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Abstract. This paper studies the damping of slow surface MHD
waves propagating along the equilibrium magnetic field on a
finite-thickness magnetic interface. The plasma is assumed to
be strongly magnetised, and the full Braginskii’s expressions
for viscosity and the heat flux are used. The primary focus of
the paper is on the competition between resonant absorption
in the thin dissipative layer embracing the ideal resonant posi-
tion and the bulk wave damping due to viscosity and thermal
conductivity as damping mechanisms for surface MHD waves.
The dependence of the wave damping decrement on the wave
length and the dissipative coefficients is studied. Application of
the obtained results to the surface MHD wave damping in the
solar chromosphere is discussed.

Key words: Magnetohydrodynamics (MHD) – waves – meth-
ods: analytical – Sun: chromosphere – Sun: corona – Sun: os-
cillations

1. Introduction

The solar atmosphere is strongly magnetically structured (see,
e.g., Acton et al. 1992, Brekke et al. 1997, Fludra et al. 1997,
Kjeldseth-Moe & Brekke 1998, Schrijver et al. 1997). The pres-
ence of magnetic structuring drastically changes the character
of MHD wave propagation in plasmas. For instance, surface
MHD waves can exist in magnetically structured plasmas. Such
waves can propagate wherever there is a sharp change of plasma
parameters across a surface called ‘magnetic interface’. The sur-
face MHD waves on magnetic interfaces have been intensively
studied (see, e.g., Miles & Roberts 1992; Miles et al. 1992;
Roberts 1981). In the solar atmosphere the surface MHD waves
can propagate, e.g., along the boundaries of sunspots, coronal
holes, coronal loops, and in the canopy regions in the chromo-
sphere.

Send offprint requests to: M.S. Ruderman (michaelr@dcs.st-
and.ac.uk)

When a magnetic interface is a true discontinuity the surface
waves are eigenmodes of the ideal linear MHD equations. Dis-
sipation in the solar atmosphere (e.g. viscosity, thermal conduc-
tivity, and electrical resistivity) causes surface wave damping.
The surface wave damping in the solar corona was considered
by, e.g., Gordon & Hollweg (1983) and Ruderman (1991). It
was found that for typical coronal conditions dissipation in the
solar coronal plasma is not enough to cause substantial damp-
ing of surface waves in the inner part of the solar corona unless
wave periods are very short (of the order of ten seconds or less).

In nature there are no true discontinuities. Instead there are
magnetic plasma configurations with plasma and magnetic field
parameters that rapidly vary in a thin layer. Such configurations
are very often called finite-thickness magnetic interfaces. Then
surface MHD waves are no longer eigenmodes of linear ideal
MHD. However there are non-stationary solutions of ideal MHD
that closely resemble the surface waves on true magnetic inter-
faces. These solutions are called quasi-modes or global modes.
Away from the inhomogeneous layer they behave like exponen-
tially damped surface waves. In the inhomogeneous layer there
is a resonant magnetic surface where the phase velocity of the
surface quasi-mode matches either the local Alfvén frequency
or the local slow frequency. In the vicinity of this resonant mag-
netic surface there is strong coupling between the global plasma
oscillation represented by the quasi-mode and the local Alfvén
or slow oscillations. This coupling results in the conversion of
the global oscillation energy into the energy of the local small-
scale Alfv́en or slow oscillations. It is this energy conversion
that causes damping of the global surface wave. In the vicin-
ity of the resonant magnetic surface spatial gradients linearly
grow with time, so that they eventually tend to infinity (see,
e.g., Mann et al. 1995; Zorzan & Cally 1992). The decrease of
the spatial scale is stopped by dissipation. However, when dis-
sipation is weak, this happens only when the spatial scale in the
vicinity of the ideal resonant surface is extremely small. Dis-
sipation only operates in a narrow dissipative layer containing
large spatial gradients. This dissipative layer embraces the ideal
resonant magnetic surface. In the dissipative layer the small-
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scale oscillations are strongly damped and as a result the energy
of the global motion is converted into heat. Dissipation of the
global motion energy due to energy conversion in the dissipa-
tive layer is called resonant absorption. Resonant absorption of
quasi-modes was studied by, e.g., Ofman et al. (1994a, 1995),
Ofman & Davila (1995, 1996), Poedts et al. (1989), Poedts et
al. (1994), Steinolfson & Davila (1993), and Tirry & Goossens
(1996).

Resonant absorption makes it possible to effectively damp
MHD waves even in weakly dissipative plasmas. For typical
coronal conditions the damping rate of resonant MHD waves
can be a few orders of magnitude larger than the damping rate
of non-resonant MHD waves. This property of resonant MHD
waves to be relatively strongly damped even in weakly dissipa-
tive plasmas enabled Ionson (1978) to suggest resonant MHD
waves as a possible mechanism for the heating of magnetic loops
in the solar corona. Since this original work resonant absorption
has grown into a popular mechanism for explaining the heat-
ing of the solar corona (see, e.g., Davila 1987; Hollweg 1991;
Ionson 1985; Goossens 1991; Kuperus et al. 1981; also papers
cited at the end of the previous paragraph).

