

SkillBot: Towards Data Augmentation using

Transformer language model and linguistic

evaluation
Suresh Khatri, Muddesar Iqbal, George Ubakanma, and Spike van der Vliet-Firth

Department of School of Engineering

London South Bank University

London, the United Kingdom

khatris3, m.iqbal, george.ubakanma@lsbu.ac.uk

Jobs and Skills Programme Lead

Economy, Jobs & Partnerships

Lewisham Council

Spike.vanderVliet-Firth@lewisham.gov.uk

Abstract— Creating accurate, closed-domain, and machine

learning-based chatbots that perform language understanding

(intent prediction/detection) and language generation (response

generation) requires significant datasets derived from specific

knowledge domains. The common challenge in developing a

closed-domain chatbot application is the lack of a

comprehensive dataset. Such scarcity of the dataset can be

complemented by augmenting the dataset with the use of state-

of-the-art technologies existing in the field of Natural

Language Processing, called ‘Transformer Models’. Our

applied computing project experimented with a ‘Generative

Pre-trained Transformer’ model, a unidirectional transformer

decoder model for augmenting an original dataset limited in

size and manually authored. This model uses unidirectional

contextual representation i.e., text input is processed from left

to right while computing embeddings corresponding to the

input sentences. The primary goal of the project was to

leverage the potential of a pre-trained transformer-based

language model in augmenting an existing, but limited dataset.

Additionally, the idea for using the model for text generation

and appending the generated embedding to the input

embedding supplied was to preserve the intent for the

augmented utterances as well as to find a different form of

expressions for the same intent which could be expressed by

the potential users in the future. Our experiment showed

improved performance for understanding language and

generation for the chatbot model trained on the augmented

dataset indicating that a pre-trained language model can be

beneficial for the effective working of natural language-based

applications such as a chatbot model trained on the augmented

dataset indicating that a pre-trained language model can be

beneficial for the effective working of natural language-based

applications such as a chatbot.

Keywords— Data Augmentation in NLP, NLG (Natural

Language Generation), Natural Language Processing,

transformer model, NLU (Natural Language Understanding)

Rasa chatbot

I. INTRODUCTION

SkillBot is a closed knowledge, machine learning-based
domain virtual agent built using Rasa, an open-source
chatbot framework, and deployed for cloud-based
information retrieval. Machine learning-based chatbots can
be categorized into two categories, intent-detection-based
model and generative model. Intent-detection-based chatbots
resolve text classification problems where an underlying
generative classifier algorithm learns and predicts user

intents based on text input. The main purpose of SkillBot
software is to test new approaches to engaging and
supporting Lambeth, Lewisham, and Southwark Council
residents with employment, skills, and career advice. The
chatbot can provide information about various topics such as
job opportunities, education, career building, and
complimentary service, which supports the resident need. In
an uncertain UK labour market, this pilot project tests how
public services can adapt to deliver high volumes of light-
touch and self-directed support, addressing resource
challenges for the public sector and information accessibility
challenges during a period of significant change in the labour
market. Public Services were limited in their ability to deal
with the high volumes of support required by residents
during the pandemic, from many residents who were not
used to accessing support with their employment situation.
There is a great deal of employment advice and guidance
available online, but it is challenging to navigate and not
always good quality advice. Skillbot aims to overcome this
navigation challenge by providing verified, good-quality
advice based on the challenges residents describe to the
chatbot.

A quality dataset is a key ingredient in any machine
learning-based project. The machine learning model
consumes a dataset for learning and constructing a model
with weights that can generalize inputs given to it. The
dataset used for training the initial model for the Skillbot
chatbot was limited in size. In the case of this project, a
scarcity of datasets and the presence of similar utterances
across multiple intents and significantly different topics was
causing the model to provide unsuitable responses to the
user. The model was demonstrating poor NLU accuracy and
poor NLG accuracy as the input from the NLU section is
received by the NLG section for generating a response.
Applying a data augmentation approach to the original
dataset with the help of a pre-trained transformer-based
language model generated a substantial amount of data for
subsequent processing. The chatbot was trained on the
original and augmented dataset and tested against a set of
143 different stories. The project then evaluated NLU, NLG,
and the overall dialogue management system using a utility
provided by the Rasa framework [1]. Both chatbot models
were evaluated. The chatbot model trained with an
augmented dataset showed much-improved metrics for NLU,
NLG, and dialogue management components of the Skillbot
chatbot model.

