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Abstract
We propose monotonic consistent caching (MCC), a cache scheme
for applications that demand consistency and monotonicity. MCC
warrants that a transaction-like request always sees a consistent
view of the backend database and observed writes over the cache
will not be lost. We show that the complexity of MCC ranges from
Ptime to Np-Complete. We characterize MCC via a notion of ob-
solete items, based on which we abstract a principle for designing
competitive MCC policies. By applying the principle, we develop
an optimal MCC policy for the batch model, where requests in a
batch are known in advance. For the online and semi-online models,
we develop ML-augmented policies that bene�t from blackbox ML
models for classifying obsolete items, while being provably compet-
itive even if the ML is arbitrarily bad. Using benchmark and real-life
traces, we show that MCC policies reduce 39.09% of database reads
for Redis atop HBase and improve their throughput by 77.15%.

1 Introduction
It has been a common practice to augment databases with external
data caches, e.g.,Memcached [6] and Redis [7], to support data inten-
sive Web applications [20, 59, 61, 62, 75]. By redirecting data access
requests away from the database, data caches can reduce the load
on the backend database, improving the overall system throughput.
Example 1: Consider a social media application in Fig. 1, where
Alice successively accesses Bob’s pro�le via read requests '1, '3
and'4, during which Bob modi�es his pro�le via write,2, between
'1 and '3. Initially Bob’s pro�le in the database � is (name:Bob,
region:US, phone:111, address:California). The application server
" uses a Redis cache C with “in�nitely” large space and is initially
empty; following look-aside caching [40, 59, 65]," bridges� and C.

Upon '1, the application server " makes C fetch and cache
name:Bob, region:US, address:California from the database � . It
then receives a cache invalidation message for ,2, e.g., ban [3],
which noti�es that the cached region and address are stale. Follow-
ing the lazy eviction strategy [7] in Redis or the ban protocol, C still
keeps them as it is not running out of space. Then name and region
of '3 are both cache hits while phone is a miss. Hence " fetches
phone:222 from � for '3 and caches it in C. This seems to have
made '3 a cache hit as each requested item is a hit in C. It, however,
may not pass the application logic since phone:222 is not consistent
with name:Bob, region:US in C, i.e., there is never a time that (Bob,
US, 222) exists in� . To this end," re-fetches region:UK from� and
adds it to C, to make '3 a consistent cache hit, i.e., (Bob, UK, 222).

After that, '4 could have a consistent cache hit (Bob, US, Cali-
fornia) over C. However, it may not pass the application logic as
Alice already observes region:UK in '3 but this would be lost in
'4, i.e., Alice’s view on region would go back in time if " used this
consistent hit for '4. Hence, " fetches address:London and caches
it in C, to make '4 see a “consistent” and “monotonic” view of� . �

As shown in Example 1, a cache request may access a set of items.

Cache C (e.g., Redis)Database D

AliceBob

1 { }R  name,region,address

Invalidation
(e.g., Ban)

2 { : UK,
: 222,
: London}

W  region
phone
address

get/write 
4 { }R  name,region,address
3 { }R  name,region,phone

get/set/delete Application Server
M

Figure 1: Application-level data caching in Example 1

For such requests, even a cache hit could still be useless if it sees
inconsistent (e.g., '3) or non-monotonic (e.g., '4) items. Indeed, con-
sistency assures that the application always sees a consistent view
of the database at certain point of time, while monotonicity prevents
it from losing observed writes. They are the reported desiderata of
applications in, e.g., social network [20, 24, 59, 69, 75], e-commerce
[17, 25, 27, 73] and streaming services [2, 14, 26, 33, 47, 68].

While previous studies [27, 37, 38, 40, 42, 52, 56, 62, 65] have
developed customized systems and cache schemes that help track
writes and inform the applications about inconsistent cache hits,
they rely on application logic to specify the actions for such “in-
valid” hits or use default handling rules, e.g., treating them as cache
miss. This however leads to two di�erent and independent forces
in maintaining the cache content: (a) the cache replacement policy
that decides which cached items to evict when cache over�ow oc-
curs (e.g., LRU), and (b) the logic that handles invalid cache hits that
do not conform to the desired semantic properties. This impairs the
performance guarantees of existing cache replacement policies and
leads to suboptimal performance. Indeed, we will see shortly that
traditional optimal policies are not ideal anymore due to nontrivial
interference with the handling of invalid cache hits (Section 4). In
addition to this, monotonicity has not yet been addressed in previ-
ous schemes, in particular for requests accessing a set of items.

Contributions. We �ll the void by making two contributions:
(1) We develop cache policies that holistically account for both tra-
ditional cache over�ows and invalid cache hits caused by violation
of consistency and monotonicity. We prove that they are theoreti-
cally competitive and even optimal, which are beyond the reach of
conventional policies that are optimized only for cache over�ows.
(2) To make practical use of the policies, we develop MCCache, a
tool that deploys them over existing caches, e.g., Redis and Mem-
cached, without changing their internal implementations; this im-
proves their throughput atop HBase by 77.15% on average.

Below we elaborate these in more detail.
MCC policies. We �rst formulate monotonic consistent caching
(MCC), a scheme that uniformly captures cache over�ows and in-
valid cache hits that violate monotonicity and consistency. MCC
allows us to characterize the e�ectiveness of cache policies in the
presence of monotonicity and consistency. We show that traditional
optimal policies are not competitive anymore and formally study
cache policy design under MCC. We consider all three input models
that have ever been used in caches: batch, semi-online and online.

The batch model abstracts cases where we have a high volume
of requests that are processed in batches. This has been used in e.g.,



Facebook’s Memcached clusters [59] and transaction systems [9],
where requests are bu�ered before being served. The semi-online
model assumes that read requests are known as a batch while write
requests are not. A typical example of the semi-online model is
secondary nodes in Redis [8], as writes are propagated from the
primary node via cache invalidation while reads are batched as
usual in local bu�ers. The online model has the least restriction and
is the mostly perceived: both read and write requests are revealed
to the cache policy online at runtime, one after another [20, 66, 67].
An online cache policy has to make the cache decision for each
request on-the-�y, without any knowledge of subsequent requests.
Complexity. We investigate the complexity of MCC. We prove that
in general optimal MCC cache policy is Np-Complete, as opposed to
conventional caching that is trivially in Ptime [18]. Unlike conven-
tional cache policies that only need to decide which cached items
to evict upon cache over�ows caused by cache misses, MCC policies
also have to deal with inconsistent or non-monotonic cache hits,
and decide which version of the items to cache.

We consider two version selection strategies: Eager and Lazy. In-
formally, Lazy allows to cache items with bounded staleness, in line
with the lazy eviction of Redis, while Eager always fetches the most
current items and automatically warrants monotonicity.

Surprisingly, we �nd that the complexity of MCC signi�cantly dif-
fers w.r.t. Eager and Lazy. Indeed, we show that optimal MCC policy
remains Np-Hard with Eager, while it becomes Ptime with Lazy.
Characterization. We dig deeper and characterize the impact of
monotonicity and consistency on caching. We identify a class of
cached data items, which we refer to as obsolete items, that can ex-
plain why the hardness of MCC policies varies with Eager and Lazy:
with Lazy it is Ptime to decide whether a cached item is obsolete
while it becomes coNp-Complete with Eager.

Based on the characterization, we develop a principled approach
to the design of MCC policies. It builds upon the following propo-
sition (informal): if a cache policy P is 2-competitive [12] for MCC,
then P> is at least 2-competitive, where %> evicts obsolete items
�rst and then acts exactly the same as P does upon cache over�ows.
Optimal policies. As applications of the principle, we develop
(a) an MCC policy for the batch model that is optimal with Lazy.
(b) MCC policies for the semi-online and online models that can in-

corporate blackbox ML classi�erM for deciding obsolete items:
◦ they can bene�t from accurate classi�cations fromM and

be provably competitive (online) and optimal (semi-online);
◦ they are ML-robust, i.e., they remain competitive even when
M is adversarial and produces arbitrarily bad predictions.

MCCache. We develop MCCache1, a pluggable system that adds
the support of MCC to existing data caches in a non-intrusive way.
Speci�cally, MCCache bypasses the internal cache policy of data
caches, mostly some LRU variant [6, 7], by running a dedicated
MCC cache policy atop them and injecting MCC cache actions via
eviction operators provided by the underlying data caches. Our
current implementation of MCCache provides built-in connectors
for the most popular data caches including Redis and Memcached.

Using both YCSB benchmark and real-life traces, we evaluate the
1https://github.com/jiayouanan/mccache

e�ectiveness of our cache policies for Redis and Memcached. We
�nd the following. (1) MCCache e�ectively empowers Redis and
Memcached with the capacity of upholding monotonicity and con-
sistency. (2) Under the batch model, our MCC policies in MCCache
reduce 42.76% of the cost (number of database reads) of MCC poli-
cies adopted from conventional caching, up to 61.79%. (3) Under the
semi-online and online model, on average our policies have costs
41.28% and 20.01% lower than competitor policies, respectively, with
ML predictions that have 95% of accuracy; they remain 28.02% and
12.16% better even when the classi�cation accuracy of the ML oracle
is as low as 80%. (4) As a proof of concept, we train a simple classi�-
cation modelM using LightGBM [45] as the ML oracle to predict ob-
solete items for our semi-online and online policies in MCCache for
Redis with HBase as the backend database. We �nd that on average
with MCCache, Redis achieves 85.23%, 68.17% and 35.51% higher
throughput than with competitor policies, under the batch, semi-
online and online models, respectively; similarly for Memcached.

