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Abstract

The study of non-stationary behavior in the extremes is important to analyze data
in environmental sciences, climate, finance, or sports. As an alternative to the classical
extreme value theory, this analysis can be based on the study of record-breaking events.
The R package RecordTest provides a useful framework for non-parametric analysis of
non-stationary behavior in the extremes, based on the analysis of records. The underlying
idea of all the non-parametric tools implemented in the package is to use the distribution
of the record occurrence under series of independent and identically distributed continuous
random variables, to analyze if the observed records are compatible with that behavior.
Two families of tests are implemented. The first only requires the record times of the series,
while the second includes more powerful tests that join the information from different types
of records: upper and lower records in the forward and backward series. The package also
offers functions that cover all the steps in this type of analysis such as data preparation,
identification of the records, exploratory analysis, and complementary graphical tools.
The applicability of the package is illustrated with the analysis of the effect of global
warming on the extremes of the daily maximum temperature series in Zaragoza, Spain.

Keywords: extreme value analysis, hypothesis of stationarity, non-parametric tests, records,
R.

1. Introduction

Time series data in many fields need to be examined for evidence of structural trends or shifts
over time. In general, these analyses focus on the study of changes in the mean behavior,
however changes in the extremes, i.e., in the tails of the distribution, are also of great interest.
Extreme events typically cause large impacts because society and ecosystems are not adapted
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to them, so that their study is essential. Examples of the importance of the analysis of the
extremes appear in environmental sciences (large wildfires), climate (heat waves), hydrology
(floods), finance (market risk), sports (limits of human capabilities), and many others.
The numerous studies about non-stationarity in the mean have been favored by the avail-
ability of easy-to-use software to compute non-parametric tests, e.g., the Mann-Kendall test
(MK; Mann 1945; Kendall and Gibbons 1990). However, there does not exist similarly sim-
ple software to analyze trends, change-points, or non-stationary behavior in the extremes.
Detection of this type of behaviors is complicated because extremes are rare by definition.
Specific tools are required since it is difficult to link its evolution to the mean; i.e., if the mag-
nitude of a trend in the mean is small in terms of the variability of the series, or if there are
changes in the variability, the effect on the extremes might not be evident. Tools to analyze
non-stationary behavior in the tails of the distribution are also required as validation tools in
statistical modeling. Specific analysis of the capability to reproduce the extremes is essential
in a validation analysis, since models that represent the entire distribution of a series tend to
badly fit the tails and to yield important biases in extreme value statistics.
In this situation, the need for statistical tools to analyze the non-stationary behavior in the
extremes and records of a series is clear. This is the aim of the R (R Core Team 2022)
package RecordTest (Castillo-Mateo 2022b) described in this paper; the package is avail-
able from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=RecordTest and on GitHub at https://github.com/JorgeCastilloMateo/
RecordTest. The package includes non-parametric tests and graphical tools based on records
to detect non-stationary behavior, such as trends and change-points, in the extremes of a
series. These tools can be applied to serially correlated series with seasonal behavior, if they
are previously prepared applying an approach based on splitting the series. All the tools for
the data preparation are also implemented. In addition, the inferential tools in the package
are able to jointly analyze M ≥ 1 series with possibly different distributions. This property
is useful to analyze split series and also in spatial analysis, to study series from different
locations and obtain global conclusions over the area of interest.
Classical methods for the analysis of extreme events are the block maxima and the excesses
over threshold. Both of them require to fit the tails of the distribution using parametric
models such as generalized extreme value (GEV) and Pareto (GP) distributions, and Pois-
son processes (Coles 2001). The tools in RecordTest are based on a different approach, the
analysis of the occurrence of record events and its comparison with the behavior of records
in the classical record model (CRM; Arnold, Balakrishnan, and Nagaraja 1998). The CRM
describes the distribution of the records of a series (X1, . . . , XT )⊤ of independent and identi-
cally distributed (IID) continuous random variables (RVs). An important advantage of this
approach is that it yields non-parametric tools due to the probabilistic properties of records.
In particular, the fact that the distribution of the record occurrence under the CRM does not
depend on the underlying distribution of the Xt’s allows the use of distribution-free statistics
and Monte Carlo methods. RecordTest includes the tests of this type proposed by Foster and
Stuart (1954), Diersen and Trenkler (1996), Benestad (2003, 2004), Cebrián, Castillo-Mateo,
and Asín (2022), Castillo-Mateo (2022a), and some extensions thereof proposed in this paper.
The package also includes useful graphical tools based on the behavior of the record occur-
rence under the CRM. We found in Cebrián et al. (2022) that the power of the records tests
is high, e.g., it is between 0.80 and almost 1.00 for a sample size of M = 12 series of length
T = 50 and an alternative with a linear trend in the mean which has a magnitude of about
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2.5% of the standard deviation. The MK test for the mean is more powerful when the series
follow a normal distribution with a linear trend in the mean. However, records tests, which
focus on the tails of the distribution, tend to be more powerful than the MK test in series
with one or two-side bounded distributions or distributions with one or two light tails, such
as GEV and GP, often used in extreme value analysis.

Many questions of interest in the analysis of non-stationary behavior in the tails are directly
related to records, and the tools in RecordTest are specifically useful for this type of analysis.
The study of records is common in sports (Gembris, Taylor, and Suter 2002, 2007), but it is
also essential in environmental sciences, for the study of floods (Vogel, Zafirakou-Koulouris,
and Matalas 2001), earthquakes (Van Aalsburg, Newman, Turcotte, and Rundle 2010; Yoder,
Turcotte, and Rundle 2010), or avalanches (Shcherbakov, Davidsen, and Tiampo 2013). In
the context of climate change, an important question is the effect of global warming on
the number of record-breaking temperatures and precipitation events (Benestad 2003, 2004;
Coumou, Robinson, and Rahmstorf 2013; Wergen and Krug 2010; Lehmann, Coumou, and
Frieler 2015; Lehmann, Mempel, and Coumou 2018). The study of records is also of interest
in physics, in the theory of spin-glasses or high temperature superconductors, in evolutionary
biology, or in finances for the study of stock prices (see Wergen 2013, and references therein).

