
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABC in Root Cause Analysis: Discovering Missing Information
and Repairing System Failures
Citation for published version:
Li, X, Bundy, A, Zhu, R, Wang, S, Mauceri, S, Xu, L & Pan, JZ 2023, ABC in Root Cause Analysis:
Discovering Missing Information and Repairing System Failures. in G Nicosia, V Ojha, E La Malfa, G La
Malfa, P Pardalos, G Di Fatta, G Giuffrida & R Umeton (eds), Proceedings of the 8th Annual Conference on
Machine Learning, Optimization and Data science. 1 edn, vol. 13810, Lecture Notes in Computer Science,
no. 13810, The 8th Annual Conference on Machine Learning, Optimization and Data Science, Siena, Italy,
18/09/22. https://doi.org/10.1007/978-3-031-25599-1_26

Digital Object Identifier (DOI):
10.1007/978-3-031-25599-1_26

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 8th Annual Conference on Machine Learning, Optimization and Data science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Mar. 2023

https://doi.org/10.1007/978-3-031-25599-1_26
https://doi.org/10.1007/978-3-031-25599-1_26
https://www.research.ed.ac.uk/en/publications/025eab05-1b6b-480b-b555-874fa036594b


ABC in Root Cause Analysis: Discovering
Missing Information and Repairing System

Failures

Xue Li1, Alan Bundy1, Ruiqi Zhu 1, Fangrong Wang 1

Stefano Mauceri2, Lei Xu2, and Jeff Z. Pan1

1School of Informatics, University of Edinburgh, UK;
2Huawei Ireland Research Centre

{Xue.Shirley.Li, A.Bundy, Ruiqi.Zhu, Sylvia.Wang, J.Z.Pan}@ed.ac.uk,
{Stefano.Mauceri1, xulei139}@huawei.com

Abstract. Root-cause analysis (RCA) is a crucial task in software sys-
tem maintenance, where system logs play an essential role in capturing
system behaviours and describing failures. Automatic RCA approaches
are desired, which face the challenge that the knowledge model (KM)
extracted from system logs can be faulty when logs are not correctly
representing some information. When unrepresented information is re-
quired for successful RCA, it is called missing information (MI). Al-
though much work has focused on automatically finding root causes of
system failures based on the given logs, automated RCA with MI re-
mains under-explored. This paper proposes using the Abduction, Belief
Revision and Conceptual Change (ABC) system to automate RCA after
repairing the system’s KM to contain MI. First, we show how ABC can
be used to discover MI and repair the KM. Then we demonstrate how
ABC automatically finds and repairs root causes. Based on automated
reasoning, ABC considers the effect of changing a cause when repair-
ing a system failure: the root cause is the one whose change leaves the
fewest failures. Although ABC outputs multiple possible solutions for
experts to choose from, it hugely reduces manual work in discovering MI
and analysing root causes, especially in large-scale system management,
where any reduction in manual work is very beneficial. This is the first
application of an automatic theory repair system to RCA tasks: KM is
not only used, it will be improved because our approach can guide en-
gineers to produce KM/higher-quality logs that contain the spotted MI,
thus improving the maintenance of complex software systems.

Keywords: Root Cause Analysis · Missing Information · System man-
agement · Automatic Theory Repair.

1 Introduction

Software system failures are unavoidable, so fast diagnosis and repair are crucial
in system maintenance, where root cause analysis (RCA) is required. Tradition-
ally, experts manually analyse raw system logs for RCA, where the challenges



2 Authors Suppressed Due to Excessive Length

include that 1) the first arisen failure is usually not the root cause; 2) single
causes can trigger multiple failures; 3) the system is enormous. Thus, manual
RCA is difficult; 4) the model of the system may be inaccurate so that automatic
methods become unreliable.

