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Unlocking the potential of two-point cells for
energy-efficient and resilient training of deep nets

Ahsan Adeel1,2,3∗ Adewale Adetomi2 Khubaib Ahmed2 Amir Hussain4 Tughrul Arslan5 W.A. Phillips6

Abstract—Context-sensitive two-point layer 5 pyramidal cells
(L5PCs) were discovered as long ago as 1999. However, the
potential of this discovery to provide useful neural computation
has yet to be demonstrated. Here we show for the first time
how a transformative L5PCs-driven deep neural network (DNN),
termed the multisensory cooperative computing (MCC) architec-
ture, can effectively process large amounts of heterogeneous real-
world audio-visual (AV) data, using far less energy compared
to best available ‘point’ neuron-driven DNNs. A novel highly-
distributed parallel implementation on a Xilinx UltraScale+
MPSoC device estimates energy savings up to 245759 × 50000
µJ (i.e., 62% less than the baseline model in a semi-supervised
learning setup) where a single synapse consumes 8e−5µJ. In a
supervised learning setup, the energy-saving can potentially reach
up to 1250x less (per feedforward transmission) than the baseline
model. The significantly reduced neural activity in MCC leads
to inherently fast learning and resilience against sudden neural
damage. This remarkable performance in pilot experiments
demonstrates the embodied neuromorphic intelligence of our
proposed cooperative L5PC that receives input from diverse
neighbouring neurons as context to amplify the transmission of
most salient and relevant information for onward transmission,
from overwhelmingly large multimodal information utilised at
the early stages of on-chip training. Our proposed approach
opens new cross-disciplinary avenues for future on-chip DNN
training implementations and posits a radical shift in current
neuromorphic computing paradigms.

I. INTRODUCTION

Conventional point neuron [1][2] inspired DNNs have
demonstrated ground-breaking performance improvements in
a wide range of real-world problems, ranging from image
recognition [3] to speech processing [4][5][6]. Scientists have
also designed point neuron inspired sophisticated computer
architectures e.g., Intel’s Loihi [7], IBM’s TrueNorth [8],
SpiNNaker [9], Neurogrid [10], BrainSclaseS [11], MNIFAT
[12], DYNAP [13], DYNAP-SEL [14], ROLLS [15], Spirit
[16], DeepSouth [17], Tianjic [18], ODIN [19], and Intel
SNN chip [20]. However, point neuron-driven technologies
are often economically, technically, and environmentally un-
sustainable [21][22]. Their unrealistically high computational
demand and complexity scale so rapidly that the technology
becomes burdensome [21]. When a single leaky integrate-
and-fire (LIF) point neuron fires, it consumes significantly
more energy compared to the equivalent computer operation,
and an unnecessary fire not only affects the neurons it is
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directly connected to, but also others operating under the
same energy constraint [23]. The unnecessary neural firing
leads to unnecessary information transmission that creates a
huge demand on energy consumption by the system as a
whole. Yet, such models can learn, sense and perform complex
tasks continuously, but at energy levels that are currently
unattainable for modern processors.

The fundamental problem is attributed to the simplified
LIF neural structure that processes every piece of information
it receives, irrespective of whether or not the information
is useful to other neurons or the long-term benefit of the
whole network [29]. This approach increases the overall neural
activity or contradictory messages to high perceptual levels,
leading to energy-inefficient and hard to train DNNs [29]. Fur-
thermore, the lack of dynamic cooperation between neurons
make these DNNs intolerant of faults. A simple illustration
of point neuron and point neuron based neural network is
presented in Fig. 1. The point neuron integrates all incoming
streams in an identical way i.e., simply summing up all the
excitatory and inhibitory inputs, with an assumption that they
have the same chance of affecting the neuron’s output [1].
In contrast, biologically inspired two-point neurons transmit
information only when the received information is relevant1

to the task at hand, and not otherwise [29].
Recent neurobiological breakthroughs [31][32] have dis-

covered neocortical neurons with two functionally distinct
points of integration (apical and basal) in thick-tufted layer 5
pyramidal cells of the mammalian neocortex. However, it has
not been demonstrated until now how these cells can provide
useful neural computation. Although a few machine learning
experts such as G. Hinton [33], T.P. Lillicrap [34], R. Naud
[35] and Y. Bengio [36] have been inspired by the discovery of
two-point L5PC, their papers have focused predominantly on
learning, whereas our work uses context to guide both ongoing
processing and learning [29]. The main contributions of this
paper are as follows:

• To the best of our knowledge, this study is the first to
demonstrate the transformative computational potential
of the L5PC for energy-efficient processing of rich real-
world multi-modal data for a benchmark AV speech
enhancement problem, where multiple real-world noises
corrupt speech in real-world like conditions.