There are many packages for analyzing the existence of trends and non-stationary behav-
ior using non-parametric tests, but most of them focus on the analysis of the mean of the
distribution. For example, in R, Kendall (McLeod 2022) computes the MK test, and mod-
ifiedmk (Patakamuri and O’Brien 2021) implements modified versions of trend tests for se-
rially correlated data. trend (Pohlert 2020) includes a great variety of tests such as Cox-
Stuart, (seasonal) MK and Hirsch-Slack tests for trend detection, and Lanzante, Pettitt and
Buishand tests for change-point detection. pyMannKendall (Hussain and Mahmud 2019) is
a Python (Van Rossum et al. 2011) implementation of non-parametric MK trend analysis,
which brings together eleven types of tests. The R package npcp (Kojadinovic 2023) provides
non-parametric CUSUM change-point detection tests sensitive to changes in the mean, the
variance, the covariance, or the autocovariance in univariate or multivariate observations, as
well as a test for detecting changes in the distribution of independent block maxima. Fo-
cusing on the analysis of extremes, there are quite a few R packages, such as evir (Pfaff
and McNeil 2018), which even includes the function evir::records() for extracting records.
Some of them include relevant tools for testing and modeling non-stationarity. For example,
extRemes (Gilleland and Katz 2016) and ismev (Heffernan and Stephenson 2018) include non-
stationary models for univariate extremes, evd (Stephenson 2002) has some functionality for
non-stationary estimation but the main emphasis is on bivariate extremes, SpatialExtremes
(Ribatet 2022) and texmex (Southworth, Heffernan, and Metcalfe 2020) analyze a multivari-
ate framework, and NHPoisson (Cebrián, Abaurrea, and Asín 2015) fits non-homogeneous
Poisson processes for peak over threshold analysis. All these packages offer a parametric
approach based on the fit of GEV, GP, and Poisson processes. A similar approach is used
in the Python package pyextremes (Bocharov 2022), which includes methods such as block
maxima, peaks over threshold and fitting of GEV and GP distributions; and in the MAT-
LAB (The MathWorks Inc. 2022) package NEVA (Cheng, AghaKouchak, Gilleland, and Katz
2014), which allows the fitting of both stationary and non-stationary GEV and GP distribu-
tions in a Bayesian framework. However, as far as we know, there does not exist any statistical
software package for testing a non-stationary behavior in records. The aim of RecordTest
is to fill this gap and provide a comprehensive toolkit to assess significant deviations from
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a stationary behavior in the tails of the distribution and to characterize when it occurs and
which features are affected. The study of records provides a new approach from a different
point of view than the block maxima and excesses over threshold approaches. Beyond the
intrinsic interest of the records, there are some differences that make this approach useful for
other types of analysis. An advantage of the inference tools in RecordTest is that no previous
modeling is needed. In addition, the study of records allows the simultaneous analysis of the
lower and upper tails of the distribution by including both upper and lower records in the
analysis.
The outline of the paper is as follows. Section 2 introduces some basic definitions and proper-
ties of the main variables related to the record occurrence. Section 3 describes the functions
and capabilities of the package, including data preparation, exploratory analysis, statistical
tests and graphical tools. Section 4 illustrates the use of RecordTest to analyze the non-
stationary behavior in the tails of the daily maximum temperature series in Zaragoza, Spain.
A summary of the paper and some future work are given in Section 5.

2. Classical record model and deviations from stationarity
The statistical tools for detecting non-stationarity in the extremes implemented in RecordTest
are based on the properties of the record occurrence in series of IID continuous RVs, i.e., the
CRM. This section reviews some basic concepts and the probabilistic results that are the
basis of those tools.

2.1. Variables to characterize the record occurrence

Let (X1, . . . , XT )⊤ be a series of RVs. An observation Xt is called an upper record (or simply a
record) if its value exceeds that of all previous observations, i.e., if Xt > max{X1, . . . , Xt−1}.
By virtue of this definition, X1 is always a trivial record. Analogously, Xt is a lower record if
Xt < min{X1, . . . , Xt−1}. Let (I1, . . . , IT )⊤ be the series of record indicator RVs defined by

It =
{

1 if Xt is a record,

0 otherwise.
(1)

Then, the number of records is defined by the record counting process, (N1, . . . , NT )⊤, where

Nt = I1 + I2 + · · · + It, (2)

and subsequently, the series of record times, (L1, . . . , LNT
)⊤, is defined by

Li = min {t | Nt = i} . (3)

Finally, although they are not directly related to the occurrence, the series (R1, . . . , RNT
)⊤

of record values is defined by Ri = XLi .
All the tools implemented in this package assume that there are M independent series of
length T available, i.e., there is a sequence X = (X1, . . . , XM ) of independent series where
Xm = (X1m, . . . , XT m)⊤ for m = 1, . . . , M . However, most of the tools can be applied
even with M = 1. The M series can be the result of splitting the original series, or series
measured at different spatial points, for example. Given X, we define the sequences of record
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indicators, I = (I1, . . . , IM ), and the sequences of the number of records, N = (N1, . . . , NM ),
where Im = (I1m, . . . , IT m)⊤ and Nm = (N1m, . . . , NT m)⊤ for m = 1, . . . , M . In a similar
way, obvious definitions deal with record times and record values, L and R, respectively.

2.2. Probabilistic properties of the record occurrence

Arnold et al. (1998) present the essential topics related to the theory of records. An important
result states that, in the CRM, the series (I1, . . . , IT )⊤ consists of mutually independent RVs
with Bernoulli(pt) distribution where pt, the probability of observing a new record at time t,
is

pt = P(It = 1) = 1
t
, t = 1, . . . , T. (4)

As a consequence, the distribution of It, Nt, and Li does not depend on the common con-
tinuous distribution of the Xt’s. This property allows the definition of the non-parametric
statistical tests and graphical tools available in RecordTest.
Concerning the number of records, under the CRM, NT converges in distribution as T → ∞
to a normal distribution with mean and variance

E(NT ) =
T∑

t=1

1
t

and VAR(NT ) =
T∑

t=2

1
t

(
1 − 1

t

)
. (5)

These expressions are obtained from the fact that NT is a sum of independent Bernoulli
RVs. To give some intuition about the model, note that E(NT ) ≈ log T + γ and VAR(NT ) ≈
log T +γ−π2/6 where γ is the Euler constant, and both expressions tend to infinity. However,
under the CRM, records are not common and their occurrence becomes scarcer for larger
values of T .
Turning to the notation with M independent series, if we assume that the M series have
the same probabilities of record, i.e., ptm ≡ pt, the maximum likelihood estimates (MLEs) of
these probabilities are

p̂t = It1 + · · · + ItM

M
, t = 1, . . . , T, (6)

where the sum of record indicators above follows an exact binomial distribution with M trials
and probabilities of success pt = 1/t. If M = 1, the variability associated with the estimates is
large. As the number of series M increases, the estimates become more accurate and precise.

