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Theoretical model for the analysis of rotational behavior of penetrated 

mortise-tenon joints in traditional timber structures 

Penetrated mortise-tenon joints (PMJs) are typical wood-to-wood connections 

commonly used in traditional Chinese timber structures. They play a crucial role 

in the structural behavior of timber constructions. This study derived a method of 

theoretical estimation for the rotational behavior of PMJs, which is unique and 

more comprehensive in that it takes both movement of the rotation center and 

bending deformation of the tenon into consideration. In addition, it experimentally 

and numerically validated the theoretical model, and quantitatively analyzed the 

position changes of the rotation center and the effect of the bending deformation. 

On this base, simplified calculation formulas are proposed for the prediction of 

equivalent elastic stiffness and peak moment of PMJs, and then applied for the 

calculation of the lateral stiffness of timber frames. As a result, the predicted lateral 

stiffness shows good agreement with test results, demonstrating the validity of the 

estimation method derived and its applicability to the structural analysis. The 

results of this study show that the rotation center of the tenon is not stationary, and 

its moving range in the horizontal direction is much larger than that in the vertical 

direction. Another pattern found is that the bending deformation of the smaller 

tenon counteracts more than 20% of the compressive deformation caused by the 

rigid-body motion, and therefore must be considered when analyzing the rotational 

behavior of PMJs. 

Keywords: traditional timber structures; penetrated mortise-tenon joints; 

theoretical model; rotational behavior; moment-rotation relationship 

1. Introduction 

Timber structures have been widely used around the world for centuries. Mortise-tenon 

joints, a kind of wood-to-wood connections without any metal fasteners, are generally 

acknowledged as typical characteristics of traditional timber structures in China (Ma, 

1991). It is known that historical timber architectures constitute a large portion of the 

cultural heritage in many countries. Unfortunately, many of these structures have 

seriously deteriorated due to aging, natural hazards and man-made accidents (Poletti et 
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al., 2019; Xie et al., 2018), causing an urgent demand for the preservation of these 

architectural heritages. Besides vintage buildings, new-built traditional timber structures 

have also gained increasing popularity in the field of public buildings due to the rapid 

development of tourism and the growing emphasis on green buildings in China. However, 

there is a lack of specific analytical methods for traditional timber structures incorporating 

mortise-tenon joints in existing codes, e.g. the latest Chinese specification GB50005-

2017 (2017), with the fact that the structural design of such constructions remains enabled 

mainly by tradition and empirical knowledge. It has been repeatedly shown in previous 

studies that the structural performance of traditional timber structures is significantly 

influenced by the rotational behavior of the mortise-tenon joints (Eckelman and 

Haviarova, 2008; King et al., 1996; Seo et al., 1999). For the sake of reasonable design 

for traditional timber structures, there remains a strong need for further investigation into 

the appropriate analysis and estimation of the rotational behavior of mortise-tenon joints. 

Figure 1. Configuration and geometric parameters of PMJ 

Penetrated mortise-tenon joints (PMJs) represent a commonly encountered type 

of mortise-tenon joints in traditional timber structures, whose configuration is shown in 

Figure 1. The joint is formed by inserting a tenon at the tip of the beam into a mortise at 

the column. As the name implies, the tenon of the PMJ usually penetrates through 

columns with different cross-sections at the root and the front segments, which are called 

the larger tenon and smaller tenon respectively. For the sake of aesthetic requirements 
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and reducing drilling damage to columns, the height of the smaller tenon is usually half 

of the larger tenon (Ma, 1991). This special configuration with different cross-sections 

makes it more complicated to analyze the force mechanism of PMJs compared to other 

mortise-tenon joints with relatively simple geometric features. 

Many experimental studies on PMJs have provided valuable insight into the 

rotational behavior of this connection. Preliminary tests found that PMJs exhibit semi-

rigid characteristics and have better seismic performance than other types of traditional 

joints (Zhao et al., 2010). Chen and Qiu (2016) and Chun et al. (2016) indicated that the 

geometric features, summarized in Figure 1 left, govern the complex load-carrying 

mechanism of PMJs. Gao et al. (2015) suggested that PMJs with larger friction 

coefficients have better capacities of energy dissipation. The influence of gaps on the 

mechanical performance of PMJs was investigated by Xue et al. (2020) and He (2019). 

They clarified that looseness leads to the initial slip of the joints and reduces the rotational 

stiffness and bearing capacity.  

It is worth noting that most of the previous studies on PMJs have focused on 

experimental investigations, and there is a lack of an appropriate analytical model for the 

calculation of the stiffness and strength of this kind of joint. Some researchers have started 

paying more attention to this aspect. Chun et al. (2016) proposed a trilinear model to 

represent the behavior of PMJs by fitting experimental data. Although the simplified 

model shows good agreement with test results, it does not apply to other joints whose 

geometric and material parameters differ from the specimens. Ma et al. (2020) derived a 

simplified equation for predicting the moment-rotation relationship of PMJs after 

investigating the embedded compressive mechanism. Similarly, a theoretical model of 

PMJs considering different working states was proposed by He et al. (2021). Despite 

preliminary validation by their individual experiments, the general applicability of these 
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models is not clear due to restrictions in the assumptions being made. For instance, the 

rotation center of the tenon was assumed as different fixed positions (He et al., 2021; Ma 

et al., 2020; Ogawa et al., 2016), which are inconsistent with each other and also 

contradict the argument that the rotation center may move according to the balances of 

the load and reactions (Tanahashi and Suzuki, 2012). Furthermore, the bending 

deformation of the tenon was ignored in the aforementioned models while Zhang et al. 