• A novel L5PC inspired context-sensitive cooperative pro-
cessing unit (CCPU) is proposed that interacts moment-
by-moment with other CCPUs in the network, termed

1Relevant (coherent) information refers to the portion of input information
being logical and consistent with other portions of input information from the
source data.



Fig. 1. (a) State-of-the-art point neuron (left) [1][2] (b) point neuron based DNN with cross-channel communication (C3)/attention (right) [24][25][26][27]. It
is to be noted that the point neuron has no inherent mechanism to distinguish between coherent and conflicting messages, hence, it maximises the transmission
of every information it receives.

Fig. 2. Multisensory Cooperative Computing [28][29]: (a) CMI-inspired [30] two-point neurons (left) whose apical tuft integrate input from diverse cortical
and subcortical sources as a context, including local proximal context (Cp), local distal context (Cd), and universal context (Cu), which are used by the
AMTF to decide whether the received information is relevant (important), very relevant (very important), or irrelevant (not important) (b) example L5PC
driven AV speech processing (right): the RF (in blue) represents the ambiguous sensory signal (e.g., noisy audio), Cp represents the noisy audio coming
from the neighbouring cell of the same network or the prior output of the same cell, Cd represents the signal coming from other parts of the current external
input (e.g., visuals), and Cu represents the brief memory broadcasted to other brain regions. The brief memory could explicitly be extended to include prior
experiences (E), emotional states (S), and semantic knowledge (K). The AMTF associated with the audio input splits the coherent and conflicting signals with
the conditional probability of Y: Pr(Y = 1|R = r, C = c) = p(T (r, c)), where p is the half-Gaussian filter and T(r,c) is a function defined on R2.

MCC, to maximize the transmission of only salient,
relevant or coherent activity of the network. Individual
CCPUs fire only when the received information is rele-
vant to the task at hand.

• Hardware implementation of our proposed brain-inspired
non-von Neumann MCC architecture on a Xilinx Ultra-
Scale+ MPSoC device. The hardware architecture em-
ulates the proposed L5PC by not propagating the con-
flicting messages (represented by the synaptic signal of
value zero) in the network, and therefore contributing
nothing to the dynamic power consumption. This property
is suggested to be very useful for on-chip training and
testing of both shallow and DNNs.

• The proposed method is evaluated with the benchmark
AV Grid [37] and ChiME3 [38] corpora, with 4 different
real-world noise types (cafe, street junction, public trans-
port (BUS), pedestrian area) and compared with popular

DNN models for both supervised and unsupervised AV
speech processing tasks. Comparative results show that
our new method demonstrates superior energy consump-
tion and generalisation performance in all experimental
conditions.

II. MULTISENSORY COOPERATIVE COMPUTING

In light of conscious multisensory integration (CMI) theory
[30], Fig. 2 depicts our proposed L5PC that receives three
distinct types of contextual fields (CFs) at the apical tuft. These
CFs are integrated using a novel 3D-asynchronous modulatory
transfer function (3D-AMTF) [29]. The 3D-AMTF outputs
the conditional probability of Y: Pr(Y = 1|R = r, C =
c) = p(T (r, c)), where p is the half-Gaussian filter (HGF) and
T(r,c) is a continuous function defined on R2 and given as
p(R2+2RC+C(1+ |R|)). The modulatory function uses in-
tegrated context (C) as a ‘modulatory force’ to push the action
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Fig. 3. (a) CCPU (left) comprises: (1) an RF generator (r) configured to generate RF based on inputs to which synaptic weights (θℓηα) are applied (2) an
integrated context (C) configured to generate a CF based on inputs to which synaptic weights (θηlµ θτlν θρlξ θαξ θβlξ θµνξ

lϵ ) are applied (3) an AMTF (alγ )
configured to generate an output for controlling an activation level of the CCPU based on r and c. The integrated context is dependent on Cp, Cd, and Cu

(b) Multilayered multiunit MCC (right). CCPU in MCC fires only when the received information is coherent across the network or relevant to the task at
hand e.g., which data is worth paying attention to and therefore processing just that, instead of having to process everything [29].

potential (Y) to the right or left side of the HGF depending on
the relevance or irrelevance of the incoming feedforward in-
formation, respectively. This new kind of AMTF goes beyond
the conventional contextual modulation [39] and suggests that
a strong contextual field (CF) overrules the typical dominance
of the RF in deciding whether a particular instance of RF
is important, very important, or not important. However, the
modulatory function that enables this move systematically
could be generated in several different ways, linearly or non-
linearly [29][28]. This mechanism enables the technical effect
of significantly higher energy efficiency and resilience than
existing DNN architectures.