The account of dissipation makes it possible to find the so-
lutions as eigenmodes of the linear dissipative MHD equations
even in case of finite-thickness magnetic interfaces. These so-
lutions describe damped surface waves on a finite-thickness in-
terface. When dissipation is weak they differ from ideal quasi-
modes only in a thin dissipative layer. Such solutions were stud-
ied by, e.g., Mok & Einaudi (1985) and Ruderman et al. (1995)
in the approximation of incompressible plasmas.

It is commonly accepted that the solar corona is strongly
magnetically dominated in the sense that the magnetic pressure
is much larger than the plasma pressure. This prompted many
researchers to use the approximation of cold plasma in order
to describe propagation and damping of MHD waves in the so-
lar corona. However, the assumption of cold plasmas results in
the loss of slow MHD waves which can be also important for
physical processes in the solar corona. As for importance of
slow waves in application to the solar photosphere and chromo-
sphere, it has never been questioned. RecentlyČaděz & Ballester
(1996) have shown that slow resonant surface waves can prop-
agate along magnetic arcade boundaries. The conclusion that
the resonant damping strongly dominates the bulk dissipative
damping is only justified for resonant surface Alfvén waves on
the basis of the cold plasma model. It is not obvious at all what
the relative importance of these two damping mechanisms is in
the case of slow surface waves.

For typical coronal conditions the collisional frequency of
protons is much smaller than the proton gyrofrequency, and
the inverse electron collisional time is much smaller than the
electron gyrofrequency. The first statement is also valid for the
upper part of the chromosphere, while the second is valid for
the whole chromosphere. As a result the first term of the Bra-
ginskii’s tensorial expression for viscosity (which describes the
compressional viscosity, see Braginskii 1965) strongly domi-
nates all other terms being at least five orders of magnitude
larger than the other terms in the corona and at least two orders

of magnitude in the upper chromosphere, and thermal conduc-
tivity along magnetic field lines is much larger than that in the
directions perpendicular to the magnetic field lines. Dissipation
related to finite resistivity and the Hall effect can be neglected
(see, e.g., discussion in Ruderman et al. 1996). However, these
conclusions may be not valid in dissipative layers embracing
ideal resonant positions. We calculate both contributions of res-
onant absorption and the bulk viscosity and thermal conductivity
into the wave damping decrement.

The paper is organised as follows. In the next section we
describe the main assumptions and basic equations. In Sect. 3
we obtain the dispersion equation for surface waves in the long-
wavelength approximation under the assumption that the com-
pressional viscosity and the parallel thermal conductivity domi-
nate all other dissipative processes in the slow dissipative layer.
In Sect. 4 this dispersion equation is solved with the use of
the regular perturbation method and the decrement of the wave
damping is calculated. In Sect. 5 the dispersion equation is re-
derived in the case where dissipative mechanisms other than
the compressional viscosity and parallel thermal conductivity
are important in the dissipative layer. In Sect. 6 the expression
for the damping decrement is used to study in detail the slow
surface wave damping in isothermal equilibrium states. Sect. 7
contains our conclusions.

2. Basic equations

2.1. Evaluation of dissipative terms

For typical conditions in the solar chromosphere and corona
the coronal plasma can be considered as collision-dominated
for waves with periods larger than a few seconds (see, e.g.,
Hollweg 1985). For waves with periods shorter than tens of
minutes dissipation in the solar chromosphere and corona is
due to viscosity, thermal conductivity, and resistivity. Viscosity,
thermal conductivity, and resistivity are strongly anisotropic in
the corona and the upper part of the chromosphere. In what
follows we consider a steady equilibrium state where there is no
equilibrium flow. We use the one-fluid description of the plasma.
Then the linearised Braginskii’s expression for the viscosity
tensorS is given by (see Braginskii 1965)

S = η0S0 + η1S1 + η2S2 − η3S3 − η4S4 , (1)

where

S0 =
(

b ⊗ b −
1

3
I

)

Q, (2)

S1 = ∇ ⊗ v + (∇ ⊗ v)T − b ⊗ W − W ⊗ b

+ (b ⊗ b − I)∇ · v + (b ⊗ b + I)b · ∇(b · v), (3)

S2 = b ⊗ W + W ⊗ b − 4(b ⊗ b)b · ∇(b · v), (4)

S3 =
1

2
{(b × ∇) ⊗ v + [(b × ∇) ⊗ v]T + ∇ ⊗ (b × v)

+ [∇ ⊗ (b × v)]T − b ⊗ (b × W ) − (b × W ) ⊗ b}, (5)
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S4 = b ⊗ (b × W ) + (b × W ) ⊗ b, (6)

Q = 3b · ∇(b · v) − ∇ · v, W = ∇(b · v) + (b · ∇)v. (7)

Herev = (u, v, w) is the velocity,b = B0/B0, B0 is the equi-
librium magnetic field (which is assumed to be unidirectional,
so thatb is constant),I is the unit tensor, and⊗ indicates the
tensorial product of two vectors. The superscript ‘T’ indicates
a transposed tensor, i.e., if the tensorS has the components
Sjl, then the tensorST has the componentsSlj . Note that the
terms proportional toη0, η1 andη2 in Eq. (1) describe viscous
dissipation, while the terms proportional toη3 andη4 are non-
dissipative and describe wave dispersion related to the finite ion
gyroradius. For the first viscosity coefficientη0 the following
approximate expression is valid

