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AttentionMNIST: a mouse‑click 
attention tracking dataset 
for handwritten numeral 
and alphabet recognition
Murchana Baruah 1, Bonny Banerjee 1*, Atulya K. Nagar 2 & René Marois 3

Multiple attention‑based models that recognize objects via a sequence of glimpses have reported 
results on handwritten numeral recognition. However, no attention‑tracking data for handwritten 
numeral or alphabet recognition is available. Availability of such data would allow attention‑based 
models to be evaluated in comparison to human performance. We collect mouse‑click attention 
tracking data from 382 participants trying to recognize handwritten numerals and alphabets (upper 
and lowercase) from images via sequential sampling. Images from benchmark datasets are presented 
as stimuli. The collected dataset, called AttentionMNIST, consists of a sequence of sample (mouse 
click) locations, predicted class label(s) at each sampling, and the duration of each sampling. On 
average, our participants observe only 12.8% of an image for recognition. We propose a baseline 
model to predict the location and the class(es) a participant will select at the next sampling. When 
exposed to the same stimuli and experimental conditions as our participants, a highly‑cited attention‑
based reinforcement model falls short of human efficiency.

Machine learning (ML) models that recognize objects via a sequence of glimpses have gained interest in recent 
years due to their scalability and efficiency. Many of these models, such  as1–7, have reported experimental results 
on the benchmark MNIST dataset for handwritten numeral recognition. Unfortunately, no attention tracking 
data for the MNIST is available. This prevents the evaluation of attention-based models in comparison to human 
performance.

We fill in that gap by collecting a dataset from adult participants trying to recognize handwritten numerals and 
alphabets from images via sequential sampling. Unlike eye-movement attention tracking (emAT), a participant 
clicks the location in the image that he wants to see (a form of mouse-click attention tracking (mcAT)). Immedi-
ately after that, he selects the class(es) that he predicts the object might belong to based on his observations so 
far. Thus, at each sampling episode, our data consists of the image location selected, class label(s) predicted, and 
time taken since last episode by the participant. After each image, the participant receives a reward based on his 
performance (accuracy and efficiency).

Advantages of mcAT over emAT for handwritten numeral/alphabet recognition. (1) emAT 
contains significant intra- and inter-personal variability in fixation location, especially for static stimuli 
(images)8,9. So a large amount of eye fixation data is needed to reach statistically significant conclusions. mcAT 
is not susceptible to some of the sources of technical noise common to eye-tracking  data10. (2) Eye movements 
can result from both voluntary and involuntary  mechanisms11. To facilitate task-dependent decision-making, 
we present the participants with adequate time, context and reinforcement signal, which can also be presented 
to an ML model. (3) The precision and accuracy of emAT data are dependent on the eye-tracker while the same 
of mcAT are independent of any device. (4) It is a challenge to synchronize one’s eye movements with his class 
selection. To overcome this, in our case the sampling location and class(es) are selected in the same episode. (5) 
Finally, our method allows data collection using Amazon Mechanical Turk (MTurk), as  in12,13, which is cost- and 
time-effective, and easily reproducible.
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Contributions. We collect an mcAT dataset, called AttentionMNIST, using MTurk from 382 participants, 
rewarded for accurately and efficiently recognizing handwritten numerals and alphabets (upper and lowercase) 
from images via sequential sampling. Images from benchmark datasets (MNIST, EMNIST) are presented as 
stimuli. On average, 169.1 responses per numeral/alphabet class are recorded. Using this dataset, we show the 
following:

• On average, participants require 4.2, 4.7 and 4.9 samples to recognize a numeral, uppercase and lowercase 
alphabet, which correspond to only 11.3%, 13.4% and 13.7% of image area respectively. Classification accu-
racy increases with number of samples.

• A model, presented as the baseline, can predict the class(es) and location a participant will select at the next 
sampling episode with 74.4% and 67.7% accuracy respectively, both averaged over all samplings and datasets. 
Class prediction accuracy increases and location prediction accuracy decreases with increase in samples.