2.3. Analysis of non-stationarity in the tails of the distribution

The aim of all the inference tools in RecordTest is to detect a non-stationary behavior in
the occurrence of records in a time series, and more generally in the upper (and lower) tail
of the distribution of the series. When we refer to a non-stationary behavior we mean any
deviation from the CRM in the generating system of records. The underlying idea in all
the tools is to study if the occurrence of observed records is compatible with the expected
behavior of the occurrence of records under the CRM, i.e., in a series of IID continuous RVs.
Under the assumption that the RVs in the series are independent, any deviation from the
expected behavior of records will give evidence of a change over time in the distribution, i.e.,
non-stationarity. In many real problems, a non-stationary behavior in a non-seasonal series
is due to the existence of any type of trend.
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The tests in the package are based on record probabilities. Since these probabilities are known
under the CRM, the null hypothesis of all the tests is

H0 : ptm = 1/t, for all t = 1, . . . , T, and m = 1, . . . , M, (7)

with ptm = P(Itm = 1). Different alternative hypotheses, one-sided, two-sided or the existence
of a change-point, can be of interest, and tests for each of them are proposed in RecordTest.
The one-sided alternative claims that the probabilities of record are either greater or less
than the values given by the null hypothesis. This increase or decrease may be originated by
the existence of a positive or a negative trend in location, or by an increase or decrease of
variability.
Two different families of tools are implemented in the package, the first only requires to know
the record times of the series, while the second requires to have the entire series available. The
idea of the second family, first suggested by Foster and Stuart (1954), is that more powerful
tests are obtained by joining the information from different types of records instead of using
only one type. More precisely, from one series (X1, . . . , XT )⊤, four different types of records
can be computed: the upper and lower records in the forward and in the backward series
(or directions). The backward series (XT , . . . , X1)⊤ is obtained by reversing the order of the
terms. For example, the upper record indicators in the backward series are

I
(BU)
t =

{
1 if XT −t+1 > max{XT , . . . , XT −t+2},

0 otherwise.
(8)

To distinguish what type of records a statistic or RV refers to, the corresponding superscripts
F (forward), B (backward), U (upper), or L (lower) are added between brackets. Given the
symmetry of the problem, under the CRM, the probability of record pt is 1/t for the four
types of records.

3. Functions and capabilities
RecordTest provides a framework for the analysis of non-stationary behavior in the extremes
of a series using records. It covers all the steps in the analysis: data preparation, identification
of the records, exploratory analysis, a wide range of statistical tests, and complementary
graphical tools. This section describes the functions grouped according to their objective.

3.1. Data preparation and record variables

The main argument of the inference functions in the package is a vector (X1, . . . , XT )⊤ or
a matrix X. If only the record times are available, they have to be transformed into a
series (X1, . . . , XT )⊤ with those record times. This transformation is implemented by the
function series_record(), whose arguments are the record times, L_upper or L_lower, and
optionally the record values, R_upper or R_lower. Note that inference based on this new
series only makes sense for the tools that use the types of records that are introduced as an
argument: upper, lower, or both.
All the functions allow missing values represented by NA. The way to deal with this is to
replace them by -Inf for upper records and Inf for lower records, so they are records only if
they appear at t = 1.
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Split series
In many real problems, the original series has to be split into M subseries, for instance, to
remove the seasonal behavior (Hirsch, Slack, and Smith 1982). As an example, if a daily
series with annual seasonality, (X1,1, X1,2, . . . , X1,365, X2,1, X2,2, . . . , XT,365)⊤ where Xtm is
the variable on day m within year t, is split into 365 series, one for each day within year,

X1,1 X1,2 · · · X1,365
X2,1 X2,2 · · · X2,365

...
...

...
XT,1 XT,2 · · · XT,365


T ×365

, (9)

the resulting subseries (columns) do not show seasonal behavior. In addition, since the con-
secutive observations in each subseries are now separated by one year, the serial correlation
can be assumed to be zero. The distribution of the 365 series, which correspond to series
at different calendar days, will not be the same due to the seasonal effect. However, the T
RVs in each series, which correspond to variables measured at the same calendar day across
years, may be identically distributed. Note that the null hypothesis H0 of the inference tools
in RecordTest is that each of the M series available are sequences of IID continuous RVs, but
no assumption about the equal distribution of the M series is required. This functionality
is implemented by series_split() that splits the series in argument X into Mcols subseries
and arrange them as the matrix in (9).

Uncorrelated series
All the statistical methods implemented in the package assume that the M series under study
are independent. If we have a set of dependent series, we should extract a subset of inde-
pendent series from them before applying the inference tools. The function series_uncor()
extracts a subset of uncorrelated series from the set available. This function has the arguments
test.fun, a function to implement the desired correlation or dependence test, and alpha, that
establishes the significance level. The default function is the standard stats::cor.test()
with a significance level α = 0.05, i.e., two series are considered uncorrelated if the Pearson
correlation between them is not significantly different from zero at that significance level. Al-
though zero correlation does not imply independence, this is a usual approach in most real data
problems because dependence manifests itself as some level of linear correlation and testing
dependence is not possible in general. However, more sophisticated functions could be used for
testing dependence in other particular situations. For example, extRemes::taildep.test()
or evd::evind.test() could be considered to test dependence at the extremes of the series.
We explain the algorithm with test.fun = stats::cor.test as an illustration. The itera-
tive procedure to be used for selection is specified by the argument type. If the series have
a sequential order, for example they are measured in consecutive days, the argument type =
"adjacent" should be used and the following approach is applied: given that the kth series
is in the subset, correlation between series k and k + 1 is tested; if the correlation is not
significant, series k + 1 is included in the subset, otherwise correlation between series k and
k+2 is tested. This step is repeated until a series k+j that is not significantly correlated with
series k is found. This approach does not test the pairwise correlation of all the series in the
final set, but it is adequate in situations where dependence is expected between consecutive
series. If we want to test the pairwise correlation of all the series we use type = "all".
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This procedure only keeps series that are not significantly correlated with any other selected
series, which gives more evidence in favor of the correlation matrix of the chosen series being
diagonal.

Breaking record ties

The CRM assumes that the Xt’s are continuous RVs so that the probability of ties is zero.
However, ties and weak records (observations equal to the current record value) can occur
in a series even if the variable is continuous because the measured values are rounded. The
function series_ties() gives the percentage of weak records in a series. It is important to
know this percentage since, if it is high, the number of records will be lower than expected
under the CRM, even if the series is IID (Wergen, Volovik, Redner, and Krug 2012).
If the number of weak records is high, the function series_untie(), which applies a simple
procedure to break ties, should be used. It adds to each element in the series a uniform
random value in the range (−u/2, u/2), where u is the precision unit of the observations,
so that weak records disappear. This procedure reproduces the fact that some of the weak
records would have been records if they had not been rounded.

Backward series

The function series_rev() gives the backward series of the argument X. X can be a vector
or a matrix, and in the last case the output is the backward series of each column.

Record variables

RecordTest includes functions to compute all the record RVs introduced in Section 2.1, given
a series (X1, . . . , XT )⊤ or a matrix X. I.record() computes the record indicators I, using a
S3 method, and N.record() computes the observed cumulative number of records up to time
t, N. Additionally, the record times L and record values R are computed by L.record() and
R.record(), respectively. The arguments of all these functions are: X, the vector or matrix
to analyze; record, a character string, "upper" or "lower", indicating the type of records to
be calculated; and weak, a logical argument to indicate whether weak records are considered.
The function p.record() computes the MLEs p̂t’s in (6).
Under the CRM, Nt follows a Poisson binomial distribution. The package includes functions,
dpoisbinom(), ppoisbinom(), qpoisbinom(), and rpoisbinom(), to compute the density,
distribution, and quantile function, and a random generation for the Poisson binomial distri-
bution using the algorithm by Hong (2013).

