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Abstract— Creating accurate, closed-domain, and machine 

learning-based chatbots that perform language understanding 

(intent prediction/detection) and language generation (response 

generation) requires significant datasets derived from specific 

knowledge domains. The common challenge in developing a 

closed-domain chatbot application is the lack of a 

comprehensive dataset. Such scarcity of the dataset can be 

complemented by augmenting the dataset with the use of state-

of-the-art technologies existing in the field of Natural 

Language Processing, called ‘Transformer Models’. Our 

applied computing project experimented with a ‘Generative 

Pre-trained Transformer’ model, a unidirectional transformer 

decoder model for augmenting an original dataset limited in 

size and manually authored. This model uses unidirectional 

contextual representation i.e., text input is processed from left 

to right while computing embeddings corresponding to the 

input sentences. The primary goal of the project was to 

leverage the potential of a pre-trained transformer-based 

language model in augmenting an existing, but limited dataset. 

Additionally, the idea for using the model for text generation 

and appending the generated embedding to the input 

embedding supplied was to preserve the intent for the 

augmented utterances as well as to find a different form of 

expressions for the same intent which could be expressed by 

the potential users in the future. Our experiment showed 

improved performance for understanding language and 

generation for the chatbot model trained on the augmented 

dataset indicating that a pre-trained language model can be 

beneficial for the effective working of natural language-based 

applications such as a chatbot model trained on the augmented 

dataset indicating that a pre-trained language model can be 

beneficial for the effective working of natural language-based 

applications such as a chatbot. 

Keywords— Data Augmentation in NLP, NLG (Natural 

Language Generation), Natural Language Processing, 

transformer model, NLU (Natural Language Understanding) 
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I. INTRODUCTION 

SkillBot is a closed knowledge, machine learning-based 
domain virtual agent built using Rasa, an open-source 
chatbot framework, and deployed for cloud-based 
information retrieval. Machine learning-based chatbots can 
be categorized into two categories, intent-detection-based 
model and generative model. Intent-detection-based chatbots 
resolve text classification problems where an underlying 
generative classifier algorithm learns and predicts user 

intents based on text input. The main purpose of SkillBot 
software is to test new approaches to engaging and 
supporting Lambeth, Lewisham, and Southwark Council 
residents with employment, skills, and career advice. The 
chatbot can provide information about various topics such as 
job opportunities, education, career building, and 
complimentary service, which supports the resident need. In 
an uncertain UK labour market, this pilot project tests how 
public services can adapt to deliver high volumes of light-
touch and self-directed support, addressing resource 
challenges for the public sector and information accessibility 
challenges during a period of significant change in the labour 
market. Public Services were limited in their ability to deal 
with the high volumes of support required by residents 
during the pandemic, from many residents who were not 
used to accessing support with their employment situation. 
There is a great deal of employment advice and guidance 
available online, but it is challenging to navigate and not 
always good quality advice. Skillbot aims to overcome this 
navigation challenge by providing verified, good-quality 
advice based on the challenges residents describe to the 
chatbot.  

A quality dataset is a key ingredient in any machine 
learning-based project. The machine learning model 
consumes a dataset for learning and constructing a model 
with weights that can generalize inputs given to it. The 
dataset used for training the initial model for the Skillbot 
chatbot was limited in size. In the case of this project, a 
scarcity of datasets and the presence of similar utterances 
across multiple intents and significantly different topics was 
causing the model to provide unsuitable responses to the 
user. The model was demonstrating poor NLU accuracy and 
poor NLG accuracy as the input from the NLU section is 
received by the NLG section for generating a response. 
Applying a data augmentation approach to the original 
dataset with the help of a pre-trained transformer-based 
language model generated a substantial amount of data for 
subsequent processing. The chatbot was trained on the 
original and augmented dataset and tested against a set of 
143 different stories. The project then evaluated NLU, NLG, 
and the overall dialogue management system using a utility 
provided by the Rasa framework [1]. Both chatbot models 
were evaluated. The chatbot model trained with an 
augmented dataset showed much-improved metrics for NLU, 
NLG, and dialogue management components of the Skillbot 
chatbot model. 



In this paper, we have demonstrated that the potential of 
a large pre-trained transformer-based language model (e.g., 
GPT-2 in our case) could be leveraged for improving the 
language understanding and language generation capability 
of a chatbot application. One of the applications of those 
transformer-based models could be augmenting human-
generated datasets, creating comprehensive and accurate 
datasets required for machine learning-based chatbots which 
perform intent detection as a core NLU task 

II. PROBMEL STATEMENT 

The effectiveness of a chatbot lies in its ability to 
identify user intents and message contents correctly and to 
respond with the appropriate response. Enough utterances 
for intents and an accurate flow of the stories are required 
for the training and effective output from the chatbot built 
using the Rasa framework. [1] supports the fact that a 
machine learning model needs many examples in the range 
of thousands to induce function with more generalization 
capability. The chatbot trained on the original dataset 
suffered from low accuracy problems for both the NLU and 
NLG sections. Some of the issues found during the study for 
the cause of the low-performance metrics are discussed. 

