each strategy is evaluated. Recall that CVaR1−α is defined as the expected revenue

in the worst (1 − α) × 100% of cases (cf. Equation (4.11)). Therefore, decreasing

CVaR values correspond to increasing risk, since the participant is exposed to

lower profits or, when values are negative, larger losses. The values obtained in

the case study are shown in Figure 5.61 and tabulated in Table 5.17 for CVaR1%,

and Figure 5.62 for CVaR5%. It can be noted how the CVaR1% from Perfect is

considerably better than any of the other strategies and that, even though no

balancing costs are incurred in this strategy, the value is negative as a result of

the instances of negative DAM prices. Overall, the Scal approaches cause the

worst CVaR1−α for increasing values of ρ due the higher energy imbalances they

cause (cf. Figure 5.60). Furthermore, for all approaches the CVaR1−α for the “-

NIV” case is consistently worse than the “-price” homologous as a result of the

different accuracy of the two market quantity forecasts, with the lowest (hence

worst) CVaR1−α obtained by ImbMax-NIV (i.e. Scal-NIV[ρ=1.00]).
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Figure 5.61: CVaR1% from each bidding strategy. The cross and the dots repre-
sent the ImbMin and ImbMax strategies, respectively.

The most remarkable result, however, is that within certain operating regions of
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ImbMin ImbMax-price ImbMax-NIV Quant-price Quant-NIV Perfect

–22.28 –56.74 –73.91 –21.30 –22.37 –1.85

ρ Scal-price Scal-NIV Prop-price Prop-NIV

0.20 –26.09 –34.52 –21.33 –25.40

0.40 –36.53 –51.67 –23.75 –30.43

0.60 –48.29 –63.61 –28.29 –37.03

0.80 –53.69 –70.31 –34.01 –43.65

1.00 –56.74 –73.91 –41.12 –49.21

Table 5.17: CVaR1% from each bidding strategy. Values are expressed in e per
installed MW.
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Figure 5.62: CVaR5% from each bidding strategy. The cross and the dots repre-
sent the ImbMin and ImbMax strategies, respectively.

the “-price” strategies, the CVaR1−α increases in comparison to ImbMin, meaning

that exposure to risk is reduced. Improvements are observed for both CVaR1% and

CVaR5% but as the former corresponds to a higher aversion to risk, the remainder

of the analysis will focus on this measure. Risk exposure as measured by CVaR1%

reduces for Scal-price when ρ ≤ 0.10, Prop-price when ρ ≤ 0.30, and Quant-price.

The best CVaR1% is obtained by Prop-price[ρ=0.15] and is equal to e –21.10, a 5.3%

improvement with respect to the ImbMin case. Interestingly, the reduced exposure
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to risk does not correspond to a reduction of energy imbalances. This is visualised

in Figure 5.63, which shows that while CVaR1% improves (see the zoom inset in

the graph), the MAI is still increasing up to almost 12% of Pnom.
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Figure 5.63: Mean absolute energy imbalance vs CVaR1% from each bidding
strategy. The cross and the dots represent the ImbMin and ImbMax strategies,
respectively.

To visually analyse the trade-off between expected profit and risk resulting from

each approach, the revenue is shown against the CVaR1% in Figure 5.64. The zoom

inset in the graph highlights the region where, in comparison to ImbMin, certain

advanced strategies allow to increase the revenue while simultaneously reducing or

leaving unchanged the risk for the participant: revenues are increased up by 4.4%

for Prop-price, 4.1% for Scal-price, and 2.4% for Quant-price. For Quant-NIV, the

CVaR1% is only slightly worse than ImbMin, and revenue is increased by 1.2%.

As previously noted for the cases of revenue and CVaR1−α, for each strategy

type, employing the price difference instead of the imbalance sign forecast results

in a consistently better performance. Indeed, for a given level of risk (i.e. equal

CVaR1%), revenues are always higher for the “-price” case. Likewise, the risk

associated with a given level of profit (i.e. equal revenue) is always lower for the
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“-price” case. This emphasizes how the accuracy of the market quantity forecast

employed has a crucial impact on the strategy’s performance.
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Figure 5.64: Revenue vs CVaR1% from each bidding strategy. The cross and the
dots represent the ImbMin and ImbMax strategies, respectively.

Figure 5.64 also shows how the strategies that are able to yield revenues equal

or even higher than those obtained from using a perfect wind power forecast, do so

at the expense of an increased exposure to risk. From a practical perspective, the

relevance of this finding must be noted, as it shows that a risk-seeking participant

may consider it more valuable to invest in a forecast of market quantities rather

than getting a new, more accurate wind power forecast. An example is illustrated in

Figure 5.65, where the net cumulative revenues of a number of strategies are shown.

The net cumulative revenue is defined as the difference between the cumulative

revenue obtained by the strategy and the cumulative revenue obtained by ImbMin

(see Zugno et al. in [193]). The Figure shows that Prop-NIV[ρ=0.80] and Prop-

price[ρ=0.60] generate around the same total revenue as Perfect by the end of the

test period, but do so through visibly different paths. The size of the adjustments is

larger in the case of Prop-NIV[ρ=0.80] (the energy forecast is increased or decreased

by 80%), but the accuracy of the market quantity forecast is lower, resulting in
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the steep jumps and drops observed in the solid curve. On the other hand, the

adjustment size is smaller for Prop-price[ρ=0.60] (60% of the forecast energy) but

the market quantity forecast is more accurate, resulting in the smoother, generally

rising dash-dotted curve. The higher volatility of Prop-NIV[ρ=0.80] is in fact reflected

by its CVaR1% (e –43.65) being substantially worse than that of Prop-price[ρ=0.60]

(e –28.29).

2019-01-27 2019-02-10 2019-02-24 2019-03-10 2019-03-24 2019-04-07 2019-04-21

0

500

1000

1500

2000

2500

n
et

cu
m

u
la

ti
ve

re
ve

n
u

e
[€

/M
W

]

Perfect

Prop-NIV[ρ=0.80]

Prop-price[ρ=0.60]

Figure 5.65: Net cumulative revenues of different bidding strategies yielding the
same total revenue as Perfect at the end of the test period.

The ability of certain strategies to generate more revenue than a perfect wind

power forecast is further analysed in Figure 5.66. Here, the distributions of daily

revenue are shown from Perfect and from the Prop-price strategies for increas-

ing risk factors. While the total revenue yielded by Prop-price[ρ=0.75] and Prop-

price[ρ=1.00] is higher than that of Perfect (cf. Table 5.15), the volatility of daily

revenue increases substantially: the range of values expands visibly, with revenues

increasing while possible losses become larger and more frequent.

In Figure 5.67, the revenues obtained from each strategy are shown against the

MAI they cause. The graph illustrates how the average size of imbalances becomes

larger for increasing revenues, indicating that the objective of the participant, who
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Figure 5.66: Distribution of daily revenues using a perfect wind power forecast
(Perfect) and with the Prop-price strategy for increasing risk factors.

wants to increase their revenue, is in fact in conflict with that of the system op-

erator, who wants imbalances to be minimised. Prop-price causes the lowest MAI

for a given level of revenue, and yields the highest revenue for a given level of

MAI. Note that to obtain the same revenue as Perfect (where no imbalances are

caused), the size of imbalances increases more than twofold in comparison to Imb-

Min and is halved in comparison to ImbMax-NIV and ImbMax-price: MAI is equal

to 18.2% of Pnom with the Prop-price strategy, 19.3% with Scal-price, and 20.9%

with Prop-NIV.