Much work has focused on automatically mining logs and assisting experts in
discovering the root cause of system failures, including log filtering that collects
the most relevant logs [20], log extraction as knowledge graphs (KG) [19], cluster-
ing logs [15, 11], mining and representing information from logs [6, 8]; automating
network management in software based on KG [21] and analysing causality pat-
terns among components in a software system [12, 14, 3], where the last takes
extra tests to learn and validate dependencies by experts manually. It can be
seen that log-based RCA is popular because logs are arguably the most straight-
forward source of information about the system. However, these log-based RCA
methods’ performance is restricted by the quality of logs, e.g., whether they
cover all essential information for diagnosing root causes and whether they are
written in ways that data-driven RCA pipelines can effectively consume.

The higher quality the log is, the more accurate the corresponding model
of the system built from that log is. If the symptoms of the root cause can be
inferred from the current model of the system, then this model is seen accurate
and we can analyse that inference to discover the root cause. Otherwise, the
current model is inaccurate, which is missing some crucial information, i.e. MI,
about the current state of the system.

We argue that in time, continuous improvement of system logs, in the sense
of incorporating MI1 as necessary, could significantly enhance the performance
of automated RCA pipelines or any other task related to log-mining. In manual
RCA, experts sometimes need extra system tests to identify MI. Thus, an auto-
mated RCA not only needs to be aware of the MI in the system logs, but also
should account for the domain experts’ knowledge and experience [17].

Accounting for these considerations, the Abduction, Belief Revision and Con-
ceptual Change system (ABC) [10, 16], which repairs faulty logical theories based
on a given benchmark, is here employed to automate RCA2. The main input is
the system’s KM that comprises of: 1) an automatically extracted KG from both
system logs and the manual, and 2) rules manually formalised to introduce do-
main knowledge. Based on the KM and the given observed system failures, ABC
discovers MI first and repairs the system model so that it predicts the failures,
and then ABC analyses the repaired model to find the root cause. When there
are multiple possible MI, ABC provides all possibilities to experts so that the
correct MI can be found interactively.

This paper demonstrates the first application of a theory repair system to
RCA tasks. The main contribution includes the follows:

1. An approach to discover log MI that is instrumental to RCA and the fault
recovery process.

1 The damage caused by MI in RCA is described in Figure 2 and further discussed in
the next section.

2 ABC’s code is available on GitHub https://github.com/XuerLi/ABC_Datalog.



Title Suppressed Due to Excessive Length 3

2. An approach to automatically identify the root cause and suggest data-driven
repairs.

3. An approach to guide experts to enrich the KM or to extend the system logs
as to continuously improve the performance of the RCA pipeline.

Essential definitions of the ABC repair mechanism are given in §2. Root-
cause analysis is introduced in §3, where MI is repaired by ABC in §3.1 first,
and then the discovering and repairing of root causes are discussed in §3.2. An
initial evaluation is given in §4, followed by the conclusion in §5.

2 ABC Repair Mechanism

ABC represents environments using logical theories based on the DataLog logic
programming language [1], where axioms are Horn clauses. In Kowalski Form,
these clauses take one of the following forms, i.e.,

Q1 ∧ . . . ∧Qm =⇒ P (1)

Q1 ∧ . . . ∧Qm =⇒ (2)

=⇒ P (3)

=⇒ (4)

where m is a natural number; Qj , 1 ≤ j ≤ m and P are propositions. Then
the above clauses represent a rule, a goal of m sub-goals, an assertion, and the
empty clause, respectively3.

In DataLog, the arguments of propositions are either constants or variables,
i.e., there are no non-nullary functions. This makes Selected Literal Resolution
(SL) [9] with a fair search strategy a decision procedure for DataLog theories.
Decidability is important for establishing certainty in the detection of faults.
Example 1 in §4 illustrates a DataLog theory. Note that the =⇒ arrow is
retained even when m = 0.

Figure 1 shows ABC’s workflow. The inputs to ABC are a Datalog theory T
and the preferred structure S which consists of a pair of sets of ground proposi-
tions: those propositions that are observed to be true T (S) and those observed to
be false F(S). The pre-process in C1 reads and rewrites inputs into the internal
format for later use. Then in C2, ABC applies SL to T to detect incompatibility
and insufficiency faults based on F(S) and T (S), defined below. Incompatibili-
ties are conflicts between the theory and the observations and insufficiencies are
the failure of the theory to predict observations.

Definition 1 (Types of Fault). Let T be a DataLog theory.