In this paper, we have demonstrated that the potential of
a large pre-trained transformer-based language model (e.g.,
GPT-2 in our case) could be leveraged for improving the
language understanding and language generation capability
of a chatbot application. One of the applications of those
transformer-based models could be augmenting human-
generated datasets, creating comprehensive and accurate
datasets required for machine learning-based chatbots which
perform intent detection as a core NLU task

II. PROBMEL STATEMENT

The effectiveness of a chatbot lies in its ability to
identify user intents and message contents correctly and to
respond with the appropriate response. Enough utterances
for intents and an accurate flow of the stories are required
for the training and effective output from the chatbot built
using the Rasa framework. [1] supports the fact that a
machine learning model needs many examples in the range
of thousands to induce function with more generalization
capability. The chatbot trained on the original dataset
suffered from low accuracy problems for both the NLU and
NLG sections. Some of the issues found during the study for
the cause of the low-performance metrics are discussed.

A. Limited dataset size

The dataset in the case of the Rasa framework consists
of different parts viz. intents, responses, stories, and the
domain. An intent represents a category for a user-sent
message. It represents an intention coming from a user for
knowing or asking something. The chatbot receives intent in
the form of voice, text, or quick replies. Intents are used by
the Rasa NLU section for training purposes. Each response
for individual intents is defined inside the domain file. Each
response name begins with the prefix ‘utter_’ in this case.
All responses are defined inside the domain file. Each
response can have multiple response texts which are
predicted by the response retrieval component in Rasa. The
response can also be a function call for execution but in the
case of SkillBot custom actions were not used, limited only
to text responses. Responses are used by the Rasa Core
model for training dialogue policy. Stories represent patterns
for conversations that might take place with the user. Stories
are defined as a sequence of intents and responses. In the
case of SkillBot, most of the stories are defined as a
sequence of one intent followed by one response. The
implementation details and more theoretical understanding
of this jargon are explained here [2]. The initial dataset was
authored manually. The dataset consisted of 246 (excluding
intents for small talks) different intents. Each of them had
around seven short, condensed utterances on average. Most
of them were keyword representations of the intents. Each
of those intents had their respective response utterance well
and stories mainly consisting of one question and one
answer. The dataset was balanced but not adequate in size
also there were not many variations found among the
utterances present for intent. The development of chatbots is
suggested to take place using a Conversation Driven
Development approach [3]. Since the chatbot was still in the
development phase and was not made publicly accessible,
following the CDD approach was not possible in our case
except for making some changes to the dataset manually.

B. Ambiguous intents

An intent or a category must be unique to each other i.e.,
an intent must consist of utterances that carry semantics that
represent only that category or intent under which it is
listed. As the number of intents increases, the possibility
remains of creating and listing highly similar intents under
multiple intents. This creates confusion and ambiguity for
the underlying classification algorithm while classifying an
intent for a particular utterance. An NLU test was performed
for the Skillbot chatbot model trained with the initial dataset
which was carried out using the tool facilitated by the Rasa
framework. It was confirmed that intent detection failed for
those utterances which showed multiple polarities for the
different intents. The presence of utterances carrying bipolar
semantics reduced the NLU performance of the Skillbot by
creating ambiguity for the classifier algorithm.

C. Lack of Smalltalk conversations training data

The initial dataset did not contain any informal,
conversational dataset. The dataset only consisted of
domain-specific intents and responses because of which the
chatbot would sound less interactive when a user would try
to have some more information or personalized
conversations. The chatbot response would sound appear
less user-friendly and engaging since the dataset for small
talk conversation was absent. Facilitating the addition of the
Smalltalk dataset to the dataset would help to improve the
HCI (Human Computer Interaction) aspect of the chatbot.
Manual preparation of an informal conversation dataset
would be time-consuming. We incorporated the pre-existing
small talk dataset available in the markdown version for the
Rasa chatbot from the link mentioned here [4]. The dataset
is comprehensive and accurate. The addition of the
Smalltalk dataset to our domain dataset increased the
number of intents, responses, and stories.

Overall, the issues causing the problem are the small
dataset size and inconsistencies found across intents in the
dataset.

D. Research Question

Our main focus was on improving NLU and NLG
performance for the chatbot. We decided to use the
suggested default NLU and NLG algorithms by the Rasa
framework for model building as they are considered state-
of-the-art technologies in the field of NLP. The challenge
presented to us was a smaller dataset. Through this project,
we decided to examine if applying dataset augmentation over
the existing dataset accompanied by a human reviewing of
the augmented dataset for a close knowledge domain chatbot
would improve the dialogue management system of the
chatbot significantly.

