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A B S T R A C T

Pathological brain lesions exhibit diverse appearance in brain images, in terms of in-
tensity, texture, shape, size, and location. Comprehensive sets of data and annotations
are difficult to acquire. Therefore, unsupervised anomaly detection approaches have
been proposed using only normal data for training, with the aim of detecting outlier
anomalous voxels at test time. Denoising methods, for instance classical denoising
autoencoders (DAEs) and more recently emerging diffusion models, are a promising
approach, however naive application of pixelwise noise leads to poor anomaly detec-
tion performance. We show that optimization of the spatial resolution and magnitude
of the noise improves the performance of different model training regimes, with simi-
lar noise parameter adjustments giving good performance for both DAEs and diffusion
models. Visual inspection of the reconstructions suggests that the training noise influ-
ences the trade-off between the extent of the detail that is reconstructed and the extent
of erasure of anomalies, both of which contribute to better anomaly detection perfor-
mance. We validate our findings on two real-world datasets (tumor detection in brain
MRI and hemorrhage/ischemia/tumor detection in brain CT), showing good detection
on diverse anomaly appearances. Overall, we find that a DAE trained with coarse noise
is a fast and simple method that gives state-of-the-art accuracy. Diffusion models ap-
plied to anomaly detection are as yet in their infancy and provide a promising avenue
for further research.

Code for our DAE model and coarse noise is provided at: https://github.com/A
ntanasKascenas/DenoisingAE.

1. Introduction

Anomaly detection is a fundamental task in medical image
analysis, mimicking the initial review that a radiologist per-
forms of imaging studies to identify abnormal regions which
should be reviewed and characterized further. Supervised ma-
chine learning methods have shown promising results, however
comprehensive supervised pathology detection methods require
extensive and heterogeneous training sets which are costly to
annotate and difficult to acquire. Conversely, unsupervised
anomaly detection (UAD) methods require only identification

e-mail: antanas.kascenas@mre.medical.canon (Antanas Kascenas)

of a healthy cohort of patients for training (therefore these meth-
ods are sometimes regarded as semi-supervised), after which
they may be applied to detect out-of-distribution anomalous re-
gions in test data.

Autoencoder deep learning methods have been commonly
used for UAD in brain scans (Baur et al., 2021), relying on the
assumption that normal data as seen during training will be re-
constructed better than unseen anomalous – potentially patho-
logical – regions. A classical approach is denoising autoen-
coders (DAEs) (Vincent et al., 2008) in which corrupting noise
is added to the input and the network must learn to remove the
noise in order to reconstruct the original image. This training
task of removing noise can be regarded as a proxy for the test
time task of removing anomalies in order to reconstruct an im-
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age of normal appearance. It was shown in Kascenas et al.
(2021) that for detection of brain tumors in MRI data, train-
ing with naive pixelwise noise gave poor anomaly detection
performance, while training with coarse noise (see Algorithm
1) gave good performance. Following simple optimization of
noise resolution and magnitude, a classical DAE outperformed
more complex previous state-of-the-art models.

Our contributions are as follows:

1. We take the simple and effective DAE that was proposed
by Kascenas et al. (2021) for brain anomaly detection in
medical 2D MRI images, and investigate its application to
3D CT images with a range of anomalies, showing that
optimal noise resolution and magnitude parameters are
largely transferable between modalities and anomalies.

2. We analyze noise type in the alternative denoising model
paradigm of diffusion models, showing that similar adjust-
ment of the type of noise gives accuracy gains also for this
alternative denoising approach.

3. We additionally analyze an alternative noise type (Simplex
noise) which has been recently advocated by Wyatt et al.
(2022), showing our proposed coarse noise to be superior
in most anomaly detection setups.

4. Finally, since we consider training an anomaly detection
algorithm in a practical setting where a large uncurated
dataset of scans is available, we demonstrate that NLP
analysis of radiology reports can be effectively used to se-
lect the training cohort of normal scans.

2. Related Work

Anomaly detection is an open-ended task for which a variety
of approaches have been proposed.

2.1. Autoencoder approaches to anomaly detection

Many modifications to the standard autoencoder pipeline
have been proposed to improve performance on the task of
anomaly detection, which has the potentially conflicting twin
goals of reconstructing normal regions of the original brain scan
with high fidelity, while reconstructing any anomalous regions
with poor fidelity (in order to distinguish them).

Variational autoencoders (VAEs) (Zimmerer et al., 2019)
constrain the latent bottleneck representation to follow a pa-
rameterized multivariate Gaussian distribution. Zimmerer et al.
(2021) further add a context-encoding task and combine recon-
struction error with density-based scoring to obtain the anomaly
scores, while Chen et al. (2020) use an iterative gradient descent
restoration process at test time in restoration-VAE, replacing the
reconstruction error with a restoration error to estimate anomaly
scores.

Architectural changes have also been proposed. Atlason
et al. (2019); Baur et al. (2018) introduce convolutional autoen-
coders and higher capacity spatial bottlenecks instead of fully-
connected (dense) bottlenecks to achieve better reconstruction.
Chen and Konukoglu (2018) use constrained autoencoders to
improve latent representation consistency in anomalous images
at test time. Bayesian skip-autoencoders Baur et al. (2020a)

use skip connections with dropout to improve reconstruction
and allow uncertainty to be measured via dropout stochasticity.
Baur et al. (2020b) use scale-space autoencoders to compress
and reconstruct different frequency bands of brain MRI using
the Laplacian pyramid to achieve higher reconstruction fidelity.

The UAD autoencoder framework of encoder-decoder com-
ponents and reconstruction error for anomaly scores has fea-
tured in more complex approaches. Schlegl et al. (2019) train a
generative adversarial network called f-AnoGAN which reuses
the generator and discriminator to train an autoencoder with
both reconstruction and adversarial losses for the anomaly de-
tection task. Pinaya et al. (2022a) combine a vector quantized
VAE (VQ-VAE) to encode an image with a transformer model
to resample low-likelihood latent variables in order to produce
reconstructions with fewer reproduced anomalies.

Baur et al. (2021) have performed an evaluation of some
common autoencoder methods for anomaly detection in brain
MRI, finding restoration-VAE Chen et al. (2020) and f-
AnoGAN Schlegl et al. (2019) to be among the best. How-
ever, more recently Meissen et al. (2021a) showed that most
autoencoder-based MRI UAD methods can be outperformed by
a simple thresholding baseline, applied to the FLAIR sequence
after histogram equalization preprocessing. This training-free
approach detected hyperintense brain tumor and multiple scle-
rosis lesions better than most UAD approaches that require
healthy data to train.