(2018) suggested that neglecting the bending deformation could cause considerable 

errors.  

The aim of the work presented herein was to develop an improved theoretical 

model with general applicability for the analysis of the rotational behavior of PMJs, 

specifically the moment-rotation relationship. A particular focus is placed on taking both 

the movement of the rotation center and the bending deformation of the tenon into 

consideration. The importance of addressing these two factors when dealing with PMJs 

was carefully investigated in the subsequent discussion. Then, simplified calculation 

methods were proposed for the prediction of equivalent elastic stiffness and peak moment 

of PMJs, which were validated against a wide range of available experimental data on 

PMJ specimens. Finally, the simplified theoretical model was applied for the calculation 

of the lateral stiffness of a wooden portal frame with PMJs, exploring the applicability 

and accuracy for the analysis of traditional timber structures. 

2. Theoretical model 

2.1 Basic mechanism 

Due to wood shrinkage, loading history or poor maintenance, PMJs often involve gaps 

between the mortise and the tenon. When subjected to lateral loads, the tenon of loose 

PMJs will rotate initially around the edge of the mortise without engaging any moment 
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resistance, i.e. as rigid-body motion. The moment resistance of the joint starts increasing 

when the tenon contacts the mortise. The compressive forces appear in the local regions 

where the compressive deformation happens. Frictional forces are also produced if the 

contact surfaces tend to slide. The compressive and frictional forces acting on local 

compression regions of the tenon are illustrated in Figure 2(a)(b). In passing, a specific 

illustration of subscripts for local compression regions is included in Table S1 of the 

supplemental material. These forces in combination produce a resisting moment that 

counter-balances the moment induced by external forces. 

Figure 2. Force analysis and compressive deformation of the tenon 

It can be understood that a larger rotation angle produces larger plastic 

compressive deformation, which means stronger interaction between the mortise and the 

tenon, thus resulting in a larger moment resistance of the joint. The increasing rate of the 
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moment resistance will only slow down when the wood in the compression regions begins 

to yield.  

Due to the asymmetric shape of the tenon section, PMJs have been demonstrated 

to exhibit distinct failure features under clockwise and anti-clockwise rotation (Chen and 

Qiu, 2016). Under clockwise rotation, the tenon will be torn along the grain in the variable 

cross-section when the stress exceeds the tensile strength. While rotating in the anti-

clockwise direction, the bending failure will tend to appear in the lower part of the tenon 

when the stress exceeds tensile strength along the grain. 

2.2 Assumptions 

To derive the theoretical model, several basic assumptions are adopted in this study, some 

of which are generally recognized in the related literature. 

1. The properties of wood are described only in two directions, namely along and 

across the grain (Nowak et al., 2013). 

2. Due to the different heights of cross-sections, the bending deformation is 

considered negligible for the larger tenon (Pan et al., 2015) but noticeable for the smaller 

tenon (Zhang et al., 2018). 

3. The compressive deformation between the mortise and tenon is considered to 

take place across the grain because the modulus of elasticity (MOE) parallel to the grain 

is significantly larger than that perpendicular to the grain (Chang et al., 2006; Ma et al., 

2020). 

4. The constitutive law of compression across the wood grain is simplified as an 

ideal elastic-plastic model (He et al., 2021): 

 c,R cy,R

c,R cy,R cu,R

, 0     

,

E

f

ε ε ε
σ

ε ε ε
≤ ≤

=  ≤ ≤
 (1) 
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where fc,R and Ec,R are the compressive strength and the MOE across the grain, εcy,R 

and εcu,R are the yield and ultimate compressive strain, respectively. 

5. In the elastic stage of the wood, the compressive stress is proportional to the 

deformation (Pan et al., 2015): 

 
c,Ri i i iE k hσ δ=  (2) 

where δi is the compressive deformation; hi represents the physical heights of 

compression regions; ki is the equivalent height coefficient that is determined by the 

distribution of compression strain along the forced direction (Chen et al., 2016). 

6. The friction coefficient of the wood contact surfaces is assumed to be constant 

during the rotation process of the tenon. The frictional forces can be calculated according 

to Coulomb’s law of friction (Chang and Hsu, 2007; Ma et al., 2020). 

2.3 Derivation of key equations 

The process of establishing the theoretical model is mainly divided into seven steps based 

on the above assumptions. The flowchart of analysis procedures is shown in Figure S1. 

For PMJs with gaps, the gap-induced initial rotation θ0 can be expressed as: 

 

{ }

2 02 012
0

2 2 2 2
2 2 2 2

0 01 1 02

min arcsin( ) arcsin( ), arctan( )

min arctan( ), arctan( )                                   

h h hh

Dh l h l

h l h D

θ

θ

+

−

  +  = − 
 + +  


=

 (3) 

where the superscripts “+” and “–” indicate the clockwise and anti-clockwise rotation, 

respectively; h01 and h02 are the initial gaps on the smaller and larger tenon, respectively. 