A. Limited dataset size 

The dataset in the case of the Rasa framework consists 
of different parts viz. intents, responses, stories, and the 
domain. An intent represents a category for a user-sent 
message. It represents an intention coming from a user for 
knowing or asking something. The chatbot receives intent in 
the form of voice, text, or quick replies. Intents are used by 
the Rasa NLU section for training purposes. Each response 
for individual intents is defined inside the domain file. Each 
response name begins with the prefix ‘utter_’ in this case. 
All responses are defined inside the domain file. Each 
response can have multiple response texts which are 
predicted by the response retrieval component in Rasa. The 
response can also be a function call for execution but in the 
case of SkillBot custom actions were not used, limited only 
to text responses. Responses are used by the Rasa Core 
model for training dialogue policy. Stories represent patterns 
for conversations that might take place with the user. Stories 
are defined as a sequence of intents and responses. In the 
case of SkillBot, most of the stories are defined as a 
sequence of one intent followed by one response. The 
implementation details and more theoretical understanding 
of this jargon are explained here [2]. The initial dataset was 
authored manually. The dataset consisted of 246 (excluding 
intents for small talks) different intents. Each of them had 
around seven short, condensed utterances on average. Most 
of them were keyword representations of the intents. Each 
of those intents had their respective response utterance well 
and stories mainly consisting of one question and one 
answer. The dataset was balanced but not adequate in size 
also there were not many variations found among the 
utterances present for intent. The development of chatbots is 
suggested to take place using a Conversation Driven 
Development approach [3]. Since the chatbot was still in the 
development phase and was not made publicly accessible, 
following the CDD approach was not possible in our case 
except for making some changes to the dataset manually. 

B. Ambiguous intents 

An intent or a category must be unique to each other i.e., 
an intent must consist of utterances that carry semantics that 
represent only that category or intent under which it is 
listed. As the number of intents increases, the possibility 
remains of creating and listing highly similar intents under 
multiple intents. This creates confusion and ambiguity for 
the underlying classification algorithm while classifying an 
intent for a particular utterance. An NLU test was performed 
for the Skillbot chatbot model trained with the initial dataset 
which was carried out using the tool facilitated by the Rasa 
framework. It was confirmed that intent detection failed for 
those utterances which showed multiple polarities for the 
different intents. The presence of utterances carrying bipolar 
semantics reduced the NLU performance of the Skillbot by 
creating ambiguity for the classifier algorithm. 

C. Lack of Smalltalk conversations training data 

The initial dataset did not contain any informal, 
conversational dataset. The dataset only consisted of 
domain-specific intents and responses because of which the 
chatbot would sound less interactive when a user would try 
to have some more information or personalized 
conversations. The chatbot response would sound appear 
less user-friendly and engaging since the dataset for small 
talk conversation was absent. Facilitating the addition of the 
Smalltalk dataset to the dataset would help to improve the 
HCI (Human Computer Interaction) aspect of the chatbot. 
Manual preparation of an informal conversation dataset 
would be time-consuming. We incorporated the pre-existing 
small talk dataset available in the markdown version for the 
Rasa chatbot from the link mentioned here [4]. The dataset 
is comprehensive and accurate. The addition of the 
Smalltalk dataset to our domain dataset increased the 
number of intents, responses, and stories. 

Overall, the issues causing the problem are the small 
dataset size and inconsistencies found across intents in the 
dataset. 

D. Research Question 

Our main focus was on improving NLU and NLG 
performance for the chatbot. We decided to use the 
suggested default NLU and NLG algorithms by the Rasa 
framework for model building as they are considered state-
of-the-art technologies in the field of NLP. The challenge 
presented to us was a smaller dataset. Through this project, 
we decided to examine if applying dataset augmentation over 
the existing dataset accompanied by a human reviewing of 
the augmented dataset for a close knowledge domain chatbot 
would improve the dialogue management system of the 
chatbot significantly. 

III. LITERATURE SURVEY 

The use of transformer-based models has been increased 

in the field of NLP for data augmentation, especially in case 

of the unavailability of enough training data resources.  The 

most common scenario present to the developers is the 

unavailability of a large domain-specific knowledge base for 

any kind of NLP tasks such as text prediction, classification, 

and question answering. Irrefutable truth is that machine 

learning models need a large knowledge base to work with 

greater accuracy and precision and the same holds with NLP 



models. The transformer-based model has received great 

popularity because of the features such as effective input 

context representation, and parallelization of tasks achieved 

by the transformer-based model which was introduced in 

[5]. The attention mechanism is a key concept in the 

transformer model. The attention mechanism is inspired by 

cognitive psychology. [6] suggests that in cognitive 

psychology the attention mechanism works in two layers. In 

the first step parallel processing happens and attention is 

provided uniformly to all the information available. In the 

second step, focus or attention is made to a special part of 

the information available. 