Summary & organization. In summary, we deliver the following.

• We propose monotonic consistent caching (MCC) for caches that
uphold consistency and monotonicity (Section 3). We develop
MCCache, a lightweight tool that enables existing caches, e.g.,
Redis and Memcached, to bene�t from MCC policies (Section 3.2).

• We study the complexity of MCC policies. We show it is Np-
Completewith Eager, and becomes Ptimewith Lazy (Section 4.1).

• We develop a principle for competitive MCC policies by charac-
terizing MCC with a notion of obsolete items (Section 4.2).

• Following the principle, we develop an MCC policy for the batch
model, and prove that it is optimal with Lazy (Section 5).

• We design ML-augmented semi-online and online MCC policies
that are both competitive and ML robust (Section 6).

• Using YCSB benchmark and three real-life cache traces, we eval-
uated the e�ectiveness of our MCC policies. On average MCC poli-
cies reduce the database access of Redis/Memcached over HBase
by 39.09%, improving its throughput by 77.15% (Section 7).

(See [4] for full proofs of all the results and additional experiments.)
Related Work. We categorize the related work as follows.
Cache systems and schemes. Data caches such as Redis [7] and Mem-
cached [6] have been well established in practice [20, 49, 59, 75], to
improve system throughput by reducing database load. There has
also been e�ort to customize data caches with semantic guarantees
according to the application logic, e.g., consistency [15, 35, 36, 38, 42,
49, 57, 62], read-your-wirte [20, 65] and cache serializability [27].

These systems develop cache protocols for various trade-o�s
between consistency guarantees and performance. In contrast, (1)
we rethink the design of cache policies for these cache systems,
by holistically taking into account traditional cache over�ows and
cache hits that are invalid due to violation of semantic properties
imposed by the applications. (2) We also develop tool to make these
caches monotonic and consistent, and bene�t from MCC policies.
Monotonicity and consistency. Monotonicity and consistency are
two fundamental desiderata of streaming [2, 5, 26, 33, 47, 54], dis-
tributed [39, 48, 68, 72] and transaction [15, 27, 38, 49, 62] systems.
Consistency applies to scenarios where multiple copies of the same
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database item in di�erent versions co-exist and applications want
to see a consistent view of the items. Monotonicity asserts that for
consecutive reads to a data item, the latter one never sees a ver-
sion older than the earlier one, which is more of a concern in, e.g.,
streaming applications [2, 5, 33, 54] where updates are frequent.

In contrast to distributed consistency that studies whether di�er-
ent copies of the same item re�ect the same value, we study whether
multiple items in a cache hit of a request that accesses a set of items
are consistent, i.e., whether the cache hit re�ects a consistent view
of the database and hence is useful to the applications. Similarly,
the impact of monotonicity in caching has not yet been addressed.
Cache policies. There has been a host of work on the design and
analysis of cache eviction policies that decide which cached items
to evict upon cache over�ows. This includes o�ine caching where
the sequence of the read requests are known in advance [13, 18, 21,
22, 31, 43], and online caching where read requests arrival online
one by one [12, 19, 29, 30, 44, 55, 60]. In both cases, the analysis
focuses on the competitiveness of the policies for singleton read-
only requests. In particular, it has been shown that for paging, the
Belady’s rule is optimal [18]. For online policies, LRU and FIFO are
:-competitive deterministic policies and are widely used in practice.

There has also been recent work on ML-augmented cache poli-
cies for the paging problem [51, 64, 66, 67, 74]. The idea is to exploit
ML models that predict some information about the read sequence,
i.e., the next arrival time of a read request, to improve cache hit rate.

Our work di�ers from existing work in the following. (1) Instead
of conventional caching that requests one item at a time, we con-
sider transaction-like requests that access a set of data items. (2) In
MCC, only monotonic and consistent cache hits are valid. In con-
trast, these properties do not exist in the context of conventional
caching, whose analysis even does not consider write operations.
(3) In contrast to ML-assisted cache policies [51, 64, 66, 67, 74] that
predict the sequence of future requested items, which is often dif-
�cult if not infeasible in practice, our online policies incorporates
simple binary classi�cation models which are much easier than pre-
dicting workload sequence. This is made possible by characterizing
the impact of the monotonicity and consistency on caching, which
is beyond the scope of conventional caching and paging.

Closer to this work is [15], which applies consistent caching to
improving the throughput of deterministic transaction databases. It
studies caching with request reordering for o�ine transactions over
a single-version database. Di�erent from the study, we consider
caching with both monotonicity and consistency over multi-version
databases with di�erent version selection strategies, e.g., Eager and
Lazy. In addition, we study caching under the batch, semi-online
and online input models, instead of for o�ine transactions only.

2 Preliminary
We review the basics of caching and conventional cache policies.
Database versions. We model a database � simply as a set of data
items {31, . . . , 3=}; in practice � could be e.g., a relational database
or a key-value store. In this work, we focus on the case where all
data items are of the same size, e.g., tuples of the same relation, or
values of the same column family in key-value stores; our results
can be readily extended to cases where items are of varying sizes.

We consider both read and write operations to � . A write W[38 ]

Distributed Cache Server
(e.g., Redis or Memcached)

Distributed Cache Server
(e.g., Redis or Memcached)

Application ServerApplication Client

Database

read/write 

get/write get/set/delete 

invalidation

-Application Config
   -Consistency Monitor

     -Monotonicity Monitor

(a) existing architecture

Distributed Cache Server
(e.g., Redis or Memcached)

Distributed Cache Server
(e.g., Redis or Memcached)

Application ServerApplication Client

Database
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-Application Config

MccacheMccacheinvalidation

invoke

(b) architecture withMCCache

Figure 2: Application-level data caching architectures

updates 38 in � with a new value, while a read R[38 ] returns 38 .
Conceptually, each write generates a new version of � . We denote
by � [8] the (logical) snapshot of � in database version 8 . Similarly,
each data item 3 in � also evolves into a new version once it is
updated by a write W[3]. We denote by 3 [ 9] the value of 3 in item
version 9 . Note that,� [8+1] and� [8] di�er in at least one data item,
i.e., there exists 3 ∈ � such that 3 [ 9] ∈ � [8] and 3 [ 9 +1] ∈ � [8 +1].
Cache basics. We consider databases augmented with an external
application-level data cache C, as adopted by e.g., Facebook [59] and
Twitter [75]. As shown in Fig. 2a, writes are committed to the data-
base and are propagated to C via cache invalidation governed by
application logic [40, 62, 65]. By logging the invalidation message,
e.g., ban [3], C (via application servers) knows the di�erence be-
tween the item version of3 in C and that of3 in the latest� , referred
to as the staleness of 3 in C and denoted by stale(3). Intuitively,
one may want to use cached items with bounded staleness [62, 65].

Consider a read request R[3]. If 3 is not in C, then R[3] is called
a cache miss. In such a case, the cache fetches 3 from � to C so that
R[3] is made into a cache hit. A cache over�ow occurs when C has
no room for storing the newly fetched 3 ; the cache then needs to
evict some cached items from C, so that 3 could be brought into C.
Cache policy. For a sequence ℓ of requests, a cache schedule % for ℓ
is a list of eviction actions for cache over�ows occurred when serv-
ing ℓ over cache C. More speci�cally, for each read R[3] in ℓ , if it is
a cache miss that in�icts a cache over�ow, then the entry for R[3]
in % is the items to be evicted from C so that 3 can be brought into
C from � ; otherwise, it is an empty entry. A cache policy is an algo-
rithm P that, given any sequence ℓ , generates a cache schedule for ℓ .

Many cache policies have been developed. For example, LRU and
LRU-k [60] are online policies for cases when ℓ consists of reads
revealed one by one, and Belady [18, 21] tackles the case when ℓ is
known in advance. Both Memcached and Redis use LRU by default.

3 Caching with Monotonicity and Consistency
We �rst formulate monotonic consistent caching (MCC) in Sec-
tion 3.1. In Section 3.2, we then present MCCache, a lightweight
pluggable tool that deploys MCC policies over existing caches .

3.1 Monotonic Consistent Caching
Requests. A set-based request ' is of the form {31, . . . , 3<}, where
each 38 is referred to as a read query. Over a database � , each 38
retrieves 38 from� if it exists, or returns ‘miss’ otherwise (to reduce
notation, we use 3 interchangeably for items in � and queries in ').
Similarly, a set-based write request, updates multiple data items
in one go. We often refer to set-based requests simply as requests.

