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CONTRACTION AND CONVERGENCE RATES FOR DISCRETIZED
KINETIC LANGEVIN DYNAMICS

BENEDICT LEIMKUHLER∗, DANIEL PAULIN∗, AND PETER A. WHALLEY∗

Abstract. We provide a framework to prove convergence rates for discretizations of kinetic
Langevin dynamics for M -∇Lipschitz m-log-concave densities. Our approach provides convergence
rates of O(m/M), with explicit stepsize restrictions, which are of the same order as the stability
threshold for Gaussian targets and are valid for a large interval of the friction parameter. We apply
this methodology to various integration methods which are popular in the molecular dynamics and
machine learning communities. Finally we introduce the property “γ-limit convergent” (GLC) to
characterise underdamped Langevin schemes that converge to overdamped dynamics in the high
friction limit and which have stepsize restrictions that are independent of the friction parameter; we
show that this property is not generic by exhibiting methods from both the class and its complement.

Key words. Contractive numerical method, Wasserstein convergence, kinetic Langevin dynam-
ics, underdamped Langevin dynamics, MCMC sampling.

AMS subject classifications. 65C05, 65C30, 65C40

1. Introduction. In this article, we study the following form of the Langevin
dynamics equations (“kinetic Langevin dynamics”) :

dXt = Vtdt,

dVt = −∇U(Xt)dt− γVtdt+
√

2γdWt,
(1.1)

where U is the potential energy, γ > 0 is a friction parameter, and Wt is d-dimensional
standard Brownian motion. It can be shown under mild conditions that this process
has invariant measure with density proportional to exp(−U(X)− ||V ||2/2) [38]. Nor-
mally, Langevin dynamics is developed in the physical setting with additional param-
eters representing temperature and mass. However, our primary aim in using (1.1) is,
ultimately, the computation of statistical averages involving only the position X, and
in such situations both parameters can be neglected without any loss of generality,
or alternatively incorporated into our results through suitable rescalings of time and
potential energy. In this article we focus on the properties of (1.1) in relation to
numerical discretization and variation of the friction coefficient.

Taking the limit as γ → ∞ in (1.1), and introducing a suitable time-rescaling
(t′ = γt) results in the overdamped Langevin dynamics given by (see [38][Sec 6.5])

(1.2) dXt = −∇U(Xt)dt+
√

2dWt.

This equation has, again, a unique invariant measure with density proportional to
exp(−U(x)). Under the assumption of a Poincaré inequality, convergence rate guar-
antees can be established for the continuous dynamics [2]. In the case of kinetic
dynamics a more delicate argument is needed to establish exponential convergence,
due to the hypoelliptic nature of the SDE (see [11, 45, 21, 20, 1, 3, 4]).

Langevin dynamics, in its kinetic and overdamped forms, is the basis of many
widely used sampling algorithms in machine learning and statistics [14, 48, 47]. In
sampling, Langevin dynamics is discretized and the individual timesteps generated
by integration are viewed as approximate draws from the target distribution, however
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2

there is an inherent bias due to the finite difference numerical approximation. This
bias is usually addressed by choosing a sufficiently small stepsize, or by adding bias
correction by use of methods like Metropolis-Hastings adjustment. The choice of the
discretization method has a significant effect on the quality of the samples and also on
the computational cost of producing accurate samples, through stability properties,
convergence rates and asymptotic bias.

Overdamped Langevin dynamics has been heavily studied both in the continuous
and the discretized settings, with popular integrators being the Euler-Maruyama and
the limit method of the BAOAB scheme [32]. The kinetic Langevin system has been
extensively studied in the continuous case, but there are still many open questions
around the design of the numerical integrator. A metric that is typically used to
quantify the performance of a sampling scheme is the number of steps required to
reach a certain level of accuracy in Wasserstein distance. Non-asymptotic bounds in
Wasserstein distance reflect computational complexity, convergence rate and accuracy.
Achieving such bounds relies on two steps: (1) determining explicit convergence rates
of the process to its invariant measure and (2) proving non-asymptotic bias estimates
for the invariant measure. The focus of the current article is the convergence of the
time-discrete system to its invariant measure.

The approach that we use to obtain convergence rates is based on proving contrac-
tion for a synchronous coupling, as in [36, 18]. Proving contraction of a coupling has
been a popular method for establishing convergence both in the continuous time set-
ting and for the discretization for Langevin dynamics and Hamiltonian Monte Carlo
([27, 8, 19, 7, 6, 40, 42]), since a consequence of such a contraction is convergence in
Wasserstein distance (viewed as the infimum over all possible couplings with respect
to some norm). Synchronous coupling has been a popular means of achieving explicit
convergence rates for discretizations [35, 37] due to its simplicity.

There has been other recent work aimed at providing convergence rates for kinetic
Langevin dynamics under explicit restrictions on the parameters ([14, 18, 36, 37]), but
these guarantees are valid only with sharp restrictions on stepsize. There has also been
the work of [41] which considers a slightly different version of the SDE (1.1), where
time is rescaled depending on M and m to optimize contraction rates and bias. We
have included their results in Table 1 after converting them into our framework using
[18][Lemma 1]. The results of [41] rely on a stepsize restriction of O(1/γ), but their
analysis does not provide the stepsize threshold [41][Example 9], and the class of
schemes considered is different, with only the stochastic Euler scheme in common.
Other works on contraction of kinetic Langevin and its discretization include [29, 17].

In the current article, we apply direct convergence analysis to various popular
integration methods, and provide a general framework for establishing convergence
rates of kinetic Langevin dynamics with tight explicit stepsize restrictions of O (1/γ)
or O(1/

√
M) (depending on the scheme). As a consequence we improve the con-

traction rates significantly for many of the available algorithms (see Table 1). For
a specific class of schemes, we establish explicit bounds on the convergence rate for
stepsizes of O(1/

√
M). In the limit of large friction, we distinguish two types of in-

tegrators – those that converge to overdamped dynamics (“γ-limit-convergent”) and
those that do not. We demonstrate with examples that this property is not univer-
sal: some seemingly reasonable methods have the property that the convergence rate
falls to zero in the γ → ∞ limit. This is verified numerically and analytically for an
anisotropic Gaussian target.

The remainder of this article is structured as follows. We first introduce over-
damped Langevin dynamics, the Euler-Maruyama (EM) and the high friction limit
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Algorithm stepsize restriction optimal one-step contraction rate
EM O(1/γ) O(m/M)

BAO, OBA, AOB O(1/
√
M) O(m/M)

OAB, ABO, BOA O(1/γ) O(m/M)

BAOAB O(1/
√
M) O(m/M)

OBABO O(1/
√
M) O(m/M)

SES O(1/γ) O(m/M)

Algorithm previous stepsize restriction previous explicit best rate
OBABO O(m/γ3) O(m2/M2) [36]

SES O(1/γ) O(m/M) [41]

Table 1: The first table provides our stepsize restrictions and optimal contraction
rates of the discretized kinetic Langevin dynamics. The second provides previous
best results. Further there are no previous results regarding the EM scheme, the first
order splittings and BAOAB to the best of our knowledge.

of BAOAB (LM) and discuss their convergence guarantees. Next, we introduce ki-
netic Langevin and describe various popular discretizations, and give our results on
convergence guarantees with mild stepsize assumptions. These schemes include first
and second order splittings and the stochastic Euler scheme (SES). Further we com-
pare the results of overdamped Langevin and kinetic Langevin and show how schemes
like BAOAB and OBABO exhibit the positive qualities of both cases with the GLC
property, whereas schemes like EM and SES do not perform well for a large range of
γ.

2. Assumptions and definitions.

2.1. Assumptions on U . We will make the following assumptions on the target
measure exp (−U) to obtain convergence rates. We assume that the potential is M -
smooth and m-convex:

Assumption 2.1 (M -∇Lipschitz). There exists a M > 0 such that for all X,Y ∈
Rd

|∇U (X)−∇U (Y )| ≤M |X − Y | .