 

The GPT2 model was introduced by [1]. The GPT2 

model is a transformer-based language model (LM) 

consisting of only decoders created by OpenAI for text 

generation. There are different variants of GPT-2 models 

based on the dataset it is trained on and the number of 

parameters it has. The model we used for our purpose is the 

GPT-2 large model. GPT-2 is a large-scale transformer 

model that is pre-trained on WebText(40GB), has a 

vocabulary size of 50,000 (approximately), and uses word 

embedding of dimension 1280 for learning the context for 

the words. The dataset is in English. GPT-2 large model has 

762M model parameters and is sought to be one of the state-

of-the-art techniques in NLP. The model has a total of 36 

decoder blocks. GPT-2 model training on a large corpus of 

data and the model training is a self-supervised process i.e., 

with no human assistance or interference. The continuous 

input sequence of a certain length from the dataset is fed to 

the model and the same sequence with one token shifted to 

the right becomes the target to be predicted. The model 

predicts the next word for the given sequence of words to it. 

More precisely, for an input sequence, predictions for a 

token at ‘i’th position only take the inputs from the token 

starting at position 1 to the token at position i and the 

subsequent tokens. As in the case of the traditional language 

models, the GPT-2 model outputs only one token at a time. 

After a token is predicted or learned, that token is appended 

to the sequence and again the sequence with the appended 

token is fed to the model and the process is repeated. The 

technique is termed autoregression. Therefore, GPT-2 

models are also called “auto-regressive” models. The model 

uses the MLM (Mask Language Model) technique for 

learning the next word in sequence. The problem with the 

GPT2 text generation model is that the generated text is 

sometimes irrelevant, and the generated text doesn't make 

proper sense. 

 

[7] The current approach in using pre-trained models for 

NLP tasks is to supervise the pre-trained model with the 

existing dataset for fine-tuning. Fine-tuning the model helps 

to understand the context for the downstream NLP task that 

we are going to solve. However, the GPT-2 model 

performance is impressive even without any further 

supervised training. The research concludes that the 

language model trained on large and diverse datasets like 

WebText becomes capable of performing well in different 

NLP tasks in different domains and datasets even without 

being fine-tuned. 

 

[8] defined Data Augmentation as an approach to 

solving data-scarce situations by generating a synthesized 

training dataset using the existing training dataset to 

improve the model performance. [7] suggested that data 

augmentation for NLP is the process of generating 

synthesized utterances using the synonym word replacement 

technique which is more challenging as the generated 

utterances could be more invalid and fears that the 

augmented dataset could reduce the model performance. 

 
[9] fine-tuned the pre-trained conditional BERT 

(Bidirectional Encoder Representations from Transformers) 
model for data augmentation using masked language 
modeling and used the intent category or class as a reference 
or condition for generating the utterance. 

[7] suggests that there is a lack of enough research or 

theoretical underpinnings/principles backing up the fact that 

why DA works but the implementation of the DA concept 

with NLP tasks are being proven beneficial as shown by 

their different use cases. Another common issue that needs 

to be answered is the extent of augmentation to go for 

during data augmentation. Studies have shown that 

augmentation leads to a positive margin for the classifier. 

[10] suggests that the positive effect is seen in the model if 

the augmentation is applied exponentially. [11] suggests that 

unlike with Computer Vision, data augmentation in the case 

of NLP is challenging as the generated text is randomly 

distorted and semantically or grammatically incorrect or 

inconsistent. Data augmentation in NLP mainly follows 

word replacement using a synonym approach while 

augmentation of the utterance. However, the introduction of 

the GPT-2 model gave rise to a new approach i.e., using 

conditional and contextual data augmentation. They have 

also proposed a language model called LAMBADA 

(LAnguage Model BAsed Data Augmentation) which used 

Generative Pre-Training (GPT) model as the underlying 

algorithm and was able to generate augmented sentences 

based on the category (intent) name provided to that model. 