Only when the rotation angle exceeds θ0 can the joint start resisting the external 

loads. The following sections will focus on the theoretical deduction of the moment-
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rotation relationship of the PMJs based on geometric, physical and equilibrium conditions. 

2.3.1 Geometric conditions 

The intersection of the horizontal axis and column edge is defined as reference point O, 

and the intersection of the beam axis and tenon neck is defined as displaced point O'. The 

horizontal displacement, vertical displacement, and rotation angle between the displaced 

point O' and reference point O are represented by ux, uy, and θ respectively, as shown in 

Figure 2(c)(d). By taking the reference point O and the displaced point O' as the origins, 

the global coordinate system oxy and the local coordinate system o'x'y' are established 

respectively. The former is stationary while the latter follows the rigid-body motion of 

the tenon. The relationship between these two systems can be expressed as: 

 
x

y

' cos sin

' sin cos

ux x

uy y

θ θ
θ θ

 −     
= +       

       
  

Then, the coordinate transformation of every point in the tenon during the rotation 

of the joint can be calculated. Based on the geometric relationship shown in Figure 

2(c)(d), the compressive deformation δi caused by the rigid-body motion and the 

corresponding compression length li can be expressed as follows. 

For clockwise rotation: 

 

'
t1 x y 01

t0 2 x y 01

t2 2 2 1 y 02

b2 1 x y

n 1 x

tan ( )

tan ( )

sin ( )(1 cos )
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D u u h

l u u h

l h h u h

h u u
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δ θ
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where lt1 will be replaced by l1 if the value of δ t1’/tanθ exceeds l1. 

For anti-clockwise rotation: 

 

( )
( )

( )
( )

'
b1 1 0 

b0 2 1 0 

t2 2 1 02

h 2 1 2
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tan ( ) sec 1
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2 1

sin cos ,  h, n

tan        ,  t ,b

i

i

i

i
l

i

δ θ θ
δ θ

=
=  =

 (7) 

where h0=min{h01, h02} and lb1 will be replaced by D if the value of δb1’/tanθ exceeds D. 

Specially, the compressive deformation of the smaller tenon needs to be modified 

to consider the influence of the bending deformation. In essence, the compressive 

deformation of the smaller tenon δi1 is the superposition of the rigid-body displacement 

δi1
’ and the bending deformation δi1

’’. Their relationship is further illustrated by Equation 

(8), and can also be seen in Figure 2(c)(d). The compressive deformation caused by rigid-

body displacement is distributed linearly along the length direction of the smaller tenon 

while that caused by bending deformation is distributed nonlinearly. After superposition, 

the final deformation is still nonlinearly distributed. To simplify the calculation, the actual 

compressive deformation is modified as linear distribution along the length direction 

based on the principle of equivalent deflection at the top of the smaller tenon. 

 
' ''

1 1 1i i iδ δ δ= −
 (8) 

To calculate the bending deformation, the smaller tenon is simplified as a 

cantilever beam. The simplified calculation is schematically shown in Figure S2 of the 

supplemental material. The relationship between the linear load of the cantilever beam qi 
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and the compressive stress of the smaller tenon σi can be expressed as qi=bσi. The bending 

deformation of the smaller tenon can then be obtained by Equation (9) based on the 

method of graph multiplication. 

 
4 4

'' 0 1 1 0 1 1
1 3

1

(4 11 ) (4 11 )

120 10

i i i i
i

q q l l

EI Eh

σ σδ + += =  (9) 

where E is the bending modulus of elasticity; I is the inertia moment of the smaller tenon. 

Based on Equations (2)(4)(6)(8)(9), the actual compressive deformation of the 

smaller tenon can be expressed by the principle of deformation compatibility. 
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c,R 1

4
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1 0 

b1 4
c,R 1

4
b 1

tan ( )
                       

1 λ

tan ( ) sec 1

1 λ

x y

D u u h

E l

k Eh

D u h u h

E l

k Eh

θ
δ

θ θ
δ

+ − −
=

 +

 + + − − − =

 +


 (10) 

where λ is determined by Equation (9) and depends on the stress distribution of the 

smaller tenon. If the root segment of the smaller tenon has not contacted the mortise 

(σi0=0), λ is 1.1; Otherwise, λ is 1.5. 

2.3.2 Physical conditions 

The compressive stress is expressed by Equation (2) when the wood remains elastic. After 

yielding, the stress equals the compression strength across the grain according to Equation 

(1). To calculate the compressive forces and lever arms in the elastoplastic state, βi and αi 

are defined by Equations (11) and (12) respectively. The force modification factor βi 

represents the ratio of the actual plastic force F2 to the hypothetical elastic force F1 while 
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the lever arm modification factor αi considers the position change of the resultant point 

of compressive forces after wood yielding, as illustrated in Figure 3. 

Figure 3. Compressive stress of local regions in the elastoplastic stage  
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 (12) 

where δy,i represents the compressive deformation when wood yielding, which can be 

calculated according to Equation (2) by replacing σi with fc,R. 