Incompatibility: ∃ϕ. T ⊢ ϕ ∧ ϕ ∈ F(S);
Insufficiency: ∃ϕ. T ̸⊢ ϕ ∧ ϕ ∈ T (S)
3 Keeping =⇒ is required by the inference of refutation.



4 Authors Suppressed Due to Excessive Length

Fig. 1. Flowchart of the ABC: green arrows deliver a set of theories one by one to
the next process; the blue arrow collects and delivers theories as a set; When a faulty-
theory is not repairable, it will be dropped from the repair process.

As ABC uses SL-resolution[9] which is not only sound and complete [5], but
also decidable [13] for Datalog theories so that proofs can always be detected if
there are any.

In C3, repairs are generated to fix detected faults. An insufficiency is repaired
by unblocking a proof with additional necessary SL steps, while an incompati-
bility is repaired by blocking all its proofs, which can be done by breaking one
SL step in each of them [16]. ABC repairs faulty theories using eleven repair
operations. There are five for repairing incompatibilities and six for repairing
insufficiencies, defined below.

Definition 2 (Repair Operations for Incompatibility). In the case of incom-
patibility, the unwanted proof can be blocked by causing any of the SL steps to
fail. Suppose the targeted SL step is between a goal, P (s1, . . . , sn), and an axiom,
Body =⇒ P (t1, . . . , tn), where each si and ti pair can be unified. Possible repair
operations are as follows:

Belief Revision 1: Delete the targeted axiom: Body =⇒ P (t1, . . . , tn).
Belief Revision 2: Add an additional precondition to the body of an earlier

rule axiom which will become an unprovable subgoal in the unwanted proof.
Reformation 3: Rename P in the targeted axiom to either a new predicate or

a different existing predicate P ′.
Reformation 4: Increase the arity of all occurrences P in the axioms by adding

a new argument. Ensure that the new arguments in the targeted occurrence of
P , are not unifiable. In Datalog, this can only be ensured if they are unequal
constants at the point of unification.

Reformation 5: For some i, suppose si is C. Since si and ti unify, ti is either
C or a variable. Change ti to either a new constant or a different existing
constant C ′.

Definition 3 (Repair Operations for Insufficiency). In the case of insufficiency,
the wanted but failed proof can be unblocked by causing a currently failing SL
step to succeed. Suppose the chosen SL step is between a goal P (s1, . . . , sm) and



Title Suppressed Due to Excessive Length 5

an axiom Body =⇒ P ′(t1, . . . , tn), where either P ̸= P ′ or for some i, si and
ti cannot be unified. Possible repair operations are:

Abduction 1: Add the goal P (s1, . . . , sm) as a new assertion and replace vari-
ables with constants.

Abduction 2: Add a new rule whose head unifies with the goal P (s1, . . . , sm) by
analogising an existing rule or formalising a precondition based on a theorem
whose arguments overlap with the ones of that goal.

Abduction 3: Locate the rule axiom whose precondition created this goal and
delete this precondition from the rule.

Reformation 4: Replace P ′(t1, . . . , tn) in the axiom with P (s1, . . . , sm).
Reformation 5: Suppose si and ti are not unifiable. Decrease the arity of all

occurrences P ′ by 1 by deleting its ith argument.
Reformation 6: If si and ti are not unifiable, then they are unequal constants,

say, C and C ′. Either (a) rename all occurrences of C ′ in the axioms to C
or (b) replace the offending occurrence of C ′ in the targeted axiom by a new
variable.

ABC has a protection heuristic that allows the user to specify any term
that should be protected from being changed. Usually a faulty theory requires
multiple repairs to be fully repaired. Due to the diverse repairs, ABC tends to
be over-productive [16]. Thus, only those with the fewest faults are selected as
the optimal among alternatives [10, 18] in C4. ABC repeats its repair process
until there is no fault left.

As aforementioned, the KM in this paper contains a KG, which needs to
be translated to Datalog first. The translation is straightforward as a triple is
an assertion of a binary predicate and the TBox contains logical rules. To be
succinct, we omit this format translation and directly represent the KM as a
Datalog theory in this paper.