A clever approach followed by them was they obtained 

more suitable utterances out of the augmented dataset first 

by using the baseline mode i.e., only correctly classified 

sentences were selected from the augmented dataset. The 

proposed model was trained on the augmented training 

dataset and the model showed increased statistical 

performance when compared to the baseline model. The 

performance of LAMBDA was tested against different 

datasets and the resulting accuracy was compared with the 

accuracy coming from different models viz. CBERT, EDA, 

and the baseline model. In all cases, the LAMBDA 

outperformed with an appreciable difference. Fig. 1 shows 

the performance statistics for their experiment. [12] The 

paper studied the performance of different transformer-

based pre-trained models such as GPT-2, BERT, and 

sequence-to-sequence model BART (Bidirectional Auto-

Regressive Transformers) for conditional data augmentation 

with three different datasets. The research also studied the 

diversity of the dataset generated. The approach used seems 

to be alike to the work done by [11]. The target label for the 

utterance was appended to the utterance. The SEP 

(separation) token would separate the utterance and the 

label. The EOS (end of sentence) token would mark the end 



 
Figure 1 Experimental statistics for the LAMBDA model 

 

 
Figure 2 Model mean accuracy for different datasets 

 
Figure 3 Yelp Pizza review classification report for 

models trained with original and synthetic datasets 

combined 

of the complete utterance. 10 different variations were 

generated for each sentence present in the original dataset 

after the model was pre-trained with the existing dataset. 

Their research concluded that the sequence-to-sequence 

model i.e., BART outperformed as compared to the rest of 

the two pre-trained models. One issue seen during this 

experiment was preserving the label for the utterance 

seemed to be complicated. Fig. 2 shows the statistics 

obtained during their experiment. 

 

[13] used the Yelp pizza review dataset which is an open 

research dataset along with GPT-2 transformer model and 

transfer learning approach to generate synthetic pizza 

reviews. The original dataset was smaller in size and was a 

balanced dataset. The dataset consisted of reviews on pizzas 

in the English language and the reviews were categorized as 

positive or negative reviews. The original dataset consisted 

of a total of 450 observations but was increased to 11380 

after applying augmentation. First, the model was fine-tuned 

with the Yelp pizza dataset. Then the fine-tuned model was 

used to generate a synthetic pizza review dataset. The 

original dataset was combined with the augmented dataset to 

construct the final dataset.  Certain data was obtained from 

the original dataset to benchmark the performance of the 

baseline model and the newly trained model on the 

augmented dataset. The baseline model's overall accuracy 

was found to increase from 82% to 89% in the new model 

trained with the augmented dataset as shown in Fig. 3. They 

suggested fine-tuning the model before implementing the 

dataset augmentation approach during their experiment. 

 

[14] has introduced a multitask transformer model called 

DIET (Dual Intent and Entity Transformer) that achieves the 

two prime requirements in language understanding (NLU) 

in NLP: intent detection and entity extraction jointly. The 

research has brought the fact into light that modeling those 

two sub-tasks using different models can suffer from error 

propagation but implementing those two tasks using a multi-

task architecture is beneficial in terms of achieving task 

efficiency. The Rasa team also recommends using the DIET 

classifier as it outperforms the other intent classifier 

algorithms. The architecture of Rasa is highly customizable 

where many components can be selected or adjusted in a 

plug-and-play fashion, components can be activated or 

deactivated. There are various features of DIET architecture. 

Rasa itself does not provide any pre-trained weights but 

allows the user to specify dense features with the use of pre-

trained language tokenizers and featurizers. Secondly, the 

sparse word or n-gram featurizer can also be added to the 

model pipeline in a plug-and-play fashion. The research has 

also demonstrated that the DIET models can perform much 

better even with the specific domain-related dataset. Using 

DIET models in purely supervised settings can outperform 

fine-tuned BERT models with a significant reduction in 

model training time. 

IV. SOLUTION ARCHITECTURE 

A. Architecture for SkillBot chatbot application 

Most of the chatbot frameworks are found to support the 

Figure 3 Architecture for chatbot application    

 



architecture shown in fig. 4 for their chatbots. Users 
communicate with the chatbot over the I/O channels such as 
HTTP REST API. The chatbot software mainly has two ML 
components: NLU and NLG. When the chatbot receives a 
message from the user, it is sent to the NLU section for 
message parsing or message interpretation. Intents, entities 
etc. are interpreted and sent back to the host environment. 
Then the interpreted results and conversation history are sent 
to the NLG section. The NLG then refers to the history 
object and patterns it learned during the training phase and 
determines which action to take first. If actions are text 
responses from NLG, then NLG forwards the response to the 
host environment. However, if the action determined is a 
fulfillment or API call then the host environment performs 
these actions and forwards the received response back to the 
user over the communication channel. In our case, we are not 
using any fulfillment or external API calls as a response. 
Both components of NLU and NLG must be trainable as 
well. Additionally, chatbot software can also be configured 
to store all the conversations, every single detail associated 
with the conversation, in a database. In our case, we 
configured a database for storing all the conversations. Fig. 4 
represents the architecture for basic ML-based intent 
detection-based chatbots application as suggested in the 
paper [15]. 