Our work relies on the same principle of using reconstruction
error for anomaly detection as most autoencoding methods but
we use noise instead of architectural constraints to make the
autoencoding training task non-trivial.

2.2. Denoising methods
The above evaluations of medical anomaly detection meth-

ods largely omitted consideration of classical denoising autoen-
coders (DAEs) (Vincent et al., 2008) and other methods exploit-
ing noise, however a few approaches have shown promise. Alex
et al. (2017) applied DAEs as pretraining for brain lesion detec-
tion with limited labels and for simple novelty detection using
patch-based masking. Collin and De Vleeschouwer (2021) use
a DAE for anomaly detection in industrial vision with a stain
noise model with randomized shape, color, size and location.
Bengs et al. (2021) use 3D VAEs with spatial patches replaced
with voxelwise noise to train an inpainting model for anomaly
detection. Generative diffusion models (Ho et al., 2020), in
which noise is added and removed over many iterations, have
been used in the context of anomaly detection (Pinaya et al.,
2022b; Wyatt et al., 2022) by assuming that models trained on
only healthy data will fail during reconstruction of anomalous
features.

Recently, Kascenas et al. (2021) showed that when noise
coarseness and intensity are adjusted, a DAE can achieve com-
petitive results for the detection of tumors in brain MRI images.
Further, (Daras et al., 2022; Wyatt et al., 2022) have shown
recently that diffusion models can be trained with degradation
functions other than Gaussian noise. In fact, Wyatt et al. (2022)
showed that using Simplex noise in diffusion models can signif-
icantly improve anomaly detection performance over traditional
Gaussian noise.
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Fig. 1. Workflow for denoising anomaly detection methods. During training (top), noise is added to the normal image, and the network is trained to
reconstruct the original image. At test time (bottom), different methods are applied to reconstruct and post-process the potentially anomalous input image
to produce the anomaly score. For the simple denoising autoencoder (DAE) approach, the denoising model is applied once to the input and the anomaly
score is simply the reconstruction residuals followed by median filtering. However, the diffusion models apply more complex iterative noise addition
followed by iterative denoising to obtain the reconstruction.

In this paper, we examine this theme of the role of noise in
anomaly detection, investigating and comparing types of noise
and denoising methods in a common setting.

3. Method

In summary, we employ one of three types of noise (Gaus-
sian, Simplex or coarse) to train neural network models to de-
noise healthy images. At test time, anomalies are detected via
reconstruction error (see Figure 1). Below we describe this pro-
cess in more detail.

3.1. Denoising Models for Anomaly Detection

Denoising neural networks εθ receive corrupted data x̃ as
input and are trained to recover original (uncorrupted) data
x̂ = εθ (x̃). We consider the corruption process to have a con-
ditional distribution C (x̃ | x, n), degrading x into x̃ with the in-
jection of some noise n. Training a denoising neural network εθ
with parameters θ can then be written as:

θ∗ = arg min
θ

Ex∼pdata, x̃∼C(x)

[
‖εθ (x̃) − x‖2

]
. (1)

The resulting network learns to reconstruct samples x that be-
long to pdata. However, we consider a distribution panomaly
which is similar to pdata but contains features (anomalies) that
are not present in pdata. As shown by Kascenas et al. (2021), an

anomalous sample x′ ∼ panomaly will not be reconstructed ap-
propriately by the denoising network εθ. The training and test
pipelines are visualized in Figure 1.

The anomalies are detected by taking the absolute difference
between the input data and the resulting reconstruction |x′ − x̂′|.

3.2. Denoising Autoencoder (DAE) approach

We implement a simple denoising deep autoencoder neural
network, and use reconstruction error to detect and localize
anomalies at test time. The network has a U-Net (Ronneberger
et al., 2015) style architecture with skip connections which en-
ables significantly better image reconstructions compared to
bottleneck architectures such as the VAE (see Appendix A). We
note that any neural network architecture yielding dense predic-
tions (e.g. segmentations) could be trained as a DAE. Details of
the network architecture and training procedure can be found in
Section 6 and Appendix B. During training, we corrupt images
according to:

C (x̃ | x) =⇒ x̃ = x + σn, (2)

where σ is the standard deviation which controls the inten-
sity magnitude and n is noise. Classically, n is sampled from
a Gaussian distribution N(0, I), but in Section 3.4 we explore
more efficient techniques in the context of anomaly detection.

At inference time, the DAE is used to localize anomalies by
calculating pixelwise/voxelwise anomaly scores A(x). If we de-
note the input image as x, the number of image channels as M
(e.g. for multiple imaging sequences or imaging modalities),
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t = 0.1T t = 0.3T t = 0.6T

Fig. 2. Diffusion model input at different timesteps t. Noise component is
larger at further timesteps.

a background mask of pixels with x intensities across channels
equal to 0 as B, the median filtering operation as f , and the
reconstruction as x̂, then the anomaly score can be defined as:

A(x) = f

(1 − B) �
M∑
m

|xm − x̂m|

M

 (3)

No noise is used at test time.

3.3. Diffusion model approach
We next explore the diffusion model methods developed in

Pinaya et al. (2022b) and Wyatt et al. (2022). Both methods fol-
low a training strategy that was initially proposed by Ho et al.
(2020). In contrast to the denoising model used in the DAE, dif-
fusion denoising models are trained to predict the noise rather
than to reconstruct the original image itself. In particular, con-
sider a model trained to find optimal parameters as

θ∗ = arg min
θ

Ex∼pdata, t∼U(0,T ), x̃∼C(x,t)
[
λ(t) ‖εθ (x̃, t) − n‖2

]
, (4)

where the timestep t is sampled from a uniform distribution be-
tween 0 and T (T is a hyperparameter which we set to 1000)
and λ(t) is a loss weighting term. Here the corruption process
C (x̃ | x, t) depends also on t which controls the strength of the
corruption through αt as described in Song et al. (2021) , ac-
cording to:

C (x̃ | x, t) =⇒ x̃ =
√
αtx +

√
1 − αtn, (5)

where the coefficient αt runs from α0 = 1 (original image)
through to αT = 0 (noise). Figure 2 shows examples of a
corrupted image for different values of t. Training with multi-
ple t values corresponds to training with multiple noise magni-
tudes. Training with C (x̃ | x, t) has been extensively studied in
the diffusion probabilistic modeling (DPM) literature (Ho et al.,
2020). For example, when using Gaussian noise, adding noise
with high standard deviation causes the network to focus on
coarse features while low standard deviation noise causes focus
on texture and other high frequency detail. Most importantly,
training to denoise at multiple magnitudes enables image gen-
eration; we refer the reader to Ho et al. (2020) for details on the
image generation procedure. The ability of DPMs to denoise at
different noise magnitudes as well as its generative power has
inspired methods for anomaly detection using diffusion models
(Pinaya et al., 2022b; Wyatt et al., 2022; Sanchez et al., 2022).