η0 = m−1
p ρ0kBT0τp , (8)

whereρ andT are the density and temperature,mp is the proton
mass,kB the Boltzmann constant,τp the proton collisional time,
and the subscript ‘0’ indicates an equilibrium quantity. For typ-
ical conditions in the solar coronaη0 ≈ 5 × 10−2 kg m−1 s−1

(see, e.g., Hollweg 1985). For the upper chromosphere the cor-
responding estimate isη0 ≈ 2 × 10−7 kg m−1 s−1. The other
viscosity coefficients depend on the quantityωpτp, whereωp is
the proton gyrofrequency. Whenωpτp ≫ 1 these coefficients
are given by the approximate expressions

η1 =
1

4
(ωpτp)

−2η0, η2 = 4η1, (9)

η3 =
1

2
(ωpτp)

−1η0, η4 = 2η3. (10)

Since the first term in Eq. (1) determined by Eqs. (2) and (7)
contains the term proportional to∇ · v, we call the viscosity
described by this term ‘the compressional viscosity’. In spite
that this name does not completely reflect the physical nature of
the first term, we use it for the sake of brevity. Similarly, we call
the viscosity described by the sum of the second and third terms
in Eq. (1) ‘the shear viscosity’. Resonant absorption of the wave
energy in Alfv́en resonant layer in cold viscous plasmas with
the viscosity described by the full Braginskii’s expression was
numerically studied by Erd́elyi & Goossens (1995) and Ofman
et al. (1994b).

For typical coronal conditionsωpτp is of the order105−106,
and it is of the order102−103 for typical conditions in the upper
chromosphere, so that the first term in Eq. (1) is much larger than
the other four terms. This seems to imply that all terms in Eq. (1)
can be neglected in comparison with the first one. However this
is not completely correct. In what follows we consider magnetic
plasma configurations where all equilibrium quantities depend
onxonly in the Cartesian coordinatesx,y,z. We assume that the
equilibrium magnetic field is perpendicular to thex-direction
and we adopt a coordinate system with thez-axis parallel to
this field. Henceb is the unit vector in thez-direction. The aim
of the present paper is to study the damping of surface waves
propagating along an inhomogeneous slab of plasma. We shall
see that the ideal resonant position can be present in the slab.

Solutions describing surface waves are singular at this position.
Dissipation removes the singularity. Instead the dissipative layer
embracing the ideal singular position appears. However, when
dissipative coefficients are small this dissipative layer is very
thin. As a result gradients in thex-direction can be much larger
than those in they- andz-direction. The viscous term in the
momentum equation is∇ · S. It is straightforward to check that
∇ · S0 and∇ · S4 contain only the first order derivatives with
respect tox. Sinceη4/η0 = O[(ωpτp)

−1] andωpτp ≫ 1 we
can neglect the fifth term, which is the term proportional toη4,
in the expression for∇ · S in comparison with the first term,
which is the term proportional toη0. However, the quantities
∇ · S1, ∇ · S2, and∇ · S3 contain the second order derivatives
with respect tox. This fact implies that the contribution of the
second, third, and fourth terms, which are terms proportional
to η1, η2, andη3 respectively, in the expression for the viscous
force can be of the order or even larger than the contribution of
the first term in spite thatη1, η2, andη3 are much smaller than
η0. In what follows we retain only terms containing the second
order derivatives with respect tox in expressions for∇ · S1,
∇ · S2, and∇ · S3, and rewrite them in the simplified form

∇·S1 =
∂2v

∂x2
−b

∂2w

∂x2
, ∇·S2 = b

∂2w

∂x2
, ∇·S3 = ey

∂2u

∂x2
,(11)

whereey is the unit vector in they-direction.
The linearised Braginskii’s expression for the heat flux is

given by (see Braginskii 1965)

q = −κ‖b

(

b · ∇T ′ +
B′

x

B0

dT0

dx

)

− κ⊥

[

∇T ′ − b

(

b · ∇T ′ +
B′

x

B0

dT0

dx

)]

− κ∧

[

b × ∇T ′ −
1

B0

dT0

dx
(ex × B′)

]

, (12)

whereex is the unit vector in thex-direction,B = (Bx, By, Bz)
the magnetic field, and the prime indicates the Eulerian pertur-
bation of a quantity. In what follows we call the thermal conduc-
tivity described by the first and the second term of this expres-
sion ‘the parallel thermal conductivity’ and ‘the perpendicular
thermal conductivity’, respectively. Once again the terms pro-
portional toκ‖ andκ⊥ in Eq. (12) describe dissipation, while the
term proportional toκ∧ is non-dissipative and describes wave
dispersion related to the finite electron gyroradius.

