

Edinburgh Research Explorer

Adaptive Kernel Kalman Filter

Citation for published version:
Sun, M, Davies, ME, Proudler, I & Hopgood, JR 2023, 'Adaptive Kernel Kalman Filter', IEEE Transactions
on Signal Processing, pp. 1-14. https://doi.org/10.1109/TSP.2023.3250829

Digital Object Identifier (DOI):
10.1109/TSP.2023.3250829

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Signal Processing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Mar. 2023

https://doi.org/10.1109/TSP.2023.3250829
https://doi.org/10.1109/TSP.2023.3250829
https://www.research.ed.ac.uk/en/publications/f2939419-a3ef-4384-ad70-47d0a4155147

1

Adaptive Kernel Kalman Filter

Mengwei Sun, Member, IEEE, Mike E. Davies, Fellow, IEEE, Ian K. Proudler,
James R. Hopgood, Senior Member, IEEE

Sequential Bayesian filters in non-linear dynamic systems1

require the recursive estimation of the predictive and posterior2

probability density functions (pdfs). This paper introduces a3

Bayesian filter called the adaptive kernel Kalman filter (AKKF).4

The AKKF approximates the arbitrary predictive and posterior5

pdfs of hidden states using the kernel mean embeddings (KMEs)6

in reproducing kernel Hilbert spaces (RKHSs). In parallel7

with the KMEs, some particles in the data space are used to8

capture the properties of the dynamic system model. Specifically,9

particles are generated and updated in the data space. Moreover,10

the corresponding kernel weight means vector and covariance11

matrix associated with the particles’ kernel feature mappings12

are predicted and updated in the RKHSs based on the kernel13

Kalman rule (KKR). Simulation results are presented to confirm14

the improved performance of our approach with significantly15

reduced numbers of particles by comparing with the unscented16

Kalman filter (UKF), particle filter (PF), and Gaussian particle17

filter (GPF). For example, compared with the GPF, the AKKF18

provides around 50% logarithmic mean square error (LMSE)19

tracking performance improvement in the bearing-only tracking20

(BOT) system when using 50 particles.21

Index Terms—Adaptive kernel Kalman filter, Non-linear22

dynamic systems, Sequential Bayesian filters, Kernel mean23

embedding, Kernel Kalman rule.24

I. Introduction25

Many problems in the fields of science, including statistical
signal processing, target tracking, and satellite navigation,
require parameter estimation in non-linear dynamic systems.
In order to make inferences about a discrete-time dynamic
system, a dynamic state-space model (DSSM) is required,
including a process model describing the evolution of the
hidden states with time, as shown in (1), and a measurement
model relating the observations to the states, as shown in (2);

xn = f (xn−1,un) , (1)
yn = h (xn, vn) . (2)

Here, xn represents the hidden state at the n-th time slot, n =26

1, . . . ,N, yn is the corresponding observation. The process and27

measurement noise are represented as un and vn, respectively.28

The process function is f : Rnx × Rnu → Rnx , where nx and29

nu are the dimensions of the state and process noise vectors,30

respectively. The measurement function is h : Rnx×Rnv → Rny ,31

where ny and nv are the dimensions of the observation and32

M. W. Sun, M. E. Davies and J. R. Hopgood are with Institute of
Digital Communications, University of Edinburgh, Edinburgh, EH9 3FG, U.K.
E-mail: (msun; mike.davies; james.hopgood)@ed.ac.uk.

I. Proudler is with the Centre for Signal & Image Processing (CeSIP),
Department of Electronic & Electrical Engineering, University of Strathclyde,
Glasgow, G1 1XW, U.K. E-mail: ian.proudler@strath.ac.uk.

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1; and the MOD
University Defence Research Collaboration (UDRC) in Signal Processing.

measurement noise vectors, respectively. In this paper, we 33

introduce a sequential Bayesian filter called the adaptive 34

kernel Kalman filter (AKKF) that provides a new view of the 35

approach to state estimation in non-linear dynamic systems. 36

A. State of the Art — Non-linear Filters 37

From a Bayesian perspective on dynamic state estimation, 38

estimation problems are solved by constructing the posterior 39

probability density function (pdf) of hidden states based 40

on all available information, including DSSMs and received 41

measurements. For problems where a real-time estimate is 42

required after a measurement is received, sequential Bayesian 43

filters are commonly used by recursively computing the 44

posterior pdfs of the hidden states [1]–[3]. Historically, 45

the main focus of sequential Bayesian filters has been on 46

model-based systems with explicit formulations of DSSMs 47

[1], [4]. More recently, data-driven Bayesian filters have been 48

proposed where DSSMs are unknown or partially known, but 49

training data examples are provided [5]–[7]. In both scenarios, 50

the filters are broken down into essentially two stages, i.e., 51

prediction and update. The predictive pdf of the states is 52

calculated in the prediction stage, which is then modified 53

to become the posterior pdf based on the latest received 54

observation in the update stage [8]. 55

For the model-based filters, the predictive pdf of xn is
obtained in the prediction stage using the process model via
the Chapman–Kolmogorov equation [9] as

p (xn|y1:n−1) =
∫

p (xn|xn−1) p(xn−1|y1:n−1)dxn−1, (3)

where p (xn|xn−1) is the state-transition pdf defined by the
process model (1), p(xn−1|y1:n−1) is the posterior pdf at time
n − 1. Then, the updated posterior pdf is proportional to the
product of the measurement likelihood and the predictive pdf
as [8]

p(xn|y1:n) =
p(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
, (4)

where p(yn|xn) is the likelihood function defined by
the measurement model (2) and the denominator is a
normalization term given by:

p(yn|y1:n−1) =
∫

p(yn|xn)p(xn|y1:n−1)dxn. (5)

The Kalman filter (KF) [1] provides the optimal Bayesian 56

solution for linear DSSMs when the predictive and posterior 57

pdfs are Gaussian. For state estimation in non-linear systems, 58

the extended Kalman filter (EKF) [10] is a popular method to 59

approximate a recursive maximum likelihood (ML) estimate 60

of the hidden state. The EKF uses the first derivatives 61

2

to approximate the process and measurement functions by62

linear equations. However, this can cause poor approximation63

performance when the model is highly non-linear or when64

the posterior distributions are multi-modal. The unscented65

Kalman filter (UKF) was proposed in [11] as an alternative66

to the EKF. The UKF uses a weighted set of deterministic67

particles (so-called sigma points) in the state space to68

approximate the state distribution rather than the DSSM. The69

sigma points are propagated through the non-linear system70

to capture the predictive/posterior mean and covariance that71

is accurate to the third-order of the Taylor expansion [2],72

[3]. The underlying philosophy is that the approximation of73

a Gaussian distribution with a finite number of parameters74

is more accessible than the approximation of an arbitrary75

non-linear function/transformation [12]. Compared with the76

EKF, the UKF can significantly improve the accuracy of77

the approximations. However, divergence can still occur in78

some non-linear problems as the state pdfs are essentially79

approximated as Gaussian [13] [14].80

A more general solution to the non-linear Bayesian filter
can be found in the sequential Monte Carlo (MC) filter, or
the particle filter (PF) [8], [15]. Similarly to the UKF, the PF
represents the hidden state distributions through a weighted set
of points or particles. However, unlike the UKF, the particles
of the PF are chosen and updated stochastically. Specifically,
the popular bootstrap PF uses random particles with associated
weights, i.e., {x{i}n ,w