Once the diffusion denoising model has been trained, we in-
vestigate two inference techniques to detect anomalies:

Algorithm 1
Generation of noise with spatial resolution α, and output shape
a × b × c

1: procedure Noise(α, a, b, c)
2: n ∼ N(0, I) ∈ Rα,α,α

3: n← upsample(n, (a, b, c)) . Bilinearly upsample
4: x ∼ U(0, a) . Uniformly sample in range (0, a)
5: y ∼ U(0, b)
6: z ∼ U0, c)
7: n← translate(n, (x, y, z)) . Randomly translate
8: return n . The generated noise is n
9: end procedure

1. Reconstruction (Wyatt et al., 2022) - In the AnoDDPM
method, noise is injected at a selected magnitude; we use
t = 0.25T because this was found to be the best in Wyatt
et al. (2022). We then run the DDPM (Ho et al., 2020)
iterative generation from t = 0.25T → 0, using the noisy
image as the starting point (i.e. 250 steps where T=1000).
We follow Wyatt et al. (2022) in averaging the reconstruc-
tions across 5 runs of this generation procedure.

2. KL divergence + inpainting (Pinaya et al., 2022b) - In
this method, noise is injected with different magnitudes
(i.e. different t ∈ [0.4T, 0.6T ]) and the difference is com-
puted between the predicted output εθ (x̃, t) and the ex-
pected output n. A heatmap is obtained by averaging the
difference images produced by different values of t; since
DPMs have a probabilistic interpretation, Pinaya et al.
term this the Kullback–Leibler divergence. The KL diver-
gence heatmap is binarized at a threshold corresponding
to the 97.5 percentile value of the heatmap, to produce a
mask for the region of interest. The masked region only is
then reconstructed by the model using the DPM i.e. “in-
painted” (Lugmayr et al., 2022) by running iterative gen-
eration from t = 0.5T → 0. The final heatmap is the
difference between the original and inpainted images.

3.4. Coarse noise generation

It was shown in Kascenas et al. (2021) that training with
lower resolution noise leads to better anomaly detection than
naive pixelwise Gaussian noise for a DAE detecting brain tu-
mors in brain MRI data; in this paper we are interested to fur-
ther investigate the impact of the type of noise with different
data and denoising models. We generate the lower resolution
(“coarse”) noise by sampling random pixelwise Gaussian noise
at a low resolution and bilinearly (trilinearly for 3D) upsam-
pling it to the input resolution. We then randomly translate the
generated noise to avoid consistent upsampling patterns. See
Figure 4 for examples of generated noise and Algorithm 1 for
the pseudocode.

To examine the effect of noise, we take the DAE and vary the
noise resolution α and the standard deviation σ used for gener-
ating Gaussian noise before upsampling (see Figure 3) on the
two datasets described later in Section 4. We find that a reason-
ably coarse noise is critical, as DAE models trained using stan-
dard pixel-level noise (e.g. generated at 128 × 128 resolution
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Fig. 3. Noise coarseness and magnitude ablation results on BraTS head MRI (left) and iCAIRD head CT (right) data. Magnitude ablation uses noise
resolution α = 16. Coarseness ablation uses σ = 0.2. Error bars show standard deviation across three runs.

1×1 2×2 4×4 8×8

16×16 32×32 64×64 128×128

Fig. 4. Samples of 2D noise generated at different resolutions, from 1×1
through to 128×128. The background mask B is also visible.

for 128 × 128 pixel 2D head MRI slices) or using the opposite
extreme of image-level noise (i.e. generated at 1 × 1 resolu-
tion) perform significantly worse. DAEs appear to be less sen-
sitive to the magnitude of the noise (σ of the generating Gaus-
sian distribution). The noise parameters are robust and transfer
well between modalities (i.e. from MRI to CT) and patholo-
gies (e.g. tumor to hemorrhage) and 2D to 3D as long as the
image field-of-view and resolution are comparable i.e. we used
1.62mm2/pixel for 2D MRI and 2mm3/voxel for 3D CT.

For diffusion models, we similarly modify the corruption
process C, adopting the noise generation process described in
Algorithm 1 instead of pixel-wise Gaussian noise both during
training and when applying each of the inference techniques.

4. Datasets

We evaluate anomaly detection in 2D brain MRI slices and
3D brain CT volumes using the two datasets described below.

4.1. BraTS challenge dataset: Brain MRI
We evaluate the anomaly detection performance on the sur-

rogate task of brain tumor segmentation using data from the
BraTS 2021 challenge (Menze et al., 2014; Bakas et al., 2017,
2018). This data comprises native (T1), post-contrast T1-
weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated
Inversion Recovery (FLAIR) modality volumes for each patient
from a variety of institutions and scanners.

4.1.1. Selecting the training and test data
We randomly split the dataset into 938 training, 62 valida-

tion, and 251 test patients. During training, we use only slices
that do not contain any tumor pixels, under the assumption that
these non-tumor slices represent healthy tissue. At test time,
we consider the union of the tumor sub-region labels to be the
anomalous regions.

4.1.2. Preprocessing
The data has already been co-registered, skull-stripped and

interpolated to the same resolution. Labels are provided for
tumor sub-regions: the GD-enhancing tumor, the peritumoral
edema, and the necrotic and non-enhancing tumor.

For the data input to the models, we stack all four modal-
ities at the channel dimension for each patient. We normalize
(rescale) the pixel intensity values in each modality of each scan
by dividing by the 99th percentile foreground voxel intensity.
Values are scaled to a range of [−1, 1] for diffusion methods
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Table 1. Data filtering steps towards obtaining a healthy training set for
anomaly detection.

Filtering step Images Patients

Initial Data cohort 16,559 7,122
After filtering on report labels from
Schrempf et al. (2021)

2,350 1,788

After filtering out follow-up scans 1,020 961
After rapid manual image review 996 939
Healthy training set 804 757

and [0, 1] otherwise. All slices are downsampled to a resolution
of 128×128 (1.62mm/pixel).