Assumption 2.2 (m-convexity). There exists a m > 0 such that for all X,Y ∈ Rd

〈∇U(X)−∇U(Y ), X − Y 〉 ≥ m |X − Y |2 .

The two assumptions are popular conditions used to obtain explicit convergence
rates, see [16, 18] for example. It is worth mentioning that these assumptions can also
produce explicit convergence rates for gradient descent [9].

2.2. Modified Euclidean Norms. For kinetic Langevin dynamics it is not
possible to prove convergence with respect to the standard Euclidean norm due to the
fact that the generator is hypoelliptic. We therefore work with a modified Euclidean
norm as in [36]. For z = (x, v) ∈ R2d we introduce the weighted Euclidean norm

||z||2a,b = ||x||2 + 2b 〈x, v〉+ a ||v||2 ,
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for a, b > 0 which is equivalent norm as long as b2 < a. More precisely we have

1

2
||z||2a,0 ≤ ||z||2a,b ≤

3

2
||z||2a,0.

2.3. Wasserstein Distance. We define Pp
(
R2d

)
to be the set of probabil-

ity measures which have finite p-th moment, then for p ∈ [0,∞) we define the p-
Wasserstein distance on this space. Let µ and ν be two probability measures. We
define the p-Wasserstein distance between µ and ν with respect to the norm || · ||a,b
(introduced in Sec. 2.2) to be

Wp,a,b (ν, µ) =

(
inf

ξ∈Γ(ν,µ)

∫
R2d

||z1 − z2||pa,bdξ (z1, z2)

)1/p

,

where Γ (µ, ν) is the set of measures with marginals µ and ν (the set of all couplings
between µ and ν).

It is well known that the existence of couplings with a contractive property implies
convergence in Wasserstein distance (which can be interpreted as the infimum over all
such couplings). The simplest such coupling is to consider simulations with common
noise, this is known as synchronous coupling, therefore if one can show contraction
of two simulations which share noise increments with a explicit contraction rate.
Then one has convergence in Wasserstein distance with the same rate. With all
the constants and conditions derived for all the schemes for contraction, we have
convergence in Wasserstein distance by the following proposition:

Proposition 2.3. Assume a numerical scheme for kinetic Langevin dynamics
with a m-strongly convex M -∇Lipschitz potential U and transition kernel Ph. If any
two synchronously coupled chains (xn, vn) and (x̃n, ṽn) of the numerical scheme have
the contraction property

(2.1) ||(xn − x̃n, vn − ṽn)||2a,b ≤ C(1− c (h))n||(x0 − x̃0, v0 − ṽ0)||2a,b,

for γ2 ≥ CγM and h ≤ Ch

(
γ,
√
M
)

for some a, b > 0 such that b2 > a. Then we

have that for all γ2 ≥ CγM , h ≤ Ch

(
γ,
√
M
)

, 1 ≤ p ≤ ∞ and all µ, ν ∈ Pp(R2d),

and all n ∈ N,

W2
p (νPnh , µP

n
h ) ≤ 3C max

{
a,

1

a

}
(1− c (h))

nW2
p (ν, µ) .

Further to this, Ph has a unique invariant measure which depends on the stepsize, πh,
where πh ∈ Pp(R2d) for all 1 ≤ p ≤ ∞.

Proof. The proof is given in [36][Corollary 20], which relies on [46][Corollary 5.22,
Theorem 6.18].

The focus of this article is to prove contractions of the form (2.1), and hence to
achieve Wasserstein convergence rates by Prop. 2.3. With convergence to the invariant
measure of the discretizations of kinetic Langevin dynamics considered here it will be
possible to combine our results with estimates of the bias of each scheme as in [18],
[36], [41] and [14] to obtain non-asymptotic estimates.
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3. Overdamped Langevin discretizations and contraction. We first con-
sider two discretizations of the SDE (1.2), namely the Euler-Maruyama discretization
and the high friction limit of the popular kinetic Langevin dynamics scheme BAOAB
[32]. The simplest discretization of overdamped Langevin dynamics is using the Euler-
Maruyama (EM) method which is defined by the update rule

(3.1) Xn+1 = Xn − h∇U (Xn) +
√

2hξn+1.

This scheme is combined with Metropolization in the popular MALA algorithm.
An alternative method is the BAOAB limit method of Leimkuhler and Matthews

(LM)([32], [34]) which is defined by the update rule

Xn+1 = Xn − h∇U (Xn) +
√

2h
ξn+1 + ξn

2
.

The advantage of this method is that it gains a weak order of accuracy asymptotically.

3.1. Convergence guarantees. The convergence guarantees of overdamped
Langevin dynamics and its discretizations have been extensively studied under the
assumptions presented (see [16, 24, 13, 15, 25, 23, 26]). We use synchronous coupling
as a proof strategy to obtain convergence rates as in [16]. We first consider two chains
xn and yn with shared noise such that

xn+1 = yn − h∇U(xn) +
√

2hξn+1, yn+1 = yn − h∇U(yn) +
√

2hξn+1.

Then we have that

||xn+1 − yn+1||2 = ||xn − yn + (−∇U(xn)− (−∇U(yn))||2

= ||xn − yn||2 − 2h〈∇U(xn)−∇U(yn), xn − yn〉+ h2||∇U(xn)−∇U(yn)||2

= ||xn − yn||2 − 2h〈xn − yn, Q(xn − yn)〉+ h2〈xn − yn, Q2(xn − yn)〉,

where Q =
∫ 1

t=0
∇2U(xn+t(yn−xn))dt. Q has eigenvalues which are bounded between

m and M , so Q2 �MQ, and hence

h2〈xn − yn, Q2(xn − yn)〉 ≤ h2M〈xn − yn, Q(xn − yn)〉.

Therefore

||xn+1 − yn+1||2 ≤ ||xn − yn||2 − h(2− hM)〈xn − yn, Q(xn − yn)〉
≤ ||xn − yn||2(1− hm(2− hM)),

assuming that h ≤ 2
M . We have a contraction and

||xn − yn|| ≤ (1− hm(2− hM))n/2||x0 − y0||.

A consequence of this contraction result is that we have convergence in Wasserstein
distance to the invariant measure with rate hm (2− hM), under the imposed assump-
tions on h (as discussed in Sec. 2.3)[36, 46].

Note that this argument is exactly the same for the LM discretization of over-
damped Langevin dynamics as all the noise components are shared. The stepsize
assumption for convergence of overdamped Langevin dynamics in this setting is weak
and is the same assumption as is needed to guarantee convergence of gradient descent
in optimisation [9][Eq. (9.18)].
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4. Kinetic Langevin Dynamics. We now consider many discretizations of
the SDE (1.1) using a framework established in Sec. 4.1, where we construct an
alternative Euclidean norm in which we can prove contraction (it is not possible
to prove contraction in the standard Euclidean norm). Essentially, we convert the
problem of proving contraction to the problem of showing that certain matrices are
positive definite.

4.1. Proof Strategy. We will consider a modified Euclidean norm as defined in
Sec. 2.2 for some choice of a and b. Our aim is to construct an equivalent Euclidean
norm such that contraction occurs for two Markov chains simulated by the same
discretization zn = (xn, vn) ∈ R2d and z̃n = (x̃n, ṽn) ∈ R2d that are syncronously
coupled. That is, for some choice of a and b such that a, b > 0 and b2 < a

(4.1) ||z̃k+1 − zk+1||2a,b < (1− c (h)) ||z̃k − zk||2a,b,

where a and b are chosen to provide reasonable explicit assumptions on the stepsize h
and friction parameter γ. Our initial choices of a and b for simple schemes are moti-
vated by [36], and are derived by considering contraction of the continuous dynamics.
Let zj = z̃j − zj for j ∈ N, then (4.1) is equivalent to showing that

(4.2) zTk
(
(1− c (h))M − PTMP

)
zk > 0, where M =

(
1 b
b a

)
,

and zk+1 = Pzk (P depends on zk and z̃k, but we omit this in the notation).