{i}
n }

M
i=1, to characterize the posterior pdf as

p (xn|y1:n) ≈
M∑

i=1

w{i}n δ
(
xn − x{i}n

)
, (6)

where δ(·) is the Dirac delta function, M represents the number81

of particles used at a given time. The key steps of the82

bootstrap PF include: 1) Draw particles from the importance83

density; 2) Update the particles’ weights based on the latest84

received observation; 3) Particle resampling [8]. Resampling is85

a necessary step to reduce degeneracy. However, it induces an86

increase in complexity and is hard to parallelize [16], [17]. In87

[8], [16], [18]–[20], various authors proposed specific variants88

of the bootstrap PF to avoid resampling by approximating the89

hidden state distribution at each time index with a Gaussian.90

These variants include the Gaussian particle filter (GPF) [16],91

the quasi-Monte Carlo filter [18], the square-root quadrature92

Kalman filter [8], the multiple quadrature Kalman filter [19],93

and the Gauss–Hermite filter [20].94

Different from the model-based approaches above, several95

recent works [21], [22] developed nonparametric data-driven96

Bayesian filters based on the kernel Bayes’ rule (KBR). These97

papers represented the pdfs as a weighted sum of feature98

vectors in reproducing kernel Hilbert spaces (RKHSs) owing99

to the virtue of kernel mean embeddings (KMEs). In [21],100

the KBR was used to derive a kernel Bayesian filter where101

the evolution of hidden states and the measurement model102

are unknown and need to be inferred from prior training103

data. Subsequent works [5] and [6] have proposed KBR-based104

filters for when the measurement model is only provided105

through examples of state-observation pairs while the process106

model is known. These papers combine the parametric MC107

sampling and the nonparametric measurement model learning. 108

Specifically, particles are propagated using the process model. 109

Then, the posterior pdf is approximated by the KBR [21]. 110

A variant of the KBR called the kernel Kalman rule (KKR) 111

was formulated in [23] to overcome some of the instabilities 112

that can be observed in using the KBR. These KME-based 113

methods can effectively deal with problems that involve 114

unknown measurement models or strong non-linear structures 115

[6]. However, the feature space for the kernel embeddings 116

remains restricted to the training data set. Therefore, the 117

performance of these data-driven filters relies heavily on the 118

sufficient similarity between the training data and the test data, 119

a problem common to all such methods [22]. 120

B. Novelties and Contributions 121

Inspired by the KBR [21] and KKR [23], we introduce a full 122

model-based Bayesian filter called the adaptive kernel Kalman 123

filter (AKKF). The work presented in this paper has been built 124

on the preliminary work in [24], [25] but presents detailed 125

theoretical explanations, a wider set of applications, and 126

computational complexity analysis. The main contributions 127

of this paper can be summarized as follows: 128

1) We explore the potential of using KMEs within 129

model-based filters. The proposed AKKF provides a 130

means of utilizing nonparametric data-driven filters 131

within a model-driven framework without the need 132

for any training data or an offline training process. 133

Specifically, the AKKF adaptively draws new particles 134

based on DSSMs to capture the diversity of the 135

non-linearities. The kernel embeddings of updated state 136

particles can be seen as providing an adaptive change 137

of basis for the high-dimensional RKHSs. Then, the 138

predictive and posterior pdfs are embedded into the 139

RKHSs and updated linearly. 140

2) We show that, like the GPF, the proposed filter can avoid 141

the resampling step found in most PFs. However, unlike 142

the GPF, it is not constrained to approximate the hidden 143

state pdfs as Gaussian. 144

3) The proposed AKKF is tested on three different 145

non-linear systems and compared with the UKF, an oracle 146

PF, and the GPF to demonstrate its efficacy. The tracking 147

performance and computational complexity comparisons 148

show that the AKKF achieves higher accuracy while 149

requiring fewer particles. For example, compared with 150

the GPF, the logarithmic mean square error (LMSE) 151

tracking performance is improved around by 50% in 152

the bearing-only tracking (BOT) system with the target 153

moving following the linear constant velocity (CV) 154

model, given 50 particles. 155

Compared with the available filters, there are several 156

significant differences and novelties of the proposed AKKF: 157

1) The state vector’s mean and covariance (in data space) 158

are extracted from the KME of the posterior pdf for 159

drawing proposal particles, as shown in the proposal step 160

of Fig. 1(a). Unlike most of the kernel-based methods 161

where the focus is on characteristic kernels [21], [23], 162

we also consider simple quadratic and quartic kernels that 163

3

provide direct access to the mean and covariance of the164

hidden state.165

2) The proposal particles can then be precisely propagated166

through the non-linearity and used to calculate empirical167

transition operators in the RKHS on the fly, as shown168

in the prediction step of Fig. 1(b). Then, those particles’169

feature mappings with associated kernel weights are used170

in the kernel feature space to approximate the KME of171

the posterior pdf, see the update step in Fig. 1(c). Unlike172

the bootstrap PF and its extensions, the particle weights173

can take arbitrary values and are not constrained to be174

non-negative or to sum to one.175

3) By embedding pdfs into an RKHS, the use of the kernel176

function allows the statistical inference in non-linear177

systems to be solved using linear algebra operations. Here178

the weighted kernel mean vector and weighted kernel179

covariance matrix are predicted and updated using the180

KKR, i.e., the KKR is used to realize an unbiased update181

of the KME [23].182

The rest of the paper is set out as follows. Section II reviews183

the KME [21] and the KKR [23]. Section III is devoted to184

the theoretical derivation of the proposed AKKF. In Section185

IV, we use three typical examples to present the performance186

results of the AKKF for non-linear problems and finally draw187

conclusions in Section V.188

List of Abbreviations:189

AKKF Adaptive kernel Kalman filter
BOT Bearings-only tracking
CV Constant-velocity
DSSM Dynamic state-space model
EKF Extended Kalman filter
GPF Gaussian particle filter
KBR Kernel Bayesian rule
KF Kalman filter
KME Kernel mean embedding
KKR Kernel Kalman rule
LMSE Logarithmic mean square error
ML Maximum-likelihood
MSE Mean square error
PF Particle filter
RKHS Reproducing kernel Hilbert space
UKF Unscented Kalman filter
UNGM Univariate nonstationary growth model

190

II. Preliminaries191

This section briefly reviews the framework of the KME,192

empirical KME, and data-driven KKR. See [21] and [23] for193

details.194

A. Kernel Mean Embedding195

A random variable is denoted as X in the data space X with196

a pdf p(x). An instance of X is denoted as x. A reproducing197

kernel Hilbert space (RKHS) denoted as Hx on the data space198

X with a kernel function kx(x, x′) is defined as a Hilbert space199

of functions f (·) with the inner product ⟨·, ·⟩Hx that satisfies200

the following important properties:201

(a)

(b)

(c)

Figure 1: One iteration of the AKKF. Here, M represents the number of particles.
(a) Proposal step: embedding the posterior distribution at time n − 1. Draw the proposal
particles x{i=1:M}

n−1 in the data space according to the importance distribution accessed from
µ̂+xn−1

. Then, the proposal kernel weight mean vector and covariance matrix are updated
in the kernel space. (b) Prediction step: the particles are propagated through process
function in the data space. Then the KME of the predictive distribution is approximated
as p(xn |x1:n−1, y1:n−1)→ µ̂−xn . (c) Update step: the information from the new observation
is used to update the kernel weight mean vector and covariance matrix. The KME of the
posterior pdf p(xn |x1:n−1, y1:n)→ µ̂+xn is calculated based on the observation information.

• The feature mapping of x: ϕx(x) = kx(x, ·) ∈ Hx for all 202

x ∈ X. 203

• Reproducing property: f (x) = ⟨ f , kx(x,)⟩Hx for all f ∈ Hx 204

and x ∈ X. 205

The above definitions are also applied to the predecessor of 206

current state X, i.e., X, and the observation variable, i.e., 207

Y , that sit in two RKHSs. See Table I for a summary. The 208

kernel function is the inner product of two feature mappings, 209

i.e., ⟨ϕx(x), ϕx(x′)⟩Hx = kx(x, x′). Table II gives some typical 210

kernel functions assuming a scalar x. This paper investigates 211

both infinite-dimension and finite-dimension feature spaces in 212

a common framework. 213

The KME approach represents a pdf p(x) by an element in
the RKHS as

µX := EX
[
ϕx(X)

]
=

∫
X

ϕx(x)p(x)dx. (7)

The joint pdf of two or more variables, e.g., p(x, y), can be

4

Table I: The meaning of notations.

Description Current
state

predecessor
state

Observation

Random variable X X Y
Domain X X Y

Specific variable x x y
Kernel kx(x, x′) kx(x, x′) ky(y, y′)
Kernel matrix Kxx Kxx Gyy
Feature mapping ϕx(x) ϕx(x) ϕy(y)
Feature matrix Φ Ψ Υ

RKHS Hx Hx Hy

Table II: Typical kernel functions.