[16] Similar to other chatbot systems, there are two main 
components in the Rasa framework: Rasa NLU for Natural 
Language Understanding (NLU) and Rasa Core for Natural 
Language Generation (NLG). Those components are 
decoupled (independent of one another) but still work hand 
in hand in the Rasa framework. Rasa NLU is used for natural 
language understanding i.e., perceiving or predicting the 
intent based on the user-sent message and Rasa Core is a 
dialogue management system that is responsible for 
predicting suitable response or action for the predicted intent 
by Rasa NLU. Those components are defined in plug-and-
play fashion in the configuration pipeline since the  

architecture in Rasa is modular by nature and exposing 
HTTP APIs is possible with these components. Also, since 
Rasa NLU and Rasa Core are decoupled, they can be 
implemented independently of one another. In the case of the 
Rasa chatbot all tools and technologies we use to construct 
the NLU, and NLG model can be specified using the 
configuration inside the file called config.yml file. Fig. 5 
shows the configuration we applied for our chatbot 
application. The components used for the NLU section are 
listed under the section called pipeline and the components 
used for the NLG section are listed under the policies 
section. We used the DIET classifier for NLU and TED 
policy for the NLG section. 

B. DIET as an NLU algorithm 

Rasa allows pre-trained weights to be used but in our 
case, we are not using any dense features. The architecture 
will refer to the sparse embeddings from the CountVecot 
featurizer in the pipeline. Intent classifier and entity 
recognition. We are using both of these components, 
therefore we set the keys intent_classification and entity 
recognition to be true. 

 

Figure 4 configuration used for the chatbot application 

The model is not using any pre-trained weights or dense 
features. There are two layers of transformers. The encoders 
and decoders are identical to each other but maintain 
different weights. In addition, the decoder block additionally 
contains a multiple. The encoder models have an attention 
layer which is implemented as a multi-head attention model 
consisting of 4 attention heads for multiple input or context 
representation inspection for input tokens. The input 
embedding size received is 256 dimensions for the encoder. 
The learning rate is set to 0.001. The training epoch set is 
120. The loss calculation will be done using the SoftMax 
function at the output layer. Fig. 6 shows the hyper-
parameter settings used while implementing the DIET model 
for our SkillBot chatbot. The settings have been defined 
inside the config.yml file inside the root application folder for 
the chatbot application. During training, at first, input 
sequences are tokenized and a dictionary using words and 
sub-word (n-grams) is built. The WhiteSpace tokenizer and 
CountVector featurizer specified in the pipeline do this job at 
the beginning. The model will be initialized with the sparse 
feature matrix before the training of the components. [17] 
The input entering the DIET model consists of tokens as 
shown in fig. 7. 

 

Figure 5 Format for input embeddings entering DIET model 

 



 
Figure 6 Format for input embeddings entering DIET model 

 

 
Figure 7 TED policy configuration 

C. TED policy as an NLG algorithm 

[18] TED is a transformer-based architecture for dialogue 
policy. TED stands for Transformer Embedding Dialogue 
policy. The self-attention mechanism used by the transformer 
model has outperformed the task of next action prediction as 

compared to traditional hierarchical RNN networks. 
Contrary to RNN (Recurrent Neural Network) which equally 
prioritizes the elements in a sequence, the TED algorithm 
with the use of the attention mechanism can select the most 
appropriate next action at a time ‘t’ by referring to the stack 
of feature tokens embedding produced at time t-1, t-2… and 
t-n according to the number of hyper-parameters set for 
retaining the dialogue stack. If the model at time ‘t’ receives 
an irrelevant input, then the model can ignore the input and 
determine the next suitable action based on the embeddings 
present in the stack in the previous timestamp. The sequence 
of token embeddings present in the stack or the history object 
could represent multiple topics or intents but the transformer 
model with its self-attention mechanism can learn to resolve 
or satisfy those intents with an appropriate response in due 
course of time. The TED policy for our project has been used 
in a modular fashion. Fig. 8 shows the configuration we used 
for implementing the TED policy for our project. TED model 
is trained jointly with features coming from NLU (i.e., token 
in the form of a concatenated array of intent category, entity 
label, and token embedding for the previous action), and 
sequence of tokens present in the stack and the token 

representation of the action as specified in the story. Later, 
during the time for inferring a particular action, the predicted 
action token is compared with every token of actual actions. 
Then a highly similar action is determined as the next action 
to be executed. 