• When exposed to the same stimuli and conditions as our participants, a highly-cited reinforcement-based 
recurrent attention model (RAM)3 requires 3.7, 8.5, 7.6 samples to recognize a numeral, uppercase and low-
ercase alphabet, which correspond to 8.9%, 21.0%, 18.7% of image area respectively. Other attention-based 
reinforcement models (e.g.,1,2,4,5,7,14) can be similarly evaluated in comparison to human performance.

Related work
The temporal sequence of mouse clicks in mcAT is analogous to the eye movement  scanpath10. mcAT can effec-
tively substitute emAT as they are significantly  correlated10,12,13,15–17.

Different kinds of stimuli have been used in mcAT studies, such as images of animate and inanimate  objects10, 
images of natural  scenes12,13, static  webpages13, search page  layouts16, and two lists of alphanumeric strings for 
visual  comparison17. However, mcAT has not been used for handwritten numeral/alphabet classification tasks 
or evaluation of attention-based classification models.

mcAT studies have used features such as time to contact, relative fixation frequency in areas of interest 
(AOIs), and relative proportion of subjects that clicked at least once in an  AOI10, number of fixations per trial, 
refixations within trials, dwell times, and  scanpaths17, fixation  maps12,13, AOI and information flow  pattern16. The 
sequence of time-stamped click locations and predicted class labels constitute the raw data necessary to evaluate 
the efficiency and accuracy of attention-based models or humans in classification tasks. Different features can 
be derived from this data.

Our mcAT dataset, with multiple benefits over eye-tracking data, fills a crucial gap in attention-based models 
research in AI, ML, and other areas. Our dataset will allow attention-based models to be evaluated in compari-
son to human performance. Among other things, this will facilitate the development of efficient and real-time 
optical character recognition systems that have wide usage in practice (see for  example18–20). Principles guiding 
visual fixations can be hypothesized and tested using our dataset. The successful principles can be carried over 
to develop systems for real-world visual recognition tasks where efficiency is a key concern, such as in autono-
mous driving.

Data
Our data consists of a sequence of T episodes for each participant. The data from each episode consists of: (1) 
the location in the image clicked by the participant (one click in image per episode), (2) the class(es) selected 
by the participant, and (3) the time taken by the participant to register the current sample (i.e. the time elapsed 
between the last and current clicks in the image). This section will explicate our data collection process that 
includes stimuli selection, participants, visual task, performance scoring, and data filtering.

Stimuli selection. Stimuli are selected from images in two benchmark datasets: 

(1) MNIST21 dataset consists of 70,000 labeled images ( 28×28 pixels) of 10 handwritten numerals {0, 1, . . . , 9}
.

(2) EMNIST22 dataset consists of 145,600 images ( 28×28 pixels) of handwritten English alphabets in uppercase 
and lowercase, forming a balanced class. All images are labeled with one of 26 classes {a, b, . . . , z} . However, 
uppercase or lowercase label is not associated with any image.

From each category, we select 15 well-formed numerals from MNIST and 15 well-formed alphabets each from 
EMNIST uppercase and EMNIST lowercase datasets. A well-formed numeral or alphabet is one that is similar 
to the norm of its class. Thus, we present stimuli from a set of 15(10+ 26+ 26) = 930 unique images, with 15 
images belonging to each of the 62 classes.

The well-formed 930 images are selected as follows: 

Step 1:  Normalize each image using min-max to scale the intensity between 0 and 1.
Step 2:  Label well-formed EMNIST images as uppercase or lowercase. For each alphabet class, a well-formed 

alphabet from both uppercase and lowercase images is manually selected and labeled. The cosine 
similarity of all images belonging to that class with the two labeled images is computed. The images 
that are above the cosine similarity threshold (empirically chosen as 0.8) are assigned the uppercase 
or lowercase label.
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Step 3:  Compute the mean of the images belonging to each class. The mean image of a class constitutes its 
norm. An image is eligible to be a stimulus if its cosine similarity with the mean image of its class is 
greater than an empirically-determined threshold (0.7 for MNIST, 0.75 for EMNIST).

Step 4:  Among the eligible images, 15 images from each class are selected manually based on how well-formed 
they are.

