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ABSTRACT

Modern cryptography is more than sending secret messages, and quantum cryptography is more than quantum
key distribution. One example is oblivious transfer, which is interesting partly because it can be used to imple-
ment secure multiparty computation.1,2 We discuss a protocol for quantum XOR oblivious transfer, and how
non-interactive quantum oblivious transfer protocols can be “reversed”, so that oblivious transfer is still imple-
mented from a sender to a receiver, but so that it is the receiver who sends a quantum state to the sender, who
measures it, instead of the other way round. This is useful when one party can only prepare and send quantum
states, and the other party can only measure them, which is often the case in practical quantum communication
systems. Both the “original” XOR oblivious transfer protocol and its reversed version have been implemented
optically. We also discuss how quantum random access codes can be connected with quantum oblivious transfer.

Keywords: Quantum cryptography, quantum communication, quantum oblivious transfer

1. INTRODUCTION

Perhaps the most common variant of oblivious transfer is 1-out-of-2 oblivious transfer,3 where a sender has two
bits, and a receiver obtains one of these. The sender should have no information about which bit the receiver
received, and the receiver should have no information about the bit they did not receive. Another variant of
oblivious transfer is XOR oblivious transfer (XOT),4 which is similar, except that Bob obtains either the first bit,
the second bit, or their XOR. Unfortunately, perfect quantum oblivious transfer is impossible with information-
theoretic security, unless we restrict the quantum memory that adversaries have access to (the so-called “bounded
quantum storage model”5). Cheating probabilities can however be limited even when there are no restrictions on
adversaries, and quantum protocols for oblivious transfer can achieve an advantage over corresponding classical
protocols.

2. QUANTUM XOR OBLIVIOUS TRANSFER

We first describe a non-interactive quantum XOT protocol, where the cheating probabilities are AOT = 1/2 for
Alice and BOT = 3/4 for Bob.6 Let us note that even in an ideal protocol, a dishonest sender Alice can cheat
with probability 1/3 using a random guess, and a dishonest receiver Bob can cheat with probability 1/2, again
using a random guess. These are therefore the lowest possible cheating probabilities one can hope to achieve.
The cheating probabilities AOT = 1/2 and BOT = 3/4 are lower than what can be achieved in classical XOT
protocols. The protocol can also be said to be optimal among non-interactive protocols using pure symmetric
states, since it achieves the smallest possible cheating probability 3/4 for Bob, and the smallest possible cheating
probability 1/2 for Alice, given that Bob’s cheating probability is 3/4 (for details see Reference 6).
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In this protocol, Alice encodes two bit values x0, x1 in one of the four non-orthogonal states

|φx0x1
〉 =

1√
3

(|0〉+ (−1)x1 |1〉+ (−1)x0 |2〉). (1)

The states |φx0x1
〉 are selected so that it is possible to unambiguously exclude two of them, meaning that it

is possible to learn either x0, x1, or x0 ⊕ x1. Because the states are non-orthogonal, it is not possible to
unambiguously determine which single state was received, meaning that it is impossible for Bob to perfectly
learn both bits x0, x1. Alice chooses her bits (x0, x1) ∈ {0, 1} uniformly at random and sends the respective
state to Bob, who makes an unambiguous quantum state elimination measurement to exclude two of the four
possible states. There are six different pairs of states he can exclude. Each excluded pair corresponds to learning
either x0, x1, or x0 ⊕ x1, with either the value 0 or 1. To construct Bob’s measurement operators, we need six
states, each one orthogonal to a pair of states in Eq. (1). The measurement operators are then proportional
to projectors onto these six states, normalised so that their sum is equal to the identity matrix. For instance,
the measurement operator ΠA = (1/4)(|0〉+ |2〉)(〈0|+ 〈2|) will exclude the states |φ11〉 and |φ10〉, so that Bob’s
outcome bit will be x0 = 0; similarly for the other operators. Table 1 gives the excluded pairs, the corresponding
measurement operators, and the deduced output bits for Bob.