3.2. Exploratory data analysis

Records plot. The function records() plots the time series (X1, . . . , XT )⊤ and identifies
the upper and lower records observed in the series; one or both directions can be specified
in argument direction = c("forward", "backward", "both"). This plot helps to detect
asymmetries between the four types of records. If we have to analyze the extreme behavior
of M series, an alternative is to summarize them into a single series, calculating the mean
or the maximum in each time t and apply this function. Another alternative is the following
plot.
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Plot of the times of record. The function L.plot() plots the record times in M series,
(Lim, m), for i = 1, . . . , NT m, and m = 1, . . . , M . The M series are represented in the
vertical axis, and the record times in each series in the horizontal axis. The display includes
four panels, one for each type of records, FU, FL, BU, and BL. This plot helps to study the
hypothesis of the CRM since clear differences, especially in the number of points in the second
half of the plots, suggest non-stationarity in the tails.

3.3. Tests and plots for non-stationarity based on one type of records

The tools described in this section can be applied even when the only information available
is the record times. Three families of tests, based on the number of records, the probabilities
of record and the likelihood of the record indicators, are implemented.

Number of records

The function N.test() includes several tests based on statistics related to the number of
records. The general expression of the statistic is

Nω =
M∑

m=1

T∑
t=1

ωtItm, (10)

where the ωt’s are weights given to the records according to their position in the series. The
reason of using weights is that records at high values of t are less likely to occur so that,
if they occur, they give more evidence against the null hypothesis H0. Thus, the use of
weights makes records at high t to increase more the value of the statistic. The weights are
controlled by the argument weights that must be a function. Diersen and Trenkler (1996)
recommend linear weights ωt = t − 1, i.e., weights = function(t) t - 1. Cebrián et al.
(2022) propose a score-sum test that is a particular case of this statistic with weights ω1 = 0
and ωt = t2/(t − 1) (t = 2, . . . , T ), i.e., weights = function(t) ifelse(t == 1, 0, tˆ2
/ (t - 1)). Both types of weights are asymptotically equivalent and increase the power of
the test (Cebrián et al. 2022).
Under the null hypothesis H0 in (7), Nω is asymptotically normal as M → ∞ with mean and
variance

E0(Nω) = M
T∑

t=1
ωt

1
t

and VAR0(Nω) = M
T∑

t=2
ω2

t

1
t

(
1 − 1

t

)
. (11)

When ωt = 1, Nω is the raw number of records, it follows an exact Poisson binomial distri-
bution, and it is asymptotically normal also in T . The argument distribution indicates the
distribution to compute the p value, "normal" or "poisson-binomial". With wt’s which are
not equal to 0 or 1, only distribution = "normal" can be used. Alternatively, in any situ-
ation, the p value can be estimated using Monte Carlo simulations with simulate.p.value
= TRUE. This is not often necessary since, even when Nω is not asymptotically normal in T ,
the size based on the normal distribution is reasonably satisfactory even with M = 1.
Another test is based on an estimation of the variance instead of the variance under the null
hypothesis H0,

Ñω
S = Nω − E0(Nω)√

V̂AR(Nω)
, (12)
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where V̂AR(Nω) is the unbiased sample variance. The resulting test can be applied when
M > 1, and it is more robust against serial correlation. Under the null hypothesis H0, Ñω

S

follows an asymptotic tM−1 distribution, and it is implemented using distribution = "t".
All the tests in N.test() can be applied to any of the four types of records (FU, FL, BU,
or BL). The argument record indicates the type of records, "upper" or "lower", to be
analyzed. If backward records were desired, series_rev(X) has to be used as argument.
Other arguments of the function are alternative, that indicates the alternative hypothesis,
"greater" or "less". The argument correct indicates whether a continuity correction
should be made in the normal or t distribution approximations, which is recommended. The
last arguments can be used in most of the tests in the package.
The output of N.test() and most tests in the package is a list of class ‘htest’, which
contains the components statistic, parameter, p.value, alternative, estimate, method,
and data.name.

Plot of the number of records. The asymptotic results described above can be used to
analyze graphically the null hypothesis H0. The function N.plot() plots the observed values
(t, N̄ω

t ), where N̄ω
t =

∑M
m=1

∑t
j=1 ωjIjm/M , together with the expected values under the null

hypothesis H0, E0(N̄ω
t ). As an alternative to confidence intervals of E(N̄ω

t ), reference intervals
(RIs) defined by the lower and upper α/2th percentiles of the distribution of N̄ω

t under the
null hypothesis H0 are plotted, i.e.,

E0
(
N̄ω

t

)
± zα/2

√
VAR0

(
N̄ω

t

)
, (13)

with E0(N̄ω
t ) and VAR0(N̄ω

t ) in (11) taking account of the average instead of the sum, and
zα/2 the upper α/2th percentile of the standard normal distribution. If the observed data
follow the null distribution, they are expected to lie inside a particular RI 100(1 − α)% of the
time. It is noteworthy that the resulting RIs are not independent and the resulting bands are
not reference bands at a 1−α confidence level. However, they are useful to observe deviations
from stationarity in the evolution of the number of records, and to identify the time point
from which this deviation is significant.
Different weights can be specified with the argument weights. Several types of records can
be plotted in the same graph using the argument record, which is a logical vector of length
four (FU, FL, BU, and BL) that specifies the records to be plotted. There are two options
to calculate the backward records, backward = "T" indicates that the backward number of
records up to time t are calculated in the series observed up to time T , (XT , . . . , X1)⊤, and
backward = "t" in the series observed up to time t, (Xt, . . . , X1)⊤.

Probabilities of record

F test for linear regression. The function p.regression.test() implements a test based
on the fit of a regression model to the record probabilities pt as a function of time. Under
the null hypothesis H0, the MLEs p̂t’s in (6) satisfy E0(p̂t) = 1/t. p.regression.test()
implements an F test to compare the null model M0 : E(tp̂t) = 1 against a model M1
where the expectation is a function of t, specified by the argument formula. The default is
M1 : E(tp̂t) = β0 + β1t, t = 2, . . . , T , that is y ~ x. More complicated time trends can be
used, e.g., a quadratic trend with formula = y ~ poly(x, degree = 2).
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Given that the response p̂t has a non-constant variance even under the null hypothesis H0,
the regression model has to be fitted using weighted least squares with weights 1/VAR0(tp̂t).
A simulation study showed that the size of this test is satisfactory for M > 10. As in
previous test functions, the p value can be estimated using Monte Carlo simulations with
simulate.p.value = TRUE.

Plot of the probabilities of record. The function p.plot() represents the points (t, tp̂t)
for t = 1, . . . , T , and the fitted linear model described in p.regression.test(), to evalu-
ate the goodness of fit of the model. The fitted regression line can be replaced, e.g., by a
locally estimated scatterplot smoothing (LOESS), using smooth.method = stats::loess.
RIs based on the binomial distribution of Mp̂t when the null hypothesis H0 is true are added
to the plot if conf.int = TRUE. These RIs are independent and they are helpful to detect
any substantial departure from the CRM at particular times t. The plot can be displayed
on different scales: using plot = "2", p̂t is represented against t; and using plot = "3", a
logarithmic scale is used in both axes.