Each image, originally 28×28 pixels, is reduced to 27×25 by removing the pixels near the boundaries as they 
have no intensity variation. The mean of these 15 images is computed for each of the 62 classes. We denote these 
mean images as I1, I2, . . . , In for n classes in each dataset.

Participants. A total of 382 distinct adult individuals participated in our study. No selection criteria were 
used. A participant could respond to multiple images. For each of the 62 classes, an average of 169.1 responses 
were recorded.

Visual task. The MTurk interface for our visual task is shown in Fig. 1. A canvas of size 270×250 displays 
a low-intensity background image at all time. The background and stimulus images are upsampled ten times to 
270×250 . The center of the canvas is aligned with the center of the images.

Background Initially, the background is the mean of all images in the dataset from which the stimulus is 
drawn. After the first episode, the background is the mean of all images from the set of classes selected by the 
participant in the last episode. In the real world, the context for location, size and orientation of a numeral or 
alphabet is obtained from the writing in its neighborhood, which is missing here. When our experiments were 
conducted with a blank background, the participants often sampled locations of the image that do not contain 
any part of the object. This behavior was contained by presenting the mean image of the selected class(es) in a 
low-intensity background and reducing the size of all MNIST and EMNIST images from 28×28 pixels to 27×25.

Each time the participant selects a location in the canvas by clicking on it, a 50×50 pixel patch centered at that 
location from the stimulus image is revealed. A patch once revealed continues to be displayed till the final episode.

A participant’s task consists of three steps at each episode t ( t = 1, . . . ,T ): 

Step 1:  Click anywhere in the 270×250 canvas to reveal the patch he wants to sample. Only the first click is 
accepted.

Step 2:  Recognize the numeral/alphabet from all the samples observed so far. The participant can select mul-
tiple classes and will have to choose at least one class from the list of classes shown below the canvas.

Step 3:  Click “Next” at the bottom of the screen to proceed.

In order to infer the class accurately and quickly, the participant will have to choose the locations judiciously 
given his observations till the current episode. There is no time limit for an episode. However, we limit the total 
time for T episodes of an image to six minutes. We choose T = 12 as highly-cited works on attention-based 
handwriting recognition or generation have used fewer than 12 glimpses (e.g.,  RAM3 could recognize MNIST 
numerals within 7 glimpses, DRAW 23 could generate MNIST numerals within 11 glimpses), and humans can 
recognize handwritten numerals and alphabets in much fewer than 12 glimpses.

Performance scoring. A score is assigned to the participant based on his accuracy and efficiency in terms 
of the number of samples observed. Let ct be the set of classes he chose at any episode t. Then, his score at t is:

Figure 1.  Our MTurk interface as seen by a participant. The second sampling for an EMNIST uppercase 
alphabet is shown.
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where |.| denotes the cardinality of a set. Total score awarded in T episodes is: h =
∑T

t=1 Pt . Therefore, the maxi-
mum one can score in T episodes is T if he always chooses only the correct class. The minimum one can score 
in T episodes is zero if he always chooses a set of classes that does not include the correct class. So, 0 ≤ h ≤ T.

Sooner a participant selects the correct class, the higher his score will be. Thus, this scoring mechanism takes 
into account recognition accuracy and sampling efficiency. Trying to maximize score by choosing only one class 
from the very first episode will be risky as a score of zero will be awarded if it is not the correct class, whereas a 
score greater than zero will be awarded if the participant chooses multiple classes (even all classes) that include 
the correct class. This will motivate the participant to respond based on the probable classes in his mind at any 
episode. The score awarded at each episode is disclosed only upon completion of T episodes to refrain from 
providing any hint to the participant. In MTurk, the remuneration received by a participant for an image is 
proportional to his total score, h.

Data filtering. If a participant’s score at the final (i.e. T-th) episode for a stimulus image is zero, his data 
recorded for that image is discarded. The data is also discarded if a participant leaves the task incomplete. With 
this selection criteria, we obtained responses on 1736 stimuli from MNIST, 4431 stimuli from EMNIST upper-
case, and 4315 stimuli from EMNIST lowercase; that is, 169.1 responses per class on average.