In practice, ' could be a read-only transaction in large-scale
distributed databases [1, 20, 50, 59, 62, 71, 75], where 38 is a read
operation. For streaming query serving systems [10, 58], ' could be
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a query and 38 is a cached view [5]. For Web applications, ' could
be an HTTP request that fetches tens or even hundreds of data
elements that could be in arbitrary types of values, including e.g.,
tuples, strings, dates or integers, from the backend database [49, 50].

Properties. In all these applications, there are two fundamental
desiderata: consistency and monotonicity, which we formalize below.
Consistency. Consider a database� that changes over time by write
requests. A read request ' = {31, . . . , 3<} is consistent over � if
there exists a database version ; such that the retrieved items 31,
. . . , 3< all exist in � [;], i.e., ' sees a consistent view of � .
Monotonicity. For two read requests ' and '′, we say that ' ante-
cedes '′ over � if for any query 3 that appears in both ' and '′
such that 3 reads 3 [8] from � for ' and reads 3 [ 9] for '′, we have
8 ≤ 9 . For a sequence ℓ of read requests '1, . . . , '= , we say that '8 is
monotonic in ℓ over � if for any '; (; < 8), '; antecedes '8 over � .

In addition to these, applications may also impose conditions on
data freshness to avoid reading data that are too stale.

Monotonic consistent caching. We next study caching with mono-
tonicity and consistency imposed by the applications, referred to
as monotonic consistent caching (MCC).

Consider a database � augmented with cache C via an applica-
tion server, as shown in Fig. 2a. Consider a sequence ℓ of requests
)1, . . . , )= , where each )8 is either a read request ' or write request
, that accesses to multiple data items in � . Let the cache C be of
limited size much smaller than that of � . Assume that only items
with staleness no larger than B can be used in C. Under MCC, a read
request ' = {31, . . . , 3<} in ℓ has three possible states over C:
(1) Monotonic consistent cache (MCC) hit. Informally,' is an MCC hit
over C for � if (i) ' is a cache hit over C, i.e., each 38 in ' is a cache
hit; (ii) ' is consistent over � via the items read from C; (iii) ' is
monotonic in ℓ over � ; and (iv) items read by ' are not too stale.
Formally,' is an MCC hit, ifC contains31 [E1], . . . ,3< [E<], such that

(a) there exists a database version� [;] that contains all of38 [E8 ]
for 8 ∈ [1,<], i.e., ' sees a consistent view of � via C;

(b) for each 38 of ', there exists no request '′ that precedes ' in
ℓ and sees a version of 38 newer than 38 [E8 ] read by '; and

(c) each cached 38 has stale(38 [E8 ]) ≤ B , a staleness bound.

Intuitively, condition (a) ensures that ' is answered consistently
even when C caches data items from multiple versions of � , (b)
further asserts that accesses to data items via C are monotonic, and
(c) enforces a data freshness condition on the answers to '.
(2) Non-MCC hit. ' is a non-MCC hit overC if (a) for each38 , there ex-
ists a copy of38 in C, however, (b) the cached copies of38 (8 ∈ [1,<])
in C cannot form an MCC hit for'. That is, the cached data items for
' are either not consistent, older than the versions that have been
seen by some request '′ that precedes ' in ℓ , or not fresh enough.
(3) Cache miss. ' is a cache miss if C does not contain some 38 of '.

Under MCC, only an MCC hit is valid for the applications. Pre-
vious studies provide e�ective methods to identify cache hits that
are inconsistent [27, 37, 38, 40, 42, 52, 56, 62, 65]. However, they
use conventional cache policies, e.g., LRU to manage cache content

<latexit sha1_base64="qsENBH8U0mVz4uwwpW/Em2A8d4g="></latexit>

R1 = {d4, d5}
<latexit sha1_base64="HpqbP5FuYO8YTPEPLZFH48qa3hQ="></latexit>

W3 ={d0, d3}
<latexit sha1_base64="b3WSS+ilQj+PaOL+QJdW9Umgtc8="></latexit>

W2 ={d0, d1}

<latexit sha1_base64="dCcApHFRdcoqCfvxJa0Ym6RYuUk="></latexit>

R4 ={d0, d1}
<latexit sha1_base64="tjc59cZJoEHvaRvzIq39smKCllI="></latexit>

R5 ={d2, d3}
<latexit sha1_base64="fjULqrYce711VS6dfnqcaOzloGc="></latexit>

R6 ={d0, d3}

Figure 3: Sequence ℓ1 in Example 2

by deciding cache evictions upon over�ows, while invoking appli-
cation logic to deal with invalid cache hits by, e.g., re-fetching the
items in the cache hits. This, however, leads to two separate algo-
rithmic logics that manage C: (a) cache policies for cache over�ows
and (b) rules for handling cache hits that violate consistency. This
voids the competitiveness of cache policies [18, 53, 60] due to the
foreign operations on the cache content from the applications.

We put them into the same space for MCC, via the notion of MCC
schedules below. This allows us to formally study MCC policy design.

MCC schedules. Similar to conventional cache schedules, an MCC
schedule decides, for a sequence ℓ of requests over cache C, the ac-
tions to C upon each read request in ℓ . Di�erent from conventional
cache policies that contain only cache eviction operations for cache
over�ows caused by cache misses, an MCC schedule also needs to
address non-MCC hits: which stale items in C to update and which
version should be re-fetched in order to make them into MCC hits.

Consider a sequence ℓ of requests over database � and a cache
C. When processing requests of ℓ one by one under MCC, an MCC
schedule for ℓ over C is a list % of updating operations to C, one for
each read request ' in ℓ , such that the following holds:
(a) % ['] is one of following: (i) fetching a set of data items from �

to C with some version selection strategy (more below) when ' is
a non-MCC hit or cache miss, and evicting su�ciently many items
from C �rst if it has no room to hold the fetched items, or (ii) nil if
' is already an MCC hit, i.e., C does not need updates to serve ';
(b) After applying % ['] to C, ' becomes an MCC hit over C; and
(c) At all times the size of items in C does not exceed its capacity : .

An MCC policy is an algorithm that, given any sequence ℓ of
requests, generates an MCC schedule for ℓ over C.
Version selection. We consider two natural version selection strate-
gies in MCC schedules upon ' that is a non-MCC hit or a cache miss:
Eager and Lazy. (a) With Eager, schedules eagerly update cached
items to the latest version of fetching them from � if they are not
cached; note that with Eager it is always feasible to make ' an MCC.
(b) With Lazy, schedules instead try to make use of stale cached
items in a bounded way, while conforming to consistency, mono-
tonicity and staleness bound; it does this by fetching data items
from the oldest version ; of � that can make ' an MCC hit. That is,
for any ; ′ < ; , fetching items from� [; ′] cannot make ' a consistent
cache hit that satis�es both monotonicity and staleness.

Intuitively, Eager enforces that items are current when they are
brought into C. In contrast, Lazy allows C to use slightly less fresh
items to answer read requests as long as they have bounded stale-
ness. Both Eager and Lazy have to conform to the staleness bound
upon MCC hits. In particular, Lazy and Eager converge when B = 0.

Example 2: Consider a sequence ℓ1 of read and write requests as
shown in Fig. 3. Assume that the cache C initially contains {30, 31,
32, 33} and is full. Let staleness bound B = 1. Then ℓ1 generates 3
database versions, say � [0] prior to,2, � [1] after,2 and � [2]
after,3; similarly, 30 has three item versions while 31 and 33 have
two. '1 is a cache miss as C does not have34 or35. Hence, one has to
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evict two items from C to cache '1. Assume that we evict 30 and 31;
then upon '4, we have a cache miss as C contains neither 30 nor 31.

With Eager, we fetch 30 [2] and 31 [1] from � [2] to answer '4,
making it into an MCC hit (note that '4 causes an over�ow; hence
we evict 34 and 35 �rst). Then '5 is an MCC hit, while '6 is a non-
MCC hit as30 [2] and33 [0] are not consistent. Hence we need to fur-
ther fetch33 [1] from� [2] for '6. On the other hand, if we use Lazy,
we fetch from� [1] for'4 as it contains30 [1] and31 [1], conforming
to staleness bound B = 1. After that, both '5 and '6 are MCC hits. �

3.2 Making Data Caches Monotonic and Consistent
We present MCCache, a tool that adds MCC policies to data caches.
MCCache. As shown in Fig. 2b, MCCache is a middleware built
atop existing data caches. It applies to the look-aside caching (Fig. 2a)
that is widely adopted by Web applications, e.g., Facebook [59] and
Twitter [75], where writes commit to the database and then prop-
agated to the application server and cache via invalidation [3].

MCCache intercepts only the cache replacement process of the
data caches, by evicting cached items according to MCC schedules
generated by MCC policies in MCCache, bypassing their default
cache policies, e.g., LRU and LRU-k [60], that are oblivious to mono-
tonicity and consistency. This is made possible since MCC schedules
deal with both cache over�ows and non-MCC cache hits, before pass-
ing the read items to the application server. Hence underlying the
cache replacement logic never faces cache over�ows; as a result,
existing cache policies, e.g., LRU, never kick in.