Based on Equations (2)(5)(7)(11), the compressive forces can be obtained as: 

 0.5i i i i iF b lβ σ=  (13) 

where bi is the width of the local compression regions: bt1＝bt2＝bb1＝bb2＝bh＝b, bn＝

B－b. In particular, the compressive force of the top surface of the smaller tenon Ft1 

should be revised to 0.5bl1(σt1+σt0) when the root segment of the smaller tenon contacts 

the mortise under clockwise rotation. 

Based on Coulomb’s law, frictional forces can then be obtained as 

 i iT Fµ=  (14) 
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The arms of compressive forces under clockwise and anti-clockwise rotation can 

be calculated by Equations (15) and (16) respectively. The reference point O is considered 

as the point for calculating moments. 

 

t1 t1 t1

t2 2 2 1 x t2 t2

b2 b2 b2

n 1 y n n

3

cos ( )sin cos(2 ) 3

3

cos cos(2 ) 3
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 (15) 
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α
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 (16) 

2.3.3 Equilibrium conditions 

From the equilibrium conditions of horizontal forces, vertical forces, and moments of the 

tenon, the following Equations (17)-(18) can be derived according to the force analysis 

under clockwise and anti-clockwise rotation shown in Figure 2(a) and (b), respectively. 

 

n b2 t1 t2

t1 t2 b2 n

t1 t1 t2 t2 b2 b2 n n b2 1 t2 2 1

0

0

( ) ( )
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 (17) 

 

( )

h n t2 b1

b1 t2 h n

b1 b1 t2 t2 h h n n b1 1 t2 2 1 h 2

0

0

( )
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 − + − =
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 (18) 

Finally, by organizing Equations (1)-(18) according to the flowchart in Figure 4, 

the M-θ relationship of the PMJs can be obtained numerically. 
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Figure 4. Flowchart for the calculation of the theoretical model 

2.4 Verification of the theoretical model 

To validate the theoretical model, experimental data about the PMJ specimens in Chun et 

al. (2016) and Xu et al. (2018) are collected, which is included in Table 1. The theoretical 

prediction about the rotational behavior of these PMJ specimens was obtained according 

to the aforementioned analytical procedures. 

Besides the experimental results, solid finite element models of the PMJ 

specimens were also established by ABAQUS software to validate the proposed 

theoretical model. The geometric and material parameters were referred to the 

experimental information shown in Table 1. Here, Ec,L and fc,L are the elastic modulus 

and compressive strength along the grain. Then, ν1 and ν2 are the Poisson ratios along and 

across the grain, respectively. Timber was modeled as orthotropic and elastoplastic 

material. The Hill yield criterion was chosen to consider the anisotropic plastic behavior 

of timber. 
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The interaction between the tenon and the mortise was modeled as hard contact 

in the normal direction and stiffness penalty in the tangential direction. This means 

interfaces can transfer pressure and frictional force but not tension. In this simulation, the 

fiction coefficient took the value of 0.35 in the reasonable range according to relevant 

literature (McKenzie and Karpovich, 1968; Chen, 2011). The difference between 

dynamic and static friction coefficients was ignored due to the slow loading process. 

Considering the great difference of the elastic modulus along and across the grain, 

the compressive deformation between the mortise and tenon is considered to take place 

across the grain. The stiffer mortise acted as the master surface with the coarser mesh 

while the softer tenon was taken as the slave surface with the denser mesh. The final mesh 

size was chosen to be 20 mm for the mortise and 10 mm for the tenon. The element type 

is C3D8R. Figure 5 shows the finite element models of the above PMJ specimens. 

Figure 5. Solid finite element models of PMJ specimens 

Comparisons between the theoretical, simulated and experimental moment-

rotation relationship curves are shown in Figure 6. For specimen Joint 2, initial slips in 

the early stage can be observed in both the theoretical and simulated curves, and these are 

the results of insufficient contact between the mortise and the tenon due to the initial gaps. 

The reason why the initial slip is not obvious for the experimental curve may be that the 

initial gap was closed due to the weight of the wooden beam. 
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Figure 6. Comparisons between the theoretical, simulated and experimental results 

For specimen CJ, the initial rotational stiffness of the theoretical and FE model is 

larger than that measured in the experiment. It should be noted that the theoretical and FE 

model of specimen CJ were assumed to be tight as the gap data was not available from 

the original experimental studies. But actually, inevitable imperfections in the contacting 

surfaces exist in the specimens due to workmanship in the fabrication process, so this 

may be the main reason that caused the difference in rotational stiffness. Furthermore, 

some other experimental studies (Chang et al., 2006; Xue et al., 2020) that found 

looseness has important effects on the rotational stiffness of PMJs also support the above 

analysis. 

For both specimens, the experimental curves show declining segments under 

clockwise rotation, but the theoretical and FE models can not reflect this feature. This is 

because these two models do not take failure modes and the related strength degradation 

into account due to the complexity of the failure mechanism and material characteristics 

of PMJs. It remains to be explored in future research work. Despite this, it is acceptable 

for the preliminary structural analysis because the elastic stiffness and peak moment 

resistance, the two most important characteristics, have been accurately captured by the 

theoretical models. Overall, the theoretically predicted moment-rotation relationship 

shows agreement with the simulated and experimental results, especially the former one, 
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demonstrating the validity of the theoretical model proposed. 