Kernel
function

k(x, x′) Dimension of
feature mapping

Linear ⟨x, x′⟩ Finite
Quadratic (⟨x, x′⟩ + c)2 Finite
Quartic (⟨x, x′⟩ + c)4 Finite
Gaussian exp

(
− 1
σ2 ∥(x − x′)∥2

)
Infinite

embedded into a tensor product feature space Hx ⊗ Hy as a
(uncentered) covariance operator, 1 i.e.,

CXY : = EXY

[
ϕx(X) ⊗ ϕy(Y)

]
=

∫
X×Y

ϕx(x) ⊗ ϕy(y)p(x, y)dxdy.
(8)

The tensor product features satisfy ⟨ϕx(x) ⊗ ϕy(y), ϕx(x′) ⊗214

ϕy(y′)⟩Hx⊗Hy = kx(x, x′)ky(y, y′).215

Similar to (7), the KME of a conditional pdf p(X|y) can be
defined as

µX|y := EX|y
[
ϕx(X)

]
=

∫
X

ϕx(x)p(x|y)dx. (9)

The difference between the KME µX|y and µX is that µX is a
single element in the RKHS, while µX|y is a family of points,
each indexed by fixing Y to a particular value y. A conditional
operator CX|Y is defined under certain conditions [22] as the
linear operator, which takes the feature mapping of a fixed
value y as the input and outputs the corresponding conditional
KME;

µX|y = CX|Yϕy(y) = CXYC
−1
YYϕy(y). (10)

In practice, it is difficult to make valid statistical inferences216

about the regression parameters with an ill-conditioned217

covariance operator. Therefore, the inversion of CYY218

is generally replaced by the regularized inverse, i.e.,219

(CYY + κI)−1, where κ is a regularization parameter to ensure220

that the inverse is well-defined, and I is the identity operator221

matrix. When the conditions defined in [22] are not precisely222

met, (10) can still be interpreted as a linear (in the feature223

space) minimum mean squared error estimate for µX|y.224

B. Empirical Estimation of KME225

As it is rare to access the actual underlying pdfs mentioned226

above, we can alternatively estimate the KMEs using a finite227

1While some results have been formulated with centered kernels, e.g., [26],
equivalent derivations can be made for the uncentered covariance operator.

number of samples drawn from the corresponding pdfs. 228

The empirical KME of p(x) in (7) is approximated as
the average of the samples’ feature mappings, i.e., Dϕx(X) =

{ϕx(x{1}), . . . , ϕx(x{M})}, the samples DX = {x{1}, . . . , x{M}} are
drawn i.i.d. from p(x), and M represents the number of
samples;

µ̂X =
1
M

M∑
i=1

ϕx(x{i}). (11)

The empirical KME of the covariance operator CXY in (8)
inherits the injectivity of CXY and is approximated as

ĈXY =
1
M

M∑
i=1

ϕx(x{i}) ⊗ ϕy(y{i}) =
1
M
ΦΥT, (12)

where the M sample pairs DXY = {(x{1}, y{1}), . . . , (x{M}, y{M})} 229

are drawn i.i.d. from p(x, y) with the feature mappings Φ := 230[
ϕx(x{1}), . . . , ϕx(x{M})

]
and Υ :=

[
ϕy(y{1}), . . . , ϕy(y{M})

]
.2 231

The KME of the conditional distribution p(x|y) is
theoretically calculated as (9) or (10). When p(x|y) is unknown
but i.i.d. samples DXY drawn from p(x, y) are available,
the estimation of the empirical conditional operator ĈX|Y is
regarded as a linear regression in the RKHS [24], [25]. And
ĈX|Y is calculated by

ĈX|Y = ĈXY

(
ĈYY + κI

)−1
= Φ
(
Gyy + κI

)−1
ΥT. (13)

Here, Gyy = Υ
TΥ is the Gram matrix for the samples from

the observed variable Y . Then, the empirical KME of the
conditional distribution is calculated through the following
linear algebra as

µ̂X|y = ĈX|Yϕ(y) = Φ
(
Gyy + κI

)−1
ΥTϕy(y)≡Φw. (14)

Here, y ∈ Y is the input test variable. Note that the empirical
KME of the conditional pdf µ̂X|y is a weighted sum of the
feature mappings of the training samples. The weight vector
includes M non-uniform weights, i.e., w =

[
w{1}, . . . ,w{M}

]T
,

and is calculated as

w =
(
Gyy + κI

)−1
G:,y, (15)

where the vector of kernel functions G:,y = 232[
ky(y{1}, y), . . . , ky(y{M}, y)

]T
. From (15), we can see that 233

the kernel weight vector is the solution to a set of linear 234

equations in the feature space, and unlike PF methods there 235

are no non-negativity or normalization constraints. 236

C. Kernel Kalman Rule 237

Based on the KME of conditional pdfs, non-linear 238

estimations can be mapped into kernel feature spaces, i.e., 239

RKHSs, and solved using linear operations. It has been 240

proposed that the conditional KME operator in (10) can 241

then be used to derive a KBR under certain conditions [21], 242

2For infinite dimensional feature spaces these operators are
infinite-dimensional. However, a practical implementation is still possible
working in the data space and using the kernel trick. For finite-dimensional
feature spaces, empirical calculations can be implemented in either the
feature space or using the kernel trick in the data space.

5

[22]. However, these conditions are very restrictive and often243

fail, making the formulation difficult to interpret theoretically244

and quite unstable practically. Recently an alternative, the245

kernel Kalman rule (KKR) has been proposed exploiting the246

optimal linear interpretation (in the kernel feature space) of247

the conditional KME estimate that enjoys better stability [23].248

The empirical KKR is formulated by executing a KF249

in the kernel feature space. An illustration of the KKR is250

shown in Fig. 2. Specifically, the transition matrix and the251

transition residual are calculated based on the training data252

set that is assumed to include M sample triples DXXY =253

{(x{1}, x{1}, y{1}), . . . , (x{M}, x{M}, y{M})} [23]. Here, x{i} denotes254

the predecessor state of x{i}, i = 1, . . . ,M, and y{i} is the255

corresponding observation of x{i}. The feature mappings of the256

training data are represented as Φ :=
[
ϕx(x{1}) . . . , ϕx(x{M})

]
,257

Φ :=
[
ϕx(x{1}) . . . , ϕx(x{M})

]
and Υ :=

[
ϕy(y{1}) . . . , ϕy(y{M})

]
,258

respectively. The corresponding kernel weight mean vector and259

its covariance matrix are calculated following the prediction260

and update steps in the weight space.261

In the prediction step, the kernel weight vector and
covariance matrix from time n − 1 to time n are predicted
in the weight space as

w−n = Tw+n−1, (16)

S −n = TS +n−1T T + V. (17)

Here, the kernel transition matrix T is calculated based on262

the training predecessor states and training states data as263

T =
(
Kxx + λK I

)−1
Kxx, and V represents the transition residual264

[27]. Kxx = Φ
TΦ is the transition Gram matrix, and Kxx = Φ

TΦ265

is the Gram matrix of the predecessor states, λK is the266

regularization parameter to stabilize the inverse of Kxx. The267

predictive KME and covariance operator estimates are then268

calculated as µ−xn
= Φw−n and C−xnxn

= ΦS −nΦ
T, respectively.269

Next, the innovation update is executed based the kernel
Kalman gain Qn calculation in the update step, i.e.,

w+n = w−n + Qn

(
G:,yn −Gyyw−n

)
, (18)

S +n = S −n − QnGyyS −n , (19)

Qn = S −n
(
GyyS −n + κI

)−1
, (20)

where the Gram matrix of the training observations is Gyy =

ΥTΥ. The test observation at time n is yn, the kernel
function vector between the training observations and the
test observation is G:,yn =

[
ky(y{1}, yn), . . . , ky(y{M}, yn)

]T
. The

updated KME and covariance operator estimates are then
calculated as µ+xn

= Φw+n and C+xnxn
= ΦS +nΦ

T, respectively.
If the KME contains linear functions, e.g., when quadratic
or quartics kernels are used, we can directly calculate the
mean and covariance of the hidden states in the data space
as marginal quantities of the estimated KME. Even when
this is not possible, e.g., as with Gaussian kernels, a good
approximation can be obtained by projecting the estimated
KME into the data space as (21) and (22) [27] where it is
implicitly assumed that functions in kernel feature spaces can

Figure 2: One iteration of the KKR. Here, x{i=1:M}, x{i=1:M}, and y{i=1:M} denotes the
deterministic training predecessor hidden states, current hidden states, and observations,
respectively. The kernel weight mean vector and covariance matrix are predicted and
updated as a KF in kernel spaces. The estimations of hidden states are found by projecting
the kernel weights into the training data space. 1. Prediction step: The predictive kernel
weight vector and matrix are updated based on the transition matrix T . 2. Update step:
The posterior kernel weight vector and matrix are updated according to the information
of the new observation yn.

reasonably approximate the linear and quadratic functions;

x̂n = XDw+n , (21)