A summary of the key results for some of the advanced bidding strategies devel-

oped in this work is illustrated in Figure 5.68. The scatter plot shows the average

revenue yielded by the Scal-price and Prop-price strategies against the correspond-

ing CVaR1%. The size of each marker is proportional to the MAI caused by the

strategy, while the intensity of the colour increases with the risk factor. ImbMin

and ImbMax are indicated with black crosses and constitute industry and academia

reference strategies, respectively. With regards to ImbMax, for example, it can be

noted that in 1 trading period out of 100, a participant adopting this strategy incurs
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Figure 5.67: Revenue vs Mean absolute energy imbalance from each bidding
strategy. The cross and the dots represent the ImbMin and ImbMax strategies,
respectively.

an average loss of 57 e per installed MW, when the average revenue is less than

8 e per installed MW. The revenue obtained with a perfect wind power forecast

is also marked in the graph. From the Figure, it can be observed how exposure to

risk can be reduced by adopting the proposed advanced trading approaches with

lower risk tolerance levels. As discussed earlier, these strategies can outperform

Perfect in terms of revenue for higher values of the risk factor, at the expenses of

bigger losses on a single period (i.e. lower CVaR1%) and larger energy imbalances.

It must be reiterated that the strategies developed in this work are only valid

for wind farms whose size is small relative to the power system. Considering that

the strategies presented here can introduce average imbalances up to 40% of the

wind farm’s nominal capacity, limitations exist on their applicability. To provide

some context, the average size of imbalances in Ireland was 21.56 MWh with a

standard deviation of 28.24 MWh during the first seven months of operation of the

I-SEM (cf. Table 2.6). Indeed, a participant who intentionally causes imbalances

of significant size would impact the market’s behaviour and in turn affect the price
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Figure 5.68: Average revenue vs CVaR1% from Scal-price and Prop-price. The
colour intensity increases with the risk factor, while the marker size is proportional
to the MAI caused.

formation processes, hence violating the price-taker assumption (see Section 4.1.1)

and making the value forecasting model inconsistent. Moreover, such systematic,

large deviations could be deemed unacceptable by the regulators, with consequent

penalties for the trader.
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Chapter 6

Conclusions

6.1 Summary of Conclusions

The aim of this research was to develop new probabilistic models forecasting the

short-term value of wind power and to investigate their use in bidding in electric-

ity markets adopting a single-imbalance pricing scheme. The perspective adopted

here is that of a participant who wants to bid strategically in the day-ahead mar-

ket to increase the value (measured in terms of revenue and risk exposure) of the

energy generated by a wind farm. The proposed models combined short-term pre-

dictions of wind power and relevant electricity market quantities in a probabilistic

framework. Offers were then formulated to reflect the participant’s risk profile,

conditioned upon the uncertainty in future wind power generation and electricity

market conditions. The aim of the research was achieved, as the proposed strate-

gies successfully improved the value of wind power for the participant by increasing

their revenue while simultaneously controlling exposure to risk.

In order to define the general context of the Thesis, wholesale electricity mar-

kets and their operation were described in Chapter 2. First, the general features

and mechanisms of electricity markets were discussed, focussing on the main en-

ergy trading platforms of interest for a wind farm operator. The specific case of

the I-SEM, the new Irish electricity market, was then studied. After outlining

249



6.1. Summary of Conclusions

its structure, a comprehensive picture was provided of the market data available

at the time this work was conducted. A number of market processes had to be

modelled and forecast to implement the value forecasting models. For this reason,

exploratory and statistical analyses were performed on the available I-SEM market

data to gain insight into these processes and improve the modelling quality and

forecasting performance. The outcomes of these analysis provided the motivation

for the modelling approaches adopted within the methodology of this work.

In the first part of Chapter 3, the theoretical background necessary to develop

and evaluate time series forecasting models was given. This was followed by a

review of the academic literature of relevance to this work. The state-of-the-art

in short-term forecasting of wind power was described. It was highlighted how

in recent years the focus of academic research has moved towards probabilistic

forecasts, although business practice is still rooted in the use of point predictions.

Next, an analogous review was given for short-term forecasting of electricity

prices. The literature on day-ahead market price forecasting was examined. Com-

putational intelligence and statistical models emerged as the two most popular

approaches. However, the focus of this work was restricted to the latter due to the

limited amount of historical data available for the study. It was concluded that of

the statistical models, ARMAX tends to achieve the best performance, and mod-

elling each load period separately improves the forecast accuracy in comparison to

having a single specification for all time periods. On the other hand, the literature

on short-term forecasts of balancing market quantities was found to be very limited

and mostly concerned with Scandinavian markets, and the evidence for one class of

models outperforming the others was scarce. This research advances the discussion

on the subject by proposing a new method to generate probabilistic forecasts of

the difference between day-ahead and balancing market prices combining ARMAX

models and Monte Carlo simulations.

In the final part of Chapter 3, the academic literature on short-term value

forecasting of wind power for energy trading was reviewed. It was observed that
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strategic bidding in the day-ahead market has been investigated with growing in-

terest in recent years. Nevertheless, a gap was highlighted, as the literature on

power systems with single-price imbalance settlement was found to be extremely

limited. It was evidenced that the most basic approach to trading, that is, directly

bidding the point forecasts of wind generation, also constitutes the current indus-

try practice among most utilities in Europe and the USA. On the other hand, the

Zero/Max strategy represents the state-of-the-art in academic research, despite its

practical implementability being arguable. This both justified and motivated the

objective of developing novel value forecasting models, as this research advances

the discussion on strategic bidding in these types of markets: the new proposed

strategies use forecasts of both wind power and market quantities in a probabilistic

framework while integrating explicitly the participant’s attitude towards risk.

Chapter 4 concentrated on the methodology used in developing the value fore-

casting models. First, the problem of trading wind energy in day-ahead and single-

price balancing markets was presented together with the assumptions made. It

was underlined how the two variables of primary interest for a market participant

are wind power generation and the sign of the difference between day-ahead and

balancing market prices. The characteristics of the wind power forecasts available

for the wind farm under study were then described.

Next, the models developed to forecast the sign of price difference were ex-

plained. Given the occurrence of imbalance price anomalies highlighted in the

analyses of I-SEM data, two alternative approaches were used. First, a novel

method was proposed, whereby day-ahead and balancing market prices were fore-

cast individually using ARMAX processes and the resulting quantile predictions

combined with Monte Carlo simulations to estimate the probability distribution

of price differences. In the second method, the imbalance sign was modelled as a

binomial distribution and forecast with logistic regression models; the probability

of a positive price difference was then deduced directly from this forecast. The

multi-model approach (whereby a separate model is fitted to each load period)
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was implemented in both methods. Moreover, within each method, two alterna-

tive techniques — namely, “Recursively expanding” and “Rolling” — were adopted

to train the models in order to accommodate for the time-varying nature of the

processes.

Three novel bidding strategies were then formulated and tested against two

benchmarks to examine possible improvements. These two benchmarks are the

business practice and the research state-of-the-art, and correspond to the extreme

cases where the objective is to minimise or maximise the energy imbalances, respec-

tively. In these two approaches, offers are based on either the sole point predictions

of wind power or the estimated sign of price difference. The three novel advanced

strategies were then described. Both wind power and market quantity probabilistic

forecasts were used to define the bids and the objective was to increase the rev-

enue while controlling the exposure to risk. It was highlighted how these bids are

formulated to reflect the participant’s risk profile, conditional on the uncertainty

in future wind power generation and electricity market states.

The methodology was applied to a case study where the participation of a wind

farm in the Irish electricity market was simulated and the results were presented

and discussed in Chapter 5. The wind power forecasts for the wind farm under

study were examined. The model with significantly better accuracy was identified

and selected for use in the trading strategies.