3. Discussion 

In this section, the importance of addressing the movement of the rotation center and the 

bending deformation when dealing with PMJs was carefully investigated. Resistance 

contributions and elastoplastic states of compression regions were also further analyzed 

for the subsequent simplification of the theoretical model. The specimen tested by Chun 

et al. (2016) was employed as the representative example for the discussion. 

3.1 Movement of rotation center 

As recognized by other studies (Ma et al., 2020; Zhang et al., 2018), the compressive 

deformation of the tenon mainly depends on the rigid-body motion of the joint. Therefore, 

the position of the rotation center is of great importance to the distribution of compressive 

deformation in local regions.  

The previous studies have assumed that the rotation center of the PMJ is located at 

different positions, for instance, at the centroid (Ma et al., 2020; Zhang et al., 2018) or at 

the interface between the small and larger tenon (He et al., 2021; Pan et al., 2015). These 

assumptions are generally simple approximations and lack of sound theoretical basis. In 

this study, with the help of three displacement variables, i.e. ux, uy  and θ, expressing the 

rigid-body displacement of the tenon, the position of the rotation center (Or) can be 

obtained precisely in accordance with the geometric conditions illustrated in Figure 7(a). 

 
r

r

x r x y

y r y x

' sin

' cos

O

O

x u O O u u

y u O O u u

α θ
α θ

= − = −
 = + = +

 (19) 

Figure 7(b)(c) shows the horizontal and vertical displacements of the tenon 

obtained from the theoretical model. Both these two displacements have an 
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approximately linear relationship with the rotation angle. Unlike dovetail joints (Chen et 

al., 2016; Li et al., 2016), the horizontal displacement of PMJs appears smaller than the 

vertical displacement after the early stage, which is consistent with the fact that the failure 

mode of PMJs is not dominated by the tenon pull-out. This can be explained by the 

relatively larger moment resistance of PMJs that causes considerable compressive 

deformation in the vertical contact surfaces between the mortise and the tenon. Besides, 

the PMJ has certain tensile resistance that also reduces the horizontal displacement of the 

tenon. 

Figure 7. Displacements of the tenon and movement of the rotation center 

Taking the two displacements obtained above into Equation (19), the movement 

of the rotation center was calculated and then plotted with red dashed lines in the upper 

left corner of Figure 7(b)(c). When the PMJ rotates in clockwise and anti-clockwise 

directions, the rotation center mainly moves around the bottom surface and top surface of 
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the larger tenon, respectively. Specifically, under clockwise rotation, as shown in Figure 

7(b), the rotation center is located at the bottom surface of the tenon neck in the early 

stage and then gradually moves outward until the interface between the smaller and larger 

tenon. When rotating anti-clockwise in Figure 7(c), the position of the rotation center is 

around the front end of the larger tenon. It can be found that the moving range of the 

rotation center is quite small in the vertical direction but relatively large in the horizontal 

direction.  

Based on the above observation, it is considered that the previous assumption 

about a fixed rotation center of the tenon is only a simple approximation and is quite 

inaccurate. The results also confirm the hypothesis made by Tanahashi and Suzuki (2012) 

that the rotation center of the tenon is not necessarily at the centroid and may move 

according to the balance of the load and reactions. Therefore, it is necessary to take the 

movement of the rotation center into consideration for the more accurate calculation of 

the compression deformation of various local regions. 

3.2 Effect of bending deformation 

As mentioned earlier, the bending deformation of the smaller tenon may account for a 

considerable portion of all its deformation due to the relatively large span-depth ratio. 

Differing from the previous studies (He et al., 2021; Pan et al., 2015; Zhang et al., 2018), 

the effect of bending deformation is addressed in this paper. 

The influence of the bending deformation on the compressive deformation of the 

smaller tenon is illustrated in Figure 8. The green lines represent the compressive 

deformation caused by the rigid-body motion only, while the blue lines represent the 

practical compressive deformation involving the bending deformation. It can be seen 

clearly that the compressive deformation of the smaller tenon declines greatly after 
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considering the bending deformation. For example, after involving the bending 

deformation the maximum compressive deformation under clockwise rotation has 

dropped from 8.6 mm to 5.8 mm as shown in Figure 8(a). 

Figure 8. Effect of bending on the compressive deformation of the smaller tenon 

According to the principle of deformation compatibility, the theoretical prediction 

for the compressive deformation of the smaller tenon involving the bending deformation 

has been obtained by Equation (10). This formula implies the theoretical ratio of 

compressive deformation without and with considering the bending deformation 

(1+λEc,Rl4/(kiEh4)) is closely related to the span-depth ratio of the tenon. In accordance 

with the theoretical model derived, the proportion of bending deformation of related PMJs 

in relevant literature has been calculated and the results are included in Table S2.  