MCCache provides built-in connectors to Redis and Memcached.
(See more details about the design of MCCache in [4]).
Input models. MCCache supports three input models, depending
on the knowledge that the MCC policies have about the requests ℓ .
(a) Batch model. Under the batch model, the sequence ℓ of read/write
requests of the current batch is known to the MCC policy in advance
when it generates MCC schedule for ℓ . The batch model abstracts
applications in e.g., deterministic databases [9] where concurrent
transactions are batched via a global append-only log [70] �rst be-
fore they are executed, or streaming applications where requests
are processed in epochs that are grouped by sessions [11, 46].
(b) Semi-online model. Under the semi-online model, read requests
are known to the MCC policies while write requests are not. It
models the scenario where the cache bu�er receives possibly out-
of-order writes (cache invalidation) while reads are batched. It also
applies to secondary Redis nodes, which receive read requests only
in their local bu�ers while writes are handled by the primary Redis
node and are propagated over time via cache invalidation [8].
(c) Online model. Requests in ℓ are coming online and are revealed
to P one after another. When the policy P decides the schedule
for a request ', it has no knowledge about any of the subsequent
requests in ℓ . This is the most common one and is widely used when
the arrival rate of the requests is not high enough for batching.

Example 3: Consider the sequence ℓ of ('1,,2, '3, '4) in Exam-
ple 1. Under the batch model, MCC policies decide actions on C for
each '8 with ℓ known in advance (i.e., batched). Under the semi-
online model, only '1, '3 and '4 are known while,2 becomes visi-
ble only after '1. For the online model, MCC policies decide actions
for each '8 with the knowledge of only ' 9 and,ℎ with 9, ℎ ≤ 8 . �

4 Implications of Monotonicity and Consistency
To start with, we �rst formulate the problem of MCC policies design
and analyze its complexity (Section 4.1). We then abstract a prin-
ciple for designing competitive MCC policies for the MCCPolicy
module, by developing characterizations of MCC (section 4.2).

4.1 Complexity of MCC Policies
Problem. A central task in caching is the problem of cache policy
design. Below we formulate the task for MCC policies, referred to
as the monotonic consistent caching problem (MCCP), as follows:

Input A cache bu�er C of capacity : , a sequence ℓ of read and
write requests over � , and a staleness bound B .

Output An MCC schedule % for ℓ over C.
Objective Minimize cost(%), the total number of items to be fetched

from � when serving ℓ over C with % .

Intuitively, the MCCP problem is to design an MCC policy that
minimizes the caching cost for any input sequence of requests. In
particular, we will study MCCP in all three input models, depending
on how we know about ℓ when generating cache schedules.

Complexity. To understand the intricacy inherent to MCC, we �rst
investigate the complexity of MCCP under the batch model below. As
will be seen shortly, this allows us to develop a coherent principled
approach to MCCP for all three input models.

Unlike conventional caching which is trivially in Ptime [18],
MCC is much more complicated, as illustrated below.

Example 4: Continuing with Example 2, we show that the optimal
policy for conventional caching under the batch model, namely the
Belady’s rule [18], is no longer optimal when adopted for MCC. The
idea of Belady’s rule is to evict, upon a cache over�ow, the item in
the cache whose next read request time is the furthest in ℓ .

Assume that we use Lazy for version selection. Upon '1, Belady
evicts 32 and 33 as the nearest next request containing them is '5,
which is the furthest in ℓ . Then '4 is a cache hit but a non-MCC one.
This is because C contains 30 [0], exceeding the staleness bound
B = 1 as the latest � (i.e., � [2]) contains 30 [2]. Thus, C has to re-
fetch 30 [1] from � [1]. To make '4 an MCC hit, 31 has to be further
updated to 31 [1] as C contains 31 [0] which is not consistent with
30 [1]. '5 is a cache miss, which requires to fetch 32 [0] and 33 [0]
from � [0]. '6 is MCC hit. Hence, Belady has a total cost of 6 reads.

Now consider the schedule in Example 2, i.e., evicting 30 and 31
upon '1. One can readily verify that its cost is 4 reads with Lazy, as
both '5 and '6 become MCC hit, better than Belady.

Similarly, one can verify that, with Eager Belady’s rule incurs a
cost of 6 reads, while the schedule of Example 2 has a cost of 5. �

As shown in Example 4, under MCC a read request can be a cache
hit that is inconsistent or exceeds the staleness bound. Hence, con-
ventionally performant or even optimal cache policies do not work
well when they are adopted and extended to uphold consistency
and monotonicity. Indeed, MCC policies are much harder to design.

Theorem 1: (1) The decision version of MCCP is Np-Complete.

(2) It remains Np-Hard with Eager as the version selection strategy.

(3) It becomes Ptime when used with Lazy. �
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Below we sketch a proof of Theorem 1(1) and (2). We will give a
constructive proof of Theorem 1(3) in Section 5. (See Appendix A
of the full version [4] for a complete proof).

Proof sketch: We only need to show that MCCP is in Np and it is
Np-Hard when used with Eager. An Np algorithm for MCCP works
as follows: (a) guess a schedule % of length the same as that of ℓ , and
(b) check whether % is a valid MCC schedule for ℓ over C, in Ptime.

We show that MCCP isNp-Hardwith Eager by reduction from the
maximum coverage problem (MCP) which is Np-Complete [34].
Given two integer : and ℎ, and = sets Γ = {(1, . . . , (=}, MCP is to
decide whether there exists a :-subset Γ′ of Γ such that

⋃
( ∈Γ′ (

contains at least ℎ elements. The reduction uses s=1, a sequence ℓ
of " + 2< + 4 read requests and 2 write requests, and C of capacity
(2< + 1)" +< + = + 1, where< = |⋃( ∈Γ ( | and " =

∑
( ∈Γ |( |. �

4.2 Characterizations
We next characterize the root cause of the complexity of MCC and
develop a principled approach to designing MCC policies.

We �rst take a closer look at MCC policies, and see why conven-
tional cache policies do not work when adopted for MCC.

Example 5: There are three scenarios where cached items can
be obsolete, i.e., useless. Recall Example 2. One can verify that,
initially,30 (i.e.,30 [0]) in C cannot be used to answer'4 or any other
requests in ℓ1 due to the data freshness restriction: upon '4,30 [0] is
not fresh enough w.r.t. the staleness bound B = 1 for '4. As a result,
31 (31 [0]) in C is also obsolete as it cannot make a consistent cache
hit with the updated 30, i.e., 30 [1] with Lazy and 30 [2] with Eager.

Consider another case where we have a cache C′ that contains
both 30 [0] and 30 [1]. Then we can tell that 30 [0] is obsolete for
sure with both Lazy and Eager: when 30 [1] is fetched to C′, 30 [0]
cannot be used anymore due to monotonicity on 30. �

As shown in Example 5, a cached item can be in a state that it
could never be used to answer read requests, due to monotonicity,
consistency and data freshness in MCC. They are naturally key to a
cache policy to be optimal as in case of cache over�ows, such items
could be safely evicted without impairing any potential MCC hits.

Obsolete items. Consider a sequence ℓ of requests to be processed
over cache C. At any time C , an item 3 in cache C is obsolete for ℓ if
for any read request ' ∈ ℓ to be processed at or after time C , 3 can
never be used by any MCC schedule to answer ' over C even 3 ∈ '.

Note that, obsolete items are a concept over time. Indeed, 3 can
be obsolete in C upon the arrival of request ' ∈ ℓ , while it however
could still be used in an MCC hit for a read request prior to '.

A principle. The concept of obsolete items naturally gives us a
principled approach to the design of MCC policies: when a cache
over�ow occurs, i.e., C is short of space for newly fetched items, it
is natural to evict items in C that are obsolete at the time �rst.

Indeed, for any MCC schedule % for ℓ over C, let % ′ be a schedule
derived from % as follows: for each read request ' ∈ ℓ , % ′['] �rst
evicts all items in C that are obsolete at the time when' is processed,
and then follows % [']. Then the cost of % ′, i.e., the total number of
items fetched from the database, is no larger than that of % over ℓ ,
and moreover, % ′ is a valid MCC schedule for ℓ as long as % is.

However, in order to understand and make full use of the idea,

there are two questions to answer. (1) How e�ective is evicting
obsolete items in reducing the cost of cache schedules? (2) What is
the complexity of identifying obsolete items?
E�ectiveness. We �rst study the e�ectiveness of evicting obsolete
items, by examining the extent that obsolete items can help reduce
non-MCC hits. Intuitively, one of the main di�erences between MCC
and conventional caching is that a cache hit under MCC can be a
non-MCC hit and hence is invalid. We want to know whether by
evicting obsolete items we can eliminate non-MCC hits and narrow
down the gap between MCC and conventional caching.

We show that obsolete items indeed capture all non-MCC hits
with Lazy. For convenience, assume w.l.o.g. that we evict obsolete
items after answering each read request' in ℓ over C. Note that this
is not a restriction as obsolete items at the time right after answering
' are exactly those right before '′, where '′ is the read request
immediately next to ' in ℓ . Consider sequence ℓ over cache C.

We say that a read request ' is an MCC miss over C if one can
make ' into an MCC hit over C by fetching items in '\C only. Then
by induction on the length of ℓ , one can readily verify the following.