3 ABC in Root Cause Analysis

Given the assertion representing a failure as the goal4, a cause of that failure is
an axiom involved in the subset of KM which entails the goal. Thus, the root
causes of a set of failures are defined as follows.

Definition 4 (Root Causes R). Given a set of system failures E, and KM of
the system T, the root causes of E are a minimal set of axioms R involved in the
proofs of E.

∀β ∈ E,T \ R ̸⊢ β
∧

∀α ∈ R,∃β ∈ E,T \ {α} ̸⊢ β (5)

The first half of equation (5) says that a system failure β won’t exist if the
system does not contain root causes E. The second half represents that any

4 For example, a triple represents an alarm about a system failure.



6 Authors Suppressed Due to Excessive Length

axiom α which representing root causes are necessary in terms of resulting at
least one system failure.

ABC starts its RCA by finding MI and then repairing the KM to include it.
Figure 2 shows the damage caused by MI in RCA. All nodes are explicitly in
KM except the dashed node5. Due to MI, the green node will not be diagnosed
as the root cause of all four failures, as it should be.

Figure 3 depicts ABC’s workflow in RCA, where T is the faulty model of the
network which lacks of MI, T1 is correct model of the faulty network and T2 is
how the repaired network will look.

Fig. 2. Failed RCA due to MI: triangles are propositions describing system failures;
circle nodes are axioms or theorems representing system behaviours; an arrow starts
from a behaviour’s representation to its logical consequence’s; the dashed node corre-
sponds to the axiom that should be added to represent MI, which is not in the original
KM.

Fig. 3. RCA’s flowchart: RCA’s input are 1) KM T; 2) the observed system failures
as a set of assertions E. RCA’s output is the repaired KM T2 where the root cause
is addressed. Here ABC’s inputs are a KM, T (S) and F(S) in turn: in the first step
T (S) = E, F(S) = ∅; ABC outputs potential repairs {T′

1,T′′
1 ...}, from which the

selected T1 is the input KM of the second step, where T (S) = ∅, F(S) = E.

Before the detailed discussion in §3.1 and §3.2, a general introduction of the
workflow is given here. The main input KM, T written in Datalog, contains two
parts: 1) knowledge extracted from system logs and user manual; and 2) rules

5 A cause may be missing while its logical consequence exists in a KM, e.g., only the
latter is recorded in the log.



Title Suppressed Due to Excessive Length 7

representing experts’ domain knowledge. Firstly, ABC repairs T w.r.t. the MI.
Based on the enriched KM T1, which infers all failures, ABC repairs T1 and
then system failures can be fixed in T2. Consequently, the knowledge changed in
this repair constitutes the root cause. As ABC outputs multiple repaired KMs,
which are correct representations for the system in different scenarios. So the
‘Selection’ in Figure 3 allows domain experts to choose the one that represents
the target system correctly. In future, this selection can be automated by em-
ploying probability, where the selected KM should have the most significant sum
of axiom probability that represents how much an axiom is trusted in describing
the system accurately.

The input KG and the assertions of observed system failures are extracted
from system logs and the user manual by [19] and Datalog rules representing
domain knowledge are formalised by domain experts or the results of rule mining
tools after being validated by experts.

3.1 Repairing Knowledge Model to Include MI

A KM containing all essential information about a system failure is the base of
RCA. Thus, it is important to find MI first before analysing root causes. This
section introduces why a KM has MI; how ABC detects MI and repairs KM to
cover MI.

A system failure is a logical consequence of that system’s setup and be-
haviour. Therefore, a correct representation for modelling the system (M) should
entail all of the theorems (E) which represent the system’s failures, shown by
equation (6). Otherwise, that model is incorrect. The information that is well
represented in a correct model but not in an incorrect model is called MI.

∀β ∈ E, M =⇒ β (6)

Typical causes of MI are summarised as the following.

– KM is incomplete where new axioms need to be added.
– KM is inconsistent where old axioms need to be deleted
– KM is poorly written so that its representation needs to be adjusted, e.g.,

rewriting a misspelled constant.