For most specimens collected here, the bending deformation of the smaller tenon 

accounts for more than 20% of the compressive deformation caused by the rigid-body 

motion while that of the larger tenon is generally lower than 5%. Hence, it can be 

concluded that the bending deformation of the larger tenon is quite small but that of the 

smaller tenon is relatively large for most cases. It is necessary to consider the bending 

deformation of the smaller tenon when analyzing the rotational behavior of PMJs. 

3.3 Resistance contributions of compression regions 

Resisting moments produced by individual compression regions of PMJs can be 
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calculated and then their contributions to the resistance of the joint are obtained. It is 

found that the smaller tenon plays a remarkable role in resisting external loads. 

Specifically, the top and bottom surfaces of the smaller tenon, i.e. region-t1 and region-

b1, produce the main resisting moments while the contributions from the top and front 

surfaces of the larger tenon, i.e. region-t2 and region-h, are negligible under clockwise 

and anti-clockwise rotation respectively. 

Since the smaller tenon accounts for the largest moment proportion, the 

elastoplastic state of its compression regions is considered to affect the development of 

the whole resisting moment directly. The ratio of the compressive deformation when 

wood yields to the practical compressive deformation, i.e. δy,i/δi, can be taken as an 

indicator to reflect the development of the plastic zone in the smaller tenon. Figure 9 

shows the relationship between the indicator and the moment of the PMJ. It is observed 

that the inflection points of these two curves appear almost at the same rotation angle. 

When the value of  δy,i/δi declines to 0.05, the curves of M-θ approximately reach 

equivalent yield points, i.e. points A and B shown in Figure 9. Furthermore, the resistance 

of the joint reaches the peak moment with the value of  δy,i/δi approaching zero, which 

indicates that the corresponding compression region of the smaller tenon has completely 

yielded. 

Figure 9. Relationship between the indicator δy,i/δi and the theoretical moment 
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4. Simplification of the theoretical model 

The theoretical model proposed can be used to predict the moment-rotation curves of 

PMJs through a numerical procedure. However, in many cases, the stiffness and peak 

moment of the joints are of primary interest in design applications. Based on the above 

analysis, the contributions from region-t2 and region-h can be negligible under clockwise 

and anti-clockwise rotation, respectively. Therefore, the total resistance can be simplified 

as: 
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4.1 Simplified calculation formulas 

4.1.1 Equivalent elastic stiffness 

It is assumed that the moment-rotation curve reaches the equivalent yield point when the 

indicator δy,i/δi approaches 0.05. By organizing Equations (2) and (10), the rotation angle 

at the equivalent yield point can be expressed as 
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In the simplified calculation, it should be noted that the horizontal and vertical 

displacements of the tenon are treated as linear functions of the rotation angle according 

to the analysis in the above section. Besides, trigonometric functions of rotation angle can 

also be simplified as finite polynomial functions by Taylor series expansion since the 

rotation angle of the PMJ is generally small. 
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By substituting Equation (21) into Equation (20) and organizing Equations (13)-

(18), the resisting moment at the equivalent yield point can be obtained as: 
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where li and Xi represent the compression length and the lever arm of region-i, respectively. 

Based on Equations (6)(8)(15)(16), the compression length and the lever arms involved 

in Equation (22) can be simplified as: 
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Based on the rotation angle and resisting moment at the equivalent yield point, 

the equivalent elastic stiffness can be expressed as 
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4.1.2 Peak moment 

According to the analysis in Section 3.3, the compression regions of the smaller tenon 



24 

 

have completely yielded when the moment-rotation curves reach peak points. In other 

words, the compression deformation of the root segment of the smaller tenon equals the 

deformation required for wood yielding. By organizing Equations (2)(5)(7), the peak 

rotation angle can be obtained as follows. 
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By substituting Equation (25) into Equation (20) and organizing Equations (13)-

(18), the moment at the peak point can be expressed as: 

 

( ) ( )
( ) ( ) ( )

p

p p

2

c,R 1 1 n b2

2

p c,R 1 1 1 n t2

0.5 1         

0.5 1

p
pM M f bl D l X X

M M f bl D l h X X

θ θ θ θ

θ θ θ θ

θ µ µ

θ µ µ

+ +

− −

+ + + +
= =

− − − −
= =

  = = − + − −
 


  = = − + + − −
 

(26) 

4.2 Verification of simplified calculation formulas 

To validate the simplified calculation method, more experimental data about the flexural 

behavior of PMJs were collected from relevant studies in the existing literature. Table 2 

summarizes the geometric and material parameters of the specimens collected. It is 

noteworthy that some input parameters that are required for the simplified calculation are 

not available from the original experimental studies, and these are estimated based on 

reasonable deductions. Specifically, the missing data in part of the material properties and 

the initial gaps are estimated in accordance with the information by Long and Yang (2005) 

and Yang et al. (2020). 

Comparisons between the equivalent elastic stiffness and peak moment predicted 

from the simplified calculation and those determined from the experiments, are shown in 
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Figure 10. It can be observed that the predictions of the simplified calculations correspond 

well with the experimental results, demonstrating the validity of the theoretical model 

proposed and the adequacy of the simplified formulas. 