Proposition 2: For any MCC schedule % for ℓ over C, if % evicts all
obsolete items right after each read request, then with both Lazy and
Eager each read request ' in ℓ is either an MCC hit or MCC miss. �

Proposition 2 tells us that the principle of evicting obsolete items
helps eliminate all non-MCC hits and non-MCC misses. This justi�es
the e�ectiveness of the principle for MCC cache policies.
Complexity. To use the principle of evicting obsolete items in prac-
tice, it is necessary to understand the complexity of obsolete items.

Theorem 3: (1) It is in Ptime to decide whether an item in C is
obsolete with Lazy at the time when a read request ' in ℓ is processed.

(2) It becomes coNp-Complete when Eager is used. It remains coNp-
Hard even staleness bound B is a �xed constant no smaller than 1. �

Proof sketch: We �rst sketch a proof of Theorem 3(2). To see that it
is in coNp, observe that an item 3 in C is not obsolete at time 9 i�
there exists an MCC schedule that uses 3 to answer a request at or
after 9 , and it is in Ptime to check whether a schedule witnesses this.
We show that it is coNp-Hard by proving it is Np-Hard to check
whether 3 is not obsolete, via a reduction from the 3SAT problem,
which is Np-Complete [34]. Given a proposition formulak , 3SAT
decides whetherk is satis�able. The reduction uses a cache of size
5= +< + 3, ℓ with 6= + 3< + 3 read and 2 write requests, and s=1,
where< (resp. =) is the number of clauses (resp. variables) ink . �

We will constructively prove Theorem 3(1) in Section 5 by de-
veloping a Ptime algorithm for �nding obsolete items.

5 An Optimal Policy for the Batch Model
Using the principle developed in Section 4, we present bMCP, a
“small-but-sweet” MCC policy for the batch model that works with
both Lazy and Eager, and is proven optimal with Lazy.

Conceptually, the basic idea of bMCP is simple: it combines the
principle we developed in Section 4.2 with the Belady’s rule. When
a cache over�ow occurs upon a read request ' in a sequence ℓ , it
�rst evicts all obsolete items in the cache at the time, to see whether
' can be made a cache hit; if not it further evicts cached items of
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ALGORITHM 1: The bMCP policy
Input: Cache C, sequence ℓ , staleness bound B .
Output: MCC cache schedule % for ℓ over C.
Upon each read request '8 in ℓ :

1 if '8 is an MCC hit over C then % ['8 ] ← nil; // no need to update cache for '8
2 else // '8 is a non-MCC hit or cache miss
3 ; ← decideDBv('8 , C, B) ; // decide the database version that '8 should see
4 update cached copies of items of ' by reading from � [; ] if they are older;
5 if '8 * C and C has no room for '8 \ C then // '8 is a cache miss
6 $ ← OB(C, ℓ8 , B) ; // ℓ8 : the su�x of ℓ starting from '8
7 evict all items in$ from C ; // evicting obsolete items

8 foreach item 3 of '8 that is not yet cached in C do
9 if C is full then // obsolete items do not su�ce; further apply Belady’s rule
10 evict from C the item with next read time furthest in ℓ ;

11 read 3 from version � [; ] and cache it in C;

12 % ['8 ] ← all evictions and reads for '8 ; // cache actions to make '8 MCC hit

Procedure decideDBv(', C, B) // for Lazy
1 foreach 3 ∈ ' ∩ C do ;3 ← max(3.minV, 3 .lastV) ;
2 return ; ← max3∈'∩C ;3

Procedure OB(C, ℓ8 , B)
1 do a dry run of bMCP(C, ℓ8 , B) by assuming C has an in�nite capacity;
2 return the set of items initially in C that do not appear in ℓ8 or are

updated by line 4 of bMCP in the dry run;

which the next read time in ℓ is the furthest away from ', until C
has enough room to hold items requested by '.

There are however two challenges regarding the design and
analysis of bMCP. (1) How to deal with non-MCC cache hit or cache
miss of which the hit part is inconsistent? That is, why bMCP is an
MCC policy? (2) Why is this embarrassingly simple policy optimal
with Lazy? Below we formally address the challenges.
The bMCP policy. As shown in Algorithm 1, given a cache C (of
bounded capacity), sequence ℓ of requests, and a staleness bound
B that imposes the data freshness requirement, bMCP generates a
cache schedule % for ℓ over C by deciding the cache update actions
% ['8 ] for each read request '8 in ℓ , one after another.

Speci�cally, if '8 is an MCC hit, % ['8 ] is simply nil as no cache
update is needed to serve '8 over C (line 1). Otherwise, '8 is either
a cache miss or non-MCC hit; in both cases C needs to be updated
to accommodate '8 . To this end, bMCP �rst decides whether the
cached part of '8 satis�es monotonicity, consistency and staleness
in C. It does this by deciding the database version ; that '8 should
see according to the MCC scheme, via decideDBv (line 3; more
below). If the cached copies of items requested by '8 do not agree
with � [;], it updates them by re-fetching them from � [;] (line 4).

If '8 still misses items in C, i.e., '8 is a cache miss, bMCP �rst
evicts all obsolete items from C via OB (lines 5-7; more below). It
then fetches items of '8 that are not cached in C from � [;] one
by one (lines 8-11). If C still has no su�cient space to hold all the
missing items for '8 , it then applies the Belady’s rule, i.e., evicting
the cached items of which the next request time is the furthest in ℓ ,
until all items of '8 are brought in C. These eviction and fetching
operations form the cache actions for '8 in % (line 12).
(1) Deciding database version (decideDBv). We next describe how
bMCP decides the database version ; for each read request '. For
Eager, this is straightforward as ; is simply the latest database ver-
sion. The algorithmic logic for Lazy is also shown in Algorithm 1.

Intuitively, for each cached item 3 , we record two database versions,
(a) 3.minV for the minimum database version that contains 3 while
conforming to staleness bound B , and (b) 3.lastV keeps the lowest
database version that contains 3 in the same version as the cached
3 that was lastly used by some read request '′ preceding ' in ℓ .

With this, decideDBv decides, for each 3 of ' that is also cached
in C, a version ;3 that conforms to both staleness and monotonicity
by taking the maximum of 3.minV and 3.lastV (line 1). It then picks
the maximum ;3 among all items 3 of' that are in C as the database
version ; for ' (line 2). This further warrants consistency for '.
(2) Identifying obsolete items (OB). As also shown in Algorithm 1,
procedure OB identi�es obsolete items for bMCP via a dry run of
bMCP over C for ℓ8 , by assuming C has an in�nite capacity. Hence,
the conditions in line 5 and line 9 never hold, i.e., no eviction occurs
in the dry run (which also ensures that OB is never invoked in the
dry run). It returns all items that are in C at the start of dry run
but are never used to answer some read request. That is, all items
that are initially in C but are (a) updated by line 4 of bMCP or (b)
not requested by ℓ8 are returned as obsolete items.
Example 6: Continue with Example 2. We show how bMCP gener-
ates the cache schedules. Consider Lazy �rst. bMCP decides that '1
is a cache miss and fetches 34 and 35 for it from � [0], which causes
a cache over�ow. It then evicts all obsolete items, i.e., 30 and 31,
from C to make '1 into an MCC hit. Again, '4 is a cache miss and
cache over�ow; however, there exists no obsolete item in C. Hence,
bMCP evicts 34 and 35 for '4 and caches 30 and 31 from � [1]. After
that, it decides that '5 and '6 are both MCC hit. This is exactly the
cache schedule in Example 2. The case with Eager is similar. �

Analysis. We next show that OB and bMCP are constructive proofs
of Theorem 3(1) and Theorem 1(3), respectively.
Complexity. We start with complexity analysis. For each read re-
quest ' in ℓ , bMCP can decide cache actions % ['] in$ ( |' |) +)ob (')
time, where |' | is the number of items requested by ' and )ob (')
is the time for identifying obsolete items via OB for ' if ' causes a
cache over�ow. In theory, )ob (') is $ ( |ℓ' |), where ℓ' is the su�x
of ℓ starting from ' and |ℓ' | is the total length of ℓ' . However, in
practice, the dry run of OB does not need to examine all requests
in ℓ' . As will be practiced in Section 7, by scanning as few as 10
requests OB can typically identify su�ciently many obsolete items.
Properties. bMCP guarantees monotonicity and consistency, and is
theoretically optimal when used with Lazy.

Theorem 4: Under the batch model,

(1) bMCP is monotonic and consistent with both Lazy and Eager;

(2) OB �nds all the obsolete items with Lazy; and

(3) bMCP is optimal with Lazy. �

Proof sketch: For (1), consistency with both Lazy and Eager is war-
ranted by lines 4 and 11 of bMCP, which assure that each ' sees ex-
actly the database version ; decided by decideDBv('). Monotonic-
ity holds automatically with Eager. It is guaranteed for Lazy by line 1
of decideDBv that ensures read versions of an item never decrease.