In the second part of the Chapter, the electricity price forecasting methods were

evaluated. For day-ahead prices, both proposed models clearly outperformed the

benchmark. Although the difference with the “Rec. expanding” approach was very

small, the “Rolling” approach was found to generate slightly more accurate point

predictions as well as better quantile forecasts. As spot prices were characterised

by marked seasonalities and a strong dependence on the level of demand (which

in turn varies with the time of the year), training the models using only the more

recent observations helped to better capture these seasonal variations. Hence, the

“Rolling” method was selected as the forecasting method for DAM prices and its
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predictions used as inputs to the Monte Carlo simulations. For imbalance prices,

the vast majority of the fitted models were multiple linear regression models for

both the “Rec. expanding” and “Rolling” approaches. This finding confirmed

how the autoregressive and seasonal components in the imbalance price process

were very weak, indicating that the prediction of future values relied primarily on

the exogenous variables. Again, both proposed models clearly outperformed the

benchmark. This time, the “Rec. expanding” approach was found to be slightly

superior, with the advantage being more evident in terms of point predictions.

Given the particularly erratic behaviour of imbalance prices in the Irish market,

the use of as much historical data as possible to train the models proved to be more

beneficial. Hence, the “Rec. expanding” approach was selected as the forecasting

method for BM prices and its predictions used in the Monte Carlo simulations.

The forecast probabilities of positive price differences were obtained from these

simulations, where a tendency to predict positive price differences more frequently

was observed. Predictions were found to be more accurate than the benchmark,

with the sign of price difference being correctly estimated 56.5% of the time.

In the third part of the Chapter, results from the evaluation of imbalance sign

forecasting methods were presented. All four logistic regression models consistently

outperformed the benchmark. The best performance was achieved by the approach

using a rolling training window and stepwise re-selection of the predictors, and

the corresponding predictions were employed in the trading strategies. For this

approach, point predictions of wind power and predicted wind power penetration

were included in more than half of the models, indicating a correlation between net

imbalance volumes and system-level wind generation and demand. Negative price

differences were forecast more frequently, and the imbalance sign was predicted

correctly in 53.5% of the cases. However, due to the occurrence of anomalous prices

in the I-SEM balancing market, a correct prediction of the imbalance direction did

not always correspond to a correct prediction of the price difference sign, and vice

versa. In fact, the accuracy of the imbalance sign forecast in terms of correct
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predictions of the sign of price differences was found to be lower at 51.0%.

In the last part of Chapter 5, the performances of the various novel bidding

strategies were analysed. The most important result was that, through the use of

the advanced strategies described above, revenues were increased without affecting,

and even reducing the risk for the participant. The benefits to the participant

were significant, with revenues improving by up to 4.4% and exposure to risk (as

measured by CVaR1%) decreasing by 5.3%. As expected, higher revenues were

obtained as a result of larger energy imbalances; interestingly, reduced exposure to

risk did not correspond to a reduction of energy imbalances. This highlighted how

the objective of the participant is in conflict with that of the system operator, who

would prefer imbalances to be minimised. Therefore, the importance of limiting the

proposed strategies to wind farms of small size was emphasized. Another relevant

finding was that some strategies were able to yield a revenue higher (up by 6.9%)

than that obtained with a perfect forecast of wind power generation. This result

was achieved at the expense of a significantly higher exposure to risk. Therefore,

it was noted that for a risk-seeking participant, investing in a market quantity

forecast would be more valuable than getting a new, more accurate wind power

forecast.

A central conclusion was that the proposed strategies are highly sensitive to

the accuracy of the market quantity forecasts employed. Indeed, strategies using

the electricity price forecast reported a substantially better performance than their

homologous using the imbalance sign forecast. The following should be noted.

One novel and one informed state-of-the-art statistical models were implemented

to forecast market quantities in a new and volatile electricity market with lim-

ited available historical data. As highlighted in the literature review, forecasting

balancing market quantities before the day-ahead gate closure is particularly chal-

lenging. Nevertheless, it should be emphasized that the results from the case study

demonstrated that both methods implemented here were successfully employed in

the strategic bidding framework.
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6.2 Future Work

During this research programme, several analyses were performed and methods

developed to implement the proposed value forecasting models. Yet, their perfor-

mance and usefulness to the academic community and end-users can obviously be

improved with a number of possible extensions and advancements. Some perspec-

tives for future work are given in this Section.

Forecasting market quantities before the day-ahead market closure was chal-

lenging but the forecasts developed in this thesis were successfully employed in the

proposed bidding strategies. However, the models’ performances were mediocre at

times, leaving significant room for improvement.

Systematic errors emerged from the evaluation of price forecast models. The

negative bias in point predictions should be removed and the calibration of quantile

predictions needs improving. Statistical post-processing methods could be applied

to address these issues, such as short-term bias-correction (e.g. Sweeney et al.

in [107]), smoothing procedures (e.g. Maciejowska and Nowotarski in [217]) and,

as the record of data increases, Model Output Statistics (MOS) (e.g. Glahn and

Lowry in [103]).

Most models used for the prediction of imbalance prices were reduced to multiple

linear regression models, as the autoregressive and moving average components

of the process were found to be very weak. If more information on the power

system (for instance, planned outages, grid constraints, forecast curtailment) was

made available, it could be included as explanatory variables in the models and

potentially improve the forecast performance.

An initial condition problem was also highlighted in the price forecasting mod-

els, as errors were found to be higher on Mondays and at weekends (cf. Figures 5.17

and 5.31). This could be addressed by including more recent information in the

training data set. For example, the models estimating Monday prices could include

Sunday historical data; similarly, models estimating weekend prices could include

Friday historical data.
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An in-depth investigation should be carried out on the imbalance sign forecast

models to identify the reasons why the approaches with stepwise re-selection of

predictors generated tighter and more prudent estimates (cf. Figure 5.45). For

example, distributions could be separately analysed for each half-hour to verify if

variations are more or less pronounced depending on the time of the day; in turn,

the relevant predictors could be analysed in detail during those trading periods to

find their impact on imbalance sign estimates.

A significant drawback arose from price anomalies in the I-SEM in terms of

accuracy of the imbalance sign forecast. Further investigations on the reasons

behind their occurrence might be able to address these drawbacks. For example,

tie-line congestions and wind penetration were found to contribute to the creation of

counter-intuitive prices; including system-level forecasts for the Republic of Ireland

and Northern Ireland separately in the models could help to account for this. Given

the price anomalies, it could also be beneficial to directly model the sign of price

difference as a binomial distribution and use logistic regression models to forecast

future values.

Overall, given the sensitivity of the bidding strategies to forecast accuracy,

advancements in market quantity forecasts would be very valuable to end-users

and potential commercial applications would certainly motivate research efforts in

this area.

In parallel, it would be useful to extend the bidding strategies to provide fur-

ther insight into the forecast uncertainty. This could be achieved by including more

statistics on future wind power generation and market quantities. For example, the

standard deviation of the distribution of forecast price differences could contribute

to conditioning the optimal energy bid, with adjustments becoming more limited as

variance increases. As the predictive power of the models was found to change no-

ticeably across trading periods (see Figure 5.55), another possible extension would

be to introduce time-varying adjustments in the strategies. For instance, adjust-

ment functions could be re-designed in order to include the time of the day in their
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formulation.

Given the limited length of data record, sensitivity analysis could be conducted

to verify some of the predictive model responses and features in order to build

confidence in the developed models. Future work could also continue to implement

the methodology presented in this paper by testing the proposed strategies on a

longer test period and achieve even more conclusive results. Data could be used

from other compatible power systems or, as more I-SEM data become available

with time, from the Irish market again.