The coefficientκ‖ is given by

κ‖ =
3ρ0k

2
BT0τe

mpme
, (13)

where τe is the electron collisional time andme is the
electron mass. For typical coronal conditionsκ‖ ≈ 5 ×
104 m s−3 kg K−1. The corresponding estimate for the upper
chromosphere isκ‖ ≈ 0.2 m s−3 kg K−1. In strongly mag-
netised plasmas the coefficientsκ⊥ andκ∧ are given by the
approximate expressions

κ⊥ =
2κ‖

3(ωpτp)(ωeτe)
, κ∧ =

2κ‖

3ωeτe
, (14)
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whereωe is the electron gyrofrequency. Since for typical coro-
nal conditionsωeτe is of the order107, and it is of the order104

in the upper chromosphere, the coefficientsκ⊥ andκ∧ are much
smaller thanκ‖. The dissipative term in the energy equation re-
lated to thermal conductivity is proportional to∇·q. The terms
proportional toκ‖ andκ∧ in the expression for∇ · q contain
only the first order derivatives with respect tox, while the term
proportional toκ⊥ contains the second order derivatives with
respect tox. These facts enable us to neglect the term propor-
tional toκ∧ in comparison with the term proportional toκ‖ and
retain only the part containing the second order derivatives with
respect tox in the expression for the term proportional toκ⊥.
As a result we arrive at the simplified expression

∇ · q = −b · ∇

[

κ‖

(

b · ∇T ′ +
B′

x

B0

dT0

dx

)]

− κ⊥
∂2T ′

∂x2
. (15)

In the one-fluid approximation the linear generalised Ohm’s
law for fully ionised plasmas is (see, e.g., Priest 1982)

E′ = −v × B0 + E′
non, (16)

where the non-ideal terms are given by

E′
non =

j′

σ
+

mp

eρ0

(

j′ × B0 + j0 × B′ −
1

2
∇p′

)

. (17)

HereE is the electrical field,j the density of the electrical cur-
rent,p the pressure,e the elementary charge, andσ the electrical
conductivity. The first and second term on the left-hand side of
Eq. (17) describe resistivity and the Hall effect, respectively. For
typical chromospheric and coronal conditions these non-ideal
effects are small in comparison with non-ideal effects due to
viscosity and thermal conductivity (see, e.g., the discussion in
Ruderman et al. 1996). However, once again this conclusion is
only valid when the spatial derivatives of the perturbations are
of the same order in all directions. The non-ideal effects are
represented in the induction equation by the term∇ × E′

non.
Similarly to the cases of viscosity and thermal conductivity we
retain only terms containing the second derivatives with respect
to x in the expression for this quantity and arrive at

∇ × E′
non = −λ

∂2B′

∂x2
, (18)

whereλ = (µσ)−1 is the coefficient of magnetic diffusion and
µ is the magnetic permeability of vacuum. When deriving this
equation we have used Ampere’s law∇ × B = µj. Note that
expression (18) does not contain terms describing the Hall ef-
fect.

2.2. Derivation of equations foru andP̃ ′

The equilibrium quantities satisfy the equation of the total pres-
sure balance and the Clapeyron equation

p0 +
B2

0

2µ
= const, p0 =

2kB

mp
ρ0T0. (19)

The equilibrium quantities vary in the layer|x| < a, while they
take constant values forx < −a andx > a.

With the aid of Eqs. (1), (2), (7), (9)–(11), (15), and (18) the
linear equations of viscous resistive thermal conductive MHD
can be written as

∂ρ′

∂t
+ ρ0∇ · v + u

dρ0

dx
= 0, (20)

ρ0
∂v

∂t
= −∇P̃ ′ +

1

µ
(B0 · ∇)B′ +

B′
x

µ

dB0

dx

+ η0b(b · ∇Q) + η1
∂2

∂x2
(v + 3bw) + η3ey

∂2u

∂x2
, (21)

∂B′

∂t
= (B0 · ∇)v − u

dB0

dx
− B0∇ · v + λ

∂2B′

∂x2
, (22)

∂p′

∂t
+ γp0∇ · v + u

dp0

dx
= (γ − 1)κ⊥

∂2T ′

∂x2

+ κ‖(γ − 1)b · ∇

(

b · ∇T ′ +
B′

x

B0

dT0

dx

)

, (23)

p′

p0
=

ρ′

ρ0
+

T ′

T0
. (24)

Hereγ is the adiabatic exponent and the Eulerian perturbation
of the total pressure modified by viscosity,P̃ ′, is given by

P̃ ′ = p′ +
B0

µ
(b · B′) +

η0

3
Q. (25)

We look for solutions to the set of Eqs. (20)–(25) that are
eigenmodes. The time dependence of these solutions is given
by the factorexp(−iωt) with complexω. Since the equilibrium
quantities depend onx only, we can Fourier-analyse the pertur-
bations and take them proportional toexp[i(kyy + kzz)]. Then
we rewrite Eqs. (20)–(24) as

ωρ′ − ρ0k · vpl + i
d(ρ0u)

dx
= 0, (26)

ωρ0u = −i
dP̃ ′

dx
−

B0(k · b)

µ
B′

x + iη1
∂2u

∂x2
, (27)

ωρ0vpl = kP̃ ′ −
B0(k · b)

µ
B′

pl +
ib

µ

dB0

dx
B′

x

− η0(k · b)bQ + iη1
d2

dx2
(vpl + 3bw) + iη3ey

d2u

dx2
, (28)

ωB′
x = −B0(k · b)u + iλ

d2B′
x

dx2
, (29)

ωB′
pl = B0[b(k · vpl) − (k · b)vpl]