III. LITERATURE SURVEY

The use of transformer-based models has been increased

in the field of NLP for data augmentation, especially in case

of the unavailability of enough training data resources. The

most common scenario present to the developers is the

unavailability of a large domain-specific knowledge base for

any kind of NLP tasks such as text prediction, classification,

and question answering. Irrefutable truth is that machine

learning models need a large knowledge base to work with

greater accuracy and precision and the same holds with NLP

models. The transformer-based model has received great

popularity because of the features such as effective input

context representation, and parallelization of tasks achieved

by the transformer-based model which was introduced in

[5]. The attention mechanism is a key concept in the

transformer model. The attention mechanism is inspired by

cognitive psychology. [6] suggests that in cognitive

psychology the attention mechanism works in two layers. In

the first step parallel processing happens and attention is

provided uniformly to all the information available. In the

second step, focus or attention is made to a special part of

the information available.

The GPT2 model was introduced by [1]. The GPT2

model is a transformer-based language model (LM)

consisting of only decoders created by OpenAI for text

generation. There are different variants of GPT-2 models

based on the dataset it is trained on and the number of

parameters it has. The model we used for our purpose is the

GPT-2 large model. GPT-2 is a large-scale transformer

model that is pre-trained on WebText(40GB), has a

vocabulary size of 50,000 (approximately), and uses word

embedding of dimension 1280 for learning the context for

the words. The dataset is in English. GPT-2 large model has

762M model parameters and is sought to be one of the state-

of-the-art techniques in NLP. The model has a total of 36

decoder blocks. GPT-2 model training on a large corpus of

data and the model training is a self-supervised process i.e.,

with no human assistance or interference. The continuous

input sequence of a certain length from the dataset is fed to

the model and the same sequence with one token shifted to

the right becomes the target to be predicted. The model

predicts the next word for the given sequence of words to it.

More precisely, for an input sequence, predictions for a

token at ‘i’th position only take the inputs from the token

starting at position 1 to the token at position i and the

subsequent tokens. As in the case of the traditional language

models, the GPT-2 model outputs only one token at a time.

After a token is predicted or learned, that token is appended

to the sequence and again the sequence with the appended

token is fed to the model and the process is repeated. The

technique is termed autoregression. Therefore, GPT-2

models are also called “auto-regressive” models. The model

uses the MLM (Mask Language Model) technique for

learning the next word in sequence. The problem with the

GPT2 text generation model is that the generated text is

sometimes irrelevant, and the generated text doesn't make

proper sense.

[7] The current approach in using pre-trained models for

NLP tasks is to supervise the pre-trained model with the

existing dataset for fine-tuning. Fine-tuning the model helps

to understand the context for the downstream NLP task that

we are going to solve. However, the GPT-2 model

performance is impressive even without any further

supervised training. The research concludes that the

language model trained on large and diverse datasets like

WebText becomes capable of performing well in different

NLP tasks in different domains and datasets even without

being fine-tuned.

[8] defined Data Augmentation as an approach to

solving data-scarce situations by generating a synthesized

training dataset using the existing training dataset to

improve the model performance. [7] suggested that data

augmentation for NLP is the process of generating

synthesized utterances using the synonym word replacement

technique which is more challenging as the generated

utterances could be more invalid and fears that the

augmented dataset could reduce the model performance.

[9] fine-tuned the pre-trained conditional BERT

(Bidirectional Encoder Representations from Transformers)
model for data augmentation using masked language
modeling and used the intent category or class as a reference
or condition for generating the utterance.

[7] suggests that there is a lack of enough research or

theoretical underpinnings/principles backing up the fact that

why DA works but the implementation of the DA concept

with NLP tasks are being proven beneficial as shown by

their different use cases. Another common issue that needs

to be answered is the extent of augmentation to go for

during data augmentation. Studies have shown that

augmentation leads to a positive margin for the classifier.

[10] suggests that the positive effect is seen in the model if

the augmentation is applied exponentially. [11] suggests that

unlike with Computer Vision, data augmentation in the case

of NLP is challenging as the generated text is randomly

distorted and semantically or grammatically incorrect or

inconsistent. Data augmentation in NLP mainly follows

word replacement using a synonym approach while

augmentation of the utterance. However, the introduction of

the GPT-2 model gave rise to a new approach i.e., using

conditional and contextual data augmentation. They have

also proposed a language model called LAMBADA

(LAnguage Model BAsed Data Augmentation) which used

Generative Pre-Training (GPT) model as the underlying

algorithm and was able to generate augmented sentences

based on the category (intent) name provided to that model.