4.2. iCAIRD GG&C NHS dataset: Head CT

We use head CT scans obtained through a collaboration with
the Industrial Centre for Artificial Intelligence Research in Dig-
ital Diagnostics (iCAIRD)1. The data has been sourced from
hospitals in the Greater Glasgow & Clyde (GG&C) area in
Scotland and comprises all patients who were diagnosed with a
stroke in the period 2013-2018. The data is pseudonymised and
we obtain access onsite via the West of Scotland Safe Haven
within NHS Greater Glasgow and Clyde via the Safe Haven
Artificial Intelligence Platform (SHAIP) (Wilde et al., 2022).
We have obtained ethical approval to use this data2.

The data was originally collected by identifying hospital ad-
missions which were assigned International Classification of
Diseases (ICD-10)3 codes relating to stroke diagnoses, and then
selecting medical data from the stroke event hospital admission
as well as the documentation from 18 months prior and all prior
images held at the GG&C. In total, the dataset contains infor-
mation about 15,882 stroke events from 10,143 patients and in-
cludes CT images, radiology reports, clinical documents and
structured clinical data. We use 16,559 head CT images avail-
able from 7,122 patients for the purpose of this work and refer
to this as the iCAIRD dataset.

4.2.1. Radiology report NLP for normal scan selection
Identification of normal scans by manual examination of this

large dataset would be time-consuming. Fortunately, corre-
sponding free text radiology reports are available for most of
the head CT images in the iCAIRD dataset. The reports vary
in depth and exposition reflecting the style and seniority of the
reporting radiologists, but generally describe the radiographic
findings and clinical impressions in the associated CT images.
We use this information to identify and exclude abnormal scans
from our training set. However, comprehensive manual exam-
ination of radiology reports, while faster than examination of
images, would still be slow. Therefore, we leverage a pre-
viously developed automatic deep learning model (Schrempf
et al., 2020, 2021) which was trained on 357 manually labeled

1https://icaird.com
2West of Scotland Safe Haven ethical approval number GSH19NE004
3https://www.who.int/standards/classifications/classifi

cation-of-diseases

non-contrast head CT radiology reports and outputs labels for
14 radiographic findings and 19 clinical impressions (see Ap-
pendix C for the list of labels). Each label is assigned one of
the 4 classes: positive, negative, uncertain or not mentioned.

4.2.2. Selecting the training data

Defining Normal vs Abnormal: We aim to obtain a training
set that is as healthy as possible in order to detect as many
anomalies as possible at test time. However, since the dataset
is from an elderly stroke population (mean age of 72 years), re-
ports without any positive findings (labels) are rare. Therefore,
there is a trade-off between how aggressively we filter versus
the size of the final training set. Hence, we include scans for
which the associated reports contain only findings/impressions
that are commonly found in an elderly population, specifically
calcification, atrophy, cerebral small vessel disease and hypo-
density (the latter is most commonly associated with atrophy
and small vessel disease). Applying this more generous defini-
tion of “Normal” leaves a set of 2350 scans from 1788 patients
(see Table 1).

Filtering out follow-up scans: Upon closer manual inspec-
tion we find that many reports are non-exhaustive (note these
are free text rather than structured reports), appearing not to
list all of the findings present in the scan. This most com-
monly occurs for follow-up scans where the associated report
assumes knowledge of earlier scan reports, usually not explic-
itly re-listing all findings. An example such report would be
“No progression compared to previous scan from 10/22/2021.”.
Thus, absence of positive or uncertain labels does not necessar-
ily equate to absence of pathology. Therefore we further filter
down the remaining cases using keywords and pattern matching
using spaCy (Honnibal et al., 2020), removing reports which
contain references to previous imaging and comparisons. This
keyword filtering leaves 1020 scans from 961 patients.

Rapid manual image review for obvious anomalies: Finally,
we perform a rapid manual review by non-experts which elim-
inates a further 24 scans mostly containing processing issues
(e.g. bone reconstruction, significant artifact, significantly de-
graded scan quality). We use 804 scans from the remaining 996
cases as our healthy training data.

4.2.3. Selecting and annotating the test data
In addition to the filtered healthy training data, we selected

and annotated a separate set of scans with hemorrhages, is-
chemia and tumors to quantitatively evaluate the methods. The
annotation workflow consisted of several steps: curation, anno-
tation, review and quality assurance. Further details are pro-
vided in Appendix D. The resulting data was split into Test and
Training sets as described below.

Test set: The test set contains voxelwise annotations for 114
scans of which 104, 23 and 4 contain hemorrhage, ischemia and
tumor ground truth respectively. We use the union of the three
pathologies for evaluating the anomaly detection methods.

Training data for supervised baselines: We further reserve
129 scans annotated with 116 hemorrhage, 30 ischemia and 6
tumor annotations for training the supervised baselines.

https://icaird.com
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
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4.2.4. Preprocessing
We rigidly register the CT scans to a reference volume and

crop to a fixed field-of-view which includes only the head re-
gion of the scan. Volumes are then resampled to 2mm3 resolu-
tion and windowed to Hounsfield Unit (HU) values from 0 to
80. As for the MRI data, intensities are rescaled to a range of
[−1, 1] for diffusion methods and [0, 1] otherwise. We use ran-
dom flipping and affine transformation data augmentation for
training of all methods.

4.3. qure.ai CQ500: Head CT

We use the CQ500 dataset from qure.ai (Chilamkurthy et al.,
2018) for qualitative evaluation (see Figure 7) of the head CT
methods as the data contains similar pathologies (i.e. hemor-
rhages, ischemia). This dataset does not, however, contain any
voxel-level ground truth and could not be used for quantitative
evaluation.

5. Baselines

We compare against a range of common reconstruction-error
based methods as well as providing supervised segmentation
model results trained using ground truth for context.

5.1. 2D brain MRI baselines

We compare the denoising anomaly detection model perfor-
mance against four methods. Firstly, we implement a stan-
dard VAE (Zimmerer et al., 2019) and f-AnoGAN (Schlegl
et al., 2019) models with pixelwise reconstruction error as the
anomaly scores. Secondly, we use the same VAE model but im-
plement an iterative gradient-based restoration process (Chen
et al., 2020) to produce restoration images. Finally, we apply
the simple thresholding approach from Meissen et al. (2021a)
modified to use median filtering as proposed by (Kascenas
et al., 2021). We use the hyperparameters from the original
works for the deep learning methods but tune manually where
necessary to improve training stability and anomaly detection
performance.

5.2. 3D brain CT baselines

We compare the denoising anomaly detection model perfor-
mance on 3D head CT data against two reconstruction-error
based methods: VAE reconstruction (Zimmerer et al., 2019)
and VAE restoration (Chen et al., 2020).