Models and methods for utilizing data
In this section, we illustrate the utility of the collected data by: (4.1) providing a baseline model for predicting 
the behavior of a participant, and (4.2) showing how an existing attention-based reinforcement model can be 
compared to human numeral/alphabet recognition performance.

Baseline for behavior prediction. Behavior at any episode t consists of location selection and class selec-
tion. Since a sample contains different amounts of information for different observers, or even for the same 
observer at different  times9, behavior prediction of each participant is a difficult problem. Let n be the number 
of classes in a dataset, ηt be the singleton set containing the true class for the stimulus image at t, ct be the set of 
classes and lt be the location selected by a participant at t, ot be his observation at t, and 1: t denotes the sequence 
1, 2, . . . , t . Till any t, the observations of a participant are o1:t and the locations he selected are l1:t.

We formulate the problem of a participant’s behavior prediction as follows:
Class prediction Estimate the probability of i∈ct ( i = 1, 2, . . . , n ) given his o1:t and l1:t , i.e. P(i ∈ ct |o1:t , l1:t).
Location prediction Estimate the probability of lt+1 given his o1:t , l1:t and ct , i.e. P(lt+1|o1:t , l1:t , ct).

Class prediction. To predict the class a participant will choose at episode t, we compute the probability that the 
image stimulus at t belongs to class i given the participant’s selected locations l1:t and the corresponding observa-
tions o1:t , as follows:

where Ii is the mean of the stimuli images ( 27×25 ) belonging to class i, I ′ is a 27×25 image containing o1:t at l1:t , 
· denotes scalar product, and ‖.‖ denotes Euclidean norm. All pixel intensities are non-negative.

At any episode t, the k highest probable classes from the belief distribution P(i|o1:t , l1:t) constitute the set of 
classes, ĉt , predicted by our model, where k = |ct |.

The classification accuracy is measured using the Jaccard index (JI). JI measures the similarity between two 
sets, X and Y, as: J(X,Y) = |X ∩ Y |/|X ∪ Y | . JI is bounded between 0 and 1; if X = Y  , J(X,Y) = 1 . At any 
episode t, the classification accuracy of a participant is J(ηt , ct) while that of our model is J(ηt , ĉt) . Due to its 
denominator, JI penalizes more as the number of elements in the predicted set ( ct or ĉt ) that are not in ηt increases, 
which is a desirable property for our case. The similarity between a participant’s and our model’s classification 
is measured by J(ct , ĉt).

Our model is also evaluated in terms of class selection and rejection accuracy with respect to each participant. 
Let st = ct − ct−1 be the set of new classes selected and rt = ct−1 − ct be the set of classes rejected by a participant 
at t. Similarly, ŝt = ĉt − ct−1 be the set of new classes selected and r̂t = ct−1 − ĉt be the set of classes rejected by 
our model at t. Then the model’s class selection and rejection can be compared to a participant’s by J(st , ŝt) when 
|st | > 0 and J(rt , r̂t) when |rt | > 0 , respectively.

Location prediction. Hypothesis Ideally, the belief distribution over all classes should be unimodal (i.e., one 
peak only) and a thin Gaussian (i.e., small standard deviation) in shape indicating a participant is confident 
about the class (state) of the stimulus (environment). However, as evident from our data (ref. Fig. 2), a partici-
pant is often confused between multiple classes, especially during the initial few episodes. In these cases, his 
belief distribution has multiple peaks or is a fat Gaussian. We hypothesize, a participant’s goal is to converge to a 
unimodal and thin Gaussian, to achieve which he selectively samples locations that reduce the probability of all 
classes except one. This hypothesis leads to minimization of uncertainty over the classes (environmental states) 
which is a well-known principle guiding  action24, including eye  movements25.

(1)Pt =

{

1
|ct |

, if correct class ∈ ct
0, otherwise

(2)P(i|o1:t , l1:t) =

I ′

�I ′� · Ii
�Ii�

∑

j∈{1,...,n}
I ′

�I ′� ·
Ij
�Ij�
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The observations at certain locations in a stimulus image can discriminate between certain classes. The 
observation at a location l might indicate that the numeral/alphabet belongs to a class i and not to a class j. Such 
locations are more salient than others in achieving a participant’s goal. To sample such locations, a saliency map, 
Dij , is computed such that if l is salient, the observation at l is an evidence to increase the probability of class i 
and decrease that of j.