χ2 goodness-of-fit test. The function p.chisq.test() implements a Pearson’s χ2 test,

M
T∑

t=2
(p̂t − E0 (p̂t))2

( 1
E0 (p̂t)

+ 1
1 − E0 (p̂t)

)
, (14)

comparing the observed and expected probabilities of record and no-record (see Benestad
2003, 2004, for more details). Under the null hypothesis H0, the distribution of the statistic
is asymptotically χ2

T −1.
The size of the test is not appropriate for small M . In those cases, the function gives a
warning message and it is convenient to estimate the p value using Monte Carlo simulations
with simulate.p.value = TRUE.

Likelihood ratio and score tests
The functions lr.test() and score.test() compute the family of tests by Cebrián et al.
(2022) to study the null hypothesis H0 based on the likelihood and the score function of the
record indicators I. The main difference with the previous tests is that they can be used to
test both one-sided and two-sided alternatives. Although a different statistic has to be used
in each case, we only have to indicate the adequate alternative in the argument alternative
which can take values "two.sided", "greater", or "less".
The default alternative in the two functions is that all the T × M probabilities ptm may be
different, with any restriction. Using probabilities = "equal", both statistics are modified
to study a particular case, that the probabilities in the M series are equal, although possibly
different to 1/t. According to Cebrián et al. (2022), those tests are less powerful than the
tests for the general alternative, even if the probabilities in the M series are equal. In general,
the tests in score.test() are more powerful and are recommended.

3.4. Tests and plots for non-stationarity based on different types of records
The power of the tests based on one type of records is improved by joining the information from
the four types of records. Two families of this type of test are implemented in RecordTest. In
both cases, the first step is to obtain the statistic described in the previous section for each
type of records, and then build a joint statistic, or combine the p values of the resulting tests.
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Tests based on joint statistics
The function foster.test() implements the tests based on joint statistics developed by
Foster and Stuart (1954), with the possibility of adding weights, as suggested by Diersen and
Trenkler (1996). Seven different statistics can be selected with statistic = c("D", "d",
"S", "s", "U", "L", "W"). All the tests, apart from "S" and "s", study the stationarity
against the alternative of a trend in the mean. The statistics "d", "D" and "W" analyze
non-stationary behavior in both tails using two or four types of records,

dω = Nω,(U) − Nω,(L) =
M∑

m=1

T∑
t=1

ωt

(
I

(U)
tm − I

(L)
tm

)
, (15)

Dω = dω,(F ) − dω,(B) =
M∑

m=1

T∑
t=1

ωt

(
I

(F U)
tm − I

(F L)
tm − I

(BU)
tm + I

(BL)
tm

)
, (16)

W ω =
T∑

t=1
ωt

(
I

(F U)
tm + I

(BL)
tm

)
. (17)

The statistics in "U", Uω = Nω,(F U) − Nω,(BU), and "L", Lω = Nω,(BL) − Nω,(F L), only use
the two types of upper or lower records and they are useful to detect trends only in the right
or the left tail, respectively. The statistics in "S" and "s" study the existence of a trend
in variation, and they are defined as sω = Nω,(U) + Nω,(L) and Sω = sω,(F ) − sω,(B). The
statistics without weights are asymptotically normal in both T and M , and the weighted
statistics only in M ; although their size based on the normal distribution is satisfactory even
with M = 1.
As explained in the definition of Ñω

S in (12), more robust statistics against serial correlation are
obtained when the above statistics are standardized in mean and sample variance. The new
statistics have an asymptotic tM−1 distribution and they are computed with distribution
= "t".

Plot of the Foster-Stuart statistics. The function foster.plot() plots the observed
values of one of the statistics defined above, selected with statistic, obtained with the series
observed up to time t, for every t = 1, . . . , T . The plot also includes the expected values and
RIs based on the normal approximation of the distribution of the statistic under the null
hypothesis H0. It is useful to detect the time t for which the stationarity hypothesis fails.

Global test. The function global.test() also computes a joint statistic, but it com-
bines the statistic selected in FUN, say X , which must be one of the two-sided tests in
p.regression.test(), p.chisq.test(), lr.test(), or score.test(). By default, the
global statistic X G = X (F U) + X (F L) + X (BU) + X (BL) is used, but some terms can be
omitted using argument record. The distribution of X G is unknown, but the p value is
estimated by Monte Carlo simulations.

Tests based on combined p values
The functions brown.method() and fisher.method() compute tests that combine the p val-
ues resulting from applying the tests with asymptotic normal distribution to the different
types of records.
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The function fisher.method() implements the general Fisher’s method to combine the p val-
ues from any set of independent tests with the same null hypothesis; the vector of p values
is the only argument. It can be applied to any test but, in the context of records, it is used
to join the p values of the records that are asymptotically independent, i.e., FU and FL, BU
and BL, FU and BL, or FL and BU.
The function brown.method() implements an algorithm to combine the p values of the tests in
N.test() to any subset of the four types of records, selected with record. Since the p values
are dependent, the algorithm is based on the Brown’s method: the combined p values,

−2
(
log(pv(F U)) + log(pv(F L)) + log(pv(BU)) + log(pv(BL))

)
, (18)

follow a cχ2
f distribution with scale parameter c and degrees of freedom f that depend on the

covariances of the p values. In general, this test is more powerful than the previous ones and
the (seasonal) MK test when the series follow a GP or some types of GEV distributions with
a linear drift in location (see Cebrián et al. 2022, for the details).

3.5. Tests for change-point detection

The function change.point() implements a family of tests to study the null hypothesis H0
against the alternative hypothesis of an unknown change-point t0, i.e.,

H1 : ptm = 1/t, t = 1, . . . , t0 and ptm ̸= 1/t, t = t0 + 1, . . . , T, (19)

for m = 1, . . . , M . Note that these tests aim to detect the beginning of the non-stationary
behavior in the tails, not in the mean. The test statistic given by Castillo-Mateo (2022a) is

Kω = max
1≤t≤T

∣∣∣∣∣∣Nω
t − E0(Nω

t )√
VAR0(Nω

T )
− VAR0(Nω

t )
VAR0(Nω

T )
Nω

T − E0(Nω
T )√

VAR0(Nω
T )

∣∣∣∣∣∣ , (20)

where Nω
t =

∑M
m=1

∑t
j=1 ωjIjm, and the estimated change-point t̂0 is the value t where Kω

attains its maximum. Kω is asymptotically Kolmogorov distributed as T → ∞ if ωt = 1; oth-
erwise, the p value has to be estimated by Monte Carlo simulations using simulate.p.value
= TRUE. Weights equal to 1 or proportional to the inverse of the standard deviation of It are
recommended. The test has been defined in terms of the number of upper or lower records
Nω

t , but it can also be defined in terms of dω
t = N

ω,(U)
t − N

ω,(L)
t or sω

t = N
ω,(U)
t + N

ω,(L)
t ,

depending on record = c("upper", "lower", "d", "s").