− ib
d

dx
(B0u) + iλ

d2B′
pl

dx2
, (30)

ω p′ +γp0

[

i
du

dx
− (k · vpl)

]

+ iu
dp0

dx

= −
γχ‖(k · b)

γ − 1

[

i(k · b)

ρ0
(ρ0p

′ − p0ρ
′) +

ρ0B
′
x

B0

d

dx

(

po

ρ0

)]

+
iγχ⊥

ρ0(γ − 1)

d2

dx2
(ρ0p

′ − p0ρ
′). (31)
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In these equationsk = (0, ky, kz), and we have introduced the
components of the velocityvpl = (0, v, w) and the Eulerian
perturbation of the magnetic fieldB′

pl = (0, B′
y, B′

z), that are
parallel to theyz-plane. The quantityQ has the form

Q = 3i(k · b)(b · vpl) − ik · vpl −
du

dx
. (32)

The coefficientsχ‖ andχ⊥ are given by

χ‖ =
mp(γ − 1)2κ‖

2γkBρ0
, χ⊥ =

mp(γ − 1)2κ⊥

2γkBρ0
. (33)

The effect of viscosity in Eqs. (25)–(31) is characterised by
the Reynolds numbers

R
(0)
e =

ρ0|ω|

η0k2
, R

(1)
e =

ρ0|ω|

η1k2
, R

(3)
e =

ρ0|ω|

η3k2
. (34)

The effect of thermal conductivity is characterised by the par-
allel and perpendicular Pecklet numbers

P
‖
e =

|ω|

χ‖k2
, P⊥

e =
|ω|

χ⊥k2
. (35)

The effect of resistivity is characterised by the magnetic
Reynolds number

Rm =
|ω|

λk2
. (36)

The dissipative coefficients depend onx, so that we choose the
representative values for them. In what follows we assume that

R
(0)
e ≫ 1, P

‖
e ≫ 1. (37)

Since for typical conditions in the upper chromosphere and
coronaR

(1)
e , R

(3)
e , Rm ≫ R

(0)
e andP⊥

e ≫ P
‖
e , conditions

(37) imply that the dissipative effects are weak. Consequently,
when calculating the dissipative terms in Eqs. (25)–(31), which
are terms proportional toη0, η1, η3, χ‖, χ⊥, andλ, we can use
results obtained on the basis of ideal MHD. As a result we arrive
at the approximate equations

Q = −
A

D
[ω2 − 3c2

S(k · b)2]
du

dx
, (38)

d2

dx2
(vpl + 3bw) =

i

D
[b(k · b)(ω2v2

A − 3c2
SA)

− k(c2
S + v2

A)C]
d3u

dx3
, (39)

d2B′
x

dx2
= −

B0(k · b)

ω

d2u

dx2
, (40)

d2B′
pl

dx2
=

iB0

ωD
[(c2

S + v2
A)C(k · b)k − ω4b]

d3u

dx3
, (41)

i(k · b)

ρ0
(ρ0p

′ − p0ρ
′) +

ρ0B
′
x

B0

d

dx

(

p0

ρ0

)

=
(γ − 1)(k · b)ωρ0c

2
SA

γD

du

dx
. (42)

In these equations

A = ω2 − ω2
A, C = ω2 − ω2

c , D = ω4 − (c2
S + v2

A)k2C,(43)

the squares of the Alfv́en and slow frequencies are given by

ω2
A = v2

A(k · b)2 , ω2
c = c2

T (k · b)2, (44)

and the squares of the Alfvén, sound, and cusp velocities are
determined by

v2
A =

B2
0

µρ0
, c2

S =
γp0

ρ0
, c2

T =
c2
Sv2

A

c2
S + v2

A

. (45)

We use Eqs. (38)–(42) to eliminate all variables butu and P̃ ′

from Eqs. (25)–(31) and obtain

dP̃ ′

dx
=

iρ0A

ω
u +

(

η1 + ρ0λ
ω2

A

ω2

)

d2u

dx2
, (46)

α
d3u

dx3
− iη3

kyω(c2
S + v2

A)C

ρ0

d2u

dx2
+ iAΦ

du

dx
= −

ωD

ρ0
P̃ ′, (47)

where

α = −χ⊥
c2
Sω3A2

D
−

η1ω

ρ0D

[

k2(c2
S + v2

A)2C2

+ (c2
SA − v2

Aω2)(3c2
SA + v2

Aω2)(k · b)2
]

−
λv2

A

ωD

[

ω8 − C(c2
S + v2

A)(ω4 + D)(k · b)2
]

, (48)

Φ = (c2
S + v2

A)C (49)

−
iωA

D

{

η0

3ρ0

[

ω2 − 3c2
S(k · b)2

]2
+ χ‖ω

2c2
S(k · b)2

}

.

Note that we have neglected small terms proportional to prod-
ucts of dissipative coefficients when deriving Eq. (47).