To conclude, it would be of particular interest to extend the framework for

the assessment of forecast value by generalising what was formulated in this work.

To achieve optimal benefits, prediction models need to be tailored to the end-user

requirements. Therefore, integrating the forecast user’s appraisal of value (for ex-

ample, the decision maker’s risk profile) is essential to give a consistent evaluation.

The importance of defining such a framework ought to be realised, as it would

provide the basis to gain clear and objective insight into the characteristics of rival

approaches, quantify their relative benefits, and justify possible new developments.

For this purpose, enhanced dialogue and collaboration between forecasters and

end-users will be necessary in the future.
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Appendix A

Imbalance Pricing

The “flagging-and-tagging” approach (similar to that employed in the GB market)

is implemented for imbalance pricing in the I-SEM [219]. The process has the

following objectives:

• a single imbalance settlement price for imbalances in all directions and all

energy balancing actions should be determined;

• the price should be marginal and based on the actions taken by the TSO to

balance the system; and

• non-energy actions should be settled pay-as-bid.

A different price is calculated for each 5-minute Imbalance Pricing Period (IPP),

and the average of the six 5-minute prices within a half hour is set as the price for

the Imbalance Settlement Period. The flagging-and-tagging process consists of the

following steps:

1. Ranking;

2. Flagging;

3. Marginal Energy Action Price;

4. Tagging;
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5. Imbalance Price; and

6. Market Back-Up Price.

Each of these steps will be explained next, together with a worked example of

how the Imbalance Price is determined for a set of accepted bids and offers. The

example is based on the one in Appendix A of the “Industry Guide to the I-SEM”

document [24].

1. Ranking

All accepted bids and offers (BOA) are ranked in order of economic merit:

• First, all accepted bids (also called decs, i.e. generation/supply offers to

decrease output) are ranked in order of increasing price from lowest to highest.

• Next, all accepted offers (also called incs, i.e. generation/supply offers to

increase output) are ranked in order of increasing price from lowest to highest.

• All actions are assigned a rank number k starting at 1 from the lowest priced

dec action.

Example

All accepted bids and offers are ranked by price.

Rank Type
Price

[e/MWh]

QBOA

[MWh]

15 Offer 100 10

14 Offer 90 20

13 Offer 80 1

12 Offer 70 5

11 Offer 60 7.5

10 Offer 50 5

9 Offer 40 2.5

8 Offer 30 5

7 Offer 20 10

6 Bid 50 –5

5 Bid 40 –10
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4 Bid 30 –1.5

3 Bid 20 –10

2 Bid 10 –10

1 Bid 5 –5

2. Flagging

The flagging process identifies the BOA that are caused by system or unit con-

straints using two methods. The System Operator (SO) flagging identifies and

flags non-energy actions taken for system reasons, such as binding network or op-

erational constraints. The aim is to minimise the extent of non-energy actions

influencing or setting the final price. The Non-Marginal flagging determines if the

unit’s ability to respond to changing demand is limited by its physical output limits

and flags the corresponding BOA if that is the case. For example, this can occur

when the unit is at its minimum operating limit, at its maximum capacity, or its

output is restricted by its ramp limits.

The initial value for each flag is 1, indicating that the BOA is not excluded from

setting the imbalance price. The value is switched to 0, i.e. the BOA is “flagged”,

when the BOA satisfies the conditions of the flag. The imbalance price flag (IPF)

then is calculated as the product of the SO and Non-Marginal flags, and BOA with

an IPF value of 1 is said to be “unflagged”. The aim is to minimise the extent of

non-energy actions and non-marginal actions influencing or setting the final price.

Example (continued)

Actions are SO and Non-Marginal flagged, and the IPF is calculated as the product

of these two flags.

Rank Type SO Flag
Non-Marginal

Flag

Imbalance

Price Flag

Reason

for flagging

15 Offer 0 1 0 Reserve

14 Offer 0 1 0 Congestion

13 Offer 1 1 1

12 Offer 1 1 1

11 Offer 0 1 0 Congestion
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10 Offer 1 1 1

9 Offer 1 1 1

8 Offer 1 0 0

7 Offer 1 0 0 At max output

6 Bid 1 1 1

5 Bid 0 1 0 Congestion

4 Bid 1 1 1

3 Bid 1 0 0 Ramp limited

2 Bid 0 1 0 Reserve

1 Bid 1 1 1

3. Marginal Energy Action Price

The Net Imbalance Volume Quantity (QNIV) is calculated as the sum of all ac-

cepted bid and offer quantities, with bid quantities being negative and offer quan-

tities being positive. If QNIV is positive, the system was short : there was too little

generation so the TSO had to take more positive inc actions than negative dec

actions. If QNIV is negative, the system was long : there was too much generation

so the TSO had to take more negative dec actions than positive inc actions.

The Marginal Energy Action Price (PMEA) is the most expensive unflagged

action in the ranked set. This means that:

• when QNIV is positive, PMEA is the highest priced unflagged offer;

• when QNIV is negative, PMEA is the lowest priced unflagged bid.

This value sets the reference price for the period. All actions whose prices are more

expensive than PMEA have their reference price set equal to PMEA. For all other

actions, the reference price is equal to the original price. This ensures that the

price of the actions which were not in merit for setting the marginal price are not

considered further in the process. Consequently, the final price cannot be set less

economic than PMEA:

• when QNIV is positive, the price can be set equal or lower than PMEA;

• when QNIV is negative, the price can be set equal or higher than PMEA.
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Note that through the PMEA and replacement price process, it is possible for an

action which was in the opposite direction to the QNIV to set the imbalance price,

if it was the marginal action. For example, if the QNIV is positive but all accepted

offers were flagged, the process will select the highest priced accepted bid to be the

Marginal Energy Action.

Example (continued)

The QNIV is positive and equal to 24.5 MWh. Offer 13 is the highest priced

unflagged offer and therefore is the marginal energy action. The corresponding

price of 80 e/MWh sets the PMEA and all higher prices are capped at this value

(see offers 14 and 15).

Rank Type
Price

[e/MWh]

QBOA

[MWh]

Imbalance

Price Flag

Reference Price

[e/MWh]

15 Offer 100 10 0 80

14 Offer 90 20 0 80

13 Offer 80 1 1 80

12 Offer 70 5 1 70

11 Offer 60 7.5 0 60

10 Offer 50 5 1 50

9 Offer 40 2.5 1 40

8 Offer 30 5 0 30

7 Offer 20 10 0 20

6 Bid 50 –5 1 50

5 Bid 40 –10 0 40

4 Bid 30 –1.5 1 30

3 Bid 20 –10 0 20

2 Bid 10 –10 0 10

1 Bid 5 –5 1 5

4. Tagging

The tagging process identifies which BOA are excluded from the imbalance price

calculation. Two tagging methods are used: net imbalance volume (NIV) tagging

and price average reference (PAR) tagging.

The NIV tagging has the purpose of ensuring that there are sufficient untagged
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actions to meet the QNIV. Initially, all NIV tag values are set equal to 1. First,

all actions in the opposite direction to the QNIV are tagged, i.e. their value is

switched from 1 to 0. Next, all actions in the same direction to the QNIV which

were previously flagged are tagged. At this point, the Residual Tagged Quantity

(QRTAG) is calculated as the sum of the volume of currently “tagged” actions,

changed of sign. Depending on the signs of QNIV and QRTAG, a volume of actions

equal to QRTAG is tagged or untagged. If QRTAG is negative, more actions need

to be untagged, with the least expensive getting untagged first until the volume of

the actions untagged equals QRTAG:

• if QNIV > 0, the lowest priced incs get untagged first.