4. An example: Daily maximum temperature in Zaragoza
This section illustrates how package RecordTest can be used to analyze the effect of global
warming on the records and extremes of a daily maximum temperature series, the series in
Zaragoza, Spain. It is shown how the functions in the package cover all the steps of the
analysis: data preparation, exploratory analysis, and inference to study the non-stationary
behavior of the extremes and to identify the time, the periods of the year, and the features
where the non-stationary behavior appears.
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Figure 1: Daily maximum temperature at Zaragoza, Spain (1951–2020). LOESS (solid red),
and upper (red) and lower (blue) records.

4.1. Dataset

The ‘data.frame’ TX_Zaragoza included in RecordTest contains two columns: DATE, the
dates in ‘Date’ format, spanning from "1951-01-01" to "2020-12-31"; and TX, the daily max-
imum temperature series at Zaragoza Airport (Spain), in tenths of degree Celsius (◦C). The
dataset has been downloaded from the European Climate Assessment & Dataset (ECA&D;
Klein Tank et al. 2002) and modified by eliminating all the observations from the 29th of
February. This is because when the series is split, these days would yield a four-year time
series that is difficult to join to the analysis of the other yearly time series. The series with
the 29th of February is also available as TX_Zaragoza29F. The series has three missing obser-
vations indicated by NA corresponding to "1951-03-31", "1965-01-04", and "1965-10-05".
The dataset can be accessed after loading the package:

R> library("RecordTest")
R> Tx <- TX_Zaragoza$TX / 10

4.2. Data preparation and exploratory analysis

Most daily temperature series present a clear seasonal component and a high serial correlation.
That also is the case for the Zaragoza series, which can easily be seen by plotting the series
using the function records() (see Figure 1). The output of this and all the plot functions
in RecordTest are ‘ggplot’ objects. Consequently, the plots can be easily improved using
ggplot2 (Wickham 2016) functions; an example of how to add a LOESS is shown in the
following chunk,

R> records(Tx) +
+ ggplot2::geom_smooth(formula = y ~ x, method = stats::loess,
+ mapping = ggplot2::aes(y = Tx), se = FALSE, col = "red")

The plot reveals the seasonal behavior and a weak long-term time trend in the mean, summa-
rized by the LOESS. The upper and lower records in the forward direction are also plotted,
but their behavior is difficult to be analyzed due to the seasonality of the series.
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Since the series shows annual seasonality, we use the function series_split() with Mcols
= 365 to apply the split procedure described in Section 3.1, and it returns 365 subseries of
length T = 70. Then, we use series_uncor() to extract from them a subset of uncorre-
lated subseries, and it returns M = 76 subseries of length T = 70. We do not change the
default option test.fun = stats::cor.test given that dependence in temperature data is
usually linked to correlation. The default significance level is alpha = 0.05. Multiple test-
ing corrections are not implemented in this example since, in order to apply the tests, it is
more important to guarantee that the selected series are uncorrelated, while the problem of
rejecting series which are uncorrelated is less problematic. The indexes of the subset of the
selected series are shown with the argument return.value = "indexes". As we can see, a
separation between 2 and 14 days yields uncorrelated series.

R> TxZ365 <- series_split(Tx, Mcols = 365)
R> TxZ <- series_uncor(TxZ365)
R> dim(TxZ)

[1] 70 76

R> series_uncor(TxZ365, return.value = "indexes")

[1] 1 5 13 16 20 25 29 34 40 48 54 62 76 80 83 88 95
[18] 100 104 108 111 118 122 126 133 138 143 152 156 162 169 176 179 188
[35] 194 197 199 202 205 207 209 212 215 220 223 226 229 238 241 245 251
[52] 257 261 267 270 274 277 286 292 298 306 308 312 314 317 321 325 333
[69] 337 339 342 345 350 357 361 364

The temperature series is rounded to the tenth of ◦C. Given that the rounding is small with
respect to the value of the temperature, the assumption of continuous RVs is reasonable. The
existence of a high percentage of ties may affect the validity of the tests, that are developed
for continuous RVs, so it is advisable to apply series_ties() to check this percentage. The
output is a ‘list’ with three elements: (i) number, a vector with the total number of records,
the number of “strong” and weak records, and the expected number of records under IID
series, (ii) percentage, the percentage of record ties out of the total number of records, and
(iii) percentage.position, the percentage of record ties by time t, e.g., 4.76% of records
were ties at t = 5. NaNs indicate that there were no records of any type, e.g., at t = 19.

R> lapply(series_ties(TxZ, record = "upper"), round, digits = 2)

$number
Total Strong Weak Expected under IID
391.0 375.0 16.0 367.3

$percentage
[1] 4.09

$percentage.position
1 2 3 4 5 6 7 8 9 10
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Figure 2: Daily maximum temperature of the 11th of June at Zaragoza, Spain (1951–2020).
Upper (red) and lower (blue) records in the forward (solid) and backward (dashed) directions.

0.00 2.44 0.00 0.00 4.76 0.00 0.00 0.00 0.00 0.00
11 12 13 14 15 16 17 18 19 20

11.11 14.29 20.00 0.00 16.67 0.00 50.00 0.00 NaN 0.00
21 22 23 24 25 26 27 28 29 30

0.00 0.00 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00
31 32 33 34 35 36 37 38 39 40

20.00 0.00 33.33 50.00 40.00 100.00 0.00 0.00 0.00 0.00
41 42 43 44 45 46 47 48 49 50

0.00 0.00 0.00 0.00 16.67 0.00 NaN 0.00 0.00 NaN
51 52 53 54 55 56 57 58 59 60

0.00 0.00 25.00 0.00 0.00 0.00 NaN NaN 0.00 0.00
61 62 63 64 65 66 67 68 69 70

0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00

R> lapply(series_ties(TxZ, record = "lower"), round, digits = 2)

Since the percentage of ties is about 4.09% for upper records and 3.74% for lower records
(output omitted), it does not seem to be necessary to apply the function series_untie() to
break the ties.
In series without seasonality, the analysis of records is easier. As an example, Figure 2 shows
the plot obtained with the chunk below, which includes the upper and lower records in the
forward and backward directions of the temperature measured on the 11th of June (30th
column in TxZ).

R> records(TxZ[, 30], direction = "both") +
+ ggplot2::scale_x_continuous(name = "Year", breaks = c(10, 30, 50, 70),
+ labels = c("1960", "1980", "2000", "2020"))

The plot shows evidence of an increasing trend, since no lower records occur after 7 time units
in the forward series, and the last upper record occurs at time point 3 in the backward series.
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Figure 3: Plot of the times of record for the 76 uncorrelated subseries at Zaragoza, Spain
(1951–2020).