Example 4.1. As an example we have for the Euler-Maruyama scheme the update
rule for zk

xk+1 = xk + hvk, vk+1 = vk − γhvk − hQxk,

where by mean value theorem we can define Q =
∫ 1

t=0
∇2U(x̃k + t(xk − x̃k))dt, then

∇U(x̃k) − ∇U(xk) = Qx. One can show that in the notation of equation (4.2) we
have

(4.3) P =

(
I hI
−hQ (1− γh) I

)
.

Proving contraction for a general scheme is equivalent to showing that the matrix
H := (1− c(h))M −PTMP � 0 is positive definite. The matrix H is symmetric and
hence of the form

(4.4) H =

(
A B
B C

)
,

we can show that H is positive definite by applying the following Prop. 4.2.

Proposition 4.2. Let H be a symmetric matrix of the form (4.4), then H is
positive definite if and only if A � 0 and C − BA−1B � 0. Further if A, B and C
commute then H is positive definite if and only if A � 0 and AC −B2 � 0.

Proof. The proof of the first result is given in [31]. To establish the second state-
ment, observe from [30] that if two matrices are positive definite and they commute
then the product is positive definite. Also if A � 0 then A−1 � 0 (as A is symmetric
positive definite). Further A,B and C commute and hence B, C and A−1 commute.
Therefore by applying the first result we have that A � 0 and

A−1
(
AC −B2

)
= C −BA−1B � 0,
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hence H is positive definite. If H is positive definite then A � 0 and C −BA−1B � 0
by the first result. Thus as A, B and C commute we have AC −B2 � 0.

Remark 4.3. An equivalent condition for a symmetric matrix H of the form (4.4)
to be positive definite is C � 0 and AC − B2 � 0 when A, B and C commute. One
could equivalently prove that C � 0 instead of A � 0 if it is more convenient.

Our general approach to prove contraction of some popular kinetic Langevin
dynamics schemes is to prove the conditions of Prop. 4.2 are satisfied to establish
contraction. We will use the notation laid out in this section in the proofs given in
the appendix.

4.2. Euler-Maruyama discretization. We define the EM chain with initial
condition (x0, v0) by (xn, vn, ξn) where the (ξn)n∈N are independent N (0, 1) draws
and (xn, vn) are updated according to:

xk+1 = xk + hvk,(4.5)

vk+1 = vk − h∇U(xk)− hγvk +
√

2γhξk+1.(4.6)

Theorem 4.4. Assume U is a m-strongly convex and M -∇Lipschitz potential.
When γ2 ≥ 4M and h < 1

2γ , we have that, for all initial conditions (x0, v0) ∈ R2d and

(x̃0, ṽ0) ∈ R2d, and for any sequence of standard normal random variables (ξn)n∈N, the
corresponding EM chains (xn, vn, ξn)n∈N and (x̃n, ṽn, ξn)n∈N with initial conditions

(x0, v0) ∈ R2d and (x̃0, ṽ0) ∈ R2d, respectively, satisfy

||(xk − x̃k, vk − ṽk)||a,b ≤ (1− c (h))
k
2 ||(x0 − x̃0, v0 − ṽ0)||a,b,

where a = 1
M , b = 1

γ and

c (h) =
mh

2γ
.

Example 4.5. An example to illustrate the tightness of the restrictions on the step-
size h and the restriction on the friction parameter γ. We consider the anisotropic
Gaussian distribution on R2 with potential U : R2 7→ R given by U(x, y) = 1

2mx
2 +

1
2My2. This potential satisfies the assumptions 2.1 with constants M and m respec-
tively. By computing the eigenvalues of the transition matrix P (for contraction) we
can see for what values of h contraction occurs. For EM we have that

P =

(
I hI
−hQ (1− γh) I

)
, where Q =

(
m 0
0 M

)
,

with eigenvalues
1

2

(
2− γh± h

√
γ2 − 4λ

)
,

for λ = m,M . For stability and contraction we require that

1

2

(
2− γh− h

√
γ2 − 4m

)
> 0, and

1

2

(
2− γh+ h

√
γ2 − 4m

)
< 1.

The second condition is equivalent to γ >
√
γ2 − 4m which trivially holds and the

first condition is equivalent to h ≤ 2/(γ +
√
γ2 − 4m) ≈ 1/γ.
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5. First order splittings. A common discretization strategy for kinetic
Langevin dynamics is based on splitting up the dynamics into parts which can be
integrated exactly, in the weak sense. An increasingly popular splitting choice used
in molecular dynamics modelling is to divide the SDE into deterministic parts corre-
sponding to linear positional drift and an impulse due to the force and a dissipative-
stochastic term corresponding to an Ornstein-Uhlenbeck equation [10]. These parts
are denoted by B, A and O with update rules given by

B : v → v − h∇U(x),

A : x→ x+ hv,

O : v → ηv +
√

1− η2ξ,

(5.1)

where
η := exp (−γh).

The reasoning for such a splitting is based on the fact that the infinitesimal generator
of the SDE (1.1) can be split as L = LA + LB + γLO, where

LA = 〈v,∇x〉 , LB = −〈∇U (x) ,∇v〉 , LO = −〈v,∇v〉+ ∆v.

The dynamics associated to LA and LB are the deteriministic dynamics corresponding
to A and B. The dynamics associated to γLO is the Ornstein-Uhlenbeck process,
which can be solved exactly, in the sense of distributions. This corresponds to the O
step. We use the convention that one applies the operators left to right.

The BAO method would first apply B then A and lastly O. For more details on
these splittings we refer the reader to [33].

We will now consider contraction for all first order splitting (permutations of the
A, B and O pieces), which are schemes with weak order 1. We first consider BAO,
where we define a BAO chain with initial condition (x0, v0) ∈ R2d by (xn, vn, ξn)n∈N,
using the update BAO (5.1) and (ξn)n∈N are vectors of standard normal random
variables.

Theorem 5.1 (BAO). Assume U is a m-strongly convex and M -∇Lipschitz po-
tential. When h < 1−η√

6M
, we have that for all initial conditions (x0, v0) ∈ R2d and

(x̃0, ṽ0) ∈ R2d, and for any sequence of standard normal random variables (ξn)n∈N the

BAO chains (xn, vn, ξn)n∈N and (x̃n, ṽn, ξn)n∈N with initial conditions (x0, v0) ∈ R2d

and (x̃0, ṽ0) ∈ R2d, respectively, satisfy

||(xk − x̃k, vk − ṽk)||a,b ≤ (1− c (h))
k
2 ||(x0 − x̃0, v0 − ṽ0)||a,b,

where a = 1
M and b = h

(1−η) and

c (h) =
h2m

4 (1− η)
.

Remark 5.2. The modified Euclidean norm has now been chosen to be stepsize
dependent and is needed to eliminate the corresponding dependency of the stepsize
on the strong convexity constant m. We note that that simply choosing b = 1/γ does
not result in a norm which guarantees a stepsize restriction which is independent
of m, as is clear from the motivation of the construction of our choice of b. When
b 6= h/(1−η) one can always choose m small enough such that AC−B2 is not positive
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definite. We also point out that the stepsize restriction implicitly implies that γ2 is
larger than some constant factor multiplied by M . Further, for large γ (for example
γ ≥ 5

√
M) we have convergence for stepsizes independent of the size of γ (for example

h < 1/8
√
M), which improves on the results of [41].

Example 5.3. An example to illustrate the tightness of the restrictions on the step-
size h and the restriction on the friction parameter γ. We consider the anisotropic
Gaussian distribution on R2 with potential U : R2 7→ R given by U(x, y) = 1

2mx
2 +

1
2My2. By computing the eigenvalues of the transition matrix P (for contraction) we
can see for what values of h contraction occurs. For BAO we have that

P =

(
I − h2Q hI
−hηQ ηI

)
, where Q =

(
m 0
0 M

)
,

with eigenvalues

1

2

(
1 + η − h2λ±

√
−4η + (−1− η + h2λ)

2

)
,

for λ = m,M . For stability and contraction it is necessary and sufficient that(
1 + η − h2M

)
> 0, and

1

2

(
1 + η − h2λ+

√
−4η + (−1− η + h2λ)

2

)
< 1.