Table 1. Bob’s measurement operators and outcomes
Outcome bit Eliminated states Measurement operator

x0 = 0 |φ11〉 and |φ10〉 ΠA =
1

4
(|0〉+ |2〉)(〈0|+ 〈2|)

x0 = 1 |φ00〉 and |φ01〉 ΠB =
1

4
(|0〉 − |2〉)(〈0| − 〈2|)

x1 = 0 |φ11〉 and |φ01〉 ΠC =
1

4
(|0〉+ |1〉)(〈0|+ 〈1|)

x1 = 1 |φ00〉 and |φ10〉 ΠD =
1

4
(|0〉 − |1〉)(〈0| − 〈1|)

x2 = 0 |φ01〉 and |φ10〉 ΠE =
1

4
(|1〉+ |2〉)(〈1|+ 〈2|)

x2 = 1 |φ00〉 and |φ11〉 ΠF =
1

4
(|1〉 − |2〉)(〈1| − 〈2|)

Bob will receive either x0, x1 or x2 = x0 ⊕ x1 at random, but it is possible to let him choose which bit
he receives using classical post-proccessing, without affecting cheating probabilities. This non-interactive XOT
protocol has the same cheating probabilities as protocol (3) given by Kundu et al.7 That protocol, however, uses
entanglement and is interactive, that is, quantum states are sent back and forth between sender and receiver.
The above protocol achieves the same cheating probabilities but is easier to implement, since it is non-interactive
and does not require entanglement.

3. REVERSING QUANTUM OBLIVIOUS TRANSFER

Instead of preparing and sending one of the states |φx0x1
〉 as in the original protocol, Alice could prepare the

state

|Ψent〉AB =
1

2
(|a〉A |φ00〉B + |b〉A |φ01〉B + |c〉A |φ10〉B + |d〉A |φ11〉B) , (2)

where |a〉A , |b〉A , |c〉A , |d〉A is an orthonormal basis for a system she keeps on her side. She sends the B system
to Bob. If Alice measures the A system in the |a〉A , |b〉A , |c〉A , |d〉A basis, then this prepares one of the states
|φx0x1

〉B on Bob’s side. From both Bob’s and Alice’s viewpoints, this is equivalent to the original protocol, and
their cheating probabilities remain the same. Using the definitions of |φx0,x1

〉, the entangled state in (2) can also



be written

|Ψent〉AB =
1√
3

(|0〉A |0〉B + |1〉A |1〉B + |2〉A |2〉B),

where

|0〉A =
1

2
(|a〉A + |b〉A + |c〉A + |d〉A), |1〉A =

1

2
(|a〉A + |b〉A − |c〉A − |d〉A)

|2〉A =
1

2
(|a〉A − |b〉A + |c〉A − |d〉A), |3〉A =

1

2
(|a〉A − |b〉A − |c〉A + |d〉A), (3)

are orthonormal states, and we have defined a fourth basis ket |3〉A. Both Alice’s and Bob’s state spaces for the
state |Ψent〉AB are three-dimensional; its Schmidt number is 3. Alice’s measurement in the |a〉A , |b〉A , |c〉A , |d〉A
basis can be understood as a realisation, with a Neumark extension using the auxiliary basis state |3〉A, of a
generalised quantum measurement with measurement operators given by

Π00 =
1

4
(|0〉+ |1〉+ |2〉)(〈0|+ 〈1|+ 〈2|), Π01 =

1

4
(|0〉 − |1〉+ |2〉)(〈0| − 〈1|+ 〈2|),

Π11 =
1

4
(|0〉 − |1〉 − |2〉)(〈0| − 〈1| − 〈2|), Π10 =

1

4
(|0〉+ |1〉 − |2〉)(〈0|+ 〈1| − 〈2|). (4)

If instead Bob prepares the state |Ψent〉AB , sends the A system to Alice, and measures his B system using
the measurement he makes in the original protocol, then this prepares one of six states |φxi=b〉 on Alice’s side.
This gives a “reversed” protocol. That is, starting from the entangled state |Ψent〉AB , either the original or
a reversed protocol can be implemented. In both cases, Alice makes the measurement she would make in the
reversed protocol, and Bob makes the measurement he would make in the original protocol. What determines
whether the procedure is equivalent to the original or reversed protocol is who prepares the state |Ψent〉AB . This
can matter, because Alice and Bob are not guaranteed to follow the protocol, and could prepare some other state
if they are dishonest.