Fig. 3a depicts MCC neural model, termed as CCPU. The
CCPU interacts with other CCPUs in the network to maximize
the transmission of only coherent activity of the network
and fires only when the received information is relevant. An
example, multiunit two-layered MCC architecture is depicted
in Fig. 3(b) and its equivalent hardware model is shown in
Fig. 4. The CCPU in one stream is connected to all other
CCPUs in adjacent streams of the same layer to effectively
coordinate widely distributed and shared activity patterns.
This architecture is able to extract synergistic RF components
(brief memory, Cu) by segregating the coherent and incoherent
multisensory information streams and then recombining only
the coherent multi-streams at time t-1 [40][41]. The extracted
brief memory components Cu are broadcast and received by
other CCPUs in the network in their apical tufts at time t along
with the current local contexts Cp and Cd. Cu, Cp, and Cd are
summed to construct an integrated context (IC) represented as
C using a simple adder and a non-linear activation function.
At time t-1, the CF only comprises the external context (i.e.,
local context) e.g., processed visual streams at the audio
channel which modulates the RF using the modulatory transfer

function (transfer circuit). The extracted coherent RF signals
are then fed into a cross-modal working memory to extract the
synergistic components (i.e., universal context). The universal
context at time t is combined with the local context to form the
integrated context (C) which modulates (amplify or attenuate)
the cell’s responses to the feedforward RF input.

A. Hardware Architecture

To emulate the CCPU behaviour and estimate the energy
consumption, the hardware architecture is designed such
that a synaptic signal of value zero does not propagate in
the network and contributes nothing to the dynamic power
consumption because of no switching activity. The energy
saving per zero-signal synapse per single feed-forward
propagation is used to estimate the shallow and deep models
energy consumption. For prototyping, the Xilinx UltraScale+
MPSoC device has been targeted. This device offers a high
number of configurable logic blocks and block memories
needed to implement the proposed architecture. Specifically,
we have implemented the prototype on the Genesys ZU-3EG
board: xczu3eg-sfvc784-1-e UltraScale+ MPSoC chip. Fig.
4(a) depicts the key building blocks used to build CCPU
hardware architecture, including: data loading mechanism,
multiply-accumulate finite state machine, weight memory,
multiplier, adder, modulatory and activation block.
Fig. 4(b) is a diagrammatic representation of the proposed
hardware-based MCC system-level architecture. The idea is to
replace the neuron with a customizable CCPU, which contains
a grid of interconnected computation circuits (e.g., adders and
multipliers), where the functionality of the processing unit
can be reconfigured on the fly. An array of these customisable
CCPUs is linked together by reconfigurable interconnects,
such that multiple CCPUs can be dynamically interconnected
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Fig. 4. Hardware architecture: (a) two-CCPU circuit (left) (b) MCC system level architecture (right).

for distributed processing. With the possibility for the network
architecture to change in real-time, the advantages include
reduced system downtime, high throughput, and improved
robustness. Inter-CCPU coordination control circuits can be
implemented to achieve the dynamic behaviour. These control
circuits are distributed in the network and can serve as a
bridge between CCPUs. Memory bottleneck can be reduced
by having the outputs of CCPUs in one layer routed directly
to CCPUs in another layer through the coordination control
circuits. Multiple high-bandwidth memory blocks can be
used to feed in data into the network. The memory interface
can be implemented in part with the high-performance ports
available in the Xilinx APSoC and MPSoC devices.
Highly Distributed Parallel Implementation: The hardware
implementation is based on a massively parallel architecture,
where each CCPU in every layer has a digital signal processor
(DSP) engine that computes the products of the respective
features and weights and the sums of these products. A key
enabler is the use of local weight memories, implemented
with on-chip block memories and attached to the CCPU to
remove the bottleneck of memory transfer during execution.
Each CCPU in every layer is physically implemented, and
all the CCPUs computed in parallel. The key advantage
of this parallel approach is the reduction in computation
latency, though at the cost of increased resource utilization.
Another advantage of the distributed architecture is that
it is more readily amenable to regression or classification
tasks. A bottom-up approach to the implementation has
been adopted, where higher-level components (e.g., multiply-
accumulate block) are implemented from lower-level modules
(e.g., fixed-point adders and multipliers). The lower-level
component themselves are built from device-independent
logic and memory elements as much as possible, such that
the architecture can be easily ported to other FPGA families
and manufacturers. The overarching effect of this is that
many different network prototypes of varying complexity can
be relatively easily implemented, limited only by the size of