Mathematically, Dij = N (., σ) ∗ g(.) , where ∗ is the convolution operator, g(.) is a saliency scoring function, 
and N (., σ) is a 5 × 5 Gaussian kernel with standard deviation σ = 6 to smooth the saliency scores. We denote 
the set of all saliency maps as D = {Dij : i, j ∈ {1, 2, . . . , n}, i �= j} . A location l in a stimulus image is salient for 
class i with respect to class j if Dij(l) > θ , where the threshold θ = 0.5×max(D) is an empirically determined 
scalar quantity.

Figure 2.  Duration and class distribution over all participants and stimuli belonging to categories ‘0’, ‘a’ and ‘A’.
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We consider two asymmetric metrics, Kullback-Leibler (KL) divergence and difference, as candidates for 
the function g.

KL divergence Given two normalized mean images, Ii and Ij , the KL divergence KL(Ii , Ij) measures the loss of 
information when Ij is used to approximate Ii .  This is calculated for each pixel k   as26: 
KL(Ii,k , Ij,k) = Ii,k log

(

δ +
Ii,k

Ij,k+δ

)

 , where Ij,k is the intensity of the kth pixel of Ij , and δ is a regularization constant. 
When Ii,k = Ij,k , KL(Ii,k , Ij,k) → 0.

Difference Given two normalized mean images, Ii and Ij , the difference for each pixel k is: 
Diff (Ii,k , Ij,k) = Ii,k − Ij,k . When Ii,k = Ij,k , Diff (Ii,k , Ij,k) = 0.

A participant is uncertain regarding the set of classes, ct , he selected at the current episode. Hence, for loca-
tion prediction, we consider only those saliency maps in D that involve the classes in ct . A location is predicted 
if it is salient based on these saliency maps and was never selected by the participant. Thus, given o1:t , l1:t and ct , 
the location lt+1 is predicted as follows:

where Ŵ is the set of 3-tuples containing the predicted location l̂  , the class it is salient for (i), and with respect 
to which class (j). The location is predicted correctly if there exists a �l̂, i, j� ∈ Ŵ such that �l̂ − lt+1� < ǫ , i ∈ ct+1 
and j /∈ ct+1 , where ǫ is the maximum Euclidean distance between the center pixel and any pixel in an observa-
tion patch. The pseudo code for location prediction is shown in Algorithm 1. Detailed explanation of the pseudo 
code is included in Section S1 of supplemental material. (The probability distribution, P(lt+1|o1:t , l1:t , ct) , may 
be computed by assuming the saliency score of locations not in Ŵ to be zero, and then normalizing the saliency 
score of all locations to sum to unity. However, this probability has not been used, as Eq. (3) is sufficient for the 
purposes of this paper.)

Evaluation of attention‑based models. As a representative of attention-based models, we consider the 
highly-cited recurrent attention model (RAM)3 that reports experimental results on the MNIST dataset. This 
reinforcement model sequentially samples an image and decides where to sample next at each sampling instant, 
making it appropriate for evaluation using the collected data.

RAM classifies images using a sequence of glimpses. The next location is chosen stochastically from a dis-
tribution parameterized by a location network. The model is trained end-to-end by maximizing the following 
 objective3:

where M is the number of episodes, T is the number of observations, xi1:t are the interaction sequences obtained 
by running the current agent till i episodes, uit is the current action, θ is the set of trainable parameters, Ri

t is the 
cumulative reward, bt is a baseline, and π(uit |xi1:t; θ) is the policy. RAM’s behavior may be compared with the 
participants’ by comparing the fixation maps obtained from the sequence of locations predicted by RAM and 
those chosen by the participants. A fixation map is computed by assigning each location a value equal to the 
frequency of its selection, and then normalizing those values to create a distribution over all locations.