In the reversed case, Bob is the sender of the quantum state, so he has the freedom of choosing whatever
state he wants to send, potentially increasing his cheating probability. Alice’s cheating probability might on the
other hand decrease, since she no longer can choose to send different states (only to alter her measurement, made
on the state Bob prepared). However, it can be shown that both Alice’s and Bob’s cheating probabilities in the
reversed protocol are equal to their cheating probabilities in the original unreversed version of the protocol. As
in the unreversed case, a dishonest Alice wants to know which of the three bits Bob has obtained. Therefore,
she needs to distinguish between the three mixtures of the states corresponding to the same b. Her optimal
cheating strategy, applying a minimum-error measurement on the resulting mixed states, yields her cheating
probability Ar

OT = 1/2. Also dishonest Bob’s aim in the reversed case stays the same. He wants to know all
three bits, instead of just one of x0, x1, and x2 = x0 ⊕ x1. It is enough if he learns any two of these bits.
His best cheating strategy is to send one of the eigenstates corresponding to the highest eigenvalue of Alice’s
measurement operators. That is, he will send (|0〉+|1〉+|2〉)/

√
3 for x0x1 = 00, (|0〉−|1〉+|2〉)/

√
3 for x0x1 = 01,

(− |0〉 + |1〉 + |2〉)/
√

3 for x0x1 = 11, or (− |0〉 − |1〉 + |2〉)/
√

3 for x0x1 = 10, all of which have 3/4 as their
corresponding eigenvalue. Thus, with a cheating probability of Br

OT = 3/4, Bob will then be able to learn both
x0 and x1.

In order to illustrate the generality of this procedure, let us “reverse” the protocol for 1-out-of-2 quantum
oblivious transfer in Reference 8. Here, Alice sends one of the two-qubit states |0〉 |0〉 , |+〉 |+〉 , |1〉 |1〉 , |−〉 |−〉
to Bob, encoding her bit values 00, 01, 11 and 10, respectively, with |±〉 = (|0〉 ± |1〉)/

√
2. Since each of Alice’s

four states are symmetric under exchange of the two qubits, the state space is actually three-dimensional. Bob
measures one qubit in the |0〉 , |1〉 basis and the other one in the |+〉 , |−〉 basis, which allows him to rule out two
of the four possible states, so that he can infer the value of either Alice’s first bit or her second bit (never their
XOR). We will here use an equivalent set of four states with the same pairwise overlaps,

|φ′x0x1
〉 =

1√
2
|0〉+ (−1)x0

1

2
|1〉+ (−1)x1

1

2
|2〉 , (5)



making it immediately clear that the state space is three-dimensional. Alice could now instead prepare the state

|Φ′
ent〉 =

1

2
(|a〉A |φ

′
00〉B + |b〉A |φ

′
01〉B + |c〉A |φ

′
01〉B + |d〉A |φ

′
11〉B) (6)

=
1√
2
|0〉A |0〉B +

1

2
|1〉A |1〉B +

1

2
|2〉A |2〉B ,

with the same definition of the states |0〉A , |1〉A , |2〉A as in equation (3), and send the B system to Bob. If Alice
measures the A system in the |a〉A , |b〉A , |c〉A , |d〉A basis – or makes the equivalent four-outcome generalised
measurement in the three-dimensional space spanned by the states |0〉A , |1〉A , |2〉A – then this prepares one
of the states |φ′x0x1