ABC system is chosen to address MI because it has rich operations of axiom
deletion/addition and representation changes. By giving assertions of observed
system failures as ABC’s T (S), ABC checks whether each of them is a logical
consequence of the system’s KM. If a failure α ∈ T (S) is not a theorem, then
ABC repairs KM to build a proof of α. These repairs represent MI about system
failures so that all essential information about the observed system failures are
well represented in the repaired model.

Definition 5 (Repair KM for MI). Given the input of a KM T to repair, all
assertions of the observed system failures E as the true set of preferred struc-
ture (T (S)) and empty set as the false set of preferred structure (F(S)), ABC



8 Authors Suppressed Due to Excessive Length

generates repaired KM (T1) that logically entails system failures.

T1 =

{
T : ∀α ∈ E,T ⊢ α

T′ : T′ ∈ ν(T,E, ∅), ∃α ∈ E,T ̸⊢ α
(7)

where ν is ABC’s repair function whose inputs are the knowledge model, preferred
structure: T (S) and F(S) in turn.

If the current T has all essential information for observed system failures,
then T entails all these failures so it does not need to be repaired, which is the
first case in equation (7). Otherwise, ABC will repair T and generate multiple
possible KMs, among which, experts can select the accurate one that describes
the target system correctly. Traditionally, experts need to brainstorm all system
settings or behaviours which maybe relevant to the system failures [4]. Thus,
ABC’s multiple solutions are not trivial: they provide directions for experts to
further discover the relevant information about system failures.

However, this step examines each system failure individually, but not com-
bining all of them to find the root cause: it is an important preparation of the
RCA discussed in §3.2.

3.2 Root-Cause Discovering and Repairing

After the last step, the KM contains all essential information for system failures.
This step aims to find the root cause of all failures by theory repair. The effect
of repairing a cause reveals root causes: the root cause is one whose repair leaves
the fewest failures. Based on the sub-optimal pruning mechanism [10, 18], the
optimal repairs that use the minimal number of operations but solve the maximal
number of faults are the ones that fix the root causes.

Definition 6 (RCA by ABC Theory Repair ). Let T1 be a KM to repair, which
entails all observed system failures: ∀β ∈ E,T1 =⇒ β, and all assertions of
observed system failures E as the false set of preferred structure (F(S)) and
empty set as the true set of preferred structure (T (S)). ABC generates repaired
KM T′ that fixes system failures, where T′ ∈ ν(T1, ∅,E), from which experts can
choose the best KM for the failure-free system T2. Then the knowledge changed
in T2 is the root cause. Here ν is the same function defined in Equation (7)

T2 = T′, where T′ ∈ ν(T1, ∅,E)
∧

∀β ∈ E,T1 =⇒ β (8)

We claim that given the KM T1 as the input theory to repair, and assertions
of system failures E as F(S), ABC blocks all proofs of E with the minimal repair
operations, so root causes are identified by examining the repairs that need to be
made to remove them in its repaired KM T2. Thus, the changed parts of these
repairs are the root causes.

As the KM contains some fundamental information about a system that is
always correct, e.g, IP address format, ABC’s protection heuristic is useful to



Title Suppressed Due to Excessive Length 9

Example 1. Knowledge Model T with MI suffering from all failures.

=⇒ microservice(id1, s1) (1)

=⇒ microservice(id2, s1) (2)

=⇒ microservice(id3, s2) (3)

=⇒ full(d1) (4)

=⇒ createOn(id2, d1) (5)

=⇒ sameRoute(id2, id3) (6)

full(X) ∧ createOn(Y,X) =⇒ fail(Y ) (7)

ms(X, s1) ∧ms(Y, s2)∧
sameRoute(X,Y ) =⇒ depend(Y,X) (8)

depend(X,Y ) ∧ fail(Y ) =⇒ fail(X) (9)

T (S) = {fail(id1), fail(id2), fail(id3)}
F(S) = ∅

protect them from being repaired. This protection avoids incorrect repairs so
prunes fake root causes.