the FPGA. Where FPGA size becomes a limitation and the
next available FPPGA is out of reach (due to lower power
requirements), then an iterative architecture with a single
layer can be used to successively compute all the layers.
This would imply a reduction in parallelism and a substantial
increase in latency, as weights and inputs would have to be
loaded for each layer in turn.
Data Representation: The number format adopted is 16-bit
signed 2’s complement fixed-point representation. This is
Q3,12 in the Q notation and implies 1 sign bit, 3 integer bits,
and 12 fractional bits; with maximum representable integer
part of 7, maximum representable number of 7.999755859375
(0x7FFF in hexadecimal format), lowest representable
number of -8.0 (0x8000), and a precision of 0.000244140625
(0x0001).
Bias Modelling: The bias for each neuron is modelled as
an input of 1 and a weight representing the bias. The input
of 1 for the bias is hard-coded. The corresponding weight
representing the bias is kept in the Weight Memory in the next
memory location following all the network weights. In the
MAC computation inside each neuron, once all the respective
inputs and weights have been multiplied and accumulated,
the bias is retrieved from the Weight Memory and added to
the accumulated result.
Weight Memory: This keeps all the synaptic weights for all
the connections feeding the neuron. In addition, it holds the
bias. It is implemented with a Block RAM (BRAM) with
support for up to 1023 weights and one bias.
Fixed-Point Multiplier: This is the implementation of a
fixed-point multiplier, taking on the input interface, two 16-bit
signals and outputting a 16-bit result and an overflow flag.
For the 16-bit inputs, an output of 32-bit would be expected.
However, because of the need to maintain the 16-bit data
path across the network, the result is quantized by taking the
upper 16 bits of the resulting product.
Fixed-Point Adder: The fixed-point adder takes two 16-bit
inputs and produced a 16-bit result, all in Q3,12 fixed-point
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format. This module is also used for subtraction. Since
the input signals are represented in signed 2’s complement
format, a subtraction is essentially an addition. That is,
X-Y = X+Y*, where Y* is the 2’s complement of Y. The
implementation ensures that arithmetic overflow is detected
and addressed. An overflow has occurred if the sum of two
positive numbers yields a negative result, or if the sum of two
negative numbers yields a positive result. In the former case,
we set the result to the maximum number representable in
the chosen Q3,12 data format, which is 7.999755859375, or
0x7FFF in the hexadecimal format; while in the latter case,
we set the result to -8.0, or 0x8000.
Modulatory function: This is the implementation of the
modulatory function (Mod), requiring the use of the fixed-
point multiplier and fixed-point adder. For improved efficiency
in the resulting implemented hardware, we write the function
as Mod = p(2R2 + R + R + 2C(1 + |R|)), where p is the
Relu6. Addition is less computationally intensive and more
resource-efficient than multiplication. One multiplication and
one addition are more efficient than two multiplications. We
re-arranged the original equation to reduce the computation
complexity. The rearranged equation requires two multipliers
and two adders against three multipliers and three adders for
the original equation.
Activation Block: The Activation Block implements the
required activation function (ReLU). It is a parameterized
block that includes only the required activation function at
compile time. The ReLU implementation in hardware is
straightforward, producing an output zero if the input is less
than zero, and raw output otherwise. The maximum positive
output is also clipped to a value of 6.
MAC FSM: The Multiply-Accumulate Finite State Machine
(MAC FSM) controls the retrieval of the weights from the
Weight Memory and the selection of the corresponding
inputs. It automatically advances the address value fed into
the memory every clock cycle.
Data Loading Mechanism: This comprises the Control
Processor, the Data Mover, and the DDR Memory. The
Control Processor is an Arm Cortex-A53 processor in the
UltraScale+ MPSoC device, used for loading the weights
and the inputs from an eternal DDR memory into the
programmable logic of the FPGA. A C application running
on bare-metal OS has been used for prototyping. Routines
were written to mount a micro-SD card, from where the
weights and inputs are transferred to the DDR Memory using
the Data Mover which is a direct memory transfer engine.
Thousands Weight Memories are required to be filled with
weights and biases. A multiplexing approach is taken for this
data loading, where the Weight Memories are attached in turn
to the Data Mover for all their respective weights and biases
to be loaded. This is a step that happens once after power up
and does not impact on the latency of inference. A similar
multiplexing solution is adopted for loading the inputs for the
input layer.
Feasibility to Implement on Integrated Circuits and
Chips: FPGAs typically excel as a viable means of design and
verification of hardware-based functionality before committing
to fixed silicon (ASIC), thanks to their programmability. As