Figure 10. Comparisons between the predicted stiffness, peak moment and test curves 

In order to further validate the proposed model, the equivalent stiffness and peak 

moment of all specimens summarized in Table 2 are calculated and then compared with 

the experimental results. Detailed data are included in Table S3 of the supplemental 

material. It should be noted that the experimental stiffness of some specimens is not 

available directly from the original experimental data and in such cases, Park’s method 

(Park and Paulay, 1975) is used to determine the experimental stiffness.  

Figure 11(a)(b) shows the comparison of the predicted equivalent stiffness (Ke,c) 

and the experimental results (Ke,e). The average ratio (Ke,c/Ke,e) is 1.06 with a coefficient 

of variation (COV) of 0.28. The comparison of the peak moment is shown in Figure 
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11(c)(d), where the average ratio (Μp,c/Μp,e) is found to be 1.09 and the COV is 0.25. 

From Figure 11, it can be seen that relatively large errors occur in a small portion of the 

test specimens. This may be explained by two main reasons. One is that some cyclic 

loading tests ended with failure under clockwise rotation (He, 2019), which resulted in 

lower ultimate moment values under anti-clockwise rotation. This is the main reason why 

a large number of data points in Figure 11(d) are larger than unity. Another is that there 

are inevitable variations in the experimental results because of the complexity of the 

geometric features and material properties of PMJs. For instance, considerable variations 

of the experimental stiffness of specimens can be found in Zhao et al. (2010), even though 

all joints in the test were made of the same batch of wood and designed to be the same 

size. Overall, it can be seen from Figure 11 that the simplified predictions are satisfactory. 

Figure 11. Comparison between predicted and experimental results of stiffness and peak 

moment for all collected specimens 
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5. Application of the theoretical model 

5.1 Test specimens 

To verify the applicability of the theoretical model proposed, it is necessary to investigate 

the lateral responses of timber frames connected by PMJs. The experimental results of 

three 1:3.52 scaled single-story and single-bay timber frames tested by Sui (2009) were 

chosen as a reference. These specimens were fabricated according to the traditional 

methods recorded in “Yingzao Fashi” which is the first official Chinese treatise on 

architecture and craftsmanship (Pan and He, 2005). Each frame consisted of a main beam 

and two round columns, whose configuration and dimensions are shown in Figure 12(a). 

The vertical load of 10 kN was applied on each column to simulate the actual 

upper load supported by frames. The column foot joints were set as the fixed hinge 

bearing in the test. The timber members were made of Pinus koraiensis and the material 

properties are as follows: MOE along and across the grain are 10110 MPa and 654 MPa, 

respectively; compressive strength along and across the grain are 34.76 MPa and 3.6 Mpa, 

respectively. 

Figure 12. Sketch of timber frames and schematic diagram for calculation 

5.2 Lateral stiffness of timber frame 

As an important performance index, lateral stiffness plays a dominant role in structural 
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deformability and dynamic characteristics. For timber frames without walls, it depends 

mainly on the rotational stiffness of the semi-rigid mortise-tenon joints and the column-

foot joint, and the flexural stiffness of the timber members (Suzuki and Maeno, 2006). 

Since the above specimens were set on the fixed hinge bearing, the stiffness contribution 

from the column-foot joint can be neglected approximately. 

Considering the symmetry of the structure and the force conditions, the whole 

frame can be simplified as the half structure for analysis, as shown in Figure 12(b). It 

should be noted that although PMJs show asymmetric features under clockwise and 

anticlockwise rotation, the lateral stiffness of the frame remains consistent because the 

PMJs are usually used in pairs. Due to this, the rotational stiffness of beam-column joints 

kr can take the average value of the equivalent elastic stiffness of PMJs under clockwise 

and anticlockwise rotation. The relationship between kr and the line rigidity of the beam 

and column (ib, ic) is substituted by κ= ib/ic and η= ib/kr. The rotation angle and the 

horizontal displacement of the frame are represented by θ and ∆, respectively. The 

stiffness equation for the timber frame can be expressed as 
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The lateral stiffness of the timber frame can finally be obtained as 
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5.3 Verification of the lateral stiffness 

To verify the lateral stiffness given by Equation (29), the rotational stiffness of PMJs 

needs to be calculated first. According to Equations (21)(22)(25)(26), the equivalent yield 

point and peak point of the simplified mechanical model for PMJs can be obtained. 

Meanwhile, the equivalent elastic stiffness can also be determined from Equation (24). 

The simplified theoretical model was compared with the M-θ skeleton curves of PMJs 

obtained from the test by Sui (2009), as shown in Figure 13 (a). 

Figure 13. Simplified model of PMJs and experimental lateral stiffness of timber frames 

It can be found that the simplified model matches well with the average 

experimental curve, demonstrating again the validity of the theoretical model. After 

obtaining the rotational stiffness of the PMJ, the lateral stiffness of the timber frame can 

be calculated according to Equation (29), with a theoretical estimation of 50.9 N/mm. 

To obtain the experimental value of the lateral stiffness, the average curve was 

obtained based on the F-∆  skeleton curves of three timber frames tested. Then, the 

average curve was processed by the method of polynomial fitting. The first-order 
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coefficient of the fitting curve is just equal to the experimental value of the lateral stiffness, 

i.e. 53.1 N/mm, as illustrated in Figure 13 (b). Comparing the theoretical estimation with 

the experimental stiffness, the relative error is only (50.9-53.1)/53.1=-4.2%, which is 

pretty acceptable. This indicates that the proposed theoretical model and the 

corresponding simplified calculation formulas are of a certain accuracy and can be 

applied to the calculation of the lateral stiffness of timber frames. 