• if QNIV < 0, the highest priced decs get untagged first.

If QRTAG is positive, more actions need to be tagged, with the most expensive

getting tagged first until the volume of the actions tagged equals QRTAG:

• if QNIV > 0, the highest priced incs get tagged first.

• if QNIV < 0, the lowest priced decs get tagged first.

If a fraction of the offer is tagged or untagged to reach QRTAG, the corresponding

value between 0 and 1 is assigned to the NIV tag.

As a result of the NIV tagging, the volume of untagged actions now equals

QNIV.

Example (continued)

Because QNIV is positive, the Initial NIV tag is set equal to 0 for all bids and all

price flagged offers. The QRTAG is then calculated and found equal to –11 MWh,

so more actions need to be untagged. As QNIV is positive, the lowest priced offers

(incs) get untagged first until the untagged actions sum to QNIV. This results in

offer 7 and, partially, offer 8 being untagged.
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Rank Type
Reference Price

[e/MWh]

Imbalance

Price Flag

QBOA

[MWh]

Initial

NIV Tag
NIV Tag

15 Offer 80 0 10 0 0

14 Offer 80 0 20 0 0

13 Offer 80 1 1 1 1

12 Offer 70 1 5 1 1

11 Offer 60 0 7.5 0 0

10 Offer 50 1 5 1 1

9 Offer 40 1 2.5 1 1

8 Offer 30 0 5 0 0.2

7 Offer 20 0 10 0 1

6 Bid 50 1 –5 0 0

5 Bid 40 0 –10 0 0

4 Bid 30 1 –1.5 0 0

3 Bid 20 0 –10 0 0

2 Bid 10 0 –10 0 0

1 Bid 5 1 –5 0 0

The PAR Tagging has the purpose of determining what actions which are not

NIV tagged, and what volume of those actions, are considered in the final cal-

culation of the imbalance price. The Price Average Reference Quantity (QPAR)

for an Imbalance Pricing Period has been defined equal to 10 MWh by market

design [219]. This is equivalent to 60 MWh for an Imbalance Settlement Period.

Initially, all PAR tag values are set equal to the NIV tag. If QNIV > 0, the

highest priced untagged BOA offers whose sum is equal to QPAR are identified.

Their PAR tag is changed to a value between 0 and 1 to indicate the fraction of

volume required to have a total volume of QPAR. The PAR tag for all lower priced

BOA offers is set to 0. If QNIV < 0, the lowest priced untagged BOA bids whose

sum is equal to QPAR are identified. Their PAR tag is changed to a value between

0 and 1 to indicate the fraction of volume required to have a total volume of QPAR.

The PAR tag for all higher priced BOA offers is set to 0.

Once the NIV and PAR tags are defined, the Imbalance Price tag (TIP) is

calculated as the product between the two tags. Therefore, if a BOA is either NIV

291



tagged or PAR tagged it will have no impact on the imbalance price calculation.

Example (continued)

Because QNIV is positive, the highest priced 10 MWh offers with NIV tag of 1 are

PAR tagged. In this case, offers 13, 12, and 10 partially. The Imbalance Price tag

is then calculated as the product of the NIV and PAR tags.

Rank Type
Ref Price

[e/MWh]
NIV Tag

QBOA

[MWh]

Untagged

quantities

PAR

Tag

Imbalance

Price Tag

15 Offer 80 0 10 0 0 0

14 Offer 80 0 20 0 0 0

13 Offer 80 1 1 1 1 1

12 Offer 70 1 5 5 1 1

11 Offer 60 0 7.5 0 0 0

10 Offer 50 1 5 5 0.8 0.8

9 Offer 40 1 2.5 2.5 0 0

8 Offer 30 0.2 5 1 0 0

7 Offer 20 1 10 10 0 0

6 Bid 50 0 –5 0 0 0

5 Bid 40 0 –10 0 0 0

4 Bid 30 0 –1.5 0 0 0

3 Bid 20 0 –10 0 0 0

2 Bid 10 0 –10 0 0 0

1 Bid 5 0 –5 0 0 0

5. Imbalance Price

The Imbalance Price is calculated as the volume-weighted average price of the

untagged actions. One of the main reasons why PAR tagging is weighted towards

an average price approach rather than a marginal price approach is to mitigate

volatility in the prices. The volume weight for each BOA is calculated as the

product of the QBOA by the TIP. These volumes are then used to weight the

corresponding BOA prices and calculate the final Imbalance Price (PIMB). In

mathematical notation:

PIMB =

∑
pricei ·QBOAi · TIPi∑

QBOAi · TIPi

292



This price is then used for settlement unless the price cap or price floor are exceeded.

If the imbalance price is greater than the price cap, which was set equal to 10,000

e/MWh, then PIMB is set equal to the price cap. On the contrary, if the imbalance

price is lower than the price floor, which was set equal to –1,000 e/MWh, PIMB

is set equal to the price floor. Finally, the Imbalance Settlement Price is calculated

as the average of the six PIMB in each (5-minute) Imbalance Pricing Period.

Example (continued)

The Imbalance Price is calculated as the volume-weighted average of the untagged

prices and found equal to 63 e/MWh (= 630/10).

Rank Type
Ref Price

[e/MWh]

QBOA

[MWh]

Imbalance

Price Tag
RP*QBOA*TIP QBOA*TIP

15 Offer 80 10 0 0 0

14 Offer 80 20 0 0 0

13 Offer 80 1 1 80 1

12 Offer 70 5 1 350 5

11 Offer 60 7.5 0 0 0

10 Offer 50 5 0.8 200 4

9 Offer 40 2.5 0 0 0

8 Offer 30 5 0 0 0

7 Offer 20 10 0 0 0

6 Bid 50 –5 0 0 0

5 Bid 40 –10 0 0 0

4 Bid 30 –1.5 0 0 0

3 Bid 20 –10 0 0 0

2 Bid 10 –10 0 0 0

1 Bid 5 –5 0 0 0

6. Market Back-Up Price

For each ISP, the Market Operator calculates the Market Back-Up Price (PMBU)

as the quantity-weighted average price associated with each day-ahead traded quan-

tity and intraday traded quantity for all units. The PMBU is used in case of:

• QNIV=0;

• failure in the pricing system;
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• administered settlement;

• settlement where a curtailment instruction has been issued.
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Appendix B

Imbalance Prices on 24 January

2019

On the 24th January 2019, the 5-minute Imbalance Prices exceeded the strike price

of e 500 in 11 Imbalance Pricing Periods. This resulted in the half-hour Imbalance

Settlement Price being at levels above the strike price in four Imbalance Settlement

Periods. EirGrid, SONI, and SEMO have undertaken a detailed examination of

the events leading up to and during the 24th January which are laid out in detail

in a report published on the 21st February [220]. A summary of this report is

presented below, providing an outline of the drivers behind the operation of the

Balancing Market on that date, the actions taken by the TSOs, how these actions

were treated in the flagging-and-tagging process, and how they eventually led to

the Imbalance Price and Imbalance Settlement Price calculations.

The ex-ante auctions operated by SEMOpx functioned normally for Trading

Day 24/01/2019. Given the wind forecast versus load forecast, the ex-ante mar-

kets closed with more production cleared than consumption in a number of trading

periods. Such generation surplus drives exports from the I-SEM to adjacent cou-

pled markets across the Moyle and EWIC interconnectors. Due to the application

of losses in the EUPHEMIA algorithm, this generally results in the Moyle inter-

connector being scheduled first until the price spread between the I-SEM and any
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coupled markets exceeds the loss value on both interconnectors.