Σ̂n = XDS +n XT
D, (22)

where XD =
[
x{1}, . . . , x{M}

]
is the set of the current training 270

states. 271

The kernel-based filters learn the probabilistic transition 272

and observation dynamics as linear functions on embeddings 273

of the belief state in high-dimensional RKHSs from training 274

data. Note that existing filters based on the KME or the KKR 275

are entirely data-driven, requiring the training data to provide 276

sufficient statistics of the dynamic systems and, therefore, of 277

use when the DSSM is unavailable. The tracking applications 278

of the KKR so far include table tennis balls track, human 279

motion activity estimation, and pendulum track [23]. These 280

applications all have the weakness that the high-dimensional 281

RKHSs are limited with the training data, which requires 282

high similarities between the test data and the training data. 283

However, the entirely data-driven filter’s tracking performance 284

is vulnerable and will fail catastrophically when the target 285

moves out of the training space. This is particularly a problem 286

in the case for the real-time tracking applications that we focus 287

on here. To the best of our knowledge, other investigations 288

have not considered the issue of incorporating a DSSM into 289

the RKHS setting. 290

Unlike the KKR, this paper proposes a Bayesian filter called 291

the adaptive kernel Kalman filter (AKKF) that provides a 292

mechanism for applying the data-driven kernel method to 293

model-based systems. Specifically, there is no need for any 294

training data or an offline training process of the AKKF. 295

The AKKF adaptively draws new particles whose weighted 296

features match the current KME estimate. These particles 297

can then be precisely propagated through the non-linearity 298

6

and used to calculate empirical transition operators in the299

RKHS on the fly. The embeddings of updated state particles300

can be seen as providing an adaptive change of basis for301

the high-dimensional RKHSs, making the non-linear function302

approximation more accurate and flexible. Therefore, the303

AKKF has higher efficiency and broader applications.304

III. Adaptive Kernel Kalman Filter305

The proposed AKKF aims to take all the benefits of the306

KME and KKR, and adapt them to work in the model-based307

setup. I.e., the presented AKKF is a method incorporating a308

DSSM into RKHSs. In a similar manner to the selection and309

propagation of sigma points in the UKF, the AKKF adaptively310

updates particles whose weighted features are matched to311

the KME estimate of the current state. Note that the AKKF312

chooses particles propagated through the non-linear system313

randomly, which is different from the UKF. Further, the314

weights of the proposed AKKF, unlike PFs, do not need to be315

normalized or non-negative and are updated through simple316

linear regression.317

In the proposed AKKF, the empirical KME of the hidden318

state’s posterior pdf requires a set of generated particles’319

feature mappings and the corresponding kernel weights.320

Fig. 1 shows one iteration of the proposed AKKF executed321

in both the data and kernel feature spaces. Specifically,322

particles are updated and propagated in the data space323

based on parametric DSSMs to capture the diversity of the324

non-linearities. The corresponding kernel weight mean vector325

and covariance matrix are predicted and updated by matching326

(or approximating in a least squares manner in the feature327

space) with the state KME. The following presents three main328

steps of the proposed AKKF.329

A. Embedding the Posterior Distribution at Time n − 1330

Given the posterior KME estimate at time n − 1, i.e.,331

µ̂+xn−1
, we wish to draw new particles that better represent the332

probability mass of the associated posterior pdf. The posterior333

KME estimate µ̂+xn−1
comprises weighted feature mappings of334

the particles, for which we use blue points to represent in335

Fig. 1(a). While there are sophisticated iterative methods,336

such as herding [28], that can sample from the posterior337

distribution. We advocate a much simpler technique in the338

spirit of importance sampling. Given that we can extract339

estimates for the mean and covariance of the state pdf in data340

space, we can draw particles in the high probability region341

of the pdf by sampling from a Gaussian distribution with342

matched mean and covariance. These particles can then be343

used to generate a new approximation of the KME of the pdf344

through appropriate reweighting.345

Specifically, the particles and the corresponding kernel
feature mappings at time slot n − 1 are represented as x{i=1:M}

n−1
and ϕx(x{i=1:M}

n−1), respectively. And the empirical KME and the
covariance operator of p(xn−1 | x0:n−1, y1:n−1) were calculated
as

µ̂+xn−1
= Φn−1w+n−1, (23)

Ĉxn,xn = ΦnS +nΦ
T
n , (24)

where Φn−1 =
[
ϕx(x{1}n−1), . . . , ϕx(x{M}n−1)

]
. Then, the state mean 346

and covariance (in data space) of xn−1, i.e., E(xn−1) and 347

Cov(xn−1), are extracted from µ̂+xn−1
and returned to the data 348

space, as shown by the red arrow in Fig. 1(a). 349

The state vector’s mean and covariance are extracted in
two different ways: 1) A suitable kernel choice, i.e., quadratic
and quartic kernels, can directly give the state vector’s
mean and covariance if the associated RKHS contains linear
functions. For example, suppose xn−1 =

[
xn−1,1, . . . , xn−1,d

]T is
a d-dimension vector, with the utilization of quadratic kernel,
the empirical KME µ̂+xn−1

is represented as (25) which contains
all features of degree zero, degree one, and degree two terms;

µ̂+xn−1
=

[
vec
(
E
(
xn−1xT

n−1

))T
, (E(xn−1))T , c

]T
. (25)

Here, c ≥ 0 is a free parameter trading off the influence
from higher-order and lower-order terms of the polynomial
[29]. The utilization of quartic kernel can further provide all
features of degree zero to degree four terms; 2) Otherwise,
such as linear or Gaussian kernels, the state vector’s mean and
covariance can be approximated using (21) and (22). Then, the
proposal particles, shown as green points in Fig. 1(a) can be
randomly sampled from the following normal distribution as

x̃{i=1:M}
n−1 ∼ N (E (xn−1) ,Cov (xn−1)) , (26)

Cov (xn−1) = E
(
xn−1xT

n−1

)
− E (xn−1)E (xn−1)T . (27)

For convenience, we draw the proposal particles from
a Gaussian distribution, although other distributions with
matched statistics could also conceivably be used. The
proposal particles should therefore capture the location of the
significant probability mass of the posterior pdf. In order to use
these particles to approximate the KME of the posterior pdf,
we need to calculate new kernel weights for them, i.e, w̃+n−1.
Note that this is not equivalent to approximating the posterior
pdf by a Gaussian. Instead, it can be thought of as an adaptive
change of basis within the feature space which can be achieved
through a simple linear mapping that we describe next. Let
the proposal particles’ feature mappings be represented as
Ψn−1 =

[
ϕx(x̃{1}n−1), . . . , ϕx(x̃{M}n−1)

]
, with the associated weight

vector w̃+n−1 and matrix S̃ +n−1. Then, the KME and covariance
operator in (23) and (24) are rewritten as

µ̂+xn−1
= Ψn−1w̃+n−1, (28)

Ĉ+xn−1xn−1
= Ψn−1S̃ +n−1Ψ

T
n−1. (29)

The formulas for the proposal kernel weight vector w̃+n−1 and
matrix S̃ +n−1 are (30) and (31), respectively.

Ψn−1w̃+n−1 = Φn−1w+n−1

⇒ΨT
n−1Ψn−1w̃+n−1 = Ψ

T
n−1Φn−1w+n−1

⇒w̃+n−1 =
(
ΨT

n−1Ψn−1

)−1
ΨT

n−1Φn−1w+n−1

⇒w̃+n−1 =
(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+n−1 = Γn−1w+n−1,

(30)

Ψn−1S̃ +n−1Ψ
T
n−1 = Φn−1S +n−1Φ

T
n−1

⇒ΨT
n−1Ψn−1S̃ +n−1Ψ

T
n−1Ψn−1 = Ψ

T
n−1Φn−1S +n−1Φ

T
n−1Ψn−1

⇒S̃ +n−1 =
[(

Kx̃x̃ + λK̃ I
)−1 Kx̃x

]
S +n−1

[(
Kx̃x̃ + λK̃ I

)−1 Kx̃x
]T

⇒S̃ +n−1 = Γn−1S +n−1Γ
T
n−1.

(31)

7

Here, Γn−1 represents the change of sample representation from350

Φn−1 to Ψn−1 and is calculated as Γn−1 =
(
Kx̃x̃ + λK̃ I

)−1 Kx̃x.351

The matrix Kx̃x̃ = Ψ
T
n−1Ψn−1 represents the Gram matrix352

of the proposal particles at time n − 1. The matrix Kx̃x =353

ΨT
n−1Φn−1 represents the Gram matrix between the old particles354

x{i=1:M}
n−1 and the proposal particles x̃{i=1:M}

n−1 at time n − 1. The355

regularization parameter λK̃ is used to stabilize the inverse of356

Kx̃x̃. Note that for small feature spaces, i.e., Φ is full rank, and357

Dim [Φ] < M, (28) and (29) are exact. However, to deal with358

ill-conditioning or where the feature space is larger than the359

number of samples, e.g., when it is infinite, using the weight360

vector and covariance matrix from (30) and (31) make (28)361

and (29) approximate.362

B. Prediction from Time n − 1 to Time n363

In this step, the proposal particles generated in the previous364

step are propagated through the process model to estimate the365

transition operator Cxn |xn−1 . Then the predictive kernel weight366

vector and covariance matrix are calculated.367

Specifically, the proposal particles at time n − 1 are
propagated through the transition function to calculate the
particles at time n, represented as indigo points in Fig. 1(b).