As suggested by [18], fig. 10 shows that the Input token 

at time ‘t’ on the left side of the block diagram is the 

concatenated input token predicted from the NLU 

component.  Similarly, on the right side, the actual token 

embedding for the action as specified in the story is passed 

as the target.  We have set the transformer size to 5 which is 

a hyper-parameter. Therefore, there are 5 different layers in 

the diagram which serve to implement a stack mechanism 

for storing the past embeddings. As suggested by [18], fig. 9 

shows the constituents for the input token entering the TED 

transformer block where key, value, and query vectors are 

present and are randomly initialized. The token embedding 

size coming from the transformer is larger. The tokens 

coming from the transformer are fed to the feed-forward 

dense network which learns some weight and the 

feedforward network outputs the reduced token size. At the 

same time, the target token embeddings are processed by the 

feed-forward network. The newly learned embeddings for 

the actual token and the predicted embedding tokens reach 

the similarity check layer where the similarity difference is 

calculated in the form of dot product loss. This loss is 

propagated back to feed-forward layers and the transformers 

in the form of error gradients and those feed-forward layers 

and transformer layers learn the appropriate weights. During 

runtime, the input target section on the right receives the list  

 

Figure 9  Input token at time ‘t’ entering the transformer network inside the TED model 

      

 

Figure 8 TED model during training 

 
   

  



 
Figure 10 Pseudocode for data augmentation 

 

of token embeddings for all the actions. The predicted 

similarity for input tokens is checked against the list and the 

most similar action token is selected and the respective 

action is executed. Therefore, the TED policy is still a 

retrieval model rather than a new content generation. The 

learning on sequenced-based action embedding learning 

provides the Rasa NLG with better generalization capability 

for the actions as compared to other approaches using RNN 

and LSTM (Long Short-Term Memory cell) networks. 

 

D. Pseudocode for data augmentation 

The task of augmenting the dataset can be automated 

using a program script using programming languages that 

support the library for using transformer models. In our 

case, we used Python programing language for scripting the 

task of data augmentation for our dataset.  

Fig. 11 shows the pseudocode for augmenting the 

dataset. First, we initialize and load the GPT-2 model and 

pre-trained tokenizer into the memory from respective 

libraries. To augment the dataset, first, the existing dataset 

files are read. In our case, we used Python language, and we 

used the transformer library from which we created a 

pipeline object which is an abstraction, and encapsulates the 

task of loading and initializing the model and the tokenizer 

supplied as named arguments. Rasa training dataset files 

have YML format. Those YML data need to be read into 

native programming data-structure objects supported by the 

programing language which is used for writing the script. In 

our case, we read the dataset into a dictionary object as D. 

We then create an empty dictionary object for holding the 

augmented dataset and named it D_aug. There are multiple 

intent categories with multiple utterances in a single file. We 

loop through each intent I and read the list of utterances 

present under the intent I into the list called U. We then 

provide the list U to the tokenizer for creating their 

corresponding input token embeddings and read the encoded 

embeddings into another list object called T. We obtain the 

numeric representations as embedding from the tokenizer 

for each utterance. GPT2 model upon receiving such input 

embedding generates (predicts) contextualized utterance 

which is a conditional open-end text generation approach. 

The list of tokens is supplied to the GPT2 model which 

receives each group of each token embedding as an input 

and returns 15 different variants with each variant consisting 

maximum of 20 words. The augmented utterances are read 

into a list object called U_aug. The augmented U_aug is 

appended to U i.e., original utterances and augmented 

utterances are combined. Then the intent I and the combined 

utterances are stored as key-value pair objects. The key-

value pair created is appended to the empty augmented 

dataset object we created before i.e., D_aug. The same 

process is repeated for all intent categories present in the 

training dataset file. Finally, we must convert and write the 

D_aug dataset object into YML format. 

 

Before applying dataset augmentation, we manually 

removed the inconsistencies by removing similar utterances 

from multiple intents to make our dataset as accurate as 

possible which was time-consuming. We used a Google 

Colab environment with GPUs for the implementation of the 

task for dataset augmentation since the process of encoding 

and decoding the text embeddings and generating a bigger 

number of variations took a much longer time with the use 

of CPUs only. Therefore, the use of GPU expedited the task, 

and the task of DA became quicker. 

Figure 12 locating the test story for a conversation on Rasa X app  

     