A clever approach followed by them was they obtained

more suitable utterances out of the augmented dataset first

by using the baseline mode i.e., only correctly classified

sentences were selected from the augmented dataset. The

proposed model was trained on the augmented training

dataset and the model showed increased statistical

performance when compared to the baseline model. The

performance of LAMBDA was tested against different

datasets and the resulting accuracy was compared with the

accuracy coming from different models viz. CBERT, EDA,

and the baseline model. In all cases, the LAMBDA

outperformed with an appreciable difference. Fig. 1 shows

the performance statistics for their experiment. [12] The

paper studied the performance of different transformer-

based pre-trained models such as GPT-2, BERT, and

sequence-to-sequence model BART (Bidirectional Auto-

Regressive Transformers) for conditional data augmentation

with three different datasets. The research also studied the

diversity of the dataset generated. The approach used seems

to be alike to the work done by [11]. The target label for the

utterance was appended to the utterance. The SEP

(separation) token would separate the utterance and the

label. The EOS (end of sentence) token would mark the end

Figure 1 Experimental statistics for the LAMBDA model

Figure 2 Model mean accuracy for different datasets

Figure 3 Yelp Pizza review classification report for

models trained with original and synthetic datasets

combined

of the complete utterance. 10 different variations were

generated for each sentence present in the original dataset

after the model was pre-trained with the existing dataset.

Their research concluded that the sequence-to-sequence

model i.e., BART outperformed as compared to the rest of

the two pre-trained models. One issue seen during this

experiment was preserving the label for the utterance

seemed to be complicated. Fig. 2 shows the statistics

obtained during their experiment.

[13] used the Yelp pizza review dataset which is an open

research dataset along with GPT-2 transformer model and

transfer learning approach to generate synthetic pizza

reviews. The original dataset was smaller in size and was a

balanced dataset. The dataset consisted of reviews on pizzas

in the English language and the reviews were categorized as

positive or negative reviews. The original dataset consisted

of a total of 450 observations but was increased to 11380

after applying augmentation. First, the model was fine-tuned

with the Yelp pizza dataset. Then the fine-tuned model was

used to generate a synthetic pizza review dataset. The

original dataset was combined with the augmented dataset to

construct the final dataset. Certain data was obtained from

the original dataset to benchmark the performance of the

baseline model and the newly trained model on the

augmented dataset. The baseline model's overall accuracy

was found to increase from 82% to 89% in the new model

trained with the augmented dataset as shown in Fig. 3. They

suggested fine-tuning the model before implementing the

dataset augmentation approach during their experiment.

[14] has introduced a multitask transformer model called

DIET (Dual Intent and Entity Transformer) that achieves the

two prime requirements in language understanding (NLU)

in NLP: intent detection and entity extraction jointly. The

research has brought the fact into light that modeling those

two sub-tasks using different models can suffer from error

propagation but implementing those two tasks using a multi-

task architecture is beneficial in terms of achieving task

efficiency. The Rasa team also recommends using the DIET

classifier as it outperforms the other intent classifier

algorithms. The architecture of Rasa is highly customizable

where many components can be selected or adjusted in a

plug-and-play fashion, components can be activated or

deactivated. There are various features of DIET architecture.

Rasa itself does not provide any pre-trained weights but

allows the user to specify dense features with the use of pre-

trained language tokenizers and featurizers. Secondly, the

sparse word or n-gram featurizer can also be added to the

model pipeline in a plug-and-play fashion. The research has

also demonstrated that the DIET models can perform much

better even with the specific domain-related dataset. Using

DIET models in purely supervised settings can outperform

fine-tuned BERT models with a significant reduction in

model training time.

IV. SOLUTION ARCHITECTURE

A. Architecture for SkillBot chatbot application

Most of the chatbot frameworks are found to support the

Figure 3 Architecture for chatbot application

architecture shown in fig. 4 for their chatbots. Users
communicate with the chatbot over the I/O channels such as
HTTP REST API. The chatbot software mainly has two ML
components: NLU and NLG. When the chatbot receives a
message from the user, it is sent to the NLU section for
message parsing or message interpretation. Intents, entities
etc. are interpreted and sent back to the host environment.
Then the interpreted results and conversation history are sent
to the NLG section. The NLG then refers to the history
object and patterns it learned during the training phase and
determines which action to take first. If actions are text
responses from NLG, then NLG forwards the response to the
host environment. However, if the action determined is a
fulfillment or API call then the host environment performs
these actions and forwards the received response back to the
user over the communication channel. In our case, we are not
using any fulfillment or external API calls as a response.
Both components of NLU and NLG must be trainable as
well. Additionally, chatbot software can also be configured
to store all the conversations, every single detail associated
with the conversation, in a database. In our case, we
configured a database for storing all the conversations. Fig. 4
represents the architecture for basic ML-based intent
detection-based chatbots application as suggested in the
paper [15].