6. Implementation details

6.1. Noise

Coarse noise is generated by sampling random Gaussian pix-
elwise noise at resolutions of 16×16 and 16×16×16 for 2D and
3D respectively, before bilinearly/trilinearly upsampling to the
input resolution of 128×128 for 2D brain MRI and 80×112×88
for 3D head CT. The generated noise is then randomly trans-
lated to randomize the centers of the coarse noise peaks that
may occur due to upsampling from very low resolutions. Noise
is generated independently for each image modality in the case

of 2D MRI. We investigate the parameters of the noise, as re-
ported in Section 3.4 (see Figure 3).

Simplex noise is generated using the implementation pro-
vided by Wyatt et al. (2022)4. For DAE experiments with Sim-
plex noise, we scale the generated noise magnitude by a factor
of 0.2.

6.2. Denoising autoencoder

For 2D MRI data, we use a U-Net (Ronneberger et al.,
2015) encoder-decoder architecture with three downsam-
pling/upsampling stages. Each encoder stage consists of two
weight-standardized convolutions (Qiao et al., 2019) with ker-
nel sizes of 3 and 64, 128, 256 output channels for the three
stages respectively followed by Swish activations (Ramachan-
dran et al., 2018) and group normalization (Wu and He, 2018).
Average 2 × 2 pooling is used for downsampling. The decoder
architecture mirrors the encoder in reverse, using transposed
convolutional layers for upsampling. Architecture visualization
and further details can be found in Appendix B.

For 3D head CT data, we use an analogous architecture in 3D
with three downsampling/upsampling stages and 32, 64, 128
output channels for the three stages respectively.

We use mean L2 reconstruction loss in the foreground as the
training objective. 2D DAE Models are trained for 67,200 iter-
ations with a batch size of 16 slices using Adam (Reddi et al.,
2018) with a cosine annealed (Loshchilov and Hutter, 2017)
maximum learning rate of 0.0001 with a period of 200 itera-
tions. 3D DAE Models are trained for 25,600 iterations with a
batch size of 3 volumes using Adam with OneCycleLR learning
rate schedule (Smith and Topin, 2019) with a maximum learn-
ing rate of 0.001.

6.3. Diffusion model

We implement a diffusion model with a U-Net-like architec-
ture based on implementation provided by Dhariwal and Nichol
(2021) which includes residual layers, global attention, dropout
and a projection of the timestep embedding to each residual
block. We use T = 1000 diffusion steps with linear noise sched-
ule training models to predict the noise and optimizing the mean
squared loss between the noise which was used for sampling
and the predicted noise.

For 2D MRI data we use the AdamW optimizer (Loshchilov
and Hutter, 2018) with a learning rate of 0.0001 and weight de-
cay of 0.01 with a batch size of 64. Model weights are averaged
by taking the exponential moving average (EMA) with a rate of
0.9999. The 2D U-Net architecture and diffusion training code
can be found on github 5.

For 3D CT data we use the AdamW optimizer with a OneCy-
cleLR learning rate schedule (Smith and Topin, 2019) with a
maximum learning rate of 0.0001 and batch size of 4. Model
weights are averaged by taking the EMA with a rate of 0.95.

4https://github.com/Julian-Wyatt/AnoDDPM
5https://github.com/vios-s/Diff-SCM

https://github.com/Julian-Wyatt/AnoDDPM
https://github.com/vios-s/Diff-SCM


8 Antanas Kascenas et al. / Preprint (2023)

Gaussian Simplex Coarse

Fig. 5. The three noise types tested to train diffusion models.

6.4. VAE reconstruction

VAE models use a similar architecture to their DAE coun-
terparts. Skip connections are removed and a bottleneck with
dimensionality of 128 is added. For the training objective,
we compute the sum of mean L2 reconstruction error and KL-
divergence with a weight of β = 0.001. We use the same
training procedure and anomaly score formula as for their DAE
counterparts.

6.5. VAE restoration

Using the VAE model described above, we implement a
restoration method (Chen et al., 2020) to produce the anomaly
scores. We perform the restoration procedure using 100 iter-
ations on individual slices/volumes basing our implementation
on public source code6. Note that due to the iterative nature of
the restoration procedure it takes significantly longer (approx.
×100) to produce predictions compared to the single inference
iteration DAE/VAE reconstruction.

6.6. f-AnoGAN

We adapt the original public implementation7 for the brain
MR data task as follows. We use an additional generator, dis-
criminator and encoder block to account for the higher resolu-
tion. Strided convolutions and transposed convolutions are used
for downsampling and upsampling respectively. We use a batch
size of 32 and learning rates of 0.001, 0.001, 0.00001 for the
generator, discriminator and encoder respectively. The encoder
was trained using κ = 1 × 10−8.

6.7. Thresholding

We follow Meissen et al. (2021a) to obtain results for the
thresholding baseline but omit the connected component filter-
ing as we have found median filtering to be more effective and
computationally efficient (Kascenas et al., 2021). FLAIR se-
quence volumes are used as the anomaly score volumes, fol-
lowing processing by histogram equalization of the foreground
(i.e. excluding surrounding air) and median filtering.

6https://github.com/yousuhang/Unsupervised-Lesion-Detec

tion-via-Image-Restoration-with-a-Normative-Prior
7https://github.com/tSchlegl/f-AnoGAN

Table 2. Relationship between DAE and different diffusion anomaly detec-
tion inference methods and noise used for model training. For the method
of (Pinaya et al., 2022b) we include also the results of the intermediate KL
step. Numbers show area under the precision-recall curve (AURPC). Mean
results reported across 3 runs ± standard deviation.

Noise

Inference method Gaussian Simplex Coarse

2D Head MRI

Reconstruction
(Wyatt et al., 2022)

0.197
± 0.032

0.464
± 0.048

0.653
± 0.063

KL + inpainting
(Pinaya et al., 2022b)

0.305
± 0.008

0.640
± 0.020

0.689
± 0.028

→ KL step only
(Pinaya et al., 2022b)

0.258
± 0.009

0.675
± 0.035

0.796
± 0.022

DAE
(Kascenas et al., 2021)

0.325
±0.004

0.723
±0.019

0.833
±0.005

3D Head CT

Reconstruction
(Wyatt et al., 2022)

0.312
±0.027

0.623
±0.004

0.573
±0.012

KL + inpainting
(Pinaya et al., 2022b)

0.069
±0.003

0.357
±0.005

0.512
±0.005

→ KL step only
(Pinaya et al., 2022b)

0.098
±0.005

0.432
±0.005

0.629
±0.002

DAE
(Kascenas et al., 2021)

0.233
±0.084

0.611
±0.038

0.693
±0.004

6.8. Supervised segmentation baselines
We train supervised baselines to provide context on the ex-

pected performance range. The supervised head MRI baseline
was trained using a 2D U-Net model with the same architecture
as the DAE using 938 annotated volumes with tumor ground
truth. The supervised head CT baseline was trained using the
nnU-Net package (Isensee et al., 2021) using 129 annotated vol-
umes with hemorrhage, ischemia and tumor ground truth as de-
scribed in Section 4.2.3.