Because the North-South tie line is modelled as an unlimited inter-area in the

ex-ante markets, no location-based restrictions on exports from the I-SEM are

applied on them. This resulted in high levels of export being scheduled on the

Moyle interconnector (see Figure B.1), effectively representing an export of wind

production. However, the wind on the power system was mainly based in the ROI

region with very little generation available in NI across the lunchtime period to

meet the scheduled exports (see Figure B.2).

Figure B.1: Scheduled cross border flows on the Moyle (blue) and EWIC (red)
interconnectors after DAM clearing. Positive values indicate import, negative in-
dicate export. DAM clearing prices are also indicated for the I-SEM (green) and
BETTA (purple) markets. Source: “Report on the Imbalance Prices calculated on
24/01/2019” [220].

In the early morning of the 23rd January, the unit GU 500040 was declared

unavailable due to a technical issue, and it would subsequently remain unavailable

for three days. The total output of the wind farms in NI on the 23rd was low.

The Moyle interconnector was importing from GB for most of the day. With these

operating conditions, all available conventional NI generation was scheduled to
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Figure B.2: Forecast wind generation in Republic of Ireland (blue) and North-
ern Ireland (orange), and forecast demand for the all-island system (green) on
24/01/2019.

meet the NI demand. On the 24th January, the NI wind remained low in the early

part of the day as per forecast and was even below forecast for most of the morning.

The wind in ROI was above forecast for most of the day but could not be used to

help support the Moyle export or the demand in NI due to the tie line operational

limits. The ROI to NI flow on the tie line schedules indicated that the maximum

achievable south-to-north stable operational flows were occurring for large periods

of the day. In order not to breach the stable operational limits on the tie line,

the indicative operational schedules indicated the need to start the majority of NI

fast-start units when Moyle was at its maximum export position during the day.

These conditions on the system, coupled with the system being long, resulted in

the extreme fluctuation in the imbalance price throughout the day. This fluctuation

was caused by two key components of the Trading and Settlement Code [36]: the

price of the marginal energy action and the replaced bid offer price. Depending

on whether the market is short or long, the most expensive or the cheapest unit

that is neither SO nor Non-marginal flagged is set as the marginal energy action.

The price of this unit then defines the Marginal Energy Action Price (PMEA) and
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units that are less economic than this have their price replaced by the PMEA (cf.

Appendix A).

The imbalance prices and net imbalance volumes for the period of interest on the

24th Januray are shown in Figure B.3. As a result of the System conditions in NI,

the System Operators brought on two fast acting open cycle units (GU 500283 and

GU 500284). These units had simple COD in at 6,341 e/MWh and 5,636 e/MWh,

respectively. Both these units were issued instructions to come on at their lower

operating limit at 10:46. The first impact of the two units on pricing can be seen

immediately after they come off their lower operating limit, becoming marginal at

11:35. During this period, the all-island market was short and GU 500283 set the

PMEA.
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Figure B.3: Five-minute imbalance prices (top) and imbalance volumes (bottom)
on 24/01/2019.

Shortly after the initial high price event, the all-island market switched from

being short to long. During the following 40 minutes, GU 500283 and GU 500284

were non-marginal flagged in the indicative schedule as a result of a ramp constraint

against these units. Although the units are fast acting, the schedule was trying to

move them to a level above their dwell time breakpoint. The units must remain
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at this level for a 5-minute period as part of ramping to a higher output level and

were therefore unable to get to the higher level intended by the schedule, resulting

in them being non-marginally flagged for ramping. Over this period, all ROI units

were flagged out because of the tie-line constraint, while all NI units were being

run at their operating limit and being flagged as non-marginal.

At 12:35, the indicative schedule moved GU 500824 away from its dwell time

breakpoint for a 5 minute period. The bid stack had remained almost identical

except for this unit becoming marginal. As a result, GU 500284 set the PMEA

and the entire imbalance price at e 5,636.

For the next 30 minutes, GU 500284 was either at its higher operating limit or

ramp constrained, again becoming non marginal-flagged in the indicative schedule.

The physical conditions on the power system remained very consistent throughout

this event. All ROI units remained SO flagged because of the limitations of the

North-South tie line, while all NI units were non-marginal due to being run at their

operating limit. At 13:10, GU 500824 was moved off its operating limit for the fol-

lowing 30 minutes in the indicative schedule, before being desynced at 13:35. This

resulted in the GU 500824 becoming marginal and being the only unflagged unit

in the bid stack for this window, thus setting the PMEA. This caused GU 500824

to set the entire 5-minute imbalance price at 5,636 e/MWh for the next six pricing

periods. These six periods affected two imbalance settlement prices resulting in

prices of e 3,773.69 and e 1,909.45 respectively.

These two units were desynced just after 13:30. Pricing remained volatile, with

prices being much higher than a typical day and just below the strike price.

The detailed review of the flagging-and-tagging of units in the system outputs,

which can be found in Section 8 of Reference [220], has concluded that flags and

tags were applied correctly and none of the known defects in the Imbalance Pricing

algorithm had an impact on the relevant periods.
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Appendix C

Source Codes

All the python and R codes presented in the following Sections are available at

https://github.com/ggoretti/phd-thesis; the website can also be accessed

scanning the QR code below.

Scan this QR code

C.1 Electricity Price Forecasting

C.1.1 Day-ahead and imbalance price forecasting with AR-

MAX models

The input data used to forecast electricity prices are stored in distinct folders

based on price and day-type. Historical data are separated between day-ahead

and imbalance prices, and then again between weekday and weekend; the folder

structure is illustrated in Figure C.1. Note that because the multi-model approach
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C.1. Electricity Price Forecasting

is implemented — whereby each trading period is modelled separately — each .csv

file corresponds to a different half-hour (that is, one file for all prices at H00:00,

one for H00:30, etc.).

Figure C.1: Folder structure for price forecasting input data.

Recursively expanding approach

The following R script generates forecasts of weekday day-ahead prices adopting the

“Recursively expanding” approach. To generate forecasts of weekend prices, the

same code is used with pattern in line 8 set to "weekend/*.csv" and freq in line

10 set equal to 2. To generate forecasts of imbalance prices, the same code is used,

changing the working directory in line 2 to ".../Historical data/imb prices"

Note that the keys "Demand Fcst", "p50 All", "interval All", "penetration"

correspond to the predictors (i.e. the exogenous variables) used in the regression

part of the ARIMAX models.
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C.1. Electricity Price Forecasting

1 # Set working directory

2 setwd(".../Historical_data/dam_prices")

3

4 # Import packages

5 library(fpp2, tsibble, readr, purrr)

6

7 # Import prices from half-hourly .csv files

8 temp = list.files(pattern="weekday/*.csv")

9 myfiles = lapply(temp, read.csv)

10 freq = 5 # period of seasonal component (weekday=5, weekend=2)

11

12 # Create empty lists to store outputs

13 dflist = list()

14 fit_list = list()

15 coef_list = list()

16

17 # Loop through the half-hourly files

18 for(j in 1:length(myfiles)){

19 df_file <- data.frame(myfiles[j])

20 df <- ts(df_file, frequency=freq) # convert to Time series object

21

22 # split data into initial Training and Test sets

23 df_train <- subset(df, end=nrow(df)*0.5716)

24 df_test <- subset(df, start=nrow(df)*0.5716 + 1)

25

26

27 # - - - One-step forecast with re-selection and re-estimation of ARIMA

model - - -↪→

28 h <- 2 # forecast horizon

29 n <- nrow(df_test) - 1 # number of forecasts to issue

30 fcmat <- matrix(0, nrow=n, ncol=14) # empty matrix to store

forecast values↪→

31 colnames(fcmat) <- c("point_1", "lower50_1", "lower80_1", "lower90_1",

32 "upper50_1", "upper80_1", "upper90_1",

33 "point_2", "lower50_2", "lower80_2", "lower90_2",

34 "upper50_2", "upper80_2", "upper90_2")