[16] Similar to other chatbot systems, there are two main
components in the Rasa framework: Rasa NLU for Natural
Language Understanding (NLU) and Rasa Core for Natural
Language Generation (NLG). Those components are
decoupled (independent of one another) but still work hand
in hand in the Rasa framework. Rasa NLU is used for natural
language understanding i.e., perceiving or predicting the
intent based on the user-sent message and Rasa Core is a
dialogue management system that is responsible for
predicting suitable response or action for the predicted intent
by Rasa NLU. Those components are defined in plug-and-
play fashion in the configuration pipeline since the

architecture in Rasa is modular by nature and exposing
HTTP APIs is possible with these components. Also, since
Rasa NLU and Rasa Core are decoupled, they can be
implemented independently of one another. In the case of the
Rasa chatbot all tools and technologies we use to construct
the NLU, and NLG model can be specified using the
configuration inside the file called config.yml file. Fig. 5
shows the configuration we applied for our chatbot
application. The components used for the NLU section are
listed under the section called pipeline and the components
used for the NLG section are listed under the policies
section. We used the DIET classifier for NLU and TED
policy for the NLG section.

B. DIET as an NLU algorithm

Rasa allows pre-trained weights to be used but in our
case, we are not using any dense features. The architecture
will refer to the sparse embeddings from the CountVecot
featurizer in the pipeline. Intent classifier and entity
recognition. We are using both of these components,
therefore we set the keys intent_classification and entity
recognition to be true.

Figure 4 configuration used for the chatbot application

The model is not using any pre-trained weights or dense
features. There are two layers of transformers. The encoders
and decoders are identical to each other but maintain
different weights. In addition, the decoder block additionally
contains a multiple. The encoder models have an attention
layer which is implemented as a multi-head attention model
consisting of 4 attention heads for multiple input or context
representation inspection for input tokens. The input
embedding size received is 256 dimensions for the encoder.
The learning rate is set to 0.001. The training epoch set is
120. The loss calculation will be done using the SoftMax
function at the output layer. Fig. 6 shows the hyper-
parameter settings used while implementing the DIET model
for our SkillBot chatbot. The settings have been defined
inside the config.yml file inside the root application folder for
the chatbot application. During training, at first, input
sequences are tokenized and a dictionary using words and
sub-word (n-grams) is built. The WhiteSpace tokenizer and
CountVector featurizer specified in the pipeline do this job at
the beginning. The model will be initialized with the sparse
feature matrix before the training of the components. [17]
The input entering the DIET model consists of tokens as
shown in fig. 7.

Figure 5 Format for input embeddings entering DIET model

Figure 6 Format for input embeddings entering DIET model

Figure 7 TED policy configuration

C. TED policy as an NLG algorithm

[18] TED is a transformer-based architecture for dialogue
policy. TED stands for Transformer Embedding Dialogue
policy. The self-attention mechanism used by the transformer
model has outperformed the task of next action prediction as

compared to traditional hierarchical RNN networks.
Contrary to RNN (Recurrent Neural Network) which equally
prioritizes the elements in a sequence, the TED algorithm
with the use of the attention mechanism can select the most
appropriate next action at a time ‘t’ by referring to the stack
of feature tokens embedding produced at time t-1, t-2… and
t-n according to the number of hyper-parameters set for
retaining the dialogue stack. If the model at time ‘t’ receives
an irrelevant input, then the model can ignore the input and
determine the next suitable action based on the embeddings
present in the stack in the previous timestamp. The sequence
of token embeddings present in the stack or the history object
could represent multiple topics or intents but the transformer
model with its self-attention mechanism can learn to resolve
or satisfy those intents with an appropriate response in due
course of time. The TED policy for our project has been used
in a modular fashion. Fig. 8 shows the configuration we used
for implementing the TED policy for our project. TED model
is trained jointly with features coming from NLU (i.e., token
in the form of a concatenated array of intent category, entity
label, and token embedding for the previous action), and
sequence of tokens present in the stack and the token

representation of the action as specified in the story. Later,
during the time for inferring a particular action, the predicted
action token is compared with every token of actual actions.
Then a highly similar action is determined as the next action
to be executed.