6. Conclusion  

An improved theoretical model for predicting the rotational behavior of penetrated 

mortise-tenon joints was proposed in this paper. In contrast to the previous models, the 

model presented herein is unique and more comprehensive in that it introduces three 

displacement variables to describe the rigid-body motion of the tenon without presuming 

the rotation center in advance, and considers the bending deformation for more accurate 

calculation of the compressive deformation of the tenon. Based upon the theoretical 

model, simplified calculation methods for equivalent elastic stiffness and peak moment 

of PMJs were proposed and then applied for the calculation of the lateral stiffness of 

timber frames. A wide range of available experimental data on PMJs and timber frames 

connected by PMJs were collected from the existing literature. Good agreement was 

found from the comparison of the predicted and experimental results, demonstrating the 

validity of the estimation method derived and its applicability to the structural analysis. 

In addition to the estimation for the rotational behavior, new insight into the 

internal mechanism of PMJs regarding the rotation center and bending deformation has 

been gained from the quantitive analysis by the theoretical model. Specifically, the 

rotation center of the tenon is not stationary, moving around the bottom and top surface 

of the larger tenon under clockwise and anti-clockwise rotation respectively. This finding 

confirms the previous hypothesis that the rotation center of the tenon is not necessarily at 
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the centroid and may move according to the balance of the load and reactions (Tanahashi 

and Suzuki, 2012). The work also reveals the significance of the bending effect in 

evaluating the deformation of PMJs. For the traditional configuration of PMJs, the 

bending deformation causes a reduction of at least 20% in the compressive deformation 

of the smaller tenon due to its relatively large span-depth ratio, and hence lowers the 

moment resistance of PMJs. Therefore, it is necessary to consider the effect of the bending 

deformation of the smaller tenon when dealing with the rotational behavior of PMJs. 
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Tables with captions 

Table 1. Dimensions (unit: mm) and material properties of the experimental joints  

Reference Specimen D B h1 h2 l1 l2 b h01 h02 

Chun et al. (2016) Joint 2 170 100 75 150 85 85 40 1 1 

Xu et al. (2018) CJ 260 210 130 260 130 130 70 - - 

Table 1. Continued 

Reference Specimen species 
Density 

(kg/m3) 

Ec,R 

(MPa) 

Ec,L 

(MPa) 

E 

(MPa) 

fc,R 

(MPa) 

fc,L 

(MPa) 
v1 v2 

Chun et al. (2016) Joint 2 Fir 450 1000 10000 10238 3.0 23.7 0.35 0.1 

Xu et al. (2018) CJ Pine 596 795 12520 7640 3.3 27.5 0.42 0.02 

Table 2. Dimensions and material properties of the experimental joints 

Ref. Specimens D/mm B/mm 
h/mm l/mm b 

/mm 

h0/mm fc,R 

/MPa 

Ec,R 

/MPa h1 h2 l1 l2 h01 h02 

1 
T1/T2 170 115 75 150 85 85 40 1.5 3 3.3 1018 

T3/T4 170 115 75 150 85 85 40 2.5 2.5 3.3 1018 

2 CJ 260 210 130 260 130 130 70 - - 596 795 

3 Pinned 1/2 120 70 55 110 60 60 35 0 0 5.5 - 

4 
Left/Right 

No.1/2/3 
210 120 100 180 110 100 60 - - 2.9 900 

5 
TS0.38 200 140 100 175 100 100 50 - - 3.7 890 

TS0.20 200 140 100 175 100 100 50 - - 3.7 890 

6 
Joint 1/ 2 170 100 75 150 85 85 40 1 1 3.0 1000 

Joint 3 170 100 75 150 85 85 50 1 1 3.0 1000 

7 

TJ1 240 128 80 160 120 120 60 0 0 3.16 268 

TJ2 240 128 76 156 120 120 60 4 4 3.16 268 

TJ3 240 128 72 152 120 120 60 8 8 3.16 268 

TJ4 240 128 68 148 120 120 60 12 12 3.16 268 

TJ5 240 128 64 144 120 120 60 16 16 3.16 268 

TJ6 240 128 60 140 120 120 60 20 20 3.16 268 

8 

Fitted & fir 170 140 100 175 70 100 48 - - 3.7 830 

Loose &fir 170 140 100 175 70 100 47 - - 3.7 830 

Fitted & pine 170 140 100 175 70 100 48 - - 5 1158 

Loose & pine 170 140 100 175 70 100 47 - - 5 1158 

9 LJ-1 390 210 160 315 195 195 95 0 5 4.18 1024 

Note. Ref. 1-9 corresponds respectively to papers by Chen and Qiu (2016), Xu et al. (2018), 

Chen et al. (2017), Zhao et al. (2010), Gao et al. (2015), Chun et al. (2016), Xue et al. 

(2020), Su et al. (2020) and He (2019). 