The first condition requires h <
√

1+η
M , where 1√

M
<
√

1+η
M < 2√

M
. The second

condition holds when

1− η + h2λ >

√
−4η + (−1− η + h2λ)

2
,

which is equivalent to 4h2λ > 0, which trivially holds. Due to these stability conditions
the best contraction rate possible is O

(
m
M

)
, which coincides with our results. Further

we have that the contraction rate is precisely 1− λmax which simplifies to

cN = 1− η + h2m−
√

(1− η + h2m)
2 − 4h2m.

Moreover, it can be shown that 4c(h) > cN for h < 1/
√

22m and γ ≥ 4
√
m. It is

shown in [35][Proposition 4] that for the continuous dynamics this condition on γ is
necessary.

Theorem 5.4 (OAB). Assume U is a m-strongly convex and M -∇Lipschitz po-
tential. When h < min { 1

4γ ,
1−η√
6M
}, we have that for all initial conditions (x0, v0) ∈

R2d and (x̃0, ṽ0) ∈ R2d, and for any sequence of standard normal random variables
(ξn)n∈N the OAB chains (xn, vn, ξn)n∈N and (x̃n, ṽn, ξn)n∈N with initial conditions

(x0, v0) ∈ R2d and (x̃0, ṽ0) ∈ R2d, respectively, satisfy

| |(xk − x̃k, vk − ṽk) ||a,b ≤ (1− c (h))
k
2 || (x0 − x̃0, v0 − ṽ0) ||a,b,

where a = 1
M , b = ηh

(1−η) and c (h) = ηh2m
4(1−η) .

Considering other splittings one could use the same techniques as above or we
can use the contractions results of BAO and OAB to achieve a contraction result for
the remaining permutations by writing

(ABO)n = AB(OAB)n−1O, (BOA)n = B(OAB)n−1OA
(OBA)n = O(BAO)n−1BA, (AOB)n = AO(BAO)n−1B
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However by applying direct arguments as done for OAB and BAO one would achieve
better preconstants. Let (x̃0, ṽ0) ∈ R2d and (x0, v0) ∈ R2d be two initial conditions
for a synchronous coupling of sample paths of the ABO splitting and x0 := x̃0 − x0,
v0 := ṽ0 − v0. In the following argument we let Q be such that ∇U (x̃0 + hṽ0) −
∇U (x0 + hv0) = Q (x0 + hv0) by the mean value theorem. Using the notation
ΨABO to denote the one step map of the ABO discretization we have that for h <
min { 1

4γ ,
1−η√
6M
}

||ΨABO (x̃k)−ΨABO (xk) ||2a,b = || (ΨABO)
k

(x̃0)− (ΨABO)
k

(x0) ||2a,b
= ||ΨO ◦ (ΨOAB)

k−1 ◦ΨAB (x̃0)−ΨO ◦ (ΨOAB)
k−1 ◦ΨAB (x0) ||2a,b

≤ 3 (1− c (h))
k−1 ||ΨAB (x̃0, ṽ0)−ΨAB (x0, v0) ||2a,b

≤ 9 (1− c (h))
k−1 ((

1 + 2h2M2a
)
||x0||2 +

(
h2 + a+ 2h4M2a

)
||v0||2

)
≤ 27 (1− c (h))

k−1 || (x0, v0) ||2a,b,

where we have used the norm equivalence introduced in Sec. 2.2. The same method
of argument can be used for the other first order splittings.

6. Higher order splittings. We now consider higher order schemes which are
obtained by the splittings introduced in Sec. 5. These schemes are weak order two
and they are symmetric in the order of the operators, with repeated operators corre-
sponding to multiple steps with half the stepsize. We will focus our attention to two
popular splittings which are BAOAB and ABOBA (or OBABO) as in [32]. Due to the
fact that the modified Euclidean norms developed in the previous section are differ-
ent for different first order splittings we aren’t able to simply compose the results of
say OBA and ABO to obtain contraction of OBABO. First we consider the BAOAB
discretization, where we denote a BAOAB chain with initial condition (x0, v0) ∈ R2d

by (xn, vn, ξn)n∈N, which are defined by the update BAOAB (5.1) and (ξn)n∈N are
independent Gaussian random variables.

Theorem 6.1 (BAOAB). Assume U is a m-strongly convex and M -∇Lipschitz
potential. When h ≤ 1−η

2
√
M

, we have that for all initial conditions (x0, v0) ∈ R2d and

(x̃0, ṽ0) ∈ R2d, and for any sequence of standard normal random variables (ξn)n∈N the
BAOAB chains (xn, vn, ξn)n∈N and (x̃n, ṽn, ξn)n∈N with initial conditions (x0, v0) ∈
R2d and (x̃0, ṽ0) ∈ R2d, respectively, satisfy

|| (xk − x̃k, vk − ṽk) ||a,b ≤ 7 (1− c (h))
k−1
2 || (x0 − x̃0, v0 − ṽ0) ||a,b,

where a = 1
M and b = h

(1−η) and

c (h) =
1

4

(
ηh2m

(1− η)
+ h2m

)
=

h2m

4 (1− η)
.

Next we consider the OBABO discretization which has been studied in the re-
cent work [36]. In [37] they analyse Hamiltonian Monte Carlo as O (ABA)

LO for
L leapfrog steps. In [37] a similar norm is used to study Hamiltonian Monte Carlo,
however they obtain stepsize restrictions of at least O

(
m/L3/2

)
. We note that the

OABAO scheme can also be analysed in our framework. We denote a OBABO chain
with initial condition (x0, v0) ∈ R2d by (xn, vn, ξn)n∈N, which are defined by the
update OBABO (5.1) and (ξn)n∈N are independent Gaussian random variables.
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Theorem 6.2 (OBABO). Assume U is a m-strongly convex and M -∇Lipschitz
potential. When h < 1−η√

4M
, we have that for all initial conditions (x0, v0) ∈ R2d and

(x̃0, ṽ0) ∈ R2d, and for any sequence of standard normal random variables (ξn)n∈N the
OBABO chains (xn, vn, ξn)n∈N and (x̃n, ṽn, ξn)n∈N with initial conditions (x0, v0) ∈
R2d and (x̃0, ṽ0) ∈ R2d, respectively, satisfy

|| (xk − x̃k, vk − ṽk) ||a,b ≤ 7 (1− c (h))
k−1
2 || (x0 − x̃0, v0 − ṽ0) ||a,b,

where a = 1
M , b = h

(1−η) and

c (h) =
h2m

4 (1− η)
.

Remark 6.3. In [18] it is shown that the continuous dynamics converges with a
rate of O(m/γ). There is a major difference in terms of contraction rate for large γ
between the rates achieved by BAOAB and OBABO and the continuous dynamics.
As γ →∞ for BAOAB and OBABO you have convergence rates of O(h2m), whereas
the contraction rate of the continuous dynamics converges to zero.

Remark 6.4. In Theorem 6.1 and Theorem 6.2 we have a prefactor of 7 due to
the fact that we have converted the problem of contraction into proving a simpler
problem with one gradient evaluation. More specifically for BAOAB using the re-
lation (BAOAB)n = BAO (ABAO)

n−1AB and proving contraction for ABAO and
similarly for OBABO. The prefactor comes from the remaining terms BAO and AB.

7. Stochastic exponential Euler scheme. See [22] for an introduction to the
Stochastic exponential Euler scheme and a derivation, based on keeping the gradient
constant and analytically integrating the OU process with this constant gradient
by combining the B and the O steps in the previous splitting. This scheme is the
one considered in [14, 18] and has gained a lot of attention in the machine learning
community and we can apply our methods to this scheme. Similar schemes have also
been considered in [12, 28, 44] and it has been analysed in [22, 43]. The scheme in
the notation we have used is given by the update rule

Xk+1 = Xk +
1− η
γ

Vk −
γh+ η − 1

γ2
∇U (Xk) + ζk+1,

Vk+1 = ηVk −
1− η
γ
∇U (Xk) + ωk+1,

(7.1)

where

ζk+1 =
√

2γ

∫ h

0

e−γ(h−s)dWhγ+s, ωk+1 =
√

2γ

∫ h

0

1− e−γ(h−s)

γ
dWhγ+s.