〉 on Bob’s side. This is then equivalent to Alice’s actions in the protocol in Reference 8.
Preparing the above entangled state is also how a dishonest Alice would cheat in the protocol in Reference 8.
She can then always revert to effectively sending Bob one of the states she should have sent him, if Bob decides
to test the state she has sent, which he does with a small but nonzero probability. If Alice does go ahead with
cheating, she measures the A system in a way that optimally lets her deduce which bit value (x0 or x1) Bob
has obtained, in which case she can learn this with probability 3/4. If Bob does not test any of the states Alice
sends, one can show that she in fact can cheat with probability 1 (and that it does not help if Bob randomly
chooses which qubit he measures in what basis). If Bob is dishonest, he can determine which one of the four
states |φx0x1

〉 Alice has sent him with probability ≈ 0.729.

If instead Bob would prepare the entangled state and send the A system to Alice, we obtain a reversed version
of the protocol in Reference 8. One can show that the measurement an honest Bob makes prepares one of the
four states

|φx0=0〉 =
1√
2

(|a〉A + |b〉A), |φx1=0〉 =
1√
2

(|a〉A + |c〉A),

|φx1=1〉 =
1√
2

(|b〉A + |d〉A), |φx1=0〉 =
−1√

2
(|c〉A + |d〉A) (7)

on Alice’s side. If Bob is dishonest, he can send Alice some other state(s) in the three-dimensional state space
spanned by these states; the state (|a〉A−|b〉A−|c〉A + |d〉A)/2 is orthonormal to all of the above four states. It is
necessary to re-analyze what the cheating probabilities are in the reversed protocol, since they may change when
a protocol is reversed. Bob’s cheating probability could increase, since more cheating strategies are available
to him, while Alice’s cheating probability could decrease. In this case, it can be shown that Bob’s cheating
probability increases to 3/4 if Alice does not test the states he prepares, and remains equal to ≈ 0.729 if she does
test a small fraction of his states. Alice’s cheating probability is equal to 3/4 (and is not affected by whether
or not she tests Bob’s states – in the reversed protocol, Alice’s tests only serve to decrease Bob’s cheating
probability).

4. QUANTUM OBLIVIOUS TRANSFER AND RANDOM ACCESS CODES

Cheating probabilities which are higher than what can be achieved using a random guess (but still limited) is
one in which way an oblivious transfer protocol can be imperfect. Another type of “imperfection” is to allow for
errors in the bit values received, even when both sender and receiver are acting according to the protocol. This is
sometimes called an “incomplete” protocol, and can allow for lower cheating probabilities than in corresponding
“complete” protocols.

For example, let us consider incomplete 1-out-of-2 oblivious transfer where the sender can only cheat with
probability ps = 1/2, and the receiver can cheat with a probability as low as possible, for a fixed probability pf
that the receiver will obtain an incorrect bit value even if both sender and receiver are following the protocol.9

(If pf = 0, corresponding to a complete protocol, then the receiver can necessarily cheat with probability 1
whenever the sender’s cheating probability is equal to 1/2.) One optimal class of protocol is where Alice encodes
her two bits using one of the four qubit states

|ψ00〉 = a |0〉+ b |1〉 , |ψ01〉 = a |0〉+ ib |1〉 , |ψ11〉 = a |0〉 − b |1〉 , |ψ10〉 = a |0〉 − ib |1〉 , (8)



where 0 ≤ |a|, |b| ≤ 1, with |a|2 + |b|2 = 1. This set of states is symmetric with the symmetry operation
U = |0〉 〈0| + i |1〉 〈1|, meaning that |ψ01〉 = U |ψ00〉 , |ψ11〉 = U |ψ01〉 , |ψ10〉 = U |ψ11〉, where U4 = 1̂. For
a = b = 1

√
2 we obtain the eigenstates of σx and σy, that is, four states isomorphic to the “Wiesner” or