35

36 fit_df = data.frame(aic=numeric(),

37 p=integer(), d=integer(), q=integer(),

38 P=integer(), D=integer(), Q=integer()) # empty

df for AIC value and model order↪→

39 coef_df = list() # empty list for coefficients of fitted model

40

41 # *RECURSIVELY EXPANDING* Training set

42 lambda <- BoxCox.lambda(df_train[,"dam_price"]) # BoxCox

transformation lambda for Training data↪→

43 for(i in 1:n){

44 x_i <- subset(df, end=nrow(df)*0.5716+i-1) # increase x by (i-1)

45 xreg_i <- subset(df, start=nrow(df)*0.5716+i) # shift regressors

by i↪→
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C.1. Electricity Price Forecasting

46

47 # fit ARIMA model to updated x and xreg

48 fit_i <- auto.arima(x_i[,"dam_price"],

49 xreg=x_i[,c("Demand_Fcst", "p50_All",

"interval_All", "penetration")],↪→

50 lambda=lambda)

51

52 fit_df[i,1] <- fit_i$aic

53 fit_df[i,2:7] <- arimaorder(fit_i)[1:6]

54 coef_df <- rbind(coef_df, fit_i$coef)

55

56 # forecast with updated model

57 fcst <- forecast(fit_i, h=h,

58 xreg=xreg_i[,c("Demand_Fcst", "p50_All",

"interval_All", "penetration")],↪→

59 level=c(50, 80, 90))

60

61 # forecast horizon: h = 1

62 fcmat[i,1] <- fcst$mean[1]

63 fcmat[i,2:4] <- fcst$lower[1,]

64 fcmat[i,5:7] <- fcst$upper[1,]

65

66 # forecast horizon: h = 2

67 fcmat[i,8] <- fcst$mean[2]

68 fcmat[i,9:11] <- fcst$lower[2,]

69 fcmat[i,12:14] <- fcst$upper[2,]

70 }

71

72 df_fcst <- df_file[(nrow(df_file)*0.5716+1):(nrow(df_file)-1),]

73 dflist[[j]] <- cbind(df_fcst, as.data.frame(fcmat)) # list of

dataframes; each df includes forecast and observed values for a

single load period

↪→

↪→

74

75 fit_list[[j]] <- fit_df # list of dataframes with AIC and model

order values↪→

76

77 coef_list[[j]] <- as.data.frame(coef_df) # list of dataframes with

model coefficients↪→

78 }

79

80 # Store results in separate data.frames

81 df_tot <- do.call(rbind, dflist)

82 fit_tot <- map_df(fit_list, ~as.data.frame(.x), .id="id") # merge

into data.frame keeping id of each list↪→

83 coef_tot <- map_df(coef_list, ~as.data.frame(.x), .id="id") # merge

into data.frame keeping id of each list↪→

84 is.na(coef_tot) <- coef_tot == "NULL" # replace NULL with NA

85 coef_tot <- as.data.frame(sapply(coef_tot, unlist)) # unlist each

column and convert to data.frame↪→
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C.1. Electricity Price Forecasting

Rolling approach

To generate price forecasts adopting the “Rolling” approach, the previous R script

is used with the inner for loop starting at line 41 changed as follows.

41 # *ROLLING* Training set

42 for(i in 1:n){

43 x_i <- subset(df, start=i, end=nrow(df)*0.5716+i-1) # shift x by

i↪→

44 xreg_i <- subset(df, start=nrow(df)*0.5716+i) # shift regressors

by i↪→

45 lambda <- BoxCox.lambda(x_i[,"dam_price"]) # BoxCox

transformation lambda for Training data↪→

46

47 # fit ARIMA model to updated x and xreg

48 fit_i <- auto.arima(x_i[,"dam_price"],

49 xreg=x_i[,c("Demand_Fcst", "p50_All",

"interval_All", "penetration")],↪→

50 lambda=lambda)

51

52 fit_df[i,1] <- fit_i$aic

53 fit_df[i,2:7] <- arimaorder(fit_i)[1:6]

54 coef_df <- rbind(coef_df, fit_i$coef)

55

56 # forecast with updated model

57 fcst <- forecast(fit_i, h=h,

58 xreg=xreg_i[,c("Demand_Fcst", "p50_All",

"interval_All", "penetration")],↪→

59 level=c(50, 80, 90))

60

61 # forecast horizon: h = 1

62 fcmat[i,1] <- fcst$mean[1]

63 fcmat[i,2:4] <- fcst$lower[1,]

64 fcmat[i,5:7] <- fcst$upper[1,]

65

66 # forecast horizon: h = 2

67 fcmat[i,8] <- fcst$mean[2]

68 fcmat[i,9:11] <- fcst$lower[2,]

69 fcmat[i,12:14] <- fcst$upper[2,]

70 }
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C.1. Electricity Price Forecasting

C.1.2 Monte Carlo simulations

The following python script performs the Monte Carlo simulations to generate the

probability distribution of price difference (πdiff = πimb−πDAM) from the quantile

forecasts of day-ahead and imbalance prices. For each time interval:

• two quadratic functions are interpolated to the quantile forecasts (0.05, 0.10,

0.25, 0.50, 0.75, 0.90, 0.95) of day-ahead and imbalance prices, respectively.

• the day-ahead and imbalance price interpolating functions are calculated on

two randomly generated numbers (between 0.05 and 0.95), and the difference

between the two resulting prices is calculated.

• the previous step is repeated 10,000 times (with the same interpolated func-

tions but different random numbers) to generate a sample population of price

differences.

The process is run on each time interval in the test period.

1 # Import libraries

2 import pandas as pd

3 from scipy.interpolate import interp1d

4 import random

5

6

7 # - - - Import data - - -

8 df = pd.read_csv("data.csv", index_col=0, parse_dates=True)

9 df.sort_index(inplace = True)

10 df = df.resample('30min').mean()

11

12

13 #=======================================================================

14 # MONTE CARLO SIMULATION

15 #=======================================================================

16

17 # Define function that performs Monte Carlo simulation

18 def rand_diff():

19 '''Monte Carlo simulation of price difference on a single time

20 period. It calculates the difference between randomly generated

21 imbalance and day-ahead prices 10,000 times.

22

23 Variables

306
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24 ----------

25 f_imb, f_dam : interp1d

26 Functions interpolated to the quantile forecasts of imbalance

27 and day-ahead prices, respectively.