As aforementioned, ABC is guaranteed to find fault proofs when there are
any. Once a theory is detected as faulty, then ABC will recursively try to repair
its faults. If this repair process terminates with success, we can guarantee that
a root cause has been found. But there is no guarantee that this repair process
will always terminate successfully. It could introduce new faults at least as fast
as it removes them theoretically: no such a case occurs so far.

4 Evaluation

In this section, our solution is validated in the context of Huawei’s 5G network
where the failure of one microservice could have a waterfall effect. As our method
of repairing system model when tackling RCA tasks is unique, there will be no
comparison but a detailed example to illustrate our method in this evaluation,
especially in terms of the model repairing. Finally, we will discuss how ABC finds
and repairs the root cause. The comparison with other RCA systems that do not
addressing MI is a future work, which will be given as a part of the evaluation
of the TREAT project [22].

Example 1 describes the KM, T, written in Datalog by following the conven-
tion given by Equation (1): three microservice instances’ IDs are id1, id2 and
id3, respectively, and the first two are of type s1 and the last s2, represented
by axiom (1-3). Axioms (4-5) say that id2 is created on d1 and that the device



10 Authors Suppressed Due to Excessive Length

d1 is already full. Rule (7) tells that a microservice fails when it is created on a
full device, fail(id2) is a theorem of this T. Note that there is an inconsistent
representation between microservice in (1-3) and its acronym ‘ms’ in (8), which
makes the reasoner fail in unifying microservice(X,Y ) and ms(X,Y ). Other-
wise, based on (2, 3, 6, 8), we would know that id2 and id3 were for the same
route and depend(id3, id2). By combining (9), fail(id3) would be concluded.
Thus, among all system failures of fail(id1), fail(id2) and fail(id3) given by
T (S), only fail(id2) can be predicted by T.

Assume that the full device d1 causes two newly created microservice in-
stances id1 and id2 to fail. In addition, another microservice id3 also fails be-
cause it depends on the failed id2. However, the incomplete log only contains
the information about creating instance id2 and misses creating id1, e.g., it is
deleted due to the log’s limit being reached. Thus, RCA needs to discover the
MI about id1’s creation and then diagnose that the full device is the root cause
of these three failures. In addition, the inconsistent use of microservice and ms
need to be corrected as well.

Example 2. Enriched KM T1 suffering from all failures.

=⇒ microservice(id1, s1) (1)

=⇒ microservice(id2, s1) (2)

=⇒ microservice(id3, s2) (3)

=⇒ full(d1) (4)

=⇒ createOn(id2, d1) (5)

=⇒ createOn(id1, d1) (5*)

=⇒ sameRoute(id2, id3) (6)

full(X) ∧ createOn(Y,X) =⇒ fail(Y ) (7)

microservice(X, s1) ∧microservice(Y, s2)∧
sameRoute(X,Y ) =⇒ depend(Y,X) (8’)

depend(X,Y ) ∧ fail(Y ) =⇒ fail(X) (9)

T (S) = ∅
F(S) = {fail(id1), fail(id2), fail(id3)}

In this first step of RCA,T needs to be repaired so that it can predict not only
fail(id2), but also fail(id1) and fail(id3). Among all ABC’s repairs that build
a proof for fail(id1), adding createOn(id1, d1) is the correct cause of fail(id1)
in this scenario, which is generated by Abduction 1 in Definition 3. Meanwhile,



Title Suppressed Due to Excessive Length 11

by renaming ms into microservice in axiom (8), the inconsistency is repaired,
which is generated by Reformation 6 in Definition 3. Then T1 in Example 2
is selected as the enriched model for the next step of RCA, where changes are
highlighted in red.

In the second step of RCA, T1 is the input and failures are given as F(S).
Then ABC generates repairs that block all proofs of three failures, among which
deleting axiom (4) and rewriting (4) as a new axiom =⇒ dummy full(d1) fix
the root cause of full(d1). These two solutions are shown in Example 3 and 4
whose repair operations are from Belief Revision 1 and in Reformation 3 in Def-
inition 2, respectively. The repaired axiom with the new predicate dummy full
represents that the root cause is board d1 being full, and the operations that
can change d1’s status from full to not full can address these failures.

Example 3. Repaired KM T2 derives no failures.