such, the architecture being implemented aligns well with
this paradigm. The synthesis and implementation artifacts of
the hardware build process are standardized outputs that can
be passed on to the ASIC fabrication process.

III. EXPERIMENTS

The ability of the proposed method is demonstrated and
compared with sophisticated and popular shallow and deep
learning approaches [42][25][24][26][27] on a challenging
noisy audio-visual speech processing task that uses video
information from lip movements to selectively amplify speech
signals heard in noisy environments. It is observed that
MCC is able to remove background noise with better re-
construction than the state-of-the-art baseline shallow and
deep learning algorithms. For fair comparisons, both shal-
low and deep benchmark models have C3/attention blocks
integrated [24][25][26][27]. The C3 or cross-channel fusion
is implemented through concatenation, addition, or multipli-
cation using LIF-inspired point neural model. All models
have a similar structure and similar layers between different
models and have the same configuration. For testing, the Grid
[37] and ChiME3 [38] corpora are used [5], including four
different noise types; cafe, street junction, public transport, and
pedestrian area with the signal-to-noise ratio (SNRs) ranging
from -12dB to 12dB with a step size of 3dB. For shallow
models, logFB audio features of dimension 22 and DCT visual
features of dimension 50 were used [4]. The shallow baselines
include popular mutual information neural estimation (MINE)
approach [42], state-of-the-art concatenation approach [43],
and cross-modal approach [27]. The shallow models pose the
problem of semi-supervised AV speech processing with the
following loss function:

L1 = βE
[
SE

(
Z, Ẑ

)]
− αE

[
−If

(
Xα ;Yβ

)]
where the first term in the equation above is the squared

error (SE) between the clean target speech (Z) and clean
predicted speech (Ẑ). The second term represents the mutual
information (MI) between audio (Xα) and video (Yβ) [42].

For deep models, we used the following loss function:

L2 = βE
[
SE

(
Z, Ẑ

)]
+ γE [E ]

E is a differentiable approximation for the number of firings.
We adjust the coefficients of the loss functions to make
the secondary objectives significantly less important than the
main goal; in particular, we set γ to a really small value
in all experiments. For deep learning, the input was a tuple
containing a noisy audio short-time fourier transform (STFT)
of dimension 64X64 and a snapshot of the lip movement of
dimension 88X44. The output was a clean audio signal (STFT)
of dimension 64X64 [4][5]. The training and testing split was
80:20. All data is normalized across the whole dataset and
presorted to break all order correlations.
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Fig. 5. Shallow models: semi-supervised AV training via MI maximization (left) (b) empirical evaluation and comparisons [42] (right).

TABLE I
SHALLOW MODELS: TESTING MSE, MAC OPERATIONS, ENERGY CONSUMPTION, AND LATENCY.

MINE [42] MINE Concat [43] [44] MINE Attention (Baseline) [27] MCC
Minimum MSE (quantized/unquantized) 0.07/ 0.104 0.05/ 0.091 0.03/ 0.066 0.018/ 0.039
Trainable Parameters 10685 16331 26723 10685
Cells not Firing 48.6% 61% 51% 80%
MAC (total/ used) 10200/ 5243 25036/ 9765 19432/ 9522 10480/ 2306
Energy (µ J) 0.418 0.781 0.761 0.184
Latency (µ s) 2.25 4.28 5.52 1.60

TABLE II
SHALLOW MODELS: RESOURCE UTILISATION. CLB, LUT, AND RAMB

STANDS FOR CONFIGURABLE LOGIC BLOCK, LOOK-UP TABLE, AND
RANDOM ACCESS MEMORY BLOCK, RESPECTIVELY.