As suggested by [18], fig. 10 shows that the Input token

at time ‘t’ on the left side of the block diagram is the

concatenated input token predicted from the NLU

component. Similarly, on the right side, the actual token

embedding for the action as specified in the story is passed

as the target. We have set the transformer size to 5 which is

a hyper-parameter. Therefore, there are 5 different layers in

the diagram which serve to implement a stack mechanism

for storing the past embeddings. As suggested by [18], fig. 9

shows the constituents for the input token entering the TED

transformer block where key, value, and query vectors are

present and are randomly initialized. The token embedding

size coming from the transformer is larger. The tokens

coming from the transformer are fed to the feed-forward

dense network which learns some weight and the

feedforward network outputs the reduced token size. At the

same time, the target token embeddings are processed by the

feed-forward network. The newly learned embeddings for

the actual token and the predicted embedding tokens reach

the similarity check layer where the similarity difference is

calculated in the form of dot product loss. This loss is

propagated back to feed-forward layers and the transformers

in the form of error gradients and those feed-forward layers

and transformer layers learn the appropriate weights. During

runtime, the input target section on the right receives the list

Figure 9 Input token at time ‘t’ entering the transformer network inside the TED model

Figure 8 TED model during training

Figure 10 Pseudocode for data augmentation

of token embeddings for all the actions. The predicted

similarity for input tokens is checked against the list and the

most similar action token is selected and the respective

action is executed. Therefore, the TED policy is still a

retrieval model rather than a new content generation. The

learning on sequenced-based action embedding learning

provides the Rasa NLG with better generalization capability

for the actions as compared to other approaches using RNN

and LSTM (Long Short-Term Memory cell) networks.

D. Pseudocode for data augmentation

The task of augmenting the dataset can be automated

using a program script using programming languages that

support the library for using transformer models. In our

case, we used Python programing language for scripting the

task of data augmentation for our dataset.

Fig. 11 shows the pseudocode for augmenting the

dataset. First, we initialize and load the GPT-2 model and

pre-trained tokenizer into the memory from respective

libraries. To augment the dataset, first, the existing dataset

files are read. In our case, we used Python language, and we

used the transformer library from which we created a

pipeline object which is an abstraction, and encapsulates the

task of loading and initializing the model and the tokenizer

supplied as named arguments. Rasa training dataset files

have YML format. Those YML data need to be read into

native programming data-structure objects supported by the

programing language which is used for writing the script. In

our case, we read the dataset into a dictionary object as D.

We then create an empty dictionary object for holding the

augmented dataset and named it D_aug. There are multiple

intent categories with multiple utterances in a single file. We

loop through each intent I and read the list of utterances

present under the intent I into the list called U. We then

provide the list U to the tokenizer for creating their

corresponding input token embeddings and read the encoded

embeddings into another list object called T. We obtain the

numeric representations as embedding from the tokenizer

for each utterance. GPT2 model upon receiving such input

embedding generates (predicts) contextualized utterance

which is a conditional open-end text generation approach.

The list of tokens is supplied to the GPT2 model which

receives each group of each token embedding as an input

and returns 15 different variants with each variant consisting

maximum of 20 words. The augmented utterances are read

into a list object called U_aug. The augmented U_aug is

appended to U i.e., original utterances and augmented

utterances are combined. Then the intent I and the combined

utterances are stored as key-value pair objects. The key-

value pair created is appended to the empty augmented

dataset object we created before i.e., D_aug. The same

process is repeated for all intent categories present in the

training dataset file. Finally, we must convert and write the

D_aug dataset object into YML format.

Before applying dataset augmentation, we manually

removed the inconsistencies by removing similar utterances

from multiple intents to make our dataset as accurate as

possible which was time-consuming. We used a Google

Colab environment with GPUs for the implementation of the

task for dataset augmentation since the process of encoding

and decoding the text embeddings and generating a bigger

number of variations took a much longer time with the use

of CPUs only. Therefore, the use of GPU expedited the task,

and the task of DA became quicker.