The set of Eqs. (46) and (47) foru andP̃ ′ is similar to that
used by Ruderman & Goossens (1996) for studying driven slow
resonant waves in plasmas with the compressional viscosity and
parallel thermal conductivity, i.e., in the case where all dissipa-
tive coefficients butη0 andκ‖ are zero (see their Eqs. (24) and
(30)). If we takeη1 = η3 = χ⊥ = λ = 0 then Eq. (46) co-
incides with Eq. (24) of Ruderman & Goossens (1996), while
Eq. (47) differs from their Eq. (30) in that Eq. (30) contains an
additional term proportional todc2

S/dx in its right-hand side.
This difference is due to an erroneous expression for the heat
flux q used by Ruderman & Goossens (1996) (see their Eq. (2)).
This expression misses the term proportional todT0/dx. Fortu-
nately, in their analysis Ruderman & Goossens (1996) neglected
the erroneous term in the right-hand side of their Eq. (30) be-
cause it was small in comparison to the other term. Hence, the
error in the linear expression for the heat fluxq did not affect
the results obtained by Ruderman & Goossens (1996).

In the next section the set of Eqs. (46) and (47) is used to
derive the dispersion equation for the surface waves propagating
on finite-thickness magnetic interfaces.
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3. Derivation of dispersion equation for weakly damped
surface waves when compressional viscosity and parallel
thermal conductivity are strong

In this section we consider the case where the compressional
viscosity and parallel thermal conductivity everywhere domi-
nate all other dissipative processes, so that all dissipative terms
but the terms proportional toη0 andχ‖ in Eq. (47) can be ne-
glected. We conventionally refer to this case as the case where
the compressional viscosity and parallel thermal conductivity
are strong.

3.1. Solutions in homogeneous regions

In this subsection we obtain the solutions to the set of Eqs. (46)
and (47) in the regionsx < −a andx > a, where the equilib-
rium quantities are constant. In these regions there are no char-
acteristic spatial scales except the wavelength. This implies that
there are no large spatial gradients and, in accordance with the
discussion in Sect. 2.1, the first and second terms on the left-
hand side of Eq. (47) can be neglected in comparison with the
third term, and the second term on the right-hand side of Eq. (46)
can be also neglected. Then we eliminateP̃ ′ from Eqs. (46) and
(47) to arrive at

d2u

dx2
− Γ2u = 0, (50)

whereΓ2 = −D/F . The solution to Eq. (50) in the region
x < −a has to vanish asx → −∞, while the solution in the
regionx > a has to vanish asx → ∞. The solutions satisfying
these conditions are

u1 = U1e
Γ1x , u2 = U2e

−Γ2x, (51)

whereU1 andU2 are arbitrary constants,ℜ(Γ1,2) > 0, ℜ indi-
cates the real part of a quantity, and subscripts ‘1’ and ‘2’ refer
to quantities atx < −a andx > a, respectively. The solutions
for P̃ ′

1 andP̃ ′
2 follow immediately from Eq. (46):

P̃ ′
1 =

iρ01A1U1

ωΓ1
eΓ1x, P̃ ′

2 = −
iρ02A2U2

ωΓ2
e−Γ2x. (52)

3.2. Solution in the inhomogeneous region

In what follows we restrict our analysis to the long wavelength
approximation and assume thatak ≪ 1. In addition we assume
ad hocthat the first and second terms on the left-hand side of
Eq. (47) can be neglected in comparison with the third term.
This ad hocassumption will be discussed in Sect. 4 where we
obtain the solution to the dispersion equation. In Sect. 5 we shall
consider the case where this assumption is not valid.

In what follows we consider solutions to the set of Eqs. (46)
and (47) that possess the slow resonant position in the approxi-
mation of ideal plasmas. In the vicinity of the ideal slow resonant
position gradients of perturbations are large andC ≈ 0, so that
the dissipative terms on the right-hand side of Eq. (47) are im-
portant. However, in this vicinity the quantityA is not small at
all, so that we can neglect the second term on the right-hand

side of Eq. (46), which is the dissipative term, in comparison
with the first term.

Now we neglect the first and second terms on the left-hand
side of Eq. (47) and eliminatẽP ′ from the set of Eqs. (46) and
(47) to obtain

d

dx

ρ0AΦ

D

du

dx
= −ρ0Au. (53)

The ratio of the right-hand side of this equation to the left-
hand side is of the order(ak)2 ≪ 1. In what follows we only
retain the terms of the orderak, 1/R

(0)
e , and1/P

‖
e , while we

neglect smaller terms. In particular, we neglect the right-hand
side of Eq. (53) in comparison with the left-hand side. Then it
is straightforward to obtain the following approximate solution
to Eq. (53):

u = W

∫ x D(x̄) dx̄

ρ0(x̄)A(x̄)Φ(x̄)
, (54)

whereW is an arbitrary constant. The lower limit of integration
in Eq. (54) is arbitrary, so that we do not show it explicitly. Now
it follows from Eq. (47) that

P̃ ′ = −
iW

ω
, (55)

so that in the long-wavelength approximation the Eulerian per-
turbation of the total pressure modified by viscosity,P̃ ′, does
not vary across the inhomogeneous layer.