x{i}n = f (x̃{i}n−1,u
{i}
n), i = 1 . . .M, (32)

where u{i}n represents a process noise sample drawn from
the process noise pdf. The feature mappings of x{1:M}

n are
Φn =

[
ϕx(x{1}n), . . . , ϕx(x{M}n)

]
, and the predictive KME and

covariance operator are calculated by

µ̂−xn
= Φnw−n , (33)

Ĉ−xnxn
= ΦnS−nΦ

T
n . (34)

Here, the weight vector w−n and matrix S−n are derived in
(35)–(41) as follows. The conditional KME of the transitional
probability p(xn|xn−1, y1:n−1) is approximated as

p(xn|xn−1, y1:n−1) 7→ µ̂−xn
= Ĉxn |xn−1 µ̂

+
xn−1
, (35)

where the empirical approximations to the conditional
embedding operator Ĉxn |xn−1 can be derived from a least-squares
objective [30] as

Ĉxn |x̃n−1 = Φn

(
Ψn−1Ψ

T
n−1 + λK̃ I

)−1
ΨT

n−1

= Φn
(
Kx̃x̃ + λK̃ I

)−1
ΨT

n−1.
(36)

Substituting (28) and (36) into (35), we have the estimate of
the predictive empirical KME of xn as

µ̂−xn
= Ĉxn |x̃n−1 µ̂

+
xn−1

= Φn
(
Kx̃x̃ + λK̃ I

)−1
ΨT

n−1Φn−1w+n−1

= Φn
(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+n−1

= Φnw−n .

(37)

Thus, the estimate of the predictive kernel weight vector is
given by

w−n =
(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+n−1 = Γn−1w+n−1. (38)

From (30) and (38), we see that w−n = w̃+n−1. Next, the empirical
predictive covariance operator at time n is computed as

Ĉ−xnxn
= Ĉxn |x̃n−1 Ĉ

+
xn−1xn−1

ĈT
xn |x̃n−1

+Vn

= Ĉxn |x̃n−1Ψn−1S̃ +n−1Ψ
T
n−1Ĉ

T
xn |x̃n−1

+Vn

= ΦnS̃ +n−1Φ
T
n +Vn.

(39)

Here, Vn represents the transition residual matrix, which is
derived as

Vn =
1
M

(
Ĉxn |x̃n−1Ψn−1 − Φn

) (
Ĉxn |x̃n−1Ψn−1 − Φn

)T
=

1
M

[
Φn
(
Kx̃x̃ + λK̃ I

)−1
ΨT

n−1Ψn−1 − Φn

]
×
[
Φn
(
Kx̃x̃ + λK̃ I

)−1
ΨT

n−1Ψn−1 − Φn

]T
=Φn

1
M

[(
Kx̃x̃ + λK̃ I

)−1 Kx̃x̃ − I
]

×
[(

Kx̃x̃ + λK̃ I
)−1 Kx̃x̃ − I

]T
ΦT

n

≡ΦnVnΦ
T
n .

(40)

Here, Vn is the finite matrix representation of Vn. The
predictive weight covariance matrix is given by substituting
(39) and (40) into (34);

S −n = S̃ +n−1 + Vn. (41)

C. Update at Time n 368

This step modifies the predictive kernel weight vector and
covariance matrix calculated in the previous step, considering
the new observation at time n. The observation particles in
Fig. 1(c) are updated based on the measurement model as

y{i}n = h(x{i}n , v
{i}
n), i = 1 . . .M. (42)

Here, v{i}n represents a measurement noise sample drawn from
the measurement noise pdf. Then, the kernel mappings of
observation particles in the kernel feature space are Υn =[
ϕy(y{1}n), . . . , ϕy(y{M}n)

]
. The posterior KME is calculated as

µ̂+xn
= µ̂−xn

+ Qn

[
ϕy(yn) − Ĉyn |xn µ̂

−
xn

]
, (43)

where the kernel Kalman gain operator denoted as Qn is
applied to the correction term ϕy(yn)− Ĉyn |xn µ̂

−
xn

and is derived
by minimizing the trace of the posterior covariance operator
Ĉ+xnxn

[23], as in the (44):

Qn = arg min
Qn

Tr
[
Ĉ+xnxn

]
= ΦnS −n

(
GyyS −n + κI

)−1
ΥT

n .
(44)

The Appendix provides the derivation details of Qn. Then, the
updated KME vector represented in (43) is calculated as

µ̂+xn
=Φnw+n = Φnw−n + Qn

[
ϕ(yn) − Ĉyn |xn µ̂

−
xn

]
=Φn

[
w−n + S −n

(
GyyS −n + κI

)−1 (
G:,yn −Gyyw−n

)]
,

(45)

where the kernel vector of the measurement at time n is G:,yn =

ΥT
nϕ(yn), and the Gram matrix of the observation at time n is

8

Gyy = Υ
T
nΥn. Hence, the weight vector is updated as

w+n = w−n + S −n
(
GyyS −n + κI

)−1 (
G:,yn −Gyyw−n

)
= w−n + Qn

(
G:,yn −Gyyw−n

)
,

(46)

where Qn is the finite matrix representation of Qn;

Qn = S −n
(
GyyS −n + κI

)−1
. (47)

Then, the covariance operator can be expressed as:

Ĉ+xnxn
= Ĉ−xnxn

− QnΥnS −nΦ
T
n . (48)

The derivation details are shown in Appendix. As the
predictive and posterior covariance operators are Ĉ−xnxn

=

ΦnS −nΦ
T
n and Ĉ+xnxn

= ΦnS +nΦ
T
n , (48) is rewritten as

ΦnS +nΦ
T
n = ΦnS −nΦ

T
n − QnΥnS −nΦ

T
n

⇒ΦnS +nΦ
T
n

= ΦnS −nΦ
T
n − ΦnS −nΥ

T
n

(
ΥnS −nΥ

T
n + κI

)−1
ΥnS −nΦ

T
n

= Φn

[
S −n − S −nΥ

T
n

(
ΥnS −nΥ

T
n + κI

)−1
ΥnS −n

]
ΦT

n .

(49)

Therefore, the kernel weight covariance matrix is finally
updated as

S +n = S −n − S −nΥ
T
n

(
ΥnS −nΥ

T
n + κI

)−1
ΥnS −n

= S −n − S −n
(
GyyS −n + κI

)−1
GyyS −n

= S −n − QnGyyS −n .

(50)

D. Implementation of AKKF369

Based on the above descriptions, Algorithm 1 summarizes370

the implementation of the AKKF.371

IV. Simulation Results372

We report on three numerical examples showing the373

benefits of the proposed AKKF when the system DSSMs374

are available. In the first experiment, we deal with the state375

estimation problem following the univariate nonstationary376

growth model (UNGM). We employ the UNGM because377

of its high non-linearity and bimodality. We then report378

the tracking performance for the nonlinear-in-observation379

bearing-only tracking (BOT) model, which is of interest380

in defense applications, with the target moving following381

either the linear constant velocity (CV) model or non-linear382

coordinated turn (CT) model with an unknown and random383

walk turn rate, respectively. We compare the most commonly384

used state-of-the-art model-based filters, i.e., the UKF, GPF,385

and bootstrap PF.386

A. State Estimation under UNGM387

The DSSM of UNGM is written as [8]

xn = αxn−1 + β
xn−1

1 + x2
n−1

+ γ cos (1.2 (n − 1)) + un, (51)

yn =
x2

n

20
+ vn. (52)

Algorithm 1 Adaptive kernel Kalman filter

Require: DSSM: transition model f (·) and measurement
model h(·).

1: Initialization: Set the initial particles in real space
x{i=1:M}

0 ∼ Pinit, Φ0 :=
[
ϕx(x{1}0), . . . , ϕx(x{M}0)

]
, w0 =

1/M [1, . . . , 1]T, Ψ0 = Φ0, Γ0 = I.
2: for n = 1 : N do
3: Prediction:

• First, in the data space:
x{i}n = f (x̃{i}n−1,u

{i}
n), i = 1 . . .M.

⇒ Second, in the kernel feature space:
Φn =

[
ϕx(x{1}n), . . . , ϕx(x{M}n)

]
,

w−n = w̃+n−1,
S −n = S̃ +n−1 + Vn.

4: Update:
• First, in the data space:

y{i}n = h(x{i}n , v{i}n), i = 1 . . .M.
⇒ Second, in the kernel feature space:

Υn =
[
ϕy(y{1}n), . . . , ϕy(y{M}n)

]
, Gyy = Υ

T
nΥn.

w+n = w−n + Qn

(
G:,yn −Gyyw−n

)
.