MCC Baseline
Resouces Available % Utilisation % Utilisation
CLB 8820 74.37% 98.79%
LUT as Logic 70560 44.57% 81.45%
LUT as Memory 28800 2.58% 2.58%
CLB Registers 141120 15.58% 26.78%
RAMB18 432 24.54% 60.65%
DSP48 360 34.22% 72.78%

IV. RESULTS

For energy consumption estimations, a synaptic value of
zero from a preceding layer fed into a subsequent layer is taken
to contribute nothing to the energy consumption, since a zero
input implies no switching activity. The MAC unit computes
the product of an input and its corresponding weight and
accumulates this result in only 4 clock cycles. The dynamic
power consumption of the MAC unit is 2 mW as reported by
the XPower Estimator tool. This power is contributed wholly
by the fixed-point multiplier. The fixed-point adder is a purely
combinational implementation, and as such, has no dynamic
power component. At the prototype frequency of 100 MHz, the
energy consumption due to an activated neuron that propagates
output through its associated synapses to another neuron is
therefore equivalent to 2 mW X 4 clock cycles X 10-ns period,
which is equal to 0.08 nJ per synapse in a single inference run.

This implies that when a neuron is not firing, each associated
synapse does not propagate the zero signal and therefore, saves
0.08 nJ per single inference run. To calculate latency, the
networks were implemented and run at a clock frequency of
100 MHz. It is pertinent to state that at this speed, no timing
error has been observed because the interface port signals are
registered to break long combinational paths.

To estimate FPGA resources, a shallow multimodal
model is first implemented with the network struc-
ture of Xa

t =22i:24i:12h:6h:22o for audio stream and
Xv

t =50i:24h:12h:6h:22o for video stream. Measured energy
values and true resource utilisation are reported for shallow
models (Tables I and II) given the capacity of the available
FPGA, whereas based on the used resources, an estimated
energy consumption is reported for deep models (Figs. 6-10
and Table III). Fig. 5(a) depicts the training performance of
the shallow model for semi-supervised AV speech processing.
It can be seen that MCC quickly converges to the high MI
as compared to the baseline models. However, MINE with
concatenation [43][44] outperforms the standard MINE [42],
and MINE with attention (baseline) [27] outperforms the
MINE with concatenation model. This learning trend aligns
with the empirical Gaussian random variables dataset as shown
in Fig. 5(b). MCC’s remarkable performance improvement
is due to its reduced neural activity property that enables
the network to identify the most relevant features at very
early stages in the network, avoiding transmitting irrelevant
information to the higher network layers. As shown in Table
1, MCC achieves the minimum MSE with only 20% neural
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Fig. 6. Deep MCC (a) reconstruction error (left) (b) firing evolution (right). MCC learns significantly faster as compared to the the baseline with only 20%
neural activity. Note that the neurons in MCC quickly evolve to become highly sensitive to relevant information and become active (or fire) only when the
received information is important for the task at hand. This reduces the overall neural activity and suppresses the transmission of contradictory messages to
higher perceptual levels. Solid and dashed lines indicate testing loss and training loss, respectively.

Fig. 7. Deep MCC: MAC operations for different number of inputs and outputs. Here a variety of CNN layers are considered for analysis. For a standard
CNN model, input is a 3D array with the width, height of a feature map, and the number of feature maps. Similarly, the output is the dimensions of output
feature maps.

activity consuming only 0.184µJ as compared to the baseline that has relatively high MSE consuming 4.13X more energy
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TABLE III
DEEP MCC ESTIMATED ENERGY CONSUMPTION PER INFERENCE WITHOUT SPARSITY.