(ζk, ωk)k∈N are Gaussian random vectors with covariances matrices which are stated
in [22]. Now we can couple two trajectories which have common noise (ζk, ωk)k∈N
then we can obtain contraction rates by the previously introduced methods. For
the SES discretization where we denote a SES chain with initial condition (x0, v0) ∈
R2d by (xn, vn, ξn)n∈N, which are defined by the update SES (7.1) and (ξn)n∈N are
independent Gaussian random variables.

Theorem 7.1 (Stochastic Euler Scheme). Assume U is a m-strongly convex
and M -∇Lipschitz potential. When γ ≥ 5

√
M and h ≤ 1

2γ , we have that for all

initial conditions (x0, v0) ∈ R2d and (x̃0, ṽ0) ∈ R2d, and for any sequence of standard
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normal random variables (ξn)n∈N the SES chains (xn, vn, ξn)n∈N and (x̃n, ṽn, ξn)n∈N
with initial conditions (x0, v0) ∈ R2d and (x̃0, ṽ0) ∈ R2d, respectively, satisfy

|| (xk − x̃k, vk − ṽk) ||a,b ≤ (1− c (h))
k
2 || (x0 − x̃0, v0 − ṽ0) ||a,b,

where a = 1
M , b = 1

γ and

c (h) =
mh

4γ
.

8. Overdamped Limit. We will now compare and analyze how the different
schemes behave in the high friction limit. Starting with the first order schemes. It is
a desirable property that the high friction limit is a discretization of the overdamped
dynamics, therefore if a user of such a scheme sets a friction parameter γ too large,
they will not suffer from the O(1/γ) scaling of the convergence rate. We will call
schemes with this desirable property γ-limit convergent (GLC), out of the schemes
we have analysed it is only BAOAB and OBABO which are GLC.

8.1. BAO. If we consider the update rule of the BAO scheme

xk+1 = xk + h (vk − h∇U(xk)) , vk+1 = ηvk − hη∇U(xk) +
√

1− η2ξk+1,

and take the limit as γ →∞ we obtain

xk+1 = xk − h2∇U(xk) + hξk,

which is simply the Euler-Maruyama scheme with stepsize h2 for potential Ũ := 4U ,
which imposes stepsize restrictions h2 ≤ 2

4M and hence consistent with our analysis.
Further if we take the limit of the contraction rate and the modified Euclidean norm
we have

lim
γ→∞

c (h) =
h2m

4
, lim

γ→∞
||x||2 + 2b〈x, v〉+ a||v||2 = ||x||2 + 2h〈x, v〉+

1

M
||v||2,

which is again consistent with the convergence rates achieved in Sec. 3.1 and the
norm is essentially the Euclidean norm when considered on the overdamped process
as v = 0. Due to the fact that the potential is rescaled in the limit, this is not a
discretization of the overdamped dynamics.

8.2. OAB. If we consider the update rule of the OAB scheme

xk+1 = xk + hηvk + h
√

1− η2ξk+1,

vk+1 = ηvk
√

1− η2ξk+1 − hη∇U(xk + hηvk + h
√

1− η2ξk+1),

and take the limit as γ →∞ we obtain the update rule xk+1 = xk + hξk+1, therefore
the overdamped limit is not inherited by the scheme and further we do not expect
contraction. This is consistent with our analysis of OAB and our contraction rate
which tends towards 0 in the high friction limit.

8.3. BAOAB. If we consider the update rule of the BAOAB scheme

xk+1 = xk +
h

2
(1 + η) vk −

h2

4
(1 + η)∇U(xk) +

h

2

√
1− η2ξk+1,

vk+1 = η

(
vk −

h

2
∇U(xk)

)
+
√

1− η2ξk+1 −
h

2
∇U(xk+1),
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and take the limit as γ →∞ we obtain

xk+1 = xk −
h2

2
∇U(xk) +

h

2
(ξk + ξk+1) ,

which is simply the LM scheme with stepsize h2/2 (as originally noted in [32]), which
imposes stepsize restrictions h2 ≤ 2/M and hence consistent with our analysis. Fur-
ther if we take the limit of the contraction rate and the modified Euclidean norm we
have

lim
γ→∞

c (h) =
h2m

4
, lim

γ→∞
||x||2 + 2b〈x, v〉+ a||v||2 = ||x||2 + 2h〈x, v〉+

1

M
||v||2,

which is again consistent with the convergence rates achieved in Sec. 3.1 and the
modified Euclidean norm is essentially the Euclidean norm when considered on the
overdamped process as v = 0.

8.4. OBABO. If we consider the update rule of the OBABO scheme

xk+1 = xk + hηvk + h
√

1− η2ξ1,k+1 −
h2

2
∇U(xk),

vk+1 = η

(
ηv +

√
1− η2ξ1,k+1 −

h

2
∇U(xk)− h

2
∇U(xk+1)

)
+
√

1− η2ξ2,k+1,

where (η = exp (−γh/2)) and for ease of notation in the above scheme and we have
labelled the two noises of one step ξ1 and ξ2 . Now we take the limit as γ → ∞ we
obtain

xk+1 = xk −
h2

2
∇U(xk) + hξk+1,

which is the Euler-Maruyama scheme for overdamped Langevin with stepsize h2/2,
which has convergence rate O

(
h2m

)
. Hence consistent with our analysis of OBABO

and our contraction rate which tends towards h2m/4 in the high friction limit.

8.5. SES. If we consider the limit as γ →∞ of the scheme (7.1) we obtain the
update rule xk+1 = xk and therefore the overdamped limit is not inherited by the
scheme and further we do not expect contraction. Hence consistent with our analysis
of the stochastic Euler scheme as the contraction rate tends to 0 in the high friction
limit.
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(c) High friction

Fig. 1: Contraction of two kinetic Langevin trajectories x1 and x2 with initial
conditions [−1,−1] and [1, 1] for a 2-dimensional standard Gaussian with stepsize
h = 0.25 = 1/4

√
M .
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9. Discussion. We tested our observations numerically in Fig. 1 with a 2-
dimensional standard Gaussian. Fig. 1 is consistent with our analysis that all schemes
are stable when γ ≈ 4

√
M and in the high friction regime EM, OAB and SES behave

poorly compared to BAOAB and BAO. In the low friction regime again EM and SES
perform poorly compared to the other schemes.

In [18] it is shown that the optimal convergence rate for the continuous time
dynamics is O(m/γ), therefore our contraction rates are consistent up to a con-
stant for the discretizations, however for some of the schemes considered for ex-
ample BAOAB and OBABO we have that the scheme inherits convergence to the
overdamped Langevin dynamics (without time rescaling) and this is reflected in our
convergence rate estimates. Therefore for MCMC applications it does not suffer from
the scaling of 1/γ on the convergence rate, if the user picks a friction parameter which
is too high. This robustness with respect to the friction parameter is shown in Fig.
1.

The constants in our arguments can be improved by sharper bounds and a more
careful analysis, but the restriction on γ is consistent with other works on synchronous
coupling for the continuous time Langevin diffusions [5, 14, 18, 19, 49]. Further it
is shown in [35][Proposition 4] that the continuous time process yields Wasserstein
contraction of synchronous coupling for all M -∇Lipschitz and m-strongly convex po-
tentials U if and only if M −m < γ(

√
M +

√
m) for the norms that we considered.

This condition when M is much larger than m is O(
√
M). It may be possible to

achieve convergence rates for small γ, by using a more sophisticated argument like
that of [27]. Using a different Lyapunov function or techniques may lead to being able
to extend these results to all γ > 0 [22, 39], following results for the continuous case
[27], but this is beyond the scope of this paper.