S +n = S −n − QnGyyS −n .
The posterior KME with the statistical information:
µ̂xn = Φnw+n =

[
E
(
xnxT

n

)
,E(xn), c

]T
.

5: Proposal particles draw:
• First, in the data space:

x̃{i=1:M}
n ∼ N

(
E (xn) ,E

(
xnxT

n

)
− E (xn)E (xn)T

)
.

⇒ Second, in kernel feature space:
Ψn =

[
ϕx(x̃{1}n), . . . , ϕx(x̃{M}n)

]
.

Γn =
(
ΨT

nΨn + λI
)−1
ΨT

nΦn.
w̃+n = Γnw+n .
S̃+n = ΓnS+nΓT

n .
6: end for

Here, the process noise un and measurement noise vn are
additive white Gaussian noises (AWGNs), i.e., un ∼ N(0, σ2

u),
and vn ∼ N(0, σ2

v). We set x0 = 0.1, σ2
u = 1, σ2

v = 1. α = 0.5,
β = 25, γ = 8 [8]. The data sequence length is set to be
N = 100. We compare the estimation performance of the
proposed AKKF using a quadratic kernel with the GPF, and
the bootstrap PF, based on the following mean square error
(MSE) metric:

MSE =
1
N

N∑
n=1

(xn − x̂n)2. (53)

We compare the three filters through two simulations. First, 388

in Fig. 3, we show the states and the estimates obtained 389

using filters with M = 20 particles for a single realization. 390

From Fig. 3, the proposed AKKF shows improved estimation 391

performance compared with the bootstrap PF and the GPF 392

which fail to track the ground truth state at specific points. 393

Fig. 4 shows the MSE for 1000 random Monte Carlo (MC) 394

realizations with the increasing number of particles M = 395

[10, 20, 50, 100, 200]. The benchmark performance is achieved 396

by the bootstrap PF with 2000 particles. From Fig. 4, we can 397

9

0 20 40 60 80 100

Time slot

-20

-10

0

10

20

S
ta

te
 v

a
lu

e
Ground truth

PF

GPF

Figure 3: Estimation performance comparison of the PF, GPF, and AKKF filters for the
UNGM in 100 time slot, the number of particles is set as M = 20.

Figure 4: Performance comparison of the PF, GPF, and AKKF filters with an increasing
number of particles. Legend: Solid lines are the average MSEover 1000 random MC
realizations, i.e., E(MSE); The colored areas are error bars calculated as E(MSE) ±
Std(MSE).

conclude that for the state estimation under the UNGM, the398

proposed AKKF shows a distinct advantage for a small number399

of particles, i.e., M = [10, 20, 50].400

B. Bearing-only Tracking (BOT) – Linear Motion Behavior401

The BOT problem is of interest for airborne radar and
sonar in passive listening mode and electronic warfare systems
[14]. This paper considers the BOT problem with one object
moving in a 2-D space. The hidden state xn = [ξn, ξ̇n, ηn, η̇n]T ,
where (ξn, ηn) and (ξ̇n, η̇n) represent the target position and the
corresponding velocity on X-axis and Y-axis, respectively. The
moving trajectory is assumed to follow a CV motion model,
which is represented as

xn = Fxn−1 +Gun, n = 1, . . . ,N, (54)

where N = 30, the process noise is a 2 × 1 vector, i.e.,
un =

[
ux, uy

]T
n
, which follows a Gaussian distribution un ∼

N(0, σ2
uI2), σu = 1e−3 and I2 is the 2 × 2 identity matrix.

F =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

 , G =


0.5 0
1 0
0 0.5
0 1


where Ts is the sampling interval and is set as Ts = 1. The prior
distribution for the initial state is specified as x0 ∼ N(x̄0,P0).

Following [14], we set the parameters of the prior distribution
to be x̄0 = [−0.05, 0.001, 0.7,−0.05]T and

P0 =


0.1 0 0 0
0 0.005 0 0
0 0 0.1 1
0 0 0 0.01

 .
Although the motion model in this example is linear, the

measurement model is non-linear, leading to non-Gaussian
state distributions. We model the measurements as the actual
bearing with an additional Gaussian error term,

yn = tan−1(
ηn

ξn
) + vn. (55)

Here, the inverse tangent is the four-quadrant inverse tangent 402

function, vn ∼ N(0, σ2
v), σv = 5e−3. 403

1) Tracking performance 404

Fig. 5 displays two representative trajectories and the 405

tracking performance obtained by six filters: UKF, GPF, PF, 406

the proposed AKKF using finite quadratic kernel and quartic 407

kernels, and the proposed AKKF using infinite Gaussian 408

kernel. We locate the observer at [0, 0]. The number of 409

particles used for the PF, GPF, and AKKFs is 20. The number 410

of sigma points for the UKF is 19. It can be seen from Fig. 5 411

that with a small number of particles, divergence may occur 412

for the PF, GPF, and UKF, while divergence is not observed 413

for the proposed AKKFs. 414

Fig. 6 shows the average logarithmic mean square error
(LMSE) obtained for 1000 random MC realizations for all
the position state variables. The LMSE is defined as,

LMSE = log

 1
N

N∑
n=1

√
(ξn − ξ̂n)2 + (ηn − η̂n)2

 . (56)

The numbers of particles are set to be M = 415

[10, 20, 50, 100, 200]. The compared filters are the PF, 416

the GPF, and the AKKFs using quadratic kernel, quartic 417

kernel, and Gaussian kernel, respectively. The benchmark 418

performance is achieved by the bootstrap PF with 104
419

particles. From Fig. 6, we arrive at the following conclusions. 420

First, the proposed AKKFs show significant improvement 421

compared to the PF and GPF with the same number of 422

particles, especially with small numbers of particles, i.e., 423

M = [10, 20, 50]. Second, on average, the AKKF using the 424

quartic kernel performs better than the AKKF using the 425

quadratic kernel. The improved performance is likely due to 426

the quartic feature mappings incorporating more statistical 427

information about the hidden state. The AKKFs using 428

quadratic and quartic kernels can approach the benchmark 429

performance with 20 particles. It is interesting that the LMSE 430

performance slightly deteriorates here as the number of 431

particles increases. This appears to be caused by the overuse 432

of particles, which is likely to lead to singular or badly scaled 433

Gram matrices, increasing the inaccuracy of matrix inversion. 434

Hence, estimation biases propagate to reduce the tracking 435

performance. 436

Next, we investigate the effects of varying regularization 437

parameters λ and κ on the tracking performance. The former 438

10

(a)

(b)

Figure 5: BOT performance of a moving target in two dimensions with UKF, GPF, PF,
quadratic kernel-based AKKF, quartic kernel-based AKKF, and Gaussian kernel-based
AKKF. The number of particles for GPF, PF, and AKKFs is M = 20. Legend: ∗: the
observer, +: the start point of moving trajectory. (a) Trajectory-1, (b) Trajectory-2.

Figure 6: LMSE performance obtained by the UKF, PF, GPF, quadratic kernel-based
AKKF, quartic kernel-based AKKF, and Gaussian kernel-based AKKF with an increasing
number of particles. Legend: Solid lines are the average value of LMSEs, i.e., E(LMSE)
for 1000 random MC realizations. The colored areas are error bars E(LMSE) ±
Std(LMSE).

is used in the calculation of the transition matrix Γn in (31).439

The latter is used for the calculation of kernel Kalman gain Qn440

in (47). The regularization parameter choice must be derived441

from the real data. Hence, we investigate the good empirical442

value of regularization parameters using an MC method. In443

Figure 7: LMSE performance comparison of the PF, GPF, and AKKF filters with the
varying regularization parameter λ. The number of MC random realizations is set to 1000.
Legend: Solid lines are the average over 1000 random MC realizations, i.e., E(MSE).
The colored areas are error bars calculated as E(MSE) ± Std(MSE).

this simulation, κ is set to be equal to λ, and the number of 444

particles for AKKF is set to be 50. From Fig. 7, we can see that 445

the LMSE performance is relatively insensitive to the values 446

of λ and κ when they are in the range
[
10−4, 10−2

]
. 447

2) Computational complexity 448

In the next experiment, we compare the computation time 449

of filters and show the results in Fig. 8. The simulations 450

are implemented in Matlab and run using MacBook Pro, 451

Chip Apple M1. Fig. 8 shows the average computation time 452

obtained for 1000 MC realizations, from which we can see that 453

the computation time of the bootstrap PF increases linearly 454

with the increase of particle numbers, while the computation 455

time of the proposed AKKF increases quadratically with the 456

increase of particle numbers M when 10 ≤ M ≤ 200, 457

since the computational complexity of matrices inversion 458

increases quadratically. Even though the increasing trend of 459

computational complexity for the AKKF is more significant, 460

the LMSE tracking performance of the AKKF can approach 461

the benchmark, e.g., −3.0, with very small number of particles 462

requirement. For a further confirmation of this conclusion, 463

Fig. 9 shows the LMSE performance with the correspond 464

running time. From this figure, we can conclude that with 465

the LMSE performance benchmark is −3.0, the computation 466

time for the PF, GPF, quadratic kernel-based AKKF, quartic 467

kernel-based AKKF and Gaussian kernel-based AKKF are 468

0.35s, 0.35s, 0.035s, 0.0075s and 0.45s, respectively. 469

C. Bearing-only Tracking (BOT) – Highly Maneuvering 470

Behaviors 471

In our final experiment, we consider the same BOT
observation model with a nonlinear motion model. The motion
behavior of hidden states xn =