Figure 12 locating the test story for a conversation on Rasa X app

V. PERFORMANCE ANALYSIS AND EVALUATION.

Testing a language model is a difficult task because of
the non-discrete nature of the language data. [19] The
chatbot application can be assessed using five different
evaluation metrics related to user experience, information
retrieval process, linguistic capability, business, and
technology. We are assessing information retrieval capability
in our case by assessing the dialog management system of
the chatbot. We acquired two versions of the datasets: the
original datasets and the augmented datasets. We trained the
Rasa chatbot model separately using both datasets and
obtained two different NLP models. We treated the chatbot
model trained on the original dataset as the baseline model
and the chatbot model trained on the augmented dataset as
the proposed model. The pipeline configuration for both of
those models was kept the same; only the dataset was
different. Rasa provides a specific set of CLI (Command
Line Interface) tools to facilitate the chatbot test. Rasa has
two test approaches available: NLU tests and story-based
tests. NLU test only tests the performance of the intent
classifier and entity extractor of the chatbot but the story-
based test approach tests both: NLU and NLG components
of Rasa simultaneously. Hence using the story-based
approach we can measure the performance of both
components at the same time. We have used a story-based
test approach for chatbot model evaluation as this would test
both NLU and NLG sections in an end-to-end fashion as
discussed here[20]. An attempt was made to include a story
covering most of the intents present in both versions of the
dataset for evaluation purposes, which was the
recommendation from the Rasa team for testing. For
example, intents representing the Smalltalk conversation
were not included in test stories because the Smalltalk was
not present in the earlier state of the dataset. We evaluated
the performance of those individual chatbot models against
the common 143 test stories to benchmark their dialog
management system. Then we also compared the two
performances.

A. Generation of test stories

Test stories (test cases in our case) were prepared

manually by reviewing the existing conversation and

picking up only the conversation with one level of turn from

Rasa X. Fig. 12 shows an example of obtaining a Test story

using the Rasa X GUI (Graphical User Interface). The left

section is the actual conversation taking place between the

user and the chatbot and the right section shows the

sequence of intent and utterance generated during the

conversation. The Test Story tab was clicked, and the test

story was copied. The story was saved inside the

test_stories.yml file.

Figure 13 Content inside test_stories.yml file

Fig. 13 shows a snippet of how the test_stories.yml file

looks in terms of the content it holds. A total of 143 stories

each consisting of one intent and one utterance were picked.

The file was placed inside the tests folder inside the main

application directory for the Rasa chatbot. We separately

tested the same test stories against the two models using the

command: rasa test. The command evaluates the dialog

management system and reports performance metrics for

both Rasa NLU and Rasa Core components.

Table (1) shows the overall score for the selected

metrics. The problem we tried to solve is text classification

with multiple class or intent categories and the test has

summarized precision and f1 score. Both models showed

overall precision of 100% but since this is a multiclass

problem, we should focus on the F1 Score i.e., the higher

the F1 score, the better the model is. The improved F1 score

suggests that the proposed model is a good model with

improved generalization capability. The baseline model

executed only 38.5 % of the stories successfully whereas the

new model successfully executed 70.6% of stories i.e.,

successful run of the story from the start till the end. The F1

score for NLU also improved from 55.6% to 82.8%.

Table (2) shows the overall precision and F1 Score for

NLG for the baseline model and the proposed model. The

metrics for the proposed model have been improved

significantly as compared to the baseline model for the NLG

Table 1 Comparison of NLU performance

Chatbot model Precision

(Average)

F1-Score

(Average)

Story Accuracy

Baseline model 100% 55.6% 38.5%

Proposed model 100% 82.8% 70.6%

Table 2 Comparison of NLG performance

Chatbot model Precision

(Average)

F1-Score

(Average)

Generated

Action

Accuracy

Baseline model 85.7% 79.2% 77.9%

Proposed model 93.2% 90..3% 90.2%

component. This is obvious because, in the case of the

proposed model, NLU performance has been increased.

Improved NLU performance promotes improved NLG

performance as the NLG component uses the output from

the NLU component in predicting the next output and if the

NLU is more accurate, the more the accuracy of NLG

becomes.

The intent classification report or confusion matrix for

the NLU section is too large to fit into the document

because of the existence of a huge number of categories and

hence not included here.

VI. CONCLUSION

It is learned that the use of transformer-based models in
the field has expanded the horizon of the NLP domain. One
of the areas that are under research is the use of transformer-
based models in the field of data augmentation in NLP. The
task of data augmentation is challenging and may require a
great amount of time and effort. More training data means
more training steps and more training steps means more
model training time. The augmented dataset demanded more
training time for the model. GP2 model seemed to be
efficient in the text generation process if the prompt supplied
is imperative the tone of the response generated would be
more contextual or more sensible but if the prompt supplied
is affirmative such as a title for a paragraph the nature of the
response generated text in such a case makes less sense or
irrelevant. Using an ML model for data augmentation can be
helpful and cast a positive impact but dataset augmented
using machine learning models still must go through some
review processes before they can be incorporated into an
application as an integral part of the dataset. It has been
concluded that the chatbot can be used to facilitate different
tasks for humans and simplify interaction with the computer,
but they are not aimed to replace humans. During the
development project, a different set of tools and technologies
and their technical implementation were learned. The
development of the dissertation development process became
knowledge-gaining and insightful.