At the boundary of the inhomogeneous layer determined
by the equationsx = ±a the quantitiesu and P̃ ′ have to be
continuous. It follows from the condition of continuity of̃P ′

and Eqs. (52) and (55) that

U1 = −
WΓ1

ρ01A1
eaΓ1 , U2 =

WΓ2

ρ02A2
eaΓ2 . (56)

Now we use the condition of continuity ofu and Eqs. (51), (54),
and (56) to obtain

Γ1

ρ01A1
+

Γ2

ρ02A2
=

∫ a

−a

D(x) dx

ρ0(x)A(x)Φ(x)
. (57)

This is the dispersion equation which determines the depen-
dence ofω onk. In the next sections we find the solution to this
equation.

4. Solving the dispersion equation by perturbation method

We use the regular perturbation method to find the solution to
the dispersion Eq. (57). In this method we look for the solution
in the form ω = ω̄ + ω′, where |ω′| ≪ |ω̄|.

4.1. The first order approximation

When calculatinḡω we neglect terms of the orderR−1
e , P−1

e ,
andak in dispersion Eq. (57). As a result we obtain the following
equation for̄ω:

Γ1

ρ01A1
+

Γ2

ρ02A2
= 0. (58)
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Eq. (58) is the dispersion equation for surface waves on a true
magnetic discontinuity in an ideal plasma. It is straightforward
to show by means of squaring that Eq. (58) is equivalent to the
set of equation

ρ2
01(c

2
S1 + v2

A1)
A2

1C1

D1
= ρ2

02(c
2
S2 + v2

A2)
A2

2C2

D2
, (59)

and the two inequalities

C1D1 < 0, A1A2 < 0, (60)

where the quantitiesA1,2, C1,2, andD1,2 are calculated atω =
ω̄ andω̄ is assumed to be real.

It follows from the second inequality (60) thatA = 0 at a
positionx = xA, called the Alfv́en singularity, inside the in-
homogeneous layer, so that the integral in the right-hand side
of Eq. (57) is divergent. However, when the wave propagates
along the equilibrium magnetic field,D = A(ω2 − c2

Sk2) and
the Alfvén singularity is not present in Eq. (57). In what follows
we only consider waves propagating along the equilibrium mag-
netic field. Then Eq. (59) is reduced to

ρ2
01(c

2
S1 + v2

A1)(ω̄
2 − v2

A1k
2)(ω̄2 − c2

T1k
2)

(ω̄2 − c2
S1k

2)

=
ρ2
02(c

2
S2 + v2

A2)(ω̄
2 − v2

A2k
2)(ω̄2 − c2

T2k
2)

(ω̄2 − c2
S2k

2)
. (61)

We can assume without loss of generality thatvA1 < vA2. Then
inequalities (60) reduce to

v2
A1k

2 < ω̄2 < v2
A2k

2, c2
T1k

2 < ω̄2 < c2
S1k

2. (62)

These inequalities can be simultaneously satisfied only ifcS1 >
vA1. Hence surface waves can propagate along the equilibrium
magnetic field only if

vA1 < cS1. (63)

In what follows we assume that inequality (63) is satisfied. This
is a very important inequality. It, in particular, shows that slow
surface waves cannot propagate along the magnetic field in low-
beta plasmas. Since the coronal plasma is a low-beta plasma, the
results that will be obtained in what follows are only applicable
to the upper chromosphere, but they are not applicable to the
corona.

It follows from Eq. (59) and the first inequality (60) that
C2D2 < 0, which gives

C2(ω̄
2 − c2

S2k
2) > 0. (64)

This inequality is satisfied if either̄ω2 > c2
S2k

2 or ω̄2 < c2
T2k

2.
The first inequality can be satisfied only ifcS2 < vA2.

Summarising we state thatω̄2 has to satisfy either

v2
A1k

2 < ω̄2 < min(c2
S1k

2, c2
T2k

2), (65)

or

max(v2
A1k

2, c2
S2k

2) < ω̄2 < min(c2
S1k

2, v2
A2k

2). (66)

Inequality (65) can be satisfied only when

cT2 > vA1, (67)

while inequality (66) can be satisfied only when

min(cS1, vA2) > cS2. (68)

Roberts (1981) considered a non-magnetic plasma in the region
x < −a (vA1 = 0) and called solutions satisfying Eqs. (65)
and (66) slow and fast surface waves, respectively. We gener-
alise Roberts’ definition and use the same names for the two
types of surface waves in the general case wherevA1 /= 0. In
what follows we assume that inequality (67) is satisfied and con-
sider only the slow surface waves. A graphical investigation of
Eq. (61) shows that under conditions (63) and (67) Eq. (61) has
exactly one solution that lies in the interval determined by (65),
i.e., there is exactly one solution to Eq. (58) that corresponds to
a slow surface wave. The consideration of symmetry enables us
to restrict the analysis tōω > 0.

Φ = (c2
S + v2

A)C in an ideal plasma (η0 = χ = 0) and the
integral on the right-hand side of Eq. (57) is singular at the slow
resonant positionxc whereC = 0. This position is determined
by

ω̄2 = c2
T (xc)k

2. (69)

SincecT1k
2 < ω̄2 < cT2k

2 there is at least one solution to
Eq. (69). In what follows we assume thatcT (x) is a monotonic
function, so that there is exactly one resonant position.