The function L.plot() is used to summarize the times of the four types of records in each of
the 76 uncorrelated subseries by means of the plot of the times of record,

R> L.plot(TxZ)

Figure 3 shows that as time evolves there are less FL and BU records than FU and BL records.
This suggests non-stationary behavior since the pattern in the four plots should be similar in
IID series. This effect is difficult to be observed in only one subseries; however, when the 76
subseries are plotted together the evidence is clearer.

4.3. Inference tools to study non-stationarity in the extremes

Tests to detect deviations from stationarity

The effect of global warming on the extremes of the temperature series may appear in the
upper, the lower, or in both tails. We are interested in analyzing those hypotheses both jointly
and individually, but in all cases by means of the null hypothesis H0 in (7). The M = 76
subseries available correspond to different days within a year so they are not identically
distributed. Consequently, under the alternative hypothesis the probabilities of record ptm

may be different in the M subseries.

Analysis of one tail. To analyze the behavior of the upper tail, we study the upper records.
In the context of global warming, the alternative hypothesis of interest is

H1 : p
(F U)
tm > 1/t, for at least one t = 1, . . . , T, and m = 1, . . . , M. (21)

This alternative hypothesis is quite general since it includes the existence of a monotonous pos-
itive trend in the mean, but also other types of non-stationarity, such as some non-monotonous
trends. To test this hypothesis, we implement the weighted test in N.test() using the simple
linear weights ωt = t − 1 and default arguments,
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R> N.test(TxZ, weights = function(t) t - 1)

Test on the weighted number of upper records with weights = t - 1

data: TxZ
Z = 3.3138, p-value = 0.0004602
alternative hypothesis: true 'N' is greater than 4952.704
sample estimates:

N E VAR
6335.000 4952.704 173877.950

The hypothesis of stationarity is rejected at any usual significance level α. N.test() calculates
the value of the statistic N, its standardized version Z with a continuity correction by default,
and its expected value and variance under the null hypothesis H0, E and VAR, respectively.
The Monte Carlo p value obtained with the argument simulate.p.value = TRUE is very
similar (not shown), indicating that the normal approximation is good.
To analyze the behavior of the lower tail, we also use N.test(). Under the alternative
hypothesis of a positive trend in the mean, the probability of lower records is less than
under the null hypothesis H0, and we have to use the arguments record = "lower" and
alternative = "less". A significant behavior against stationarity is also observed in the
lower tail, since the following yields a p value equal to 0.001044 (output omitted).

R> N.test(TxZ, weights = function(t) t - 1, record = "lower",
+ alternative = "less")

Given that the complete series is available, we can add more information to the study of one
tail using the backward series and the more powerful tests implemented in foster.test().
Here, we apply the statistic Uω defined in Section 3.4, based on the forward and backward up-
per records. The alternative for a positive trend in the mean must be the default alternative
= "greater". The p value is lower than that obtained with N.test() so more evidence to
reject the null hypothesis H0 is found,

R> foster.test(TxZ, weights = function(t) t - 1, statistic = "U")

Forward - backward upper records test with weights = t - 1

data: TxZ
Z = 4.0641, p-value = 2.411e-05
alternative hypothesis: true 'statistic' is greater than 0
sample estimates:
statistic E VAR

3110.0 0.0 585579.8

Analysis of both tails. To carry out a joint analysis of both tails, we use the Dω statistic
in (16) based on the four types of records. The alternative for a positive trend is again the
default alternative = "greater",
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R> foster.test(TxZ, weights = function(t) t - 1, statistic = "D")

Foster-Stuart D-statistic test with weights = t - 1

data: TxZ
Z = 5.1889, p-value = 1.058e-07
alternative hypothesis: true 'statistic' is greater than 0
sample estimates:
statistic E VAR

5692 0 1203318

The more robust version of the statistic against serial correlation as defined in (12) but for
Dω can be calculated using the argument distribution = "t". The null hypothesis H0 is
also rejected at any usual significance level α,

R> foster.test(TxZ, weights = function(t) t - 1, statistic = "D",
+ distribution = "t")

Foster-Stuart D-statistic test with weights = t - 1

data: TxZ
t = 5.263, df = 75, p-value = 6.507e-07
alternative hypothesis: true 't' is greater than 0

Another option to carry out a joint analysis is to apply Brown’s method using the default
option that combines the p values of N.test() for the four types of records. Although it is
the default option, we specify the alternative hypothesis for the four types of records with
alternative, as an example of use,

R> brown.method(TxZ, weights = function(t) t - 1,
+ alternative = c("FU" = "greater", "FL" = "less", "BU" = "less",
+ "BL" = "greater"))

Brown's method on the weighted number of records with weights = t - 1

data: TxZ
X-squared = 38.669, df = 4.7592, c = 1.6810, p-value = 2.088e-07

It is noteworthy that the tests joining the information of the four types of records give the
lowest p values, on the order of 10−7. They lead to conclude, at any usual significance level
α, that the probabilities of record are greater for FU and BL records, and less for FL and
BU records, than expected under the CRM. This gives evidence of non-stationarity in the
occurrence of records in the subseries and, consequently, the existence of an increasing positive
trend in daily maximum temperature that affects the occurrence of extremes.

Graphical tools to detect deviations from stationarity
We have formally tested the existence of a significant non-stationary behavior both in the
upper and lower tails of temperature. Our next aim is to characterize that behavior using
graphical tools, to identify when it appears, which features are affected, etc.
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Figure 4: Plot of the number of records for the 76 uncorrelated subseries at Zaragoza,
Spain (1951–2020). Expected values and 90% RIs (mean, 5th and 95th percentiles of the
distribution of N̄ω

t under the null hypothesis H0) for the four types of records (gray shaded
area). Left: Unweighted statistics. Right: Weighted statistics with linear weights.

First, we analyze the behavior of the four types of records with the plot of the number
of records using N.plot(). To facilitate the comparison, all types of records are displayed
together using the default argument record.

R> N.plot(TxZ)
R> N.plot(TxZ, weights = function(t) t - 1)

The chunk above gives the plots by default, but Figure 4 is obtained adding ggplot2 functions
to draw the time axis for the forward and backward series; the complete code is available in
the supplementary material. The left plot shows that the number of FU records in the 80s
is slightly lower than expected in a stationary series. From that point onward, the number
of records increases until the end, although it does not become significantly high. FL records
have a stationary behavior up to the 90s, but its number starts to be lower than expected
thereafter. Backward records show more clear deviations of stationarity, and this suggests
that non-stationary behavior is stronger in the last part of the observed period. Both types of
backward records are outside the RIs from the first 30 observations, which correspond to the
period spanning from 1991 to 2020. The non-stationary behavior observed in the four types of
records is the behavior expected in a series with a positive trend in the mean. The right plot
is obtained using linear weights to give more importance to the occurrence of records in high
values of t, where the probability of record is lower. It shows that the use of weights leads to
clearer evidence of non-stationarity: the deviation of the forward records is now significant
and the deviation in the backward series is detected even earlier.
To analyze both tails jointly, we combine the information of the four types of records in
one signal. We can show a plot equivalent to the previous one based on the Foster-Stuart
Dω statistic in (16) with foster.plot(), whose expected value under the null hypothesis H0
is zero. We do not show the ggplot2 functions for simplicity,

R> foster.plot(TxZ, weights = function(t) t - 1)
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Figure 5: Plot of the mean value of the Foster-Stuart Dω statistic with linear weights for the
76 uncorrelated subseries at Zaragoza, Spain (1951–2020), observed up to time t, t = 1, . . . , T .
Expected values and 90% RIs under the null hypothesis H0 (gray shaded area).