For (2), the crux is a lemma: with Lazy for any MCC schedule %
for ℓ over C, if an item 3 [8] is obsolete at time 9 by % , then for any
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MCC schedule % ′ for ℓ that keeps 3 [8] in C at time 9 , 3 [8] must also
be an obsolete item in % ′. We prove (3) by induction on the length
of ℓ , using a lemma: an item 3 [8] is obsolete for ' i� the database
version that decideDBv(') identi�es does not contain 3 [8]. �

6 Competitive Online Policies with ML Oracles
We next extend our study of MCC policies to the semi-online model
(Section 6.1) and online model (Section 6.2), by again applying the
principle of evicting obsolete items. However, the challenge is, in
both models, the policies cannot decide obsolete items as they have
no knowledge of future (write) requests. Nonetheless, we propose
ML-augmented MCC policies that can incorporate any blackbox bi-
nary classi�er as an oracle that predicts whether a cached item is ob-
solete. Moreover, we show that the policies are robust: (a) they bene-
�t from accurate classi�cation and can even be optimal; and (b) they
are still theoretically competitive even with adversarial predictions.

6.1 A Robust Competitive Semi-Online MCC Policy
We �rst present sMCP, an MCC policy for the semi-online model that
incorporates only a binary classi�erM for deciding obsolete items.

The sMCP policy. The design of sMCP is simple: we simply replace
line 6 of bMCP in Algorithm 1 by invoking a plugged-in ML classi�er
M that predicts obsolete items in C (more below). All the other
steps of sMCP remain exactly the same as bMCP.
ML oracle. sMCP can be used with any blackbox ML classi�erM that,
given a cached item 3 in C, predicts whether 3 is obsolete. It uses
M as an oracle and does not make any assumption on its design or
what guarantees it must have on the generalization error. We will
give a proof-of-concept design ofM in Section 7 shortly and show
that sMCP can already bene�t from models with moderate accuracy.

Properties. sMCP inherits monotonicity and consistency from bMCP
since it di�ers from bMCP only in the way of identifying obsolete
items. Hence, the proof of Theorem 4(1) applies to sMCP as well.

While sMCP is simple, it has some interesting properties. In par-
ticular, we show its competitive ratio can be quanti�ed by the classi-
�cation accuracy ofM over ℓ , which veri�es that it can bene�t from
good predictions fromM and even be optimal. Furthermore, we
also show that sMCP can be made robust against arbitrarily badM.

Competitiveness. We �rst review the notion of competitiveness [53],
which has been widely used to analyze online algorithms [12, 30].

In the context of MCC, a policy P is 2-competitive against policy
P ′ if, for every sequence ℓ of requests, cost(P, ℓ) ≤ 2 · cost(P ′, ℓ) +
$ (1), where cost(P, ℓ) is the cost of the schedule % thatP generates
for ℓ , and 2 is called a competitive ratio. P is 2-competitive if P
is 2-competitive against OPT, the optimal o�ine policy, i.e., bMCP
for MCC. Here 2 could be a function over ℓ , to express instance-
dependent competitiveness. In particular, P is optimal if it is 1-
competitive, i.e., it has the lowest cost on every ℓ among all policies.

We say that the ML oracle M makes a mis-classi�cation if it
predicts that an item 3 is obsolete while it is not or vice versa. De-
note by [ (ℓ) the accumulated absolute error thatM makes when
sMCP generates schedules for ℓ withM, which is the total number
of mis-classi�cationsM makes. Let n (M) = [ (ℓ)

cost(OPT,ℓ) . Intuitively,
n (M) measures the quality of the ML oracleM by comparing its

ALGORITHM 2: The oMCP policy (online model)
Input: Cache C, sequence ℓ revealed one by one online, staleness bound B .
Output: MCC cache schedule % for ℓ over C.
Upon the arrival of '8 :

1 if '8 is an MCC hit over C then
2 % ['8 ] ← nil;
3 mark all items requested by '8 in C;

4 else // '8 is a non-MCC hit or cache miss
5 ; ← decideDBv('8 , C, B) ; // recall from Algorithm 1
6 foreach 3 ∈ '8 ∩ C do
7 if the cached version of 3 in C is older than the one in � [; ] then
8 update 3 in C by re-fetching it from � [; ];
9 mark 3 in C;

10 foreach item 3 of '8 that is not yet cached in C do
11 if C is full then // C has no room for 3
12 if there exists no unmarked item in C then
13 unmark all the items in C and start a new phase;
14 foreach 3> ∈ C do
15 if M predicts that 3> is obsolete then
16 evict 3> from C

17 if C still has no room for @ then
18 evict the least recently used item in C ; // use LRU

19 read 3 from version � [; ] and cache it in C;
20 mark 3 in C;

21 % ['8 ] ← all evictions and reads for '8 ; // cache actions to make '8 MCC hit

accumulated absolute error with the total cost that OPT (i.e., bMCP)
incurs over the same input ℓ . Then below we show that the compet-
itive ratio of sMCP, denoted by CR(sMCP), is a function over n (M).
(See Appendix A of full version [4] for a formal proof.)

Lemma 5: With Lazy, CR(sMCP) ≤ 1 + n (M). �

Proof sketch: An error ofM can either be (a) an FP error if it predicts
3 obsolete while it is not, or (b) an FN error if it tells that 3 is not
obsolete while it indeed is. We then show that each FP and FN error,
respectively, causes at most 1 more cost when compared to bMCP
with Lazy. Hence, cost(sMCP) ≤ cost(bMCP) + [1 + [2, where [1
and [2 are the accumulated absolute FP and FN errors, respectively.
This gives an upper bound of 1 + n (M) on CR(sMCP) with Lazy. �

Lemma 5 veri�es the following about policy sMCP.

(1) sMCP bene�ts from accurate predictions fromM. It gets strictly
better performance (competitiveness) with ML oracles of higher
accuracy. In particular, whenM produces absolutely accurate pre-
dictions, sMCP becomes optimal as CR(sMCP) = 1 with Lazy.

(2) sMCP has decent performance even with moderateM. Indeed,
n (M) is easily much smaller than 1 as the absolute errorM makes
over ℓ is typically smaller than the total cost of OPT over ℓ . This is
because each item incurs 1 cost when it is brought into the cache C
by OPT, while not all items in C of sMCP are mis-classi�ed byM.

ML robustness. We say that a policy P is ML-robust if its com-
petitive ratio is no larger than a number that is independent of the
length |ℓ | of ℓ , no matter how bad the ML oracleM becomes. Note
that, Lemma 5 does not show that sMCP is ML-robust as we have
not derived an upper bound for n (M) independent of |ℓ |.

Instead of upper bounding n (M), we show that one can make
sMCP robust by further combining it with another variant of bMCP.
Denote by bMCP0 the variant of bMCP without lines 5-7 in Algo-
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rithm 1, and by sMCP∗ the below combination of sMCP and bMCP0:

(a) Run both sMCP and bMCP0 independently on input ℓ in parallel.
(b) sMCP∗ switches between following the actions of sMCP and

the actions of bMCP0 (it starts with sMCP initially). It switches
from sMCP to bMCP0 upon ' of ℓ if the cost of sMCP so far is at
least twice as that of bMCP0; similarly when it switches from
bMCP0 to sMCP. When switching from one to another, sMCP∗

reconciles its cache content to that of the one it switches to.

Note that sMCP∗ does not actually operate the cache and read the
database when executing sMCP and bMCP0 as it only simulates their
cache decisions. The combination method has been developed to
combine multiple online algorithms for the paging problem [16, 29,
30]. It ensures that the combined algorithm is competitive against
each individual component algorithm. Below we show that the idea
also applies to MCC, and moreover, sMCP∗ is ML-robust.

Theorem 6: With Lazy, (1) sMCP∗ is 18-competitive even whenM
produces arbitrarily bad classi�cation; and (2) sMCP∗ is optimal when
M produces no mis-classi�cation. �

Proof sketch: We prove (1) by using the following lemmas: (a) bMCP0

is 2-competitive with Lazy under the semi-online model, and (b)
sMCP∗ is 9-competitive to both bMCP0 and sMCP. Here Lemma (b) is
veri�ed by proving that the total cost of switching from bMCP0 to
sMCP (resp. sMCP to bMCP0) is bounded by the cost of bMCP0 (resp.
sMCP), and then applying the online algorithm combiner of [16, 30].
For (2), it follows from that sMCP reduces to the bMCP with perfectM
and sMCP∗ starts with copying sMCP and never switches to bMCP0. �

6.2 Extending to the Online Model
We further extend our study to the online model. Along the same
lines as sMCP, we present oMCP, an online MCC policy that incorpo-
rates any blackbox binary classi�erM for deciding obsolete items.
We show that oMCP is both competitive and ML-robust.

Similar to bMCP and sMCP, oMCP also applies the principle of evict-
ing obsolete items with a plugged-in ML oracleM. However, there
are two new challenges under the online model. (1) It cannot employ
the Belady’s rule to further evict items when cache over�ow occurs
even when all obsolete items have been evicted (line 10 of Algo-
rithm 1), as it does not have access to subsequent read requests in ℓ .
(2) As a result of (1), the consequence of mis-classi�cation byM on
the competitiveness of the policy could be ampli�ed unboundedly
by non-optimal eviction choices made in line 10 of Algorithm 1.