[
ξn, ξ̇n, ηn, η̇n, ωn

]T
, n =

1, . . . ,N is set to follow CT model with unknown and dynamic
turn rate as [31]
ξn

ξ̇n

ηn

η̇n

 =


1 sinωn−1Ts
ωn−1

0 −
1−cosωn−1Ts
ωn−1

0 cosωn−1Ts 0 − sinωn−1Ts

0 1−cosωn−1Ts
ωn−1

1 sinωn−1Ts
ωn−1

0 sinωn−1Ts 0 cosωn−1Ts

 xn−1 + vn, (57)

11

(a)

(b)

(c)

(d)

(e)

Figure 8: Showing the trend of the computation time and LMSE of the PF, GPF, and
different AKKFs; Average computation time (s) and LMSE over 1000 MC random
realizations with increasing number of particles. Legend: Blue circles with arrows mean
that the curves are the performance of computation time; Red circles with arrows mean
that the curves show the LMSE performance.

(a)

(b)

(c)

(d)

(e)

Figure 9: Computation time and LMSE; Average computation time (s) and LMSE over
1000 MC random realizations.

ωn =

ωn−1 + vn,ω, if n , N/2

ωn−1/3 + vn,ω, otherwise
(58)

where ωn is the random walk turn rate and changes at n =
N/2. The sampling interval is set as Ts = 1, vn ∼ N(0, σ2

vR),
vn,ω ∼ N(0, σ2

w), σv = 1e−3, and σω = 1e−2,

R =

2(ωnTs−sinωnTs)
ω3

n

1−cosωnTs

ω2
n

0 ωnTs−sinωnTs

ω2
n

1−cosωnTs

ω2
n

Ts −
ωnTs−sinωnTs

ω3
n

0

0 −
ωnTs−sinωnTs

ω3
n

2(ωnTs−sinωnTs)
ω3

n

1−cosωnTs

ω2
n

ωnTs−sinωnTs

ω2
n

0 1−cosωnTs

ω2
n

Ts


.

12

(a)

(b)

Figure 10: Tracking performance of a moving target following CT model with random
walk turn rate. The number of particles for GPF, PF, and AKKFs is M = 100. Legend:
∗: the observer, +: the start point of moving trajectory. (a) Trajectory-1, (b) Trajectory-2.

The initial position and velocity states’ prior distribution472

follows the settings in Section IV-B. The prior distribution for473

the unknown turn rate is ω0 ∼ U [0, π/6]. The measurement474

model and corresponding settings follow (55).475

Fig. 10 displays two representative trajectories and the476

tracking performance obtained by six filters: UKF, GPF, PF,477

the AKKF with quadratic, quartic and Gaussian kernels. The478

PF with 104 particles is used as a benchmark. The number479

of particles used for the compared PF, GPF, and AKKFs is480

100. The number of sigma points for the UKF is 23. Fig. 11481

shows the average LMSE obtained for 1000 random MC482

realizations for all the position state variables. We set the483

numbers of particles as M = [20, 50, 100, 200]. From Fig. 10484

and Fig. 11, we conclude that divergence is more severe485

for the PF, GPF, and UKF than the proposed AKKFs, and486

the proposed AKKFs still significantly improve performance487

with small numbers of particles when the target is undergoing488

non-linear motion behavior. However, the performance of the489

AKKFs with quadratic and quartic kernels can’t be enhanced490

with the increased number of particles when M > 50. This491

appears to be caused by the fact that quadratic and quartic492

kernels only allow modeling features of data up to the order493

of the polynomial, but for the BOT systems in which the target494

behaves following highly maneuvering, quadratic and quartic495

Figure 11: LMSE performance for the BOT tracking under the CT model with unknown
and random walk turn rate. Legend: Solid lines are the average value of LMSEs, i.e.,
E(LMSE) for 1000 random MC realizations. The colored areas are error bars E(LMSE)±
Std(LMSE).

kernels are not effective enough to capture the diversity of the 496

non-linearities. 497

V. Conclusions 498

In this paper, we provided a new approach to model-driven 499

Bayesian filters. By embedding the predictive and posterior 500

pdfs into RKHSs, classical KF calculation can be employed 501

along with an adaptive sampling of the DSSM to predict 502

the new data space information. We have observed 503

that more feature information of the hidden states and 504

the observations can be captured and recorded with a 505

significantly smaller number of particles than are needed 506

in PF-based methods while retaining equivalent estimation 507

accuracy. Furthermore, as the new filters are comprised of 508

standard matrix-vector multiplication operations, the overall 509

computational complexity is also very favorable and offers an 510

excellent opportunity for parallelization. 511

Appendix 512

This Appendix gives the derivations of kernel Kalman gain 513

Qn and updated kernel covariance operator Ĉ+xn xn
that follow 514

[23] but are included here for completeness. 515

The trace of the posteriori covariance operator Ĉ+xnxn
is

defined as Ĉ+xnxn
= E

[
ϵnϵ

T
n

]
, where ϵn is the error of the

posteriori KME and calculated as

ϵn = ϕx(xn) − µ̂+xn

= ϕx(xn) −
[
µ̂−xn
+ Qn

(
ϕy(yn) − Ĉyn |xn µ̂

−
xn
− R
)]

=
(
I − QnĈyn |xn

) (
ϕx(xn) − µ̂−xn

)
− QnR,

(59)

where we have used the fact that ϕy(yn) = Cyn |xnϕx(xn). Then,
noting that ϕx(xn−1) − µ̂+xn−1

= ϵn−1, Ĉ+xnxn
is calculated as

Ĉ+xnxn
=
(
I − QnĈyn |xn

)
Ĉ−xnxn

(
I − QnĈyn |xn

)T
+ QnRQ

T
n , (60)

13

where R is the covariance matrix of the residual of the
observation operator. The trace of Ĉ+xnxn

is minimized when
its matrix derivative with respect to the gain matrix is zero.

∂Ĉ+xnxn

∂Qn
= −2(I − QnĈyn |xn)Ĉ−xnxn

ĈT
yn |xn
+ 2QnR = 0

⇒Qn = Ĉ
−
xnxn
CT

yn |xn

(
Ĉyn |xn Ĉ

−
xnxn
ĈT

yn |xn
+ R
)−1
,

(61)

where Ĉ−xnxn
is the predictive kernel covariance operator and is

calculated by (33), Ĉyn |xn is the empirical likelihood operator
and is calculated as

Ĉyn |xn = Υn

(
ΦT

nΦn + λK I
)−1
ΦT

n

= Υn (Kxx + λK I)−1ΦT
n .

(62)

Here, the Gram matrix Kxx = ΦT
nΦn, and λK is the516

regularization parameter to modify Kxx. In this paper, λK is517

set to be 0. R is set as R = κI, κ is used to approximate the518

covariance of the residual of the observation operator.519

Combine (39) and (62), we can have the following
reductions,

Ĉ−xnxn
ĈT

yn |xn

=
[
Φn(S̃ +n−1 + Vn)ΦT

n

] [
Υn (Kxx + λK I)−1ΦT

n

]T
= ΦnS −n

[
(Kxx + λK I)−1ΦT

nΦn

]T
ΥT

n

= ΦnS −n
[
(Kxx + λK I)−1 Kxx

]T
ΥT

n

λK=0
== ΦnS −nΥ

T
n ,

(63)

Cyn |xnC
−
xnxn
CT

yn |xn

=
[
Υn (Kxx + λK I)−1ΦT

n

] (
ΦnS −nΦ

T
n

) [
Υn (Kxx + λK I)−1ΦT

n

]T
= Υn

[
(Kxx + λK I)−1 Kxx

]
S −n
[
(Kxx + λK I)−1 Kxx

]T
ΥT

n

λK=0
== ΥnS −nΥ

T
n .