V. PERFORMANCE  ANALYSIS AND EVALUATION. 

Testing a language model is a difficult task because of 
the non-discrete nature of the language data. [19] The 
chatbot application can be assessed using five different 
evaluation metrics related to user experience, information 
retrieval process, linguistic capability, business, and 
technology. We are assessing information retrieval capability 
in our case by assessing the dialog management system of 
the chatbot. We acquired two versions of the datasets: the 
original datasets and the augmented datasets. We trained the 
Rasa chatbot model separately using both datasets and 
obtained two different NLP models. We treated the chatbot 
model trained on the original dataset as the baseline model 
and the chatbot model trained on the augmented dataset as 
the proposed model. The pipeline configuration for both of 
those models was kept the same; only the dataset was 
different. Rasa provides a specific set of CLI (Command 
Line Interface) tools to facilitate the chatbot test. Rasa has 
two test approaches available: NLU tests and story-based 
tests. NLU test only tests the performance of the intent 
classifier and entity extractor of the chatbot but the story-
based test approach tests both: NLU and NLG components 
of Rasa simultaneously. Hence using the story-based 
approach we can measure the performance of both 
components at the same time. We have used a story-based 
test approach for chatbot model evaluation as this would test 
both NLU and NLG sections in an end-to-end fashion as 
discussed here[20]. An attempt was made to include a story 
covering most of the intents present in both versions of the 
dataset for evaluation purposes, which was the 
recommendation from the Rasa team for testing. For 
example, intents representing the Smalltalk conversation 
were not included in test stories because the Smalltalk was 
not present in the earlier state of the dataset. We evaluated 
the performance of those individual chatbot models against 
the common 143 test stories to benchmark their dialog 
management system. Then we also compared the two 
performances. 

A. Generation of test stories 

Test stories (test cases in our case) were prepared 

manually by reviewing the existing conversation and 

picking up only the conversation with one level of turn from 

Rasa X. Fig. 12 shows an example of obtaining a Test story 

using the Rasa X GUI (Graphical User Interface). The left 

section is the actual conversation taking place between the 

user and the chatbot and the right section shows the 

sequence of intent and utterance generated during the 

conversation. The Test Story tab was clicked, and the test 

story was copied. The story was saved inside the 

test_stories.yml file.  

 
Figure 13 Content inside test_stories.yml file 

 

Fig. 13 shows a snippet of how the test_stories.yml file 

looks in terms of the content it holds. A total of 143 stories 

each consisting of one intent and one utterance were picked. 

The file was placed inside the tests folder inside the main 

application directory for the Rasa chatbot. We separately 

tested the same test stories against the two models using the 

command: rasa test. The command evaluates the dialog 

management system and reports performance metrics for 

both Rasa NLU and Rasa Core components. 

 

Table (1) shows the overall score for the selected 

metrics. The problem we tried to solve is text classification 

with multiple class or intent categories and the test has 

summarized precision and f1 score. Both models showed 

overall precision of 100% but since this is a multiclass 

problem, we should focus on the F1 Score i.e., the higher 

the F1 score, the better the model is. The improved F1 score 

suggests that the proposed model is a good model with 

improved generalization capability. The baseline model 

executed only 38.5 % of the stories successfully whereas the 

new model successfully executed 70.6% of stories i.e., 

successful run of the story from the start till the end. The F1 

score for NLU also improved from 55.6% to 82.8%. 

 

Table (2) shows the overall precision and F1 Score for 

NLG for the baseline model and the proposed model. The 

metrics for the proposed model have been improved 

significantly as compared to the baseline model for the NLG 

 
Table 1 Comparison of NLU performance 

Chatbot model  Precision 

(Average) 

F1-Score 

(Average) 

Story Accuracy 

Baseline model 100% 55.6% 38.5% 

Proposed model 100% 82.8% 70.6% 

 
 

Table 2 Comparison of NLG performance 

Chatbot model  Precision 

(Average) 

F1-Score 

(Average) 

Generated 

Action 

Accuracy 

Baseline model 85.7% 79.2% 77.9% 

Proposed model 93.2% 90..3% 90.2% 



component. This is obvious because, in the case of the 

proposed model, NLU performance has been increased. 

Improved NLU performance promotes improved NLG 

performance as the NLG component uses the output from 

the NLU component in predicting the next output and if the 

NLU is more accurate, the more the accuracy of NLG 

becomes. 

The intent classification report or confusion matrix for 

the NLU section is too large to fit into the document 

because of the existence of a huge number of categories and 

hence not included here. 

VI. CONCLUSION 

It is learned that the use of transformer-based models in 
the field has expanded the horizon of the NLP domain. One 
of the areas that are under research is the use of transformer-
based models in the field of data augmentation in NLP. The 
task of data augmentation is challenging and may require a 
great amount of time and effort. More training data means 
more training steps and more training steps means more 
model training time. The augmented dataset demanded more 
training time for the model. GP2 model seemed to be 
efficient in the text generation process if the prompt supplied 
is imperative the tone of the response generated would be 
more contextual or more sensible but if the prompt supplied 
is affirmative such as a title for a paragraph the nature of the 
response generated text in such a case makes less sense or 
irrelevant. Using an ML model for data augmentation can be 
helpful and cast a positive impact but dataset augmented 
using machine learning models still must go through some 
review processes before they can be incorporated into an 
application as an integral part of the dataset. It has been 
concluded that the chatbot can be used to facilitate different 
tasks for humans and simplify interaction with the computer, 
but they are not aimed to replace humans. During the 
development project, a different set of tools and technologies 
and their technical implementation were learned. The 
development of the dissertation development process became 
knowledge-gaining and insightful. 