(3)
D′ = {Dij : Dij ∈ D, i ∈ ct or j ∈ ct}

Ŵ = {�l̂, i, j� : l̂ /∈ l1:t ,Dij(l̂) > θ ,Dij ∈ D′}

(4)
1

M

M
∑

i=1

T
∑

t=1

�θ logπ(u
i
t |x

i
1:t; θ)(R

i
t − bt)
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Metrics for comparing fixation maps. For metrics comparing two fixation maps, P and Q, we closely  follow26. 
We use three distribution-based metrics: KL divergence (KL), Pearson correlation coefficient (CC), and Simi-
larity (SIM), to compare the distribution of sampling locations from a model with that from the participants as 
recorded in the collected data. 

KL (defined earlier) is highly sensitive to zero values.
CC can evaluate the linear relationship between two maps  as26: CC(P,Q) = σ(P,Q)

σ (P)σ (Q) , where σ is the variance 
or covariance. Since CC is symmetric, it fails to infer whether differences between fixation maps are due to 
false positives or false negatives.
SIM is measured  as26: SIM(P,Q) =

∑

k min(Pk ,Qk) , where 
∑

k Pk =
∑

k Qk = 1 . Like CC, SIM is symmetric 
and inherits the same drawback. Also, SIM is very sensitive to missing values, and penalizes predictions that 
fail to account for the ground truth density.

Human and Animal Research. The Institutional Review Board at the University of Memphis has deter-
mined that this study does not meet the Office of Human Subjects Research Protections definition of human 
subjects research and 45 CFR part 46 does not apply. Hence, this study does not require IRB approval nor review.

Experimental results
Data analysis. The collected data can be visualized in terms of the sequence of distribution of selected loca-
tions (Fig. 3), selected classes (Fig. 2), and duration between consecutive episodes (Fig. 2). These distributions 
are very similar for the three datasets.

For any numeral or alphabet, the distribution of selected locations after the final episode resembles the distri-
bution of pixel intensities of its class from the dataset. However, the sequence of locations selected is stochastic 
in nature.

The class distribution indicates confusion between categories with similar structures at the initial few episodes 
when the participants choose multiple classes. This confusion reduces with more sampling. There is a significant 
positive correlation between degree of confusion (# selected classes/total # classes) and sampling duration (see 
Fig. 4). If the number of selected classes is high (low), the duration between consecutive episodes is high (low).

The CC of the sequence of locations selected by a participant for a class is not significant (Table 1). This is 
expected due to inter-subject variability in sampling static images.

The average number of samplings required by a participant to accurately predict a class is quite low. On aver-
age, it takes 4.2, 4.7, 4.9 samples corresponding to 36, 44.1, 48.1 seconds to accurately classify MNIST, EMNIST 
uppercase and lowercase images respectively. The participants on average viewed only 11.3% , 13.4% , 13.7% of 
image area for classifying a numeral, uppercase and lowercase alphabet image accurately (see Fig. S2 in supple-
mental material). These results highlight the efficiency of the human visual reasoning system, albeit at a lower 
resolution than eye tracking data but with less noise and variability. These empirical results may be useful for 
designing attention-based models for real-world applications.

Behavior prediction. In this section, the performance of our baseline model is evaluated in terms of how 
accurately it can predict each participant’s location and class selection. Since our experimental results using the 
two saliency scoring functions, KL divergence and difference, are quite similar, results are reported using differ-
ence only, unless otherwise stated.

Class prediction. The class prediction and its accuracy evaluation methods are described in “Class prediction” 
section. The class prediction accuracy, shown in Fig. 5, is computed over all classes for all samplings. The mean 
class prediction accuracy over all samplings and datasets is 74.4% (std. dev. 26.5).

Figures 5a, b show that the set of classes selected by the participants and by our baseline model (Eq. 2) are 
quite inaccurate at the initial episodes and improves with increase in samples. Figure 5c shows that, during the 
initial episodes, these two sets, ct and ĉt , are quite dissimilar; similarity increases with increase in samples. The 
same applies to new class selections (ref. Fig. 5f). However, class rejections are similar at the initial episodes; 

similarity increases further with more samples (ref. Fig.  5e). Since J(st , ŝt) =
|(ct ∩ ĉt)− ct−1|

|(ct ∪ ĉt)− ct−1|
 and 

J(rt , r̂t) =
|ct−1 − (ct ∪ ĉt)|

|ct−1 − (ct ∩ ĉt)|
 , it can be inferred from Fig. 5e, f that at the initial episodes, the intersection between 

ct−1 and ct ∪ ĉt is small, indicating that initially the participants and our baseline model make many changes in 
their class selection between consecutive episodes. Therefore, initially, the class selection process is highly 
stochastic.