(64)
Substitute (63) and (64) into (61), the AKKF gain Qn can be
calculated as,

Qn = Ĉ
−
xnxn
CT

yn |xn

(
Ĉyn |xn Ĉ

−
xnxn
ĈT

yn |xn
+ R
)−1

= ΦnS −nΥ
T
n

(
ΥnS −nΥ

T
n + κI

)−1

= ΦnS −nΥ
T
n

(
ΥT

n

)−1
[
ΥT

nΥnS −nΥ
T
n

(
ΥT

n

)−1
+ ΥT

nκI
(
ΥT

n

)−1
]−1
ΥT

n

= ΦnS −n
(
GyyS −n + κI

)−1
ΥT

n .
(65)

The covariance operator Ĉ+xnxn
in (60) is further derived as

Ĉ+xnxn
=
(
I − QnĈyn |xn

)
Ĉ−xnxn

(
I − QnĈyn |xn

)T
+ QnRQ

T
n

=Ĉ−xnxn
− Ĉ−xnxn

ĈT
yn |xn
QT

n − QnĈyn |xn Ĉ
−
xnxn

+ QnĈyn |xn Ĉ
−
xnxn
ĈT

yn |xn
QT

n + QnRQ
T
n

=Ĉ−xnxn
− ΦnS −nΥ

T
nQ

T
n − QnΥnS −nΦ

T
n + Qn

(
ΥnS −nΥ

T
n + R

)
QT

n

=Ĉ−xnxn
− ΦnS −nΥ

T
nQ

T
n − QnΥnS −nΦ

T
n

+ ΦnS −nΥ
T
n

(
ΥnS −nΥ

T
n + κI

)−1 (
ΥnS −nΥ

T
n + κI

)
Qn

=Ĉ−xnxn
− QnΥnS −nΦ

T
n .

(66)

References 520

[1] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice 521

With MATLAB, 3rd ed. Hoboken, NJ, USA: Wiley, 2008. 522

[2] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach 523

for filtering nonlinear systems,” in Proceedings of 1995 American 524

Control Conference - ACC’95, vol. 3, 1995, pp. 1628–1632. 525

[3] E. A. Wan and R. Van Der Merwe, “The unscented Kalman 526

filter for nonlinear estimation,” in Proceedings of the IEEE 2000 527

Adaptive Systems for Signal Processing, Communications, and Control 528

Symposium (Cat. No.00EX373), 2000, pp. 153–158. 529

[4] N. Gordon, D. Salmond, and C. Ewing, “Bayesian state estimation for 530

tracking and guidance using the bootstrap filter,” J. Guid. Control. Dyn., 531

vol. 18, pp. 1434–1443, 1995. 532

[5] M. Kanagawa, Y. Nishiyama, A. Gretton, and K. Fukumizu, “Filtering 533

with state-observation examples via kernel Monte Carlo filter,” Neural 534

Comput., vol. 28, no. 2, pp. 382–444, 2016. 535

[6] M. Kanagawa, Y. Nishiyama, A. Gretton, and K. Fukumizu, “Monte 536

Carlo filtering using kernel embedding of distributions,” in AAAI, 2014. 537

[7] M. Sun, M. E. Davies, I. Proudler, and J. R. Hopgood, “A Gaussian 538

process based method for multiple model tracking,” in 2020 Sensor 539

Signal Processing for Defence Conference (SSPD), 2020, pp. 1–5. 540

[8] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial 541

on particle filters for online nonlinear/non-gaussian Bayesian tracking,” 542

IEEE Trans. Signal Process, vol. 50, no. 2, pp. 174–188, 2002. 543

[9] B.-T. Vo and B.-N. Vo, “Labeled random finite sets and multi-object 544

conjugate priors,” IEEE Trans. Signal Process, vol. 61, no. 13, pp. 545

3460–3475, 2013. 546

[10] H. W. Sorenson, Kalman Filtering: Theory and Application. NJ: IEEE: 547

Piscataway, 1985. 548

[11] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter 549

to nonlinear systems,” in Signal Processing, Sensor Fusion, and Target 550

Recognition VI, I. Kadar, Ed., vol. 3068, International Society for 551

Optics and Photonics. SPIE, 1997, pp. 182 – 193. [Online]. Available: 552

https://doi.org/10.1117/12.280797 553

[12] S. Julier and J. K. Uhlmann, “A general method for approximating 554

nonlinear transformations of probability distributions,” Eng. Dept.,Univ. 555

Oxford, Oxford, U.K., Tech. Rep., 1996. 556

[13] K. Ito and K. Xiong, “Gaussian filters for nonlinear filtering problems,” 557

IEEE Trans. Autom. Control., vol. 45, pp. 910–927, 2000. 558

[14] J. H. Kotecha and P. M. Djuric, “Gaussian particle filtering,” IEEE Trans. 559

Signal Process, vol. 51, no. 10, pp. 2592–2601, 2003. 560

[15] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo 561

sampling methods for Bayesian filtering,” Stat. Comput., vol. 10, 04 562

2003. 563

[16] J. H. Kotecha and P. M. Djuric, “Sequential Monte Carlo sampling 564

detector for Rayleigh fast-fading channels,” in 2000 IEEE International 565

Conference on Acoustics, Speech, and Signal Processing. Proceedings 566

(Cat. No.00CH37100), vol. 1, 2000, pp. 61–64 vol.1. 567

[17] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle 568

filtering: Classification, implementation, and strategies,” IEEE Signal 569

Process. Mag., vol. 32, no. 3, pp. 70–86, 2015. 570

[18] Dong Guo and Xiaodong Wang, “Quasi-monte carlo filtering in 571

nonlinear dynamic systems,” IEEE Trans. Signal Process, vol. 54, no. 6, 572

pp. 2087–2098, 2006. 573

[19] P. Closas, C. Fernandez-Prades, and J. Vila-Valls, “Multiple quadrature 574

Kalman filtering,” IEEE Trans. Signal Process, vol. 60, no. 12, pp. 575

6125–6137, 2012. 576

[20] P. Stano, Z. Lendek, J. Braaksma, R. Babuška, C. de Keizer, and 577

A. J. den Dekker, “Parametric Bayesian filters for nonlinear stochastic 578

dynamical systems: A survey,” IEEE Trans. Cybern., vol. 43, no. 6, pp. 579

1607–1624, 2013. 580

[21] L. Song, K. Fukumizu, and A. Gretton, “Kernel embeddings of 581

conditional distributions: A unified kernel framework for nonparametric 582

inference in graphical models,” IEEE Signal Process. Mag., vol. 30, 583

no. 4, pp. 98–111, 2013. 584

[22] K. Fukumizu, L. Song, and A. Gretton, “Kernel Bayes’ rule: Bayesian 585

inference with positive definite kernels,” J. Mach. Learn. Res., vol. 14, 586

no. 1, p. 3753–3783, Dec. 2013. 587

[23] G. Gebhardt, A. Kupcsik, and G. Neumann , “The kernel Kalman rule,” 588

Mach. Learn., pp. 2113–2157, 2019. 589

[24] M. Sun, M. E. Davies, I. Proudler, and J. R. Hopgood, “Adaptive kernel 590

Kalman filter,” in 2021 Sensor Signal Processing for Defence Conference 591

(SSPD), 2021, pp. 1–5. 592

[25] M. Sun, M. E. Davies, I. K. Proudler, and J. R. Hopgood, “Adaptive 593

kernel Kalman filter multi-sensor fusion,” in 24th International 594

Conference on Information Fusion, 2021, pp. 1–8. 595

14

[26] K. Fukumizu, F. R. Bach, and M. I. Jordan, “Kernel dimension reduction596

in regression,” The Annals of Statistics, vol. 37, no. 4, pp. 1871 –597

1905, 2009. [Online]. Available: https://doi.org/10.1214/08-AOS637598

[27] G. Gebhardt, A. Kupcsik, and G. Neumann, “The kernel Kalman599

rule: efficient nonparametric inference with recursive least squares,”600

in Thirty-First AAAI Conference on Artificial Intelligence, vol. 1, Feb.601

2017, pp. 4–9.602

[28] Y. Chen, M. Welling, and A. Smola, “Super-samples from kernel603

herding,” in UAI, 2010.604

[29] M. Alama, H. Lin, H. Deng, V. D. Calhound, and W. Yuping, “A kernel605

machine method for detecting higher order interactions in multimodal606

datasets: Application to schizophrenia,” J. Neurosci. Methods, vol. 1, no.607

309, pp. 161–174, 2018.608

[30] S. Grünewälder, G. Lever, A. Gretton, L. Baldassarre, S. Patterson, and609

M. Pontil, “Conditional mean embeddings as regressors,” in ICML, 2012.610

[31] X. Rong Li and V. Jilkov, “Survey of maneuvering target tracking. part611

i. dynamic models,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4,612

pp. 1333–1364, 2003.613