The restrictions on the stepsize h are tight for the optimal contraction rate for EM
and BAO and hence result in stability conditions of O (1/γ) for EM and SES. Also we
have shown BAO, OBA, AOB, BAOAB and OBABO have convergence guarantees
for stepsizes O(1/

√
M) and BAOAB and OBABO have the desirable GLC property

which is not common amongst the schemes we studied. For the choice of parameters
which achieve optimal contraction rate we derive O(m/M) rates of contraction, which
are sharp up to a constant and we achieve this for every scheme that we studied.
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Appendix A. Proofs.

Proof of Theorem 4.4. We will denote two synchronous realisations of EM as
(xj , vj) and (x̃j , ṽj) for j ∈ N. Now we will denote x := (x̃j − xj), v = (ṽj − vj)
and z = (x, v), where zj = (xj , vj) for j = k, k + 1 for k ∈ N. We have the following
update rule for zk

xk+1 = xk + hvk, vk+1 = vk − γhvk − hQxk,

where by mean value theorem we define Q =
∫ 1

t=0
∇2U(x̃k + t(xk − x̃k))dt, then

∇U(x̃k) − ∇U(xk) = Qx. One can show that in the notation of equation (4.2) we
have

(A.1) P =

(
I hI
−hQ (1− γh) I

)
,

and therefore for Euler-Maruyama (using the notation of equation (4.4))

A = −c (h) + 2bhQ− h2aQ2, B = −c (h) b+ h ((bγ − 1) + (a+ h(b− aγ))Q) ,

C = −c (h) a+ h
(
2aγ − 2b− h(1− 2bγ + aγ2)

)
.

We now invoke Prop. 4.2 as A, B and C commute as they are all polynomials in
Q. A is positive definite if and only if all it’s eigenvalues are positive. We note that
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the eigenvalues of A are precisely PA(λ) := −c (h) + h
(
2bλ− haλ2

)
, where λ are

the eigenvalues of Q, where m ≤ λ ≤ M . We wish to show that PA(λ) > 0 for all
λ ∈ [m,M ]. This is equivalent to

PA (λ)

h
= −m

2γ
+

2λ

γ
− hλ2

M
≥ λ

(
− 1

2γ
+

2

γ
− h
)
> 0,

which are both satisfied when h < 1/γ. Hence we have that A � 0. Now it remains
to prove that AC − B2 � 0, where AC − B2 is a polynomial of Q, which we denote
PAC−B2(Q). Hence has eigenvalues dictated by the eigenvalues λ of Q. That is the
eigenvalues of AC−B2 are PAC−B2(λ) for λ an eigenvalue of Q. Considering PAC−B2

we have

PAC−B2 (λ)

h2λ
=

4

M
− 4

γ2
+

m2

4γ2Mλ
− m2

4γ4λ
+

m

γ2λ
− m

Mλ
− λ

M2
+ h2

(
λ

M
− λ

γ2

)
+ h

(
2

γ
− m

γM
− m

2γλ
+
m

γ3
+

mλ

2γM2
+

γm

2Mλ
− 2γ

M

)
>

1

M
− h2γ

M
> 0,

where we have used the fact that γ ≥ 2
√
M and h < 1

2γ and hence AC −B2 � 0.

Proof of Theorem 5.1. We will denote two synchronous realisations of BAO as
(xj , vj) and (x̃j , ṽj) for j ∈ N. Now we will denote x := (x̃j − xj), v = (ṽj − vj) and
z = (x, v), where zj = (xj , vj) for j = k, k + 1 for k ∈ N. We have the following
update rule for zk

xk+1 = xk + h (vk − hQxk) , vk+1 = η(vk − hQxk),

where by mean value theorem we define Q =
∫ 1

t=0
∇2U(x̃k + t(xk − x̃k))dt, then

∇U (x̃k)−∇U (xk) = Qxk. In the notation of (4.4) we have that

A = −c (h) + 2 (bη + h)hQ−
(
aη2 + 2bηh+ h2

)
h2Q2,

B = b (1− η)− h− bc (h) +
(
aη2 + 2bηh+ h2

)
hQ,

C = a
(
1− η2

)
− 2bηh− h2 − ac (h) ,

where η = exp {−γh}. For our choice of a and b, B simplifies to

B = −bc (h) +
(
aη2 + 2bηh+ h2

)
hQ.

This simplification motivates our choice of b as we would like to factor out m from B
in proving AC − B2 � 0 in a later calculation and this factorisation is necessary to
remove the dependence on m in our stepsize estimates.

We will now apply Prop. 4.2. First considering A, we have that the eigenvalues
for our choice of a, b and c (h) are precisely

PA (λ) = −c (h) + 2bλh−
(
aη2 + 2bηh+ h2

)
h2λ2 > hλ

(
7b

4
−
(
h+

b

2
+
h

4

))
> 0,

where λ are the eigenvalues of Q and we have used that h < 1/(
√

4M) and b ≥ h.
Hence we have that A � 0. Now it remains to prove that AC−B2 � 0, where AC−B2

is a polynomial of Q, which we denote PAC−B2(Q) and hence has eigenvalues dictated
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by the eigenvalues λ of Q. We have that

P (λ)

hλ
=

(
η2 − 1

)
c (h)

hMλ
+ h

(
2
(
1− η2

)
(1− η)M

+
c(h)2

h2Mλ
− η2λ

M2

)

+
c(h)

h
h2

(
1

λ
+

2

(1− η)
(
η

λ
+
η2 − 1

M
) +

η2λ

M2

)
+ h3

(
− 4η

(1− η)2
− 2

(1− η)
− c(h)2

(1− η)2h2λ
− λ

M
− 2ηλ

(1− η)M

)
+
c(h)

h
h4

(
4η

(1− η)2
+

2

(1− η)
+

λ

M
+

2ηλ

(1− η)M

)
>

(
7h (1 + η)

4M
− η2h

M
− h2

√
6M

)
+ h3

(
− 1

(1− η)2

(
4 +

1

96

)
− 1− 4

(1− η)

)
> h

(
7

4M
− 1

6M
− 2

3M

(
1 +

1

384

)
− 1

6M
− 2

3M

)
> 0,

where we have used the fact that h < 1−η√
6M

. This holds for any λ ∈ [m,M ] and hence

AC −B2 � 0 and our contraction results hold.

Proof of Theorem 5.4. We will denote two synchronous realisations of OAB as
(xj , vj) and (x̃j , ṽj) for j ∈ N. Now we will denote x := (x̃j − xj), v = (ṽj − vj) and
z = (x, v), where zj = (xj , vj) for j = k, k + 1 for k ∈ N. We have the following
update rule for zk

xk+1 = xk + hηvk, vk+1 = ηvk − hQxk+1,

where by mean value theorem we define Q =
∫ 1

t=0
∇2U(x̃k+1 +t(xk+1− x̃k+1))dt, then

∇U (x̃k+1)−∇U (xk+1) = Qxk+1. In the notation of (4.4) we have that

A = −c (h) + 2bhQ− ah2Q2,

B = b (1− η)− ηh− bc (h) + (aηh+ 2bηh2)Q− aηh3Q2,

C = a
(
1− η2

)
− 2bη2h− η2h2 − ac (h) + (2aη2h2 + 2bη2h3)Q− aη2h4Q2,

where η = exp {−γh}. For our choice of a and b, B simplifies to

B = −bc (h) + (aηh+ 2bηh2)Q− aηh3Q2.

We will now apply Prop. 4.2, first considering A we have that the eigenvalues are
precisely

PA(λ) = hλ

(
−c (h)

hλ
+ 2b− ahλ

)
≥ hλ

(
7b

4
− h
)
> 0,

Hence we have that A � 0 and we note that this condition enforces a dependency of
h on γ to ensure convergence. Now it remains to prove that AC − B2 � 0, now we
have that AC −B2 is a polynomial of Q, which we denote PAC−B2(Q) and hence has
eigenvalues dictated by the eigenvalues λ of Q.