Input / Output Input / Output Input / Output
32, 32, 32 / 16, 16, 32 32, 32, 32 / 16, 16, 64 32, 32, 64 / 16, 16, 32

MCC Baseline Saving MCC Baseline Saving MCC Baseline Saving
MAC 6268 k 9699 k 3431 k 6348 k 9699 k 3351 k 11904 k 19399 k 7495 k
Energy 501 µJ 776 µJ 274 µJ 508 µJ 776 µJ 268 µJ 952 µJ 1552 µJ 600 µJ

32, 32, 64 / 16, 16, 64 128, 128, 32 / 64, 64, 32 128, 128, 32 / 64, 64, 64
MAC 51211 k 77595 k 26384 k 95118 k 155109 k 59991 k 98792 k 155189 k 56397 k
Energy 4097 µJ 6208 µJ 2111 µJ 7609 µJ 12409 µJ 4799 µJ 7903 µJ 12415 µJ 4512 µJ

128, 128, 64 / 64, 64, 32 128, 128, 64 / 64, 64, 64 256, 256, 32 / 128, 128, 32
MAC 185853 k 310378 k 124526 k 204044 k 310378 k 106334 k 379437 k 620757 k 241320 k
Energy 14868 µJ 24830 µJ 9962 µJ 16324 µJ 24830 µJ 8507 µJ 30355 µJ 49661 µJ 19306 µJ

256, 256, 32 / 128, 128, 64 256, 256, 64 / 128, 128, 32 256, 256, 64 / 128, 128, 64
MAC 394612 k 620757 k 226145 k 740126 k 1251514 k 511388 k 815621 k 1241514 k 425893 k
Energy 31569 µJ 49661 µJ 18092 µJ 59210 µJ 100121 µJ 40911 µJ 65250 µJ 99321 µJ 34071 µJ

512, 512, 32 / 256, 256, 32 512, 512, 32 / 256, 256, 64 512, 512, 64 / 256, 256, 32
MAC 1516712 k 2483028 k 966316 k 1577894 k 2483028 k 905134 k 295946846 k 4966056 k 2006587 k
Energy 121337 µJ 198642 µJ 77305 µJ 126231 µJ 198642 µJ 72411 µJ 236757 µJ 397284 µJ 160527 µJ

Fig. 8. (a) Random killing of up to 36% cells in MCC could still achieve good accuracy with only 12.8% overall neural activity (left) (b) MCC saves up to
245759µJ energy per inference (62% better than the baseline) (right).

Fig. 9. STFT reconstruction (training): (a) MCC (left) (b) Baseline (right).

and 3.45X more processing time. Similarly, MCC consumes
approx. half of the hardware resources as compared to the
baseline model as shown in Table 2.

Deep learning results reflecting the same trends for su-
pervised clean-speech signal reconstruction. Deep MCC con-
verges faster than the baselines (Fig. 6a) with only 20%
overall neural activity during training (Fig. 6b). It is to be
noted that MCC learns at very early stages in the network
what is relevant and what is not, thus, only neurons that
transmit relevant information are active. The corresponding

MAC operations are summarised in Fig. 7 and Table 3. It is
to be noted that MCC could save up to 160527 µJ of energy
per inference i.e., 40% less than the baseline model. During
training, this energy-saving could be multiplied by the number
of training updates e.g., 50K X 160527 µJ. Furthermore,
given the remarkable resilience property of MCC (considering
sparsity) as shown in Fig. 8a, the energy-saving reaches up
to 245759 µJ per inference i.e., 62% less than the baseline
model as shown in Fig. 8b. In training, this could be multiplied
by the number of training updates e.g., 50K X 245759 µJ.
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Fig. 10. Generalization/ testing: MCC vs. Baseline STFT reconstruction

Fig. 11. Supervised training MCC vs. Baseline: (a) 20 million parameters
(b) 44 million parameters [29].

Figs. 9 and 10 depict the clean STFT reconstruction for
training and testing samples. It is observed that both MCC and
baseline perform equally well for training samples, whereas
MCC outperforms the baseline model in testing. For energy
consumption estimations, a fixed-point was used to solve the
issue of large resource utilization. This is because the mantissa
defining the fractional value is suitably accurate even at low
bit-width. Feature maps, biases, and weights were reduced
from 32-bit floating points to 11-bit fixed points (Q3.7) using
the data width quantization technique. It was observed that
MSE increases drastically when the data width is smaller than
11-bit, while the performance is maintained when the data
width is larger than or equal to 11-bit which was used for the
hardware implementation.
When applied to solve a supervised learning problem, MCC is
shown to drop an overall neural activity to 0.05 compared to
0.44 in the baseline (Figure 11) [29]. It is worth mentioning
that neurons in MCC evolve quickly and reach this low neural
activity in just a few training updates which further increases
the efficiency. For a larger model comprising 44 million
parameters, the neural activity reduces to less than 0.008% i.e.,
1250x less (per FF transmission) than the baseline. However,
this comes at the cost of reduced reconstruction accuracy for
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MCC (85%) and baseline (88%), respectively. Future work
includes tuning and optimisation of MCC to search for Pareto-
optimal.