While there are some dissimilarities between the participants’ and our model’s class prediction during the 
initial episodes, the behaviors become increasingly similar with more samples. During the first few (typically 4 
to 7) episodes, highly salient parts of a stimulus are revealed. This helps to select only the correct class in the later 
samplings, which increases the prediction accuracy. Since there are many classes whose mean templates match 
the observed parts of the stimulus during the initial few episodes, the class selection process is significantly more 
stochastic, leading to low classification accuracy from the participants as well as our model.
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Location prediction. Our baseline model’s (Eq. 3) location prediction accuracy, averaged over all samplings 
and datasets, is 67.7% (std. dev. 14.1) (ref. Fig. 5d). The trend of this prediction accuracy is opposite to that of 
class prediction accuracy. However, the explanation remains the same. Location prediction accuracy is high 
during the initial samplings because during these episodes, the highly salient locations are selected, leaving the 
less salient locations to be selected in the later episodes. Since there are many locations with low saliency, their 
selection process is highly stochastic and hence difficult to predict, leading to a decrease in prediction accuracy 
with increase in samplings. The decreasing trend is unique for each dataset (ref. Fig. 5d) as the number of classes 
and the number of highly salient locations useful for discrimination vary between datasets. Lower the number 

Figure 3.  Distribution of sampling locations over all participants for each numeral/alphabet class and each 
sampling episode. Each row corresponds to a class, each column corresponds to a sampling episode which 
increases from left to right.
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Figure 4.  (Left) Errorbar plot of time difference (seconds) between consecutive samples averaged over all 
classes. That is, value shown at sampling episode t is the time elapsed between a participant’s clicks in image at 
t − 1 and t. (Right) Errorbar plot of confusion averaged over all classes at each episode. Errorbars indicate std. 
dev.

Figure 5.  Evaluation of our baseline model (ref. “Baseline for behavior prediction” Section). (a) Classification 
accuracy (acc.) of the participants and (b) that of our baseline model with actual labels as ground truth. (c) 
Classification similarity ( J(ct , ĉt) ), (d) location prediction accuracy, (e) class rejection accuracy and (f) class 
selection accuracy of our baseline model with participants’ data as ground truth. See “Behavior prediction” 
section for details.

Table 1.  Average Pearson correlation coefficient (corr.) for fixation sequences for the same class. For any 
fixation, distance is Euclidean and direction is measured as the polar angle with respect to the center of stimuli 
as origin. Std. dev. are included in parenthesis.

Metric MNIST EMNIST upp. EMNIST low.

Distance corr. 0.34 (0.21) 0.42 (0.22) 0.33 (0.21)

Direction corr. 0.27 (0.19) 0.28 (0.21) 0.29 (0.2)
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of classes and highly salient discriminative locations, faster will be the decrease in location prediction accuracy 
with increase in samplings.

Evaluation of RAM. For each class and sampling, the fixation maps from RAM (we used the RAM imple-
mentation from github.com/hehefan/Recurrent-Attention-Model) and the collected data for the same stimuli 
presented in MTurk are compared. For a fair comparison with the participants, in RAM we fixed the sequence 
length at T = 12 , the first sampling location at the image center, the input observation to a 5×5 patch with the 
selected location as its center, and modified the reward function by Eq. (1). The cumulative reward, Rt in Eq. (4,) 
is replaced by the cumulative score 

∑t
τ=1 Pτ obtained from Eq. (1). As a participant can select multiple classes 

at any episode, for the RAM model, instead of predicting a single class based on highest probability, we consider 
the mean probability over all classes as a threshold and predict the set of classes ct with probabilities greater than 
the threshold. This ct is used for calculating the score using Eq. (1).