Using the fact that hγ ≥ 1− η ≥ hγ
2 and hence η ≥ 3

4 for h < 1
4γ . Also using that
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h ≤ 1−η√
6M

we have that

PAC−B2 (λ)

hλ
=

(
η2 − 1

)
c (h)

hMλ
+ h

(
2η
(
1− η2

)
(1− η)M

+
c (h)

2

h2Mλ
− λ

M2

)

+ h2 c (h)

h

(
− 2η

(1− η)M
− 2η2

M
+

2η2

(1− η)M
+
η2

λ
+

2η3

(1− η)λ
+

λ

M2

)
+ h3

(
− 4η4

(1− η)
2 −

2η3

1− η
− η2c (h)

2

(1− η)
2
h2λ

+
λη2

M
+

2η3λ

(1− η)M

)

+ h4 c (h)

h

(
4η3

(1− η)
2 −

2η3

(1− η)
+
η2λ

M
− 2η2λ

(1− η)M

)

≥ 5h

4M
+

(
− h

6M

)
+ h3

(
− 4

(1− η)
2 −

1

96 (1− η)
2 −

2

(1− η)

)
− h3

12
> 0.

Hence AC −B2 � 0 and our contraction results hold.

Proof of Theorem 6.1. We first note that (BAOAB)
n

= BAO (ABAO)
n−1AB.

We will now focus our attention on proving contraction of ABAO, by doing this we
only have to deal with a single evaluation of the Hessian at each step. We will denote
two synchronous realisations of ABAO as (xj , vj) and (x̃j , ṽj) for j ∈ N. Now we will
denote x := (x̃j − xj), v = (ṽj − vj) and z = (x, v), where zj = (xj , vj) for j = k, k+1
for k ∈ N. We have the following update rule for zk

xk+1 = xk + hvk −
h2

2
Q

(
x+

h

2
v

)
, vk+1 = ηvk − hηQ

(
x+

h

2
v

)
,

where by mean value theorem we define Q =
∫ 1

t=0
∇2U(x̃k + h

2 ṽk + t(xk− x̃k + h
2 (vk−

ṽk)))dt, then ∇U
(
x̃k + h

2 ṽk
)
−∇U

(
xk + h

2 vk
)

= Q
(
x+ h

2 v
)
. In the notation of (4.4)

we have that for this scheme

A = −c (h) +
(
2bηh+ h2

)
Q+

(
−aη2h2 − bηh3 − 1

4
h4

)
Q2,

B = b (1− η)− h− bc (h) +

(
aη2h+ 2bηh2 +

3

4
h3

)
Q

+

(
−1

2
aη2h3 − 1

2
bηh4 − 1

8
h5

)
Q2,

C = a
(
1− η2

)
− 2bηh− h2 − ac (h) +

(
aη2h2 +

3

2
bηh3 +

1

2
h4

)
Q

+

(
−1

4
aη2h4 − 1

4
bηh5 − 1

16
h6

)
Q2,

where η = exp {−γh}. For our choice of a and b, B simplifies to

B = −bc (h) +

(
aη2h+ 2bηh2 +

3

4
h3

)
Q+

(
−1

2
aη2h3 − 1

2
bηh4 − 1

8
h5

)
Q2,

Now it is sufficient to prove that A � 0 and that C −BA−1B � 0, noting that A, B
and C commute as they are all polynomials in Q; it is sufficient to prove that A � 0
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and AC − B2 � 0. First considering A we have that A is symmetric and hence it
is positive definite if and only if all it’s eigenvalues are positive. We note that the
eigenvalues of A are precisely

PA (λ) = h

(
−c (h)

h
+ (2bη + h)λ+ (−aη2h− bηh2 − 1

4
h3)λ2

)
≥ hλ

(
7bη

4
+

3h

4
− η2h− bηh2M − h3M

4

)
≥ hλ

(
5bη

4
+

3h

4
− 3η2h

4
− h

16

)
≥ hλ

(
bη

2
+

3h

4
− h

16

)
> 0,

where λ are the eigenvalues of Q, where m ≤ λ ≤ M and we have used the fact
that h < 1−η√

4M
and b ≥ h. Hence we have that A � 0. Now it remains to prove

that AC − B2 � 0, now we have that AC − B2 is a polynomial of Q, which we
denote PAC−B2(Q) and hence has eigenvalues dictated by the eigenvalues λ of Q.
Now considering

PAC−B2 (λ)

hλ
=

(
η2 − 1

)
c (h)

hMλ
+ h

(
1− η2

M
− η2λ

M2
+

2η
(
1− η2

)
(1− η)M

+
c (h)

2

h2Mλ

)

+ h2 c (h)

h

(
− (1 + η)

2

M
+

1 + η

(1− η)λ
+
η2λ

M2

)

+ h3

(
−1− 4η

(1− η)
2 −

c (h)
2

h2 (1− η)
2
λ
− λ

4M
+

3η2λ

4M
−
ηλ
(
1− η2

)
(1− η)M

)

+ h4 c (h)

h

(
1 +

4η

(1− η)
2 +

λ
(
1 + η2

)
4M

+
ηλ

M

)
+ h5λ

(
3

16
+

η

(1− η)
2

)

+ h6 c (h)

h

(
−3λ

16
− ηλ

(1− η)
2

)
≥ − (1 + η)h

4M
+ h

(
1 + 2η

M

)

+ h3

(
−5

4
− 4η

(1− η)
2 −

1

64 (1− η)
2 − η (1 + η)

)
− h3

32
> 0,

where we have used the fact that h < 1−η√
4M

. Hence AC −B2 � 0 and our contraction

results hold. All computations can be checked using Mathematica. We can bound
AB operator on || · ||a,b by

||ΦAB (x̃k, ṽk)− ΦAB (xk, vk) ||2a,b ≤

3

((
1 +

ah2M2

2

)
||xk||2 +

(
a+

h2

4
+
ah4M2

8

)
||vk||2

)
≤ 7||xk, vk||2a,b,

where we have used the norm equivalence in Sec. 2.2. We can also bound

||ΦBAO (x̃k, ṽk)− ΦBAO (xk, vk) ||2a,b

≤ 3

((
1 +

ah2M2

4
+
h4M2

8

)
||xk||2 +

(
h2

2
+ a

)
||vk||2

)
≤ 7||xk, vk||2a,b.

Combining these results we have the required result.
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Proof of Theorem 6.2. We first note that (OBABO)
n

= OB (ABOB)
n−1ABO.

We will now focus our attention on proving contraction of ABOB. Note we are
only have to deal with a single evaluation of the Hessian at each step as the position
variable is not updated between gradient evaluations. We will denote two synchronous
realisations of ABOB as (xj , vj) and (x̃j , ṽj) for j ∈ N. Now we will denote x :=
(x̃j − xj), v = (ṽj − vj) and z = (x, v), where zj = (xj , vj) for j = k, k+ 1 for k ∈ N.
We have the following update rule for zk

xk+1 = xk + hvk, vk+1 = ηvk −
h

2
(η + 1)Q (x+ hv) ,

where by mean value theorem we define Q =
∫ 1

t=0
∇2U(x̃k +hṽk + t(xk − x̃k +h(vk −

ṽk)))dt, then ∇U (x̃k + hṽk) −∇U (xk + hvk) = Q (x+ hv). In the notation of (4.4)
we have that for this scheme

A = −c (h) + bh (1 + η)Q− (1 + η)2 ah
2Q2

4
,

B = b (1− η)− h− bc (h) +

(
1

2
aη + bh

)
(η + 1)hQ− (η + 1)

2 ah
3

4
Q2,

C = a
(
1− η2

)
− 2bηh− h2 − ac (h) + (aη + bh) (η + 1)h2Q− a (η + 1)

2 h
4

4
Q2,

where η = exp {−γh}. This form motivates the choice b = h
1−η and a = 1

M inspired
by the continuous dynamics. For our choice of a and b, B simplifies to

B = −bc (h) + (
1

2
aη + bh)(η + 1)hQ− (η + 1)2 ah

3

4
Q2.

We will now apply Prop. 4.2, first considering A we have that the eigenvalues are
precisely