BB84 states, which are eigenstates of σx and σz. By varying a and b, we will generally obtain lower cheating
probability pr for the receiver, and higher failure probability pf , than for the “Wiesner” states. The sender’s
cheating probability is always equal to 1/2, since the receiver is choosing one of two different measurements for
obtaining x0 or x1. For |a| = 1, b = 0 or a = 0, |b| = 1, all four states are equal to the same state, giving pf = 1/2
and pr = 1/4. It can be shown that more generally9

pf =
1

2
(1−

√
2|ab|),

pr =
1

4
(|a|+ |b|)2 =

1

4
(1 + 2|ab|), (9)

and it therefore also holds that

pr =
1√
2

(1− pf ) +
1

4
(1−

√
2), (10)

that is, Bob’s cheating probability pr is a straight line as a function of the protocol success probability 1 − pf .
It can also be shown that this is the lowest possible pr for a given pf with pf in the range pWf ≤ pf ≤ 1/2.
Moreover, it can be shown that in the range pf . 0.31, this class of protocols outperform corresponding classical
protocols.

This can be seen as a generalisation of complete oblivious transfer, but also as a generalization of random
access codes (RACs).10,11 For a RAC, in the simplest case (which will correspond most closely to 1-out-of-
2 oblivious transfer), one restricts the sender to use one bit to encode two bit values. The sender does not
know which bit the receiver wants, but aims for the receiver to correctly retrieve the bit of their choice with
a probability that is as high as possible. For a corresponding quantum random access code (QRAC),10,11 the
sender is restricted to using one qubit for encoding two classical bit values.

Unlike in oblivious transfer, in a RAC or QRAC one is not concerned with the probability that the sender
guesses which bit value the receiver wants to access. But since the receiver is choosing between two measurements,
depending on which bit value they choose, the sender is not able to tell better than with a random guess. In
oblivious transfer protocols where Bob is choosing between two measurements, depending on whether he is trying
to retrieve x0 or x1, the sender Alice can correctly guess which bit the receiver Bob wants only with probability
1/2, which is analogous to a RAC or QRAC.

Another difference between RACS and QRACs on one hand, and oblivious transfer on the other hand, is that
for oblivious transfer, there is no restriction on the dimensionality of the state space that can be used. Instead
of fixing the dimensionality of the state space, one wants to restrict the probability for the receiver to retrieve
all of the sent information. In this sense, incomplete oblivious transfer is a generalisation of a QRAC (as well
as being a generalization of complete or “perfect” oblivious transfer). That is, for incomplete oblivious transfer,
one is concerned with (i) maximising the probability that the receiver correctly obtains their chosen bit value, as
in a RAC, but also (ii) minimising the probability that they correctly obtain both bit values, which generalises
the restriction of sending a single bit or qubit. A remaining point is that in complete protocols for oblivious
transfer, the receiver should always correctly retrieve their chosen bit value, whereas in a RAC or QRAC, and
in an incomplete protocol for oblivious transfer, the probability for the bit value to be correct is generally lower
than 1. That is, incomplete protocols for oblivious transfer can be said to interpolate between or “connect”
random access codes and oblivious transfer, generalizing both functionalities.

5. CONCLUSIONS

The protocols for quantum oblivious transfer we have considered are all non-interactive, which means that
there is a single state transmission of a quantum state from one party to another, followed by a quantum
measurement, and do not require entanglement. They are easier to realise than protocols which are interactive
and use entanglement. Non-interactive protocols can be “reversed” by reimagining them in terms of a shared
entangled state. This allows us to implement oblivious transfer from a sender to a receiver, or vice versa,



even if only one of the parties can prepare and send quantum states, and the other party can only receive
and measure quantum states. Both the original and reversed versions of the XOR oblivious transfer protocol,
including optimal cheating strategies, have been realised optically, with results that well agree with theoretical
performance parameters, demonstrating their feasibility.6 We also discussed oblivious transfer protocols where
the received bit values can sometimes be incorrect. This allows us to lower cheating probabilities, as compared
with protocols where the bit values always have to be correct. It can also be seen as a generalisation of quantum
random access codes, connecting these two functionalities.
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