6.9. Postprocessing
We use the same postprocessing in all tested methods. We

apply median filtering with a kernel size of 5 which effectively
reduces the false positives in the anomaly score heatmaps as
shown in Kascenas et al. (2021) by filtering out insignificant
reconstruction noise.

7. Results

We now examine the difference in performance between
noise types (Gaussian, Simplex, Coarse), between models
(VAE, DAE, Diffusion models), across different modalities
(MRI and CT), and between noise resolutions applied to dif-
ferent anomaly sizes. We finally inspect the model outputs to
observe the difference in behavior qualitatively.

https://github.com/yousuhang/Unsupervised-Lesion-Detection-via-Image-Restoration-with-a-Normative-Prior
https://github.com/yousuhang/Unsupervised-Lesion-Detection-via-Image-Restoration-with-a-Normative-Prior
https://github.com/tSchlegl/f-AnoGAN
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7.1. Metrics
We evaluate the anomaly detection performance of the meth-

ods with two metrics. Firstly, we measure the area under the
precision-recall curve (AUPRC) at the pixel level computed for
the whole test set. AUPRC evaluates anomaly scores directly
without requiring to set an operating point for each method.
Secondly, we calculate dDicee, a Dice score which measures
the segmentation quality using the optimal threshold for bina-
rization found by sweeping over possible values using the test
ground truth. dDicee represents the upper bound for the Dice
scores that would be obtainable in a more practical scenario.

7.2. Noise comparison
We reported earlier (see Section 3.4) on experiments with

the noise parameters for training a DAE, showing that the noise
resolution makes a significant difference to the test-time perfor-
mance of a DAE, observing similar effects across two datasets.
Remarkably, the same parameters were optimal in the brain
MRI and in the head CT datasets.

We now compare between noise types, namely Gaussian
noise, Simplex noise (advocated by Wyatt et al. (2022)), and our
proposed coarse noise, using the optimal parameters identified
in Section 3.4 for the latter. We measure the impact on perfor-
mance of the DAE and of two diffusion model inference meth-
ods proposed by Pinaya et al. (2022b) and Wyatt et al. (2022).

The results are shown in Table 2. Our proposed coarse noise
achieves most accurate performance, significantly improving
the results compared to models trained with standard Gaussian
noise, and in most cases improving over models trained with
Simplex noise (Wyatt et al., 2022). Interestingly for the method
of Pinaya et al. (2022b), when the model is trained with Sim-
plex or coarse noise, the intermediate KL step (similar to ap-
plying a DAE) gives better results than the subsequent diffusion
inpainting step.

7.3. Model comparison
We compare models trained with coarse noise on the two

datasets. To put the unsupervised anomaly detection perfor-
mance results in context, we also provide supervised U-Net
baselines, trained on a moderate number of labeled volumes.

Table 3. Pathology detection performance as evaluated on BraTS Head
MRI Tumor test set. Metrics are the test set wide pixel-level area under
the precision-recall curve (AUPRC) and ideal Dice score (dDicee). Mean
results reported across 3 runs ± standard deviation.

Method AUPRC dDicee

Thresholding 0.798 0.749

f-AnoGAN 0.365±0.024 0.449±0.014

VAE (reconstruction) 0.555±0.004 0.548±0.003

VAE (restoration) 0.750±0.006 0.689±0.005

Diffusion (reconstruction) 0.653±0.063 0.610±0.060

Diffusion (KL + inpainting) 0.689±0.028 0.675±0.015

→ KL step only 0.796±0.022 0.723±0.013

DAE (α = 16, σ = 0.2) 0.833±0.005 0.773±0.004

U-Net (supervised) 0.972±0.001 0.914±0.002

Quantitative results can be seen in Tables 3 and 4. Overall,
denoising methods appear to offer more accurate anomaly de-
tection than other unsupervised methods, with the simple DAE
giving overall best performance. Diffusion models perform bet-
ter than unsupervised baselines except for the simple threshold-
ing baseline (provided for MRI but not possible for the multi-
intensity lesions in CT), but worse than the DAE. As seen in
Table 2, the intermediate KL step of Pinaya et al. (2022b)’s
method outperforms the results of diffusion.

7.4. Relationship between noise resolution and anomaly size

We further examine the relationship between the DAE noise
used at training time and performance on anomalies during test
time. In particular, we investigate whether the coarseness of the
noise (i.e. noise resolution α before upsampling) has a large
impact on the size of test anomalies that the DAE successfully
detects as this could imply the need to tune the noise parameters
for specific anomalies.

In order to isolate the effect, we evaluate DAEs trained with
different noise coarseness on synthetic anomalies in 3D Head
CT scans. We synthesize bright spherical anomalies inside the
brain at random locations, sampling the diameter uniformly
from the range of 5mm to 50mm and then multiplying the nor-
mal tissue intensity within the sphere by a factor of 2.

Full results are shown in Appendix E. We observe no rela-
tionship between the noise resolution and the performance on
anomalies in specific size range. That is, selecting a reason-
ably coarse noise shows consistent best performance across a
wide range of synthetic anomaly sizes with no affinity towards
a specific anomaly size when compared to DAEs trained with
different noise coarseness parameters.

7.5. Visualization of model outputs

Selected examples of image slices and the corresponding de-
noising reconstructions and anomaly detection heatmaps for
different methods are shown in Figure 6 for head MRI and Fig-
ure 7 for head CT. The DAE performs consistently well on eas-
ier tumor cases in MRI and larger hemorrhages in CT, produc-
ing strong signal predictions. Weaker signal predictions some-
times correspond to subtler tumors in MRI and ischemia cases
in CT, and sometimes correspond to false positive detections.

Table 4. Pathology detection performance as evaluated on iCAIRD Head
CT Hemorrhage/Ischaemia/Tumour test set. Metrics are the test set wide
pixel-level area under the precision-recall curve (AUPRC) and ideal Dice
score (dDicee). Mean results reported across 3 runs ± standard deviation.