PA (λ) = −c (h) + bh(1 + η)λ− (1 + η)2 ah
2λ2

4
≥ hλ

(
3b

4
+ bη − h

4
− 3bη

4

)
> 0,

where λ are the eigenvalues of Q, where m ≤ λ ≤M and we have used the fact that
b ≥ h. Hence we have that A � 0. Now it remains to prove that AC − B2 � 0, now
we have that AC −B2 is a polynomial of Q, which we denote PAC−B2(Q) and hence
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has eigenvalues dictated by the eigenvalues λ of Q. Now considering

PAC−B2 (λ)

hλ
=

(
η2 − 1

)
c (h)

hMλ
+ h

(
(1 + η)

2

M
+
c (h)

2

h2Mλ
− (1 + η)

2
λ

4M2

)

+ h2 c (h)

h

(
− (1 + η)

2

M
− 1

λ
+

2

(1− η)λ
+
λ (1 + η)

2

4M2

)

+ h3

(
− (1 + η)

2

(1− η)
2 −

c (h)
2

(1− η)
2
h2λ
− λ (1 + η)

2

4M
+

λ (1 + η)
2

2 (1− η)M

)

+ h4 c (h)

h

(
(1 + η)

2

(1− η)
2 +

λ (1 + η)
2

4M
− λ (1 + η)

2

2M (1− η)

)

> −h (1 + η)

4M
+ h

(
3 (1 + η)

2

4M

)
− h

(
3 (1 + η)

2

64M

)

+ h

(
− (1 + η)

2

4M
− 1

64M

)
> 0,

where we have used the fact that h < 1−η√
4M

. Hence AC −B2 � 0 and our contraction

results hold. All computations can be checked using Mathematica. We can bound
ABO operator on || · ||a,b by

||ΦABO (x̃k, ṽk)− ΦABO (xk, vk) ||2a,b

≤ 3

((
1 +

ah2M2

2

)
||xk||2 +

(
a+ h2 +

ah4M2

2

)
||vk||2

)
≤ 8||xk, vk||2a,b,

where we have used the norm equivalence in Sec. 2.2. We can also bound

||ΦOB (x̃k, ṽk)− ΦOB (xk, vk) ||2a,b ≤ 3

((
1

2
+
ah2M2

4

)
||xk||2 + a||vk||2

)
≤ 6||xk, vk||2a,b.

Combining these results we have the required result.

Proof of Theorem 7.1. We remark that synchronously coupling between two reali-
sations of the stochastic Euler scheme results in a synchronous coupling of (ζk, ωk)k∈N.
Now we will denote x := (x̃j − xj), v = (ṽj − vj) and z = (x, v), where zj = (xj , vj)
for j = k, k + 1 for k ∈ N. We have the following update rule for zk

xk+1 = xk +
1− η
γ

vk −
γh+ η − 1

γ2
Qxk, vk+1 = ηvk −

1− η
γ

Qxk,

where by mean value theorem we define Q =
∫ 1

t=0
∇2U(x̃k + t(xk − x̃k))dt, then

∇U (x̃k) − ∇U (xk) = Q (x+ hv). In the notation of (4.4) we have that for this
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scheme

A = −c (h) + 2

(
b (1− η)

γ
+
η − 1 + γh

γ2

)
Q

−

(
a (1− η)

2

γ2
+

2b (1− η) (−1 + η + γh)

γ3
+

(−1 + η + γh)
2

γ4

)
Q2,

B = b (1− η)− (1− η)

γ
− bc (h)

+

(
aη (1− η)

γ
+
b (1− η)

2

γ2
+
bη (−1 + η + γh)

γ2
+

(1− η) (−1 + η + γh)

γ3

)
Q,

C = a(1− η2)− ac (h)− 2bη (1− η)

γ
− (1− η)

2

γ2
,

where η = exp {−γh}. This form motivates the choice b = 1
γ and a = 1

M inspired by

the continuous dynamics. For our choice of a and b, B simplifies to B = −bc (h) +
O (Q). We will now apply Prop. 4.2, first considering A we wish to show that all it’s
eigenvalues are positive which are precisely

PA(λ) := −c (h) + 2

(
b (1− η)

γ
+
η − 1 + γh

γ2

)
λ

−

(
a (1− η)

2

γ2
+

2b (1− η) (−1 + η + γh)

γ3
+

(−1 + η + γh)
2

γ4

)
λ2,

≥ hλ
(

7

4γ
−
(
h+

h2M

γ
+
h3M

4

))
> 0,

where λ are the eigenvalues of Q, where m ≤ λ ≤M and using the fact that, γ2 ≥ 4M ,

1−η ≤ hγ, hγ+η−1 ≤ (hγ)2

2 and h < 1
2γ . Hence we have that A � 0. Now it remains

to prove that AC −B2 � 0, now we have that AC −B2 is a polynomial of Q, which
we denote PAC−B2(Q) and hence has eigenvalues dictated by the eigenvalues λ of Q.
Due to the fact that the terms are more complicated than the previous discretizations
we choose a convenient way of expanding the expression which can obtain positive
definiteness. That is to expand the expression in terms of a. By using for example
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Mathematica one can show that PAC−B2(λ) = c0 + c1a+ c2a
2, where

c1 + c2a =
(
η2 − 1

)
c (h) + c (h)

2
+ 2

(
1− η2

)(b (1− η)

γ
+
−1 + η + γh

γ2

)
λ

+
2b (1− η) ηc (h)λ

γ
− 2

(
b (1− η)

γ
+
−1 + η + γh

γ2

)
c (h)λ+

(1− η)
4
λ2

γ4

− 2η (1− η)
2

(−1 + η + γh)λ2

γ4
− 2b (1− η) (−1 + η + γh)λ2

γ3

−
(
1− η2

)
(−1 + η + γh)

2
λ2

γ4
+

2b (1− η) (−1 + η + γh) c (h)λ2

γ3

+
(−1 + η + γh)

2
c (h)λ2

γ4
+ a

(
− (1− η)

2
λ2

γ2
+

(1− η)
2
c (h)λ2

γ2

)

≥ c1 −
(1− η)

2
λ

γ2
+

(1− η)
2
c (h)λ

γ2

≥
(
η2 − 1

)
c (h) +

(
1− η2

)(2h

γ
− 1− η

(1 + η) γ2

)
λ+ ...

≥ λ
((
−h

2

2

)
+ h2

(
2− 1

1 + η

)
+ ...

)
> λ

(
h2

2
− h2

16
− h3γ

16
− h3γ

8
− h3γ

16

)
≥ λ

(
7h2

16
− h3γ

4

)
,

where h < 1
2γ , γ2 ≥ 8M ≥ 8m, hγ

2 ≤ 1− η ≤ hγ and hγ + η − 1 ≤ (hγ)2

2 . Further we
have that

c0 =
(1− η)

2
c (h)

γ2
+

2b (1− η) ηc (h)

γ
− b2c (h)

2 − 2b (1− η)
3
λ

γ3

− 2 (1− η)
2

(−1 + η + γh)λ

γ4
− 4b2η (1− η)

2
λ

γ2
− 4bη (1− η) (−1 + η + γh)λ

γ3

− b2η2λ2(η + γh− 1)2

γ4
+

2b2(1− η)2c (h)λ

γ2
+

2b2ηc (h)λ(η + γh− 1)

γ2

+
2b2η(1− η)2λ2(η + γh− 1)

γ4
− b2(1− η)4λ2

γ4
+

2b(1− η)c (h)λ(η + γh− 1)

γ3

> λ

(
−2 (hγ)

3

γ4
− (hγ)

4

γ4
− 4 (hγ)

2

γ4
− 2 (hγ)

3

γ4
− (hγ)

4
λ

4γ6
− (hγ)

4
λ

γ6

)

> λ

(
−4h3

γ
− 4h2

γ2
− 2h4

)
> λ

(
−7h2

γ2

)
,

now we can combine this with the previous estimate and we have

PAC−B2(λ) > λ

(
7h2

16M
− h3γ

4M
− 7h2

γ2

)
> h2λ

(
5

16M
− 7

γ2

)
≥ 0,

which is true when γ ≥ 5
√
M . Hence AC −B2 � 0 and our contraction results hold.

All computations can be checked using Mathematica.
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