V. CONCLUSION

In this paper, we presented a novel highly-distributed par-
allel implementation of our brain-inspired, non-von Neumann
MCC architecture on a Xilinx UltraScale+ MPSoC device.
The hardware architecture is evaluated using a benchmark
AV speech enhancement problem, and exploits a cognitively-
inspired, context-sensitive two-point L5PC neuron that quickly
evolves during training and becomes highly selective in pro-
cessing only the most salient data, instead of processing
everything. This enables individual neurons to activate only
when the received information is relevant to the task at hand.
Our proposed hardware architecture emulates this cognitive
behaviour by not propagating a synaptic signal of value
zero in the network, which, in turn, avoids dynamic power
consumption. This property is posited to be very useful for
on-chip training and testing of both shallow and DNNs in
future neuromorphic cognitive systems. For shallow models,
the MCC has been shown in our pilot experiments to achieve
62% better accuracy with 4.13X less energy consumption and
3.45X less processing time. For deep models with no sparsity,
the MCC is seen to be 40% more energy-efficient compared
to the baseline and could save up to 160527 µJ energy per
inference during testing and 160527 × 50K µJ during training.
Considering sparsity, the MCC is 62% more energy-efficient
compared to the baseline and could save up to 245759 µJ
energy per inference during testing and 245759 × 50k µJ
during training. Similarly, for supervised training, the energy
saving can potentially reach up to epochs×1250x but at the
cost of reduced accuracy [29]. The ongoing work involves
evaluating different modulatory transfer functions to achieve
better energy-accuracy trade-off. Certainly, the energy-saving
per inference during testing could be multiplied with the num-
ber of inferences when the models are practically deployed.
Our ongoing work includes implementing supervised training
with MCC on MPSoC device.

It is worth mentioning that this is the first time the
two-point L5PC has been shown to provide useful energy-
efficient computation at this scale, despite its discovery in
1999 [31] and theoretical predictions of it prior to that
[45][46][47]. Our MCC based neuromorphic model is more
directly inspired by neuroscience and psychology compared to
existing deep learning algorithms. In particular, the MCC is
supported by recent neurobiological studies [40][41][48][49],
and is inherently energy-efficient. It does not require any
special hardware design compared to other sparsity techniques
[50][51][52][53][54][55] [56][57]. The latter are difficult to
exploit on modern hardware technology that is typically
designed for regular dense data structures. Recently, a few
approaches such as [58] have shown lower resource utilisa-
tion based on complementary kernel sparsity, however their
application to real-world big data problems is yet to be
demonstrated.

We hypothesise that the proposed approach can be a step-
change in understanding the brain’s mysterious energy-saving

mechanism. This, in turn, could pave the way to address multi-
ple challenges and constraints associated with adaptive design
and real-time on-chip implementation of future multimodal
technologies, such as audio-visual hearing-assistive devices
[5]. The latter will require optimising a range of required
tradeoffs including preservation of privacy, latency, energy,
and speech intelligibility. In contrast, the MCC can potentially
process everything on a single device (ESD) instead of on the
Cloud [59] or Edge [60]. Ongoing work includes developing
more compact MCC architectures and their integration with
spiking neurons. In addition, new adaptive hardware architec-
tures are being explored that can leverage the MCC’s precisely
controlled firing property to further reduce and optimise their
energy consumption, latency and memory requirements for
challenging real-world applications.

VI. ACKNOWLEDGMENTS

This research was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) Grant Ref.
EP/T021063/1. We would like to acknowledge Dr James
Kay from the University of Glasgow and Professor Newton
Howard from the Oxford Computational Neuroscience Lab
for their advice and support, including reviewing of our work,
appreciation, motivation, and encouragement.

VII. CONTRIBUTIONS

AA conceived, developed, and simulated the original idea,
wrote the manuscript, and analysed the results. AA, AA2,
and KA performed the simulations and analysed the results.
AA and WAP provided the psychoneuroscientific inspiration
and advised on terminology and presentation. AA and AH
provided the cognitive AV assistive technology inspiration.
AA, AA2, and TA advised on practical implementation of AI
algorithms on hardware.

VIII. COMPETING INTERESTS

AA has a provisional patent application for the algorithm
described in this article. The other authors declare no compet-
ing interests.

REFERENCES
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