Hence, one cannot simply replace OB and Belady’s rule in line 10
of bMCP with ML oracleM and some alternative eviction strategy
e.g., LRU, respectively, as this would yield an uncompetitive policy.

Nonetheless, below we show that both competitiveness and ML-
robustness are attainable for MCC under the online model, by ap-
plying the ML oracleM in a controlled way in oMCP.

The oMCP policy. In contrast to sMCP that evicts obsolete items
upon each over�ow, oMCP invokesM and evicts obsolete items in
phases to bound the a�ected scope of mis-classi�cations byM.

More speci�cally, as shown in Algorithm 2, oMCP decides the
cache update action % ['8 ] upon the arrival of a read request '8 in
a way that is similar to sMCP, except that it divides its run over
ℓ in phases by marking items in the cache C. An item 3 in C is

marked at the time when it is brought into C (lines 9 and 20), or
when it is part of an MCC hit for '8 (line 3). A phase ends when all
items in C are marked (line 12). In such case, a new phase starts
by unmarking all items in C (line 13). Marking and unmarking are
logical operations for partitioning the execution trace of oMCP over
ℓ into phases; they are not part of cache actions in the schedule.

Policy oMCP only invokes the ML oracleM and evicts items that
are predicted obsolete byM at the beginning of each phase (lines 12-
16). If C still has no room to hold new items requested by a cache
miss '8 after evicting the predicted obsolete items or in the middle
of a phase where no obsolete items are evicted (line 17), oMCP falls
back to use LRU as the eviction strategy as an alternative to the
Belady’s rule used by bMCP and sMCP (line 18).

Analysis. Similar to sMCP, oMCP guarantees monotonicity and con-
sistency since (a) bMCP does and (b) oMCP di�ers from bMCP only in
their identi�ed obsolete items, which only a�ect the performance,
i.e., competitiveness, of the cache policies. We next show that oMCP
is both competitive and ML-robust. Let : be the size of C.

Theorem 7: (1) oMCP is :-competitive even whenM is arbitrarily
bad, e.g.,M mis-classi�es each and every item. (2) There exists no de-
terministic onlineMCC policy that is: ′-competitive, for any: ′ < : . �

By Theorem 7(1), we know that oMCP is competitive and ML-
robust against mis-classi�cations from arbitrarily badM. Moreover,
Theorem 7(2) con�rms that oMCP is as good as any deterministic
online MCC policy without using ML, no matter how badM can be.

Proof sketch: We verify (1) by proving the following lemmas, with
Lazy. (a) With adversarialM, the cost of oMCP is at most : + #8 in
phase 8 , where #8 is the number of obsolete items arrived in phase
8 . (b) The optimal bMCP incurs at least 1 + #8 costs in phase 8 . For
(2), observe that traditional caching is a special case of MCC and
the best deterministic traditional online policy is :-competitive. �

7 Experimental Study
Findings. Using YCSB benchmark and real-life traces, we experi-
mentally evaluated the e�ectiveness of cache policies bMCP, sMCP
and oMCP using Memcached and Redis under the batch, semi-online
and online models, respectively. Our main �nding is that they
clearly outperform existing cache policies. More speci�cally:

• Under the batch model, bMCP outperforms MCC variants of con-
ventional policies in cost (number of database reads) by 42.76%
on average; in particular, it improves the optimal conventional
policy, Belady [18], by 30.61% on average, up to 45.12%.

• Under the semi-online model, sMCP outperforms conventional
policies by 41.28% on average with an ML oracleM that has an
accuracy of 95%; it has a lower cost than the optimal conven-
tional policy Belady even when the accuracy ofM is below 75%.

• For the online model, the cost of oMCP is on average 20.01% lower
than that of the conventional policies with MLM of accuracy
of 95%. Similar to sMCP, oMCP is also robust: it has lower cost
than competitors even ifM has an accuracy below 75%.

• We developed a simple proof-of-concept ML modelM for pre-
dicting obsolete items. By deploying MCCache atop Redis and
Memcached with HBase as the backend database andM as the
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ML module, we �nd that on average, the throughput of Redis
is 85.23%, 68.17% and 35.51% higher with bMCP, sMCP and oMCP
than with the competitor policies, respectively.

Below we �rst specify the settings (Section 7.1). We then present
our evaluation results on the costs of all cache policies (Section 7.2).
Finally, we discuss our proof-of-concept ML model for sMCP and
oMCP, and system throughput evaluation of Redis and Memcached
as caches with MCCache and HBase as the database (Section 7.3).

7.1 Experimental Setup
Datasets. We used both benchmark transactions and three real-life
access traces as sources of set-based requests that MCC targets.
YCSB benchmark. We used YCSB [23] to generate read and write
transactions conforming to YCSB core A workloads, where each
item is a value; the tasks are transactions that access the items via
keys and serve as the MCC requests. It has the below parameters:
◦ \ : the built-in Zip�an distribution parameter in YCSB to control

the skewness of reads and writes; larger \ means more skewed
read/write accesses. We varied \ from 0.8 to 1.2 (1.2 by default).

◦ write%: the percentage of write requests in the YCSB trace; larger
write% indicates higher rate of updates to the YCSB database. We
varied write% from 30% to 50% and set it to 50% by default.

◦ #-queries: the total number of read/write operations in a trans-
action, ranging from 4 to 12, and is set to 8 by default.

◦ ?write: the percentage of operations in a (hybrid) request that
are write, which varies from 12.5% to 62.5% (50% by default).

◦ dbsize: the size of the YCSB database, ranging from 10GB to
30GB, with the number of keys varied from 10M to 30M.

◦ vsize: the size of an item (value) in YCSB database. We varied
vsize in [1KB, 1024KB] (1KB by default), following [23, 41, 63].

Distributions. In addition to the default Zip�an, we also tested
with alternative YCSB built-in distributions [23]: (a) Uniform: each
item has an equal probability to be read/written; (b) Exponential:
reads/writes follow an exponential distribution; and (c) Latest: sim-
ilar to Zip�an but tends to access signi�cantly more new items.
Real-life traces. We also used real-life traces from three applications.
(a) Wiki: a slice of real-life web access trace collected on a CDN
node serving media content for Wikipedia [67]. Wiki consists of
108 items that are grouped into requests. The number of operations
(#-queries) in a Wiki request, the write percentage (write%) and
the percentage of write operations in a hybrid request (?write) are
varied in the same way as YCSB does.
(b) Twi�er: a one-week-long user requests trace from Twitter’s in-
memory caching clusters collected in March 2020 [75], where each
record has explicit reads and writes. We tested with its cluster 14
and used the successive reads and writes as set-based requests.
(c) Ibm: a single week cloud-based key-value dataset with 99 traces
collected from IBM Cloud Object Store service [28]. Each trace
includes 22 thousand to 187 million read/write requests. We used
trace 1 and varied requests in the same way as YCSB and Wiki do.

Given a con�guration of the parameters, we generated sequences
of requests as workloads, each consisting of 5000 requests.
Cache policies. We implemented all our MCC policies, i.e., bMCP,

sMCP and oMCP for the batch, semi-online and online policies, re-
spectively. In addition, we also developed the following policies as
baselines that are adopted from conventional cache policies:
(a) mcBelady: a simpli�ed version of bMCP that does not evict obso-
lete items, i.e., Algorithm 1 without lines 5-7. It treats each request
as multiple singleton reads and processes them one by one, using
Belady [18] for eviction upon cache over�ows.
(b) LRU: the mostly used cache policy (default in Redis and Mem-
cached); we tailored it for MCC similar to how we derivedmcBelady.
(c) LRU-k [60]: a popular variant of LRU adopted for MCC.
(d) BeladySet: a direct application of Belady’s rule that processes
one (set-)request at a time without serializing it �rst.
(e) LRUSet: a direct application of LRU similar to BeladySet.

Among them, mcBelady and BeladySet work for the batch and
semi-online models only, while others work for all input models. We
injected cache schedules of all policies into Redis/Memcached via
MCCache, so that they are compared in exactly the same fair setup.
System deployment. We deployed MCCache atop Redis v7.0.2
and Memcached v1.5.6, with HBase v2.2.4 as the backend database
that stores all the four datasets. For sMCP and oMCP, our imple-
mentation either (a) accepts a classi�cation on obsolete items with
controlled accuracy so that we can evaluate the impact of the clas-
si�cation accuracy on the cost of sMCP and oMCP schedules; or (b)
directly uses a plugged-in ML classi�cation model (see Section 7.3
and Appendix C of full version [4]) that predicts obsolete items
on-the-�y, so that we can evaluate the impact of the cache policies
on the overall system performance, e.g., throughput.
Con�guration. The experiments were run on AWS EC2, where we
used the m5.24xlarge instance for HBase and m5.8xlarge for Redis
and Memcached. All instances are in the same region connected
by 10 Gigabit intranet. The cache size was set to a ?csize fraction of
the database. We varied ?csize from 10% to 30% (20% by default). We
also varied the staleness bound B of MCC from 0 to 10 (10 by default).
When varying a parameter, all other parameters were set to their
default. Each experiment was run 3 times. The average is reported.
Due to space limit, we report key results below; see Appendix B of
full version [4] for a complete report and additional experiments.