28

29 Returns

30 ----------

31 df_diff : pandas.DataFrame

32 One-column DataFrame with 10,000 rows.

33 The column name corresponds to the time period.

34 '''

35 diff_rand = []

36 for i in range(10000):

37 y_diff = f_imb(random.uniform(0.05, 0.95)) -

f_dam(random.uniform(0.05, 0.95))↪→

38 diff_rand.append(y_diff)

39 df_diff = pd.DataFrame(diff_rand, columns=[y_dam.name])

40 return (df_diff)

41

42

43 # Day-ahead price forecast quantiles

44 df_dam = df[['lower90_dam', 'lower80_dam', 'lower50_dam', 'point_dam',

45 'upper50_dam', 'upper80_dam', 'upper90_dam']]

46

47 # Imbalance price forecast quantiles

48 df_imb = df[['lower90_imb', 'lower80_imb', 'lower50_imb', 'point_imb',

49 'upper50_imb', 'upper80_imb', 'upper90_imb']]

50

51 # List of corresponding probabilities

52 x = [0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95]

53

54

55 # Run Monte Carlo simulation on each time period in the test set

56 df_mc = pd.DataFrame()

57 for i in range(len(df_dam)):

58 y_dam = df_dam.iloc[i]

59 y_imb = df_imb.iloc[i]

60

61 # Interpolate quadratic function to quantiles

62 f_dam = interp1d(x, y_dam, kind='quadratic')

63 f_imb = interp1d(x, y_imb, kind='quadratic')

64

65 # Run Monte Carlo simulation

66 df_mc = pd.concat([df_mc, rand_diff()], axis=1)

67

68

69 #=======================================================================

70 # DATA ANALYSIS

71 #=======================================================================

72

73 # - - - Descriptive statistics for each distribution - - -
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74 mc_prob = [(df_mc[col] > 0).sum()/float(len(df_mc[col]))

75 for col in df_mc.columns] # probability of positive price

difference↪→

76 mc_mean = [df_mc[col].mean() for col in df_mc.columns] # mean

77 mc_median = [df_mc[col].median() for col in df_mc.columns] # median

78 mc_std = [df_mc[col].std() for col in df_mc.columns] # std. dev.

79

80 # 5, 10, 25, 75, 90, 95% quantiles

81 mc_q05 = [df_mc[col].quantile(0.05) for col in df_mc.columns]

82 mc_q10 = [df_mc[col].quantile(0.10) for col in df_mc.columns]

83 mc_q25 = [df_mc[col].quantile(0.25) for col in df_mc.columns]

84 mc_q75 = [df_mc[col].quantile(0.75) for col in df_mc.columns]

85 mc_q90 = [df_mc[col].quantile(0.90) for col in df_mc.columns]

86 mc_q95 = [df_mc[col].quantile(0.95) for col in df_mc.columns]

87

88

89 # Store statistics in DataFrame

90 mc_res = pd.DataFrame({'prob_positive':mc_prob, 'mc_mean':mc_mean,

91 'mc_median':mc_median, 'mc_std':mc_std,

92 'q05':mc_q05, 'q10':mc_q10, 'q25':mc_q25,

93 'q75':mc_q75, 'q90':mc_q90, 'q95':mc_q95

94 },

95 index = df.index)

C.1.3 Benchmark price forecasting model

The following python script implements the benchmark forecasting model for day-

ahead and imbalance prices. The model is a variation of the “similar-day” method

proposed by Conejo et al. in [150], and a description of its rationale is presented

in Section 4.3.1.2.

1 # Import libraries

2 import pandas as pd

3

4

5 # - - - Import data - - -

6 df = pd.read_csv("data.csv", index_col=0, parse_dates=True)

7 df.sort_index(inplace = True)

8 df = df.resample('30min').mean()

9

10

11 #=======================================================================
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12 # BENCHMARK MODEL

13 #=======================================================================

14 # - - - Monday, Saturday, Sunday - - -

15 # Shift forward of one week (48*7 periods) the 'price' column

16 df['bench'] = df['price'].shift(7*48)

17

18

19 # - - - Wednesday, Thursday, Friday - - -

20 # Shift forward of one day hours before 10:00

21 df['bench'].mask((df.index.hour<10) &

(df.index.dayofweek.isin([2,3,4])),↪→

22 df['price'].shift(1*48), inplace=True)

23

24 # Shift forward of two days hours after 10:00

25 df['bench'].mask((df.index.hour>=10) &

(df.index.dayofweek.isin([2,3,4])),↪→

26 df['price'].shift(2*48), inplace=True)

27

28

29 # - - - Tuesday - - -

30 # Shift forward of one day hours before 10:00

31 df['bench'].mask((df.index.hour<10) & (df.index.dayofweek.isin([1])),

32 df['price'].shift(1*48), inplace=True)

33

34 # Shift forward of four days hours after 10:00 (previous Friday)

35 df['bench'].mask((df.index.hour>=10) & (df.index.dayofweek.isin([1])),

36 df['price'].shift(4*48), inplace=True)

C.2 Imbalance Sign Forecasting

The imbalance sign is forecast using logistic regression models and adopting the

multi-model approach. Therefore, input data are separated by load period, with

a separate .csv file corresponding to each half-hour. The following R script gener-

ates the forecast of the imbalance sign using the recursively expanding approach

(“Rec”).

1 # Set working directory

2 setwd(".../Historical_data/NIV")

3

4 # Import packages
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5 library(fpp2, tsibble, readr)

6

7 # Import data from half-hourly .csv files

8 temp = list.files(pattern="*.csv")

9 myfiles = lapply(temp, read.csv)

10

11 dflist = list() # empty list to store outputs

12

13 # Loop through the half-hourly files

14 for(j in 1:length(myfiles)){

15 df = data.frame(myfiles[j])

16

17 # split data into Training and Test sets

18 df_train <- df[1 : (nrow(df)*0.5716-1),]

19 df_test <- df[(nrow(df)*0.5716) : nrow(df),]

20

21 # - - - One- and two-step forecasts with re-estimation of GLM model -

- -↪→

22 h <- 2 # forecast horizon

23 n <- nrow(df_test) - 1 # number of forecasts to issue

24

25 # empty lists to store forecast outputs

26 NIV_list_1 = list()

27 NIV_list_2 = list()

28 formula_list = list()

29

30 # *RECURSIVELY EXPANDING* training set

31 for(i in 1:n){

32 train_i <- df[1 : (nrow(df)*0.5716-1+i-1),] # increase x by

(i-1)↪→

33 test_i <- df[(nrow(df)*0.5716+i-1) : nrow(df),] # shift

regressors by i↪→

34

35 # fit GLM model to updated Training set, train_i

36 fit_i <- glm(NIV ~ p50_All + interval_All + Demand_Fcst +

penetration + factor(day),↪→

37 data=train_i, family=binomial())

38

39 #fit_i <- step(fit_i, direction="backward", trace=0) # *STEPWISE

SELECTION* of model with lowest AIC↪→

40 formula_list[i] <- deparse(fit_i$formula) # formula of selected

model↪→

41

42 pred_i = predict(fit_i, newdata=test_i, se.fit=T) # predict on

updated Test set, test_i↪→

43

44 NIV_fcst_i = exp(pred_i$fit)/(1+exp(pred_i$fit)) # convert to

probability↪→

45

46 NIV_list_1[i] <- NIV_fcst_i[1] # first (h=1) forecast value

47 NIV_list_2[i] <- NIV_fcst_i[2] # second (h=2) forecast value
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48 }

49

50 df_fcst <- df_test[1:(nrow(df_test)-1),]

51 df_fcst$NIV_fcst_1 <- NIV_list_1 # attach forecast data to Test set

52 df_fcst$NIV_fcst_2 <- NIV_list_2

53 df_fcst$formulas <- unlist(formula_list)

54 dflist[[j]] <- df_fcst

55

56 }

57

58

59 # Store results in df_tot data.frame

60 df_tot <- do.call(rbind, dflist)

61 df_tot$NIV_fcst_1 <- unlist(df_tot$NIV_fcst_1)

62 df_tot$NIV_fcst_2 <- unlist(df_tot$NIV_fcst_2)

The rolling approach (“Roll”) is implemented using the same script except for

line 32 being changed as follows.

32 train_i <- df[i : (nrow(df)*0.5716-1+i-1),] # shift x by i

To extend the “Rec” and “Roll” approaches with the backward selection of

the model predictors (resulting in the “Rec-Step” and “Roll-Step” approaches,

respectively), the R script is used with line 39 uncommented.

39 fit_i <- step(fit_i, direction="backward", trace=0) # *STEPWISE

SELECTION* of model with lowest AIC↪→
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