Method AUPRC dDicee

VAE (reconstruction) 0.382±0.003 0.432±0.005

VAE (restoration) 0.542±0.012 0.537±0.011

Diffusion (reconstruction) 0.573±0.012 0.600±0.013

Diffusion (KL + inpainting) 0.512±0.005 0.547±0.008

→ KL step only 0.629±0.002 0.608±0.003

DAE (α = 16, σ = 0.2) 0.693±0.004 0.674±0.003

nnU-Net (supervised) 0.817±0.002 0.786±0.004
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FLAIR T1 T1Gd T2 GT a) b) c)

Fig. 6. Sample anomaly score predictions on 2D head MRI (BraTS2021) data. Columns a), b), c) show diffusion reconstruction (Wyatt et al., 2022), KL
divergence (Pinaya et al., 2022b) and DAE anomaly scores respectively.

When we examine more closely the impact of model choice
and noise type on the reconstruction (see Figure 8), we observe
the trade-off between reconstruction of the image detail vs era-
sure of the anomaly. The diffusion model tends to better erase
the anomaly compared to the DAE, particularly when trained
with Simplex or even Gaussian noise, but also yields poorer re-
construction of the image, erasing also fine details of normal
anatomy such as the folds of the gyri. The DAE achieves best
erasure, or at least suppression, of the anomaly when coarse
noise is used, as well as best retention of the normal anatomical
detail.

8. Discussion

8.1. What type of noise is best?

Our results show that the noise used for training denoising
models has a large impact on anomaly detection performance.
Our proposed coarse noise significantly improves the perfor-
mance of both DAEs and diffusion models, outperforming naive
Gaussian noise. Our coarse noise largely also outperforms the
more complex Simplex noise alternative (Wyatt et al., 2022),
which similarly introduces low frequencies to the noise pattern
(alongside higher frequencies). Visual inspection of the recon-
structions suggests that the noise used for model training im-
pacts the trade-off between the extent of the detail that is recon-

structed and the extent of erasure of anomalies, both of which
contribute to better anomaly detection performance.

Remarkably, we found the same noise parameters to be op-
timal across the two datasets described in this paper. Further,
noise parameters appeared not to be related to anomaly size, as
reported in Section 7.4. Thus, it appears that noise coarseness
parameters are independent of the size of test anomalies and can
be set without knowledge of the nature of the target anomalies
ahead of time. We note however that these datasets were pro-
cessed in a similar way and are of similar anatomy (head/brain),
therefore it would be desirable to do rigorous testing of many
anatomies, modalities, and intensity/resolution pre-processing
in order to come to a general conclusion.

8.2. What type of model is best?

In general, we find that employing denoising as the learn-
ing mechanism enables architectures with skip connections to
be used, leading to higher fidelity reconstructions which are
more effective for anomaly detection than those achieved by
VAE methods with bottleneck architectures.

Considering only the denoising approaches, we find that sim-
ple denoising autoencoder (DAE) models currently outperform
more advanced diffusion models across the two datasets that we
evaluated, when trained with optimal noise. However, diffusion
models show an exciting ability to erase anomalies and generate
convincing high definition reconstructions, with the caveat that
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Input Supervised a) b) c) d) e)

Fig. 7. Sample anomaly score predictions on contrasting example slices from the 3D head CT (CQ500) data. Columns a) and b) show the show coarse noise
diffusion reconstructions and anomaly scores (Wyatt et al., 2022), column c) shows the coarse noise diffusion KL divergence anomaly scores (Pinaya et al.,
2022b), and columns d) and e) show coarse noise DAE reconstructions and the associated anomaly scores.
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Fig. 8. Comparison of reconstruction between DAE and diffusion using re-
construction procedure by Wyatt et al. (2022) across the three different
noise types.

normal anatomical detail may also be erased, limiting their ef-
fectiveness at discriminating normal from abnormal. Therefore,
while diffusion models are producing state-of-the-art results in
image generation, further investigation is needed to find appro-
priate methods to apply diffusion models to anomaly detection
specifically.

In terms of practical use, we note that diffusion methods
(similarly to VAE restoration methods) come at a cost since all
inference methods evaluated in this paper take hundreds of it-

erations to produce final predictions, resulting in much longer
inference times than for the DAE.

8.3. Limitations of our anomaly evaluation
A limitation of the evaluations presented in this paper is that

we have focused on a subset of anomalies which are present in
the datasets, albeit also the anomalies which are of most clinical
interest. This is explicit for the iCAIRD GG&C NHS Head
CT dataset, in which we annotated 3 pathologies (hemorrhage,
ischemia, tumor) but extracted NLP labels for several more (see
Appendix C), filtering on these to obtain a healthy training set.
Consequently, our metrics only approximate general anomaly
detection performance. We leave comprehensive annotation of
anomalies as an important avenue for future work; in fact, the
performance on rarer pathologies for which expert annotations
are not available is potentially more important than on common
pathologies since this is where training traditional supervised
approaches might be infeasible.

8.4. Alternatives to residual error for anomaly detection
Finally, DAEs and the diffusion inference methods we have

applied rely on reconstruction error in order to detect anoma-
lies. Reconstruction error might be suitable for prominent
anomalies (e.g. large hemorrhages) but struggle with anoma-
lies subtler in intensity contrast (e.g. ischemia). Discriminative
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methods (e.g. Cho et al. (2021); Tan et al. (2022); Kascenas
et al. (2022)) that infer the anomaly score directly have been
achieving success, notably in the Medical Out-of-Distribution
(MOOD) Analysis MICCAI Challenge (Zimmerer et al., 2022).
They might be more suitable for subtle anomalies, since they do
not use the residual error (which will be small for subtle inten-
sity changes) as the anomaly signal; see Meissen et al. (2021b)
for more in-depth analysis of the pitfalls associated with us-
ing residual error. Differently to reconstruction-based methods,
discriminative methods are typically trained by synthesizing ab-
normal data to discriminate from the healthy distribution. This
has pros and cons, allowing easier application of domain knowl-
edge about the nature of anomalies and explicit control over the
definition of “abnormal”, at the risk of losing generality and
overfitting to the selected synthetic anomalies.

9. Conclusion

In this paper we have demonstrated the effectiveness of a sim-
ple coarse noise model in both simple classical DAEs and more
complex recently proposed diffusion models for anomaly de-
tection across two datasets. We find that the parametrization
of the noise model has a wide tolerance, giving robust transfer
across datasets and denoising methods. As part of this work,
we implemented an anomaly detection pipeline in a real-world
scenario involving the collation of a healthy training set by run-
ning NLP methods on radiology reports, thereby showing that
a largely automated pipeline is possible.

Overall the classical DAE outperforms other methods, in
terms of implementation simplicity, accuracy, and inference
speed. While detection is successful for more obvious instances
of anomalies such as tumors, hemorrhages and ischemia, fur-
ther accuracy improvements are required to achieve reliable
detection of subtle anomalies. Diffusion models applied to
anomaly detection are as yet in their infancy and provide a
promising avenue for further research.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have influ-
enced the work reported in this paper.