VII. FUTURE WORK 

We did not fine-tune the GPT2 model before we used it 

for purpose of data augmentation. We used open-end 

conditional text generation which left the possibility of 

generating irrelevant texts. Therefore, considering every 

single augmented utterance without reviewing them 

manually or in some automated fashion would cause the 

addition of noise to the model training process which could 

have contributed to model overfitting which in turn can 

impact the overall model accuracy. Therefore, we could 

apply and experiment with a few more approaches. First, we 

could fine-tune the GPT2 model using our original dataset 

which would improve the quality of the text generated i.e., 

could make them more contextual. Further, we can reduce 

the effort of reviewing the augmented dataset by filtering 

(classifying) the augmented dataset with the use of another 

fine-tuned transformer model e.g., BERT. We could fine-

tune BERT with the original dataset along with the intent 

categories and then use the same BERT model for 

classifying the augmented dataset. Then we can only take 

the correctly classified dataset to review. Using the filtered 

dataset obtained this way could further increase model 

accuracy. We could also experiment with the bi-directional 

text generation model such as BART for creating a different 

version of the dataset and reassessing those performance 

metrics for both NLU and NLG components of SkillBot 

chatbot. 

ACKNOWLEDGMENT 

The work presented in this paper is carried out as a part 
of SkillBot – a chatbot-based job market intelligence tool. 
The project has been funded by the Mayor and Burgesses of 
the London Borough of Lambeth. 

REFERENCES 

 
[1] A. Radford et al, "Language models are unsupervised multitask 

learners," OpenAI Blog, vol. 1, (8), pp. 9, 2019  

[2] NLU Training Data. Available: https://rasa.com/docs/rasa/nlu-
training-data/. 

[3] K. White, "10 Best Practices for Designing NLU Training Data," 
2020  

[4] R. Prabhakaran, "Smalltalk for LATEST Rasa Stack," 2020.  

[5] A. Vaswani et al, "Attention is all you need," Advances in Neural 
Information Processing Systems, vol. 30, 2017.  

[6] R. Adolphs, "Social cognition and the human brain," Trends Cogn. 
Sci. (Regul. Ed. ), vol. 3, (12), pp. 469-479, 1999. 

[7] S. Y. Feng et al, "A survey of data augmentation approaches for nlp," 
arXiv Preprint arXiv:2105.03075, 2021  

[8] S. C. Wong et al, "Understanding data augmentation for 
classification: When to warp?" in 2016 International Conference on 
Digital Image Computing: Techniques and Applications (DICTA), 
2016. 

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language 
understanding,” 2018 

[10] S. Rajput, Z. Feng, Z. Charles, P.-L. Loh, and D. Papailiopoulos, 
“Does data augmentation lead to positive margin?,” 2019, pp. 5321–
5330 

[11] A. Anaby-Tavor et al., “Do not have enough data? Deep learning to 
the rescue!” 2020, vol. 34, no. 05, pp. 7383–7390. 

[12] V. Kumar, A. Choudhary, and E. Cho, “Data augmentation using pre-
trained transformer models,” 2020. 

[13] D. Whitfield, “Using gpt-2 to create synthetic data to improve the 
prediction performance of nlp machine learning classification 
models,” 2021. 

[14] T. Bunk, D. Varshneya, V. Vlasov, and A. Nichol, “Diet: Lightweight 
language understanding for dialogue systems,” 2020. 

[15] E. Adamopoulou and L. Moussiades, “An overview of chatbot 
technology,” 2020, pp. 373–383. 

[16] T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa: 
Open-source language understanding and dialogue management,” 
2017. 

[17] Rasa, “Components,” 2022. https://rasa.com/docs/rasa/components/. 

[18] V. Vlasov, J. E. Mosig, and A. Nichol, “Dialogue transformers,” 
2019. 

[19] G. A. Santos et al, "A Conversation-Driven Approach for Chatbot 
Management," IEEE Access, vol. 10, pp. 8474-8486, 2022 

[20] T. Bocklisch et al, "Rasa: Open source language understanding and 
dialogue management," arXiv Preprint arXiv:1712.05181, 2017.

 

https://rasa.com/docs/rasa/components/

	I. Introduction
	II. Probmel Statement
	A. Limited dataset size
	B. Ambiguous intents
	C. Lack of Smalltalk conversations training data
	D. Research Question

	III. Literature Survey
	IV. Solution Architecture
	A. Architecture for SkillBot chatbot application
	B. DIET as an NLU algorithm
	C. TED policy as an NLG algorithm
	D. Pseudocode for data augmentation

	V. Performance  Analysis and Evaluation.
	A. Generation of test stories

	VI. Conclusion
	VII. Future Work
	Acknowledgment
	References