=⇒ microservice(id1, s1) (1)

=⇒ microservice(id2, s1) (2)

=⇒ microservice(id3, s2) (3)

=⇒ dummy full(d1) (4)

=⇒ createOn(id2, d1) (5)

=⇒ createOn(id1, d1) (5*)

=⇒ sameRoute(id2, id3) (6)

full(X) ∧ createOn(Y,X) =⇒ fail(Y ) (7)

microservice(X, s1) ∧microservice(Y, s2)∧
sameRoute(X,Y ) =⇒ depend(Y,X) (8’)

depend(X,Y ) ∧ fail(Y ) =⇒ fail(X) (9)

T (S) = ∅
F(S) = {fail(id1), fail(id2), fail(id3)}

This example shows how the ABC repair system detects root-causes when
there is missing information: it extend the KM with MI about a failure and then
diagnoses and repairs the observed failures’ root cause. To our best knowledge,
other RCA methods do not deal with MI so cannot find correct root causes when
there is MI.

In addition, discovering the missing information about createOn is guid-
ance for experts to optimise system logs: records about createOn are important
in RCA so they should be protected to avoid being deleted in future. On the
other hand, it spots and solves the representation inconsistency of using both
microservice and ms by replacing all occurrences of the latter with the former.



12 Authors Suppressed Due to Excessive Length

Example 4. Repaired KM T3 by Belief Revision derives no failures.

=⇒ microservice(id1, s1) (1)

=⇒ microservice(id2, s1) (2)

=⇒ microservice(id3, s2) (3)

=⇒ createOn(id2, d1) (5)

=⇒ createOn(id1, d1) (5*)

=⇒ sameRoute(id2, id3) (6)

full(X) ∧ createOn(Y,X) =⇒ fail(Y ) (7)

microservice(X, s1) ∧microservice(Y, s2)∧
sameRoute(X,Y ) =⇒ depend(Y,X) (8)

depend(X,Y ) ∧ fail(Y ) =⇒ fail(X) (9)

T (S) = ∅
F(S) = {fail(id1), fail(id2), fail(id3)}

5 Conclusion

This paper introduces a novel RCA mechanism for system failures by apply-
ing ABC to the system’s KM and system failures: firstly, ABC automatically
discovers possible MI when failures cannot be deduced from the given KM. Af-
ter adding the interactively selected MI to KM, ABC automatically repairs the
enriched KM to fix root causes so that failures are not logical consequences.

Automatically discovering possible MI makes ABC less restricted by the com-
pleteness of the KM than other approaches. It also guides experts to enrich the
KM by extending the system logs w.r.t. MI as to continuously improve the per-
formance of the RCA pipeline.

Limitations reveal the future work: 1) ABC’s scalability limit for massive
KM. Possible solutions include optimising its computation flow and minimising
its input by pruning axioms that are irrelevant to the failures, e.g. clustering logs
[11]. 2) Experts are needed to select the best answer from ABC’s output cur-
rently. To minimise manual work, ABC’s output can be ranked by incorporating
probability in future; 3) a more sophisticated evaluation is crucial, ideally, with
open-source data[2, 7].

ACKNOWLEDGMENTS

The authors would like to thank Huawei for supporting the research and provid-
ing data on which this paper was based under grant CIENG4721/LSC. Also we



Title Suppressed Due to Excessive Length 13

gratefully acknowledge UKRI grant EP/V026607/1 and the support of ELIAI
(The Edinburgh Laboratory for Integrated Artificial Intelligence) EPSRC (grant
no EP/W002876/1). Thanks are also due to Zhenhao Zhou for the valuable dis-
cussions around network software systems. In addition, anonymous reviewers
also gave us very useful feedback that improved the quality of this paper.