7.2 Cost of Cache Policies with Varying Predictions
We �rst evaluated the e�ectiveness of all cache policies in reducing
database read load. To do this, we tested the cost of the policies,
measured as #dbread, the total number of reads to the database
when serving YCSB and Wiki workloads. Note that, #dbread is not
exactly consistent with cache hit rate, since a non-MCC hit or an
MCC miss could also save reads to the database.
E�ectiveness under the batch model. We �rst report the cost
(#dbread) of all cache policies under the batch model. The results
over all the four datasets are reported in Figures 4a-4h.
(1) bMCP is consistently the best among all policies in all cases with
both Lazy and Eager. On average, the #dbread of bMCP is 30.83%,
44.63%, 44.96%, 51.73% and 50.98% lower than that of mcBelady,
LRU, LRU-k, BeladySet and LRUSet, respectively, over YCSB with
Lazy, up to 45.12%, 52.25%, 52.97%, 61.79% and 61.08%; similarly for
other traces. This also con�rms the optimality of bMCP (Theorem 4).
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Figure 4: Experimental results under the batch model: (a)-(g) and (i)-(l) with Lazy; (h) with Eager

(2) As shown in Figures 4a-4e, the bene�t of bMCP is even more
evident when the workloads are skewed or with larger write%, i.e.,
higher update rate. Over YCSB with Lazy, when \ varies from 0.8 to
1.2, the gap between bMCP and the second-best policy,mcBelady, in-
creases from 7.21% to 45.12%; similarly, when write% varies from 30%
to 50%, the gap increases from 39.20% to 45.12%. The results are also
consistent when we varied the data distributions (Fig. 4d): the gap
is 26.93% and 38.16% over the Exponential and Latest distributions,
respectively, while it is 15.50% over Uniform that has no skewness.

This is because with more skewed accesses or higher update rates,
cached items are more likely obsolete. It veri�es the e�ectiveness
of the principle of obsolete items underlying all of our policies.
(3) As shown in Fig. 4f, the cost of all cache policies reduces with
larger cache (?csize), while the gaps between bMCP and other policies
are stable. On the other hand, the gaps grow when the staleness
bound B increases (Fig. 4g), which shows that bMCP can capitalize
boundedly stale cached items in a consistent and monotonic way.
(4) As shown in Figures 4b and 4h, the cost of all policies becomes
higher with Eager than with Lazy. In particular, bMCP bene�ts from
Lazy the most. This veri�es that the use of slightly stale cached items
in a bounded, monotonic and consistent way does help with cache
performance, and bMCP best exploits stale data in such a safe way.

Semi-online andonline: e�ectiveness andML-robustness. We
also evaluated our semi-online policy sMCP and online policy oMCP
by comparing their #dbreadwith that of all other policies overYCSB
and Wiki. To assess their ML-robustness, we fed sMCP and oMCP
with classi�cation predictions of varying accuracy. In particular, we
denote by sMCP(U%) the sMCP with classi�cation on obsolete items
that has U% of probability being correct; similarly for oMCP(U%).

Key results under semi-online and online models are shown in
Figs 5a-5c and 6a-6c respectively. For clarity, we only plot the best
competitor i.e.,mcBelady for semi-online and LRU for online model.
(1) Both sMCP and oMCP consistently have much lower #dbread
than other policies over varying workloads when provided with
accurate classi�cation. For instance, the #dbread of sMCP(100%) is
on average 41.54%, 51.22%, 51.94%, 59.24%, 58.36% lower than that
of mcBelady, LRU, LRU-k, BeladySet and LRUSet over YCSB with
Lazy, respectively, when varying write% from 30% to 50% (Fig. 5b).
The results are consistent when varying skewness\ ofYCSB (Fig. 5a),
over Wiki (Fig. 5c), or under the online model (Figures 6a-6c).
(2) Both sMCP and oMCP are robust against classi�cation errors. For
instance, sMCP still outperforms mcBelady, the second-best policy,
by 13.89% with classi�cation accuracy as low as 80% when write%
is 50% over Wiki with Lazy; similarly for other cases. Furthermore,
achieving 80% accuracy is not di�cult for a binary classi�cation
ML model in caching tasks [66, 67] (also in Section 7.3). On the
other hand, we also noticed that both sMCP and oMCP with 75% ML
accuracy sometimes perform worse than best competitors when
the workloads are less skewed or with fewer writes. This is because
in these cases, cached items are less likely obsolete, which in turn
makes false positive classi�cations more likely to happen. Neverthe-
less, the ML-robustness of sMCP and oMCP assures us that their per-
formance does not degrade unboundedly even each and every clas-
si�cation made by the ML model is incorrect (Theorems 6 and 7).
(3) We also �nd that Eager is more sensitive to classi�cation accu-
racy and relies more on accurate predictions than Lazy. This shows
that Lazy is superior for caching as it allows better use of boundedly
stale items than Eager does. It is also consistent with the theoretical
properties that sMCP and oMCP hold with Lazy.
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Figure 5: Experimental results under the semi-online model
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Figure 6: Experimental results under the online model

7.3 System Evaluation: A Proof of Concept
As a proof of concept, we developed a simple binary classi�ca-
tion modelM> for the ML module of MCCache to decide obsolete
items, and deployed sMCP and oMCP withM> , as well as bMCP. Us-
ing HBase as the backend database, we evaluated the throughput
of MCCache atop Redis and Memcached (Redis by default), with
di�erent cache policies over YCSB and Wiki under all three input
models. Below we �rst sketch the design ofM> (see Appendix C
of full version [4] for more details). We then present our �ndings.

A classi�cation modelM> .M> uses LightGBM [45], which is an
implementation of the Gradient Boosting Decision Tree (GBDT)
framework [32] with strong generalization properties over tabular
data.M> uses three types of features: (a) delta features that record,
for each data item 3 , the distance between consecutive requests
containing 3 ; (b) set-request features that encode the data items
of each request; and (c) frequency features that keep track of the
occurrence frequency of the data items in the requests. All the fea-
tures are computed using a sliding window of 2000 requests over the
training set, of which the labels are computed via OB of Algorithm 1.

Throughput. To quantify the e�ectiveness of all cache policies via
throughput, we run multiple cache threads of requests from the Re-
dis nodes to keep the HBase node saturated. We varied the number
of threads (#-thds) from 800 to 1200 (1000 by default) by controlling
the number of cache nodes. Each request thread was run for 1 hour
and the throughput of the overall system, i.e., the number of requests
processed per second, was calculated. The throughput is based on
the end-to-end processing time, including the overhead of classi�-
cation byM> . Key results under the batch, semi-online and online
models are reported in Figures 4i-4l, Fig. 5d and Fig. 6d, respectively.
(1) With bMCP the system throughput is consistently the highest
among all policies. For instance, over YCSB with Lazy, the through-
put of bMCP is on average 52.80%, 80.81%, 79.06%, 109.82% and
107.97% higher thanmcBelady,LRU-k,LRU,BeladySet and LRUSet,
respectively, when write% varies from 30% to 50% (Fig. 4i).
(2) The throughput of all cache policies decreases when vsize

increases (e.g., Fig. 4j), due to higher cost per read/write opera-
tion. However, the improvement of our policies over competitors
remains stable, e.g., consistently around 83.01% over YCSB when
vsize varies from 1KB to 1024KB. In contrast, cache policies are in-
sensitive to dbsize (e.g., Fig. 4k), since the number of reads to HBase
depends on workloads and cache size, independent of dbsize.
(3) As shown in Fig. 4l, most cache policies bene�t from increased
threads (larger #-thds) and bMCP has the highest throughput in all
cases. However, the throughput of BeladySet and LRUSet degrades
when #-thds is larger than 1100. This is due to their worse per-
formance (larger #dbread) than the others, which leads to a large
number of read shifted to the database, causing higher contention.
(4) Our example classi�cation modelM> has an average prediction
accuracy of 92.35%. Nonetheless, we �nd that sMCP and oMCP with
M> still outperform their semi-online and online competitors, e.g.,
by 68.17% and 35.51%, respectively, on average overYCSBwith Lazy,
up to 108.77% and 61.99% (Figures 5d and 6d). This shows that sMCP
and oMCP can easily incorporate plugged-in coarsely designed clas-
si�ers and achieve higher system throughput than other policies.

8 Conclusion
We have proposed MCC, a cache scheme for set-based requests from
applications that demand consistency and monotonicity. We have
formulated the problem of MCC policy design, settled its complexity,
and characterized optimal MCC policies. Based on the characteri-
zation, we have developed an optimal MCC policy under the batch
model, and ML-augmented MCC policies for the semi-online and
online models with provably competitiveness and ML-robustness
guarantees. We have developed MCCache, a tool that adds MCC
policies to existing caches, e.g., Redis and Memcached. Our experi-
mental study has veri�ed that the policies are e�ective in reducing
reads to the database and improving system throughput.

One topic for future work is to incorporate ML predictors on
request sequences [16, 51, 64, 67, 74] to further improve cache per-
formance. Another topic is to consider the per-client monotonicity.
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