Acknowledgements

This work is part of the Industrial Centre for AI Research in
Digital Diagnostics (iCAIRD) which is funded by Innovate UK
on behalf of UK Research and Innovation (UKRI) project num-
ber 104690. We thank the West of Scotland Safe Haven at NHS
Greater Glasgow and Clyde for their assistance in creating this
dataset. We would also like to acknowledge assistance of Canon
Medical Research Europe Limited in providing the Canon Safe
Haven Artificial Intelligence Platform (SHAIP) tool, assisting
with the deidentification of data and the provision of a secure
machine learning workspace.

We acknowledge Engineering and Physical Sciences Re-
search Council (EPSRC) for funding part of this work through

the EPSRC Centre for Doctoral Training in Applied Photonics
(CDTAP) managed by Heriot-Watt University.

This work was supported by the University of Edinburgh,
the Royal Academy of Engineering and Canon Medical Re-
search Europe via PhD studentships of Pedro Sanchez (grant
RCSRF1819\8\25).

S.A. Tsaftaris acknowledges the support of Canon Medi-
cal and the Royal Academy of Engineering and the Research
Chairs and Senior Research Fellowships scheme (grant RC-
SRF1819\8\25).

Many thanks to Sin Yee Foo, Harris Hameed, and Paul Don-
nelly from GG&C NHS for creating the pathology annotations
which we used for our evaluation.

Many thanks to Paul Thomson and Ewan Hemingway for
their help with developing the imaging pre-processing pipeline.

References

Alex, V., Vaidhya, K., Thirunavukkarasu, S., Kesavadas, C., Krishnamurthi,
G., 2017. Semisupervised learning using denoising autoencoders for brain
lesion detection and segmentation. Journal of Medical Imaging 4, 041311.

Atlason, H.E., Love, A., Sigurdsson, S., Gudnason, V., Ellingsen, L.M., 2019.
Unsupervised brain lesion segmentation from MRI using a convolutional
autoencoder, in: Medical Imaging 2019: Image Processing, International
Society for Optics and Photonics. p. 109491H.

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Frey-
mann, J.B., Farahani, K., Davatzikos, C., 2017. Advancing the cancer
genome atlas glioma MRI collections with expert segmentation labels and
radiomic features. Scientific data 4, 1–13.

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shino-
hara, R.T., Berger, C., Ha, S.M., Rozycki, M., et al., 2018. Identifying the
best machine learning algorithms for brain tumor segmentation, progression
assessment, and overall survival prediction in the BraTS challenge. arXiv
preprint arXiv:1811.02629 .

Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S., 2021. Autoen-
coders for unsupervised anomaly segmentation in brain MR images: A com-
parative study. Medical Image Analysis , 101952.

Baur, C., Wiestler, B., Albarqouni, S., Navab, N., 2018. Deep autoencoding
models for unsupervised anomaly segmentation in brain MR images, in: In-
ternational MICCAI Brain Lesion Workshop, Springer. pp. 161–169.

Baur, C., Wiestler, B., Albarqouni, S., Navab, N., 2020a. Bayesian skip-
autoencoders for unsupervised hyperintense anomaly detection in high reso-
lution brain MRI, in: 2020 IEEE 17th International Symposium on Biomed-
ical Imaging (ISBI), IEEE. pp. 1905–1909.

Baur, C., Wiestler, B., Albarqouni, S., Navab, N., 2020b. Scale-space autoen-
coders for unsupervised anomaly segmentation in brain mri, in: Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2020,
Springer. pp. 552–561.
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Appendix A. DAE vs VAE reconstruction comparison
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Fig. A.9. Sample healthy brain reconstructions from VAE and DAE mod-
els. The DAE gives more precise reconstructions. The VAE reconstruction
quality could be improved by increasing bottleneck dimensionality, how-
ever this would negatively impact anomaly detection performance.

Appendix B. Neural network architectures
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Fig. B.10. Architectures of 2D DAE and VAE models used in brain MRI
experiments.
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Appendix C. Radiology report labels

Table C.5. List of report labels extracted from radiology reports using the
method of Schrempf et al. (2021). We do not exclude scans with associated
positive/uncertain labels which are underlined from our healthy training
set, since we decide that scans with only these labels (and no others) are
“normal for age”.

Radiographic findings
artefact, collection, compression, dilation, effacement, her-
niation, hyperdensity, hypodensity, loss of differentia-
tion, malacic changes, mass effect, midline shift, oedema,
swelling.

Clinical impressions
abscess, atrophy, aneurysm, calcification, cavernoma,
cerebral small vessel disease, congenital abnormality, cyst,
evidence of surgery/intervention, fracture, gliosis, hemor-
rhage, hydrocephalus, ischemia, infection, tumor, vessel oc-
clusion, lesion, pneumocephalus.

Appendix D. Selecting and annotating the iCAIRD test set

We provide additional details below on the process by which
the iCAIRD test set was selected and annotated.

Scan selection: For hemorrhage and ischemia cases, our
primary source was the Scottish Stroke Care Audit (SSCA)
records for which we had access for the stroke episodes in the
dataset; we searched these records for stroke episodes classed as
“hemorrhagic”, “ischemic”, or “hemorrhagic transformation”.
For cases of tumors and rarer hemorrhages (epidural and sub-
dural), we used a combination of ICD-10 code and free text
searches of the Scottish Morbidity Records (SMRs) and radi-
ology reports (e.g., “extradural”, “extra-dural”, “extra dural”,
“epidural”, “edh”, “subdural”, and “sdh”), respectively. We
then excluded scans acquired prior to 2016 for image compres-
sion reasons.

Annotation and Review: We recruited 3 GG&C clinicians
(one Consultant Neuroradiologist and two senior Radiology
trainees) to perform pixel-level annotation, following the anno-
tation protocol prepared for this project. For the selected cases,
all hemorrhage, ischemia and tumor lesions present were anno-
tated, including any surrounding regions of edema for hemor-
rhagic lesions. The Consultant Neuroradiologist acted also as
reviewer; 40% of cases were randomly selected for review and
annotators also had the option of sending any of the remaining
60% for review when they required a second opinion.

Appendix E. Relationship between noise coarseness and
anomaly size
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Fig. E.11. DAE anomaly detection performance evaluated using synthetic
anomalies of different sizes with models trained with noise generated at
different resolutions α. Each point indicates a mean of three runs. The
best noise resolution (α = 16) generalizes the best across a wide variety of
synthetic anomaly sizes.
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