Figure 5 shows a significant non-stationary behavior from the latest 90s onward and the
statistic shows a strong increasing trend starting around 2010.
Another approach to characterize non-stationarity is the analysis of the probabilities of
records. We plot tp̂t against t using p.plot() with the default argument plot = "1", for
FU records. Under the null hypothesis H0, the fitted regression to those points should be a
horizontal line, but different alternatives may be fitted; here, a quadratic trend is considered,

R> p.plot(TxZ, record = c("FU" = 1, "FL" = 0, "BU" = 0, "BL" = 0),
+ smooth.formula = y ~ poly(x, degree = 2))

The top plot in Figure 6 shows that the fitted curve is clearly different from zero and many
values tp̂t from the late 90s onward are outside the RIs. This plot helps us to identify the years
where the probability of record is much higher than expected. To characterize the lower tail,
the FL and BL records are shown in the same plot but with different colors using point.col,

R> p.plot(TxZ, record = c("FU" = 0, "FL" = 1, "BU" = 0, "BL" = 1),
+ point.col = c("FU" = NA, "FL" = "blue", "BU" = NA, "BL" = "red"))

The bottom plot in Figure 6 shows that FL records are less informative in the case of an
increasing trend. In effect, in that case, FL probabilities tend to decrease, but given that
they are always bounded by zero, points lower than the low interval bound cannot appear.
To formally check if the deviation from the CRM is significant, we apply the F test in
p.regression.test() to study E(tp̂t) = 1. Since the previous function p.plot() suggests a
quadratic trend as an alternative, we use

R> p.regression.test(TxZ, formula = y ~ poly(x, degree = 2))

Regression test on the upper records probabilities
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Figure 6: Plot of the normalized probabilities of record for the 76 uncorrelated subseries at
Zaragoza, Spain (1951–2020). Expected values and 90% RIs for t × p̂t (gray shaded area).
Top: FU records with quadratic time trend. Bottom: FL and BL records with linear time
trend.

data: TxZ
F = 9.0496, df1 = 3, df2 = 66, p-value = 4.225e-05
alternative hypothesis: two-sided for record probabilities
null values:

(Intercept) poly(x, degree = 2)1 poly(x, degree = 2)2
1 0 0

sample estimates:
(Intercept) poly(x, degree = 2)1 poly(x, degree = 2)2

1.265065 4.028521 2.337520
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Figure 7: Annual mean temperature at Zaragoza, Spain (1951–2020). Change-point estimate
(vertical solid red), and upper (red) and lower (blue) records.

We also apply the F test to the BL records using series_rev() to calculate the backward
series, and the argument records = "lower" (output omitted),

R> p.regression.test(series_rev(TxZ), record = "lower")

The resulting p value is 0.039. Both tests suggest that the ptm’s are significantly different
from 1/t. The evidence in BL records is not so strong but still significant, as it is observed in
the number of points outside the RIs in the bottom plot in Figure 6.

Tests for change-point detection

Once we have found evidence of a trend in the tails of the temperature distribution, our aim is
to identify the time point where this trend starts. First, we consider a series without seasonal
behavior, the annual mean temperature. Figure 7 shows the annual mean temperature at
Zaragoza, together with the change-point estimate, and its upper and lower records, resulting
from

R> TxZmean <- rowMeans(TxZ365, na.rm = TRUE)
R> records(TxZmean) +
+ ggplot2::scale_x_continuous(name = "Year", breaks = c(10, 30, 50, 70),
+ labels = c("1960", "1980", "2000", "2020")) +
+ ggplot2::geom_vline(xintercept = change.point(TxZmean)$estimate,
+ color = "red")

It seems reasonable to check the null hypothesis H0 against the alternative hypothesis H1 in
(19) using a change-point test based on upper records without weights,

R> change.point(TxZmean)

Records test for single changepoint detection
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data: TxZmean
Kolmogorov = 3.7425, p-value = 1.366e-12
alternative hypothesis: two.sided
sample estimates:
probable changepoint time

38

The p value of order 10−12 yields to reject the null hypothesis H0 at any usual significance
level α, and the estimated change-point t̂0 = 38 corresponds to the year 1988.
The change-point test can also be applied to the 76 uncorrelated subseries as given in the
chunk below (output omitted). The estimated change-point on a daily scale is t̂0 = 36 (1986),
and the p value 0.0003547 is significant at any usual significance level α.

R> change.point(TxZ)

5. Summary and future work
The study of non-stationary behavior in the extremes and the tails of a distribution is im-
portant in data analysis in many fields, such as environmental sciences, climate, finance, or
sports. However, most of the available software packages to analyze non-stationarity focuses
on the study of the mean. As far as we know, the R package RecordTest is the only available
software package for the analysis of record-breaking events. In addition, the use of records
provides a useful general framework for a fully non-parametric analysis of non-stationary be-
havior in the extremes. The underlying idea of all the inference tools implemented in the
package is to use the distribution of the record occurrences under the classical record model,
and study if the observed records are compatible with that behavior.
The package offers functions that cover all the steps in this type of analysis. This includes
functions to prepare the data, obtaining a set of uncorrelated series with no seasonal behavior
from the original series, identify the variables for characterizing the record occurrence, and
implement graphical tools for exploratory analysis. The main functionality of the package
is the implementation of all the tests to detect non-stationarity based on records currently
available in the literature, and complementary graphical tools. The null hypothesis H0 of all
the tests is that the series are sequences of IID continuous RVs, expressed in terms of the
probabilities of record, i.e., pt = 1/t. There are two main families implemented, the first one
can be applied even when the only information available are the times of record, and this
includes tests based on the number of records, the probabilities of record, and the likelihood
of the record indicators. The second family requires to know the entire series but it includes
the most powerful tests. The underlying idea is to combine the information from four types of
records, the upper and lower records in the forward and backward series, using joint statistics
or joint p values. Different alternative hypothesis, one-sided, two-sided or even the existence
of a change-point can be studied with the wide range of available tests.
The applicability of the package to analyze real data is illustrated with the analysis of the
effect of global warming on the extremes of the daily maximum temperature in Zaragoza,
Spain. The availability of the tools implemented in RecordTest will favor the realization of
studies for analyzing records and non-stationarity in the extremes in many fields.
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Future work will focus on the implementation of permutation tests, although this approach
requires further development in the literature. This procedure will capture the dependence
between the M series, so the tests will not require independent series. It will be especially
useful to jointly analyze series with spatio-temporal dependence.
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