References

1. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Surveys in
Computer Science, Springer-Verlag, Berlin (1990)

2. Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G., Ibáñez, L.D., Kacprzak,
E., Groth, P.: Dataset search: a survey. The VLDB Journal 29(1), 251–272 (2020)

3. Cherrared, S., Imadali, S., Fabre, E., Gössler, G.: Sfc self-modeling and active
diagnosis. IEEE Transactions on Network and Service Management (2021)

4. Dalal, S., Chhillar, R.S.: Empirical study of root cause analysis of software failure.
ACM SIGSOFT Software Engineering Notes 38(4), 1–7 (2013)

5. Gallier, J.: SLD-Resolution and Logic Programming. Chapter 9 of Logic for Com-
puter Science: Foundations of Automatic Theorem Proving (2003), originally pub-
lished by Wiley, 1986.

6. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: An evaluation study on log parsing and
its use in log mining. In: 2016 46th annual IEEE/IFIP international conference on
dependable systems and networks (DSN). pp. 654–661. IEEE (2016)

7. He, S., Zhu, J., He, P., Lyu, M.R.: Loghub: A large collection of system log datasets
towards automated log analytics. arXiv preprint arXiv:2008.06448 (2020)

8. Jia, T., Chen, P., Yang, L., Li, Y., Meng, F., Xu, J.: An approach for anomaly
diagnosis based on hybrid graph model with logs for distributed services. In: 2017
IEEE International Conference on Web Services (ICWS). pp. 25–32. IEEE (2017)

9. Kowalski, R.A., Kuehner, D.: Linear resolution with selection function. Artificial
Intelligence 2, 227–60 (1971)

10. Li, X.: Automating the Repair of Faulty Logical Theories. Ph.D. thesis, School of
Informatics, University of Edinburgh (2021)

11. Lin, Q., Zhang, H., Lou, J.G., Zhang, Y., Chen, X.: Log clustering based problem
identification for online service systems. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C). pp. 102–111. IEEE
(2016)

12. Lu, J., Dousson, C., Krief, F.: A self-diagnosis algorithm based on causal graphs. In:
The Seventh International Conference on Autonomic and Autonomous Systems,
ICAS. vol. 2011 (2011)

13. Pfenning, F.: Datalog. Lecture 26, 15-819K: Logic Programming (2006), https:
//www.cs.cmu.edu/~fp/courses/lp/lectures/26-datalog.pdf

14. Qiu, J., Du, Q., Yin, K., Zhang, S.L., Qian, C.: A causality mining and knowledge
graph based method of root cause diagnosis for performance anomaly in cloud
applications. Applied Sciences 10(6), 2166 (2020)

15. Shima, K.: Length matters: Clustering system log messages using length of words.
arXiv preprint arXiv:1611.03213 (2016)

16. Smaill, A., Li, X., Bundy, A.: ABC repair system for Datalog-like theories. In:
KEOD. pp. 333–340 (2018)

17. Solé, M., Muntés-Mulero, V., Rana, A.I., Estrada, G.: Survey on models and tech-
niques for root-cause analysis. arXiv preprint arXiv:1701.08546 (2017)



14 Authors Suppressed Due to Excessive Length

18. Urbonas, M., Bundy, A., Casanova, J., Li, X.: The use of max-sat for optimal choice
of automated theory repairs. In: Bramer, M., Ellis, R. (eds.) Artificial Intelligence
XXXVII. pp. 49–63. Springer International Publishing, Cham (2020)

19. Wang, F., Alan Bundy, X.L., Zhu, R., Nuamah, K., Xu, L., Mauceri, S., Pan, J.Z.:
Lekg: A system for constructing knowledge graphs from log extraction. The 10th
International Joint Conference on Knowledge Graphs (2021)

20. Zawawy, H., Kontogiannis, K., Mylopoulos, J.: Log filtering and interpretation for
root cause analysis. In: 2010 IEEE International Conference on Software Mainte-
nance. pp. 1–5. IEEE (2010)

21. Zhou, Q., Gray, A.J., McLaughlin, S.: Seanet–towards a knowledge graph
based autonomic management of software defined networks. arXiv preprint
arXiv:2106.13367 (2021)

22. Zhu, R., Li, X., Wang, F., Bundy, A., Pan, J.Z., Nuamah, K., Xu, L., Mauceri,
S.: TREAT: Automated construction and maintenance of probabilistic knowledge
bases from logs (extended abstract). The 8th Annual Conference on machine Learn-
ing, Optimization and Data science (LOD) (2022)