VII. FUTURE WORK

We did not fine-tune the GPT2 model before we used it

for purpose of data augmentation. We used open-end

conditional text generation which left the possibility of

generating irrelevant texts. Therefore, considering every

single augmented utterance without reviewing them

manually or in some automated fashion would cause the

addition of noise to the model training process which could

have contributed to model overfitting which in turn can

impact the overall model accuracy. Therefore, we could

apply and experiment with a few more approaches. First, we

could fine-tune the GPT2 model using our original dataset

which would improve the quality of the text generated i.e.,

could make them more contextual. Further, we can reduce

the effort of reviewing the augmented dataset by filtering

(classifying) the augmented dataset with the use of another

fine-tuned transformer model e.g., BERT. We could fine-

tune BERT with the original dataset along with the intent

categories and then use the same BERT model for

classifying the augmented dataset. Then we can only take

the correctly classified dataset to review. Using the filtered

dataset obtained this way could further increase model

accuracy. We could also experiment with the bi-directional

text generation model such as BART for creating a different

version of the dataset and reassessing those performance

metrics for both NLU and NLG components of SkillBot

chatbot.

ACKNOWLEDGMENT

The work presented in this paper is carried out as a part
of SkillBot – a chatbot-based job market intelligence tool.
The project has been funded by the Mayor and Burgesses of
the London Borough of Lambeth.

REFERENCES

[1] A. Radford et al, "Language models are unsupervised multitask

learners," OpenAI Blog, vol. 1, (8), pp. 9, 2019

[2] NLU Training Data. Available: https://rasa.com/docs/rasa/nlu-
training-data/.

[3] K. White, "10 Best Practices for Designing NLU Training Data,"
2020

[4] R. Prabhakaran, "Smalltalk for LATEST Rasa Stack," 2020.

[5] A. Vaswani et al, "Attention is all you need," Advances in Neural
Information Processing Systems, vol. 30, 2017.

[6] R. Adolphs, "Social cognition and the human brain," Trends Cogn.
Sci. (Regul. Ed.), vol. 3, (12), pp. 469-479, 1999.

[7] S. Y. Feng et al, "A survey of data augmentation approaches for nlp,"
arXiv Preprint arXiv:2105.03075, 2021

[8] S. C. Wong et al, "Understanding data augmentation for
classification: When to warp?" in 2016 International Conference on
Digital Image Computing: Techniques and Applications (DICTA),
2016.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language
understanding,” 2018

[10] S. Rajput, Z. Feng, Z. Charles, P.-L. Loh, and D. Papailiopoulos,
“Does data augmentation lead to positive margin?,” 2019, pp. 5321–
5330

[11] A. Anaby-Tavor et al., “Do not have enough data? Deep learning to
the rescue!” 2020, vol. 34, no. 05, pp. 7383–7390.

[12] V. Kumar, A. Choudhary, and E. Cho, “Data augmentation using pre-
trained transformer models,” 2020.

[13] D. Whitfield, “Using gpt-2 to create synthetic data to improve the
prediction performance of nlp machine learning classification
models,” 2021.

[14] T. Bunk, D. Varshneya, V. Vlasov, and A. Nichol, “Diet: Lightweight
language understanding for dialogue systems,” 2020.

[15] E. Adamopoulou and L. Moussiades, “An overview of chatbot
technology,” 2020, pp. 373–383.

[16] T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa:
Open-source language understanding and dialogue management,”
2017.

[17] Rasa, “Components,” 2022. https://rasa.com/docs/rasa/components/.

[18] V. Vlasov, J. E. Mosig, and A. Nichol, “Dialogue transformers,”
2019.

[19] G. A. Santos et al, "A Conversation-Driven Approach for Chatbot
Management," IEEE Access, vol. 10, pp. 8474-8486, 2022

[20] T. Bocklisch et al, "Rasa: Open source language understanding and
dialogue management," arXiv Preprint arXiv:1712.05181, 2017.

https://rasa.com/docs/rasa/components/

	I. Introduction
	II. Probmel Statement
	A. Limited dataset size
	B. Ambiguous intents
	C. Lack of Smalltalk conversations training data
	D. Research Question

	III. Literature Survey
	IV. Solution Architecture
	A. Architecture for SkillBot chatbot application
	B. DIET as an NLU algorithm
	C. TED policy as an NLG algorithm
	D. Pseudocode for data augmentation

	V. Performance Analysis and Evaluation.
	A. Generation of test stories

	VI. Conclusion
	VII. Future Work
	Acknowledgment
	References