Under these conditions, RAM requires 3.7, 8.5, 7.6 samples to recognize MNIST numerals, uppercase and 
lowercase EMNIST alphabets, which correspond to 8.9%, 21.0%, 18.7% of image area respectively. Thus, in 
comparison to our participants (ref. “Data analysis” section), RAM is less efficient. See Table 2.

Results from comparing the fixation maps from RAM and the collected data are shown in Table 3. KL is 
higher due to its sensitivity to zero values. This implies several locations are sampled by the participants but not 
by RAM. These experiments can be used as a baseline for evaluating locations sampled by an attention model.

Discussions
The mcAT paradigm, as used in this paper, has certain points of difference from those that primarily rely on eye 
movements and gazes to study the mechanisms of object recognition. In the latter, salient parts of the scene attract 
attention first, followed by saccadic eye movements directing the eye gaze to the salient  locations27. Gaze is driven 
by bottom-up and top-down signals which, together with salience information, form priority maps that guide 
eye movements for object recognition. Since participants in the present study looked at the static images under 
free-viewing conditions and with ample time at hand (six minutes for T=12 samplings), they likely engaged in 
a series of saccadic eye movements or visual  reasoning28 to explore the image before clicking on an AOI. These 
eye movements could have been captured in emAT (using an eye-tracker) but not in mcAT. However, these eye 
movements are affected by mind wandering. While mcAT is also affected by mind  wandering29, the effect may 
be reduced whenever the participants responded after visual reasoning.

Since eye movements in response to a stimulus are influenced by the task at  hand30, the participants’ eye 
movement patterns were likely influenced by the assigned three-step task at each sampling (ref. “Visual task” 
section). If an eye-tracker was used, the participants’ eye movements to explore the sample would have been 
intermixed with eye movements to click their chosen classes, which would have complicated the interpretation of 
the visual exploration of the sample. Clicking the class(es) is a necessary step as it reveals, albeit introspectively, 
the predicted class(es) in the mind of a participant.

It is likely that the gazes immediately before and after the AOI selection—perhaps also aided by fixational 
eye  movements31—contributed the most towards the numeral/alphabet recognition. Indeed, we surmise that 
participants selected diagnostic areas of the image to distinguish between classes, and those areas likely contain a 
mixture of bottom-up (e.g., visual contrast) and top-down (numeral/alphabet template) diagnostic information. 
This is consistent with our finding that participants quickly (within 5 samples on average) distinguished between 
stimulus classes ostensibly by selecting diagnostic patches.

Table 2.  Comparison of efficiency between our participants and the RAM model in terms of the average 
number of samples required to recognize a numeral/alphabet. Percentage of image area observed is included in 
parenthesis.

MNIST EMNIST upp. EMNIST low.

Participants 4.2 (11.3) 4.7 (13.4) 4.9 (13.7)

RAM 3.7 (8.9) 8.5 (21.0) 7.6 (18.7)

Table 3.  Evaluation of fixation maps from RAM for the stimuli presented in the MTurk experiments, averaged 
over all classes and samplings. Std. dev. are included in parenthesis.

Metric MNIST EMNIST upp. EMNIST low.

KL 22.50 (7.48) 22.96 (7.24) 22.23 (7.16)

CC 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

SIM 0.17 (0.09) 0.16 (0.07) 0.18 (0.09)
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Conclusions
We introduced an mcAT dataset for recognizing handwritten numerals and alphabets via sequential sampling. 
The data is collected from 382 participants presented with images selected from benchmark datasets (MNIST, 
EMNIST). On average, 169.1 responses per numeral/alphabet class are recorded. The data is rigorously analyzed 
to reveal the efficiency of human visual recognition. The participants observed only 12.8% of an image for recog-
nition. We proposed a baseline model to predict the location and class(es) a participant would select at the next 
sampling. We showed how our experimental conditions and data may be used to evaluate an attention-based 
reinforcement model in comparison to human performance. This mcAT dataset, with multiple benefits over 
eye-tracking data, fills a crucial gap in attention-based models research in AI, ML, and other areas.

Data availability
The dataset collected, used and analyzed during the current study is available from the corresponding author 
on reasonable request.
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