4.2. The second order approximation

In the second order approximation we calculateω′. In accor-
dance with the general rule we have to substituteω̄ for ω and
takeν = χ = 0 when calculating the integral in the right-hand
side of dispersion Eq. (57). However, in this case the integrand is
singular at the slow resonant positionx = xc. Hence we have to
retain terms proportional toη0, χ‖, andω′ in expression (49) for
Φ in the dissipative layer that embraces the resonant position.
Since|ω′| ≪ |ω̄| we use the approximate formula

C = C̄ + 2ω̄ω′. (70)

In what follows we use the rule that a quantity with the bar is
obtained from the same quantity without the bar by substituting
ω̄ for ω. For large values ofR(0)

e andP
‖
e the thickness of the

dissipative layer is very small. This enables us to use the Taylor
expansion for the quantitȳC in the vicinity of the resonant posi-
tion and to retain only the first non-zero term in this expansion.
As a result we obtain

C̄ = ∆(x − xc), ∆ =
dC̄

dx

∣

∣

∣

∣

x=xc

. (71)

We can substitutēω for ω when calculating the second term
in expression (49) forΦ in the vicinity of the ideal resonant
position. Then with the aid of Eqs. (70) and (71) we arrive at
the approximate expression

Φ = (c2
S + v2

A)[∆(x − xc) + 2ω̄ω′
r]

− iω̄

[

2(c2
S + v2

A)γd −
ω̄3

k2R‖

]

. (72)
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Hereω′
r andω′

i are the real and imaginary part ofω′, γd = −ω′
i

is the wave damping decrement, and the total parallel Reynolds
numberR‖ is given by

1

R‖
=

(3c2
S + 2v2

A)2

3c2
Sv2

AR
(0)
e

+
c2
S + v2

A

c2
SP

‖
e

. (73)

All equilibrium quantities in Eqs. (72) and (73) are calculated at
x = xc. The thickness of the dissipative layerδ‖ is determined
by the condition that the real and imaginary parts ofΦ are of
the same order. This condition leads to

δ‖ =

(

1 −
2ω̄γd

δ̃‖|∆|

)

δ̃‖, δ̃‖ =
ω̄4

k2|∆|R‖(c
2
S + v2

A)
, (74)

where δ̃‖ is the thickness of the slow dissipative layer in the
steady state of driven resonant oscillations (i.e., whenω is real,
see Ruderman & Goossens 1996). Once again all equilibrium
quantities in Eq. (74) are calculated atx = xc. In this section we
assume thatδ‖ > 0, whereas the caseδ‖ < 0 will be considered
in the next section.

Following Sakurai et al. (1991) and Goossens et al. (1995)
we assume that there is a quantitysc such thatδ‖ ≪ sc ≪ a and
the Taylor expansion (71) is valid in the interval[xc − sc, xc +
sc]. Then we use Eqs. (72) and (74) to rewrite the integral on
the right-hand side of Eq. (57) as
∫ a

−a

D(x) dx

ρ0(x)A(x)Φ(x)

=

(
∫ xc−sc

−a

+

∫ a

xc+sc

)

D̄(x) dx

ρ0(x)[c2
S(x) + v2

A(x)]Ā(x)C̄(x)

−
ω̄4

ρ0cv4
Ack

2

∫ xc+sc

xc−sc

dx

∆(x − xc) + 2ω̄ω′
r + iδ‖|∆|

, (75)

where the subscript ‘c’ indicates that a quantity is calculated
at x = xc. We make the substitutionx − xc = δ‖τ in the last
integral in this equation. The variableτ is of the order one in the
dissipative layer whilex → xc ± sc corresponds toτ → ±∞.
In the first two integrals on the right-hand side of Eq. (75) we
take the limitsc → +0. As a result we arrive at
∫ a

−a

D dx

ρ0AΦ
= P

∫ a

−a

D̄ dx

ρ0(c2
S + v2

A)ĀC̄

−
ω̄4

ρ0cv4
Ack

2
P

∫ ∞

−∞

dτ

∆τ + 2ω̄ω′
r/δ‖ + i|∆|

. (76)

HereP indicates the principal Cauchy part of an integral. We
use the symbolP for the first integral in Eq. (76) because of
the singularity in the integrand atx = xc, and in the second
integral because it diverges logarithmically as|τ | → ∞. Taking
into account that, in accordance with our assumption,δ‖ > 0 it
is straightforward to obtain

P

∫ ∞

−∞

dτ

∆τ + 2ω̄ω′
r/δ‖ + i|∆|

= −
πi

|∆|
. (77)

With the use of this result we finally derive the approximate
expression
∫ a

−a

D dx

ρ0AΦ
= P

∫ a

−a

D̄ dx

ρ0(c2
S + v2

A)ĀC̄
+

πiω̄4

ρ0cv4
Ack

2|∆|
. (78)

We use this result and the dispersion equation of the first order
approximation (58) to get from Eq. (57) in the second order
approximation

γd = γη + γχ + γr, (79)

whereγη, γχ andγr are the contributions to the wave damping
decrement due to viscosity, thermal conductivity and resonant
absorption, respectively. These quantities are given by

γη =
1

6H

[

η02(ω̄
2 − 3c2

S2k
2)2

ρ02(c2
S2 + v2

A2)(ω̄
2 − c2

S2k
2)C̄2

−
η01(ω̄

2 − 3c2
S1k

2)2

ρ02(c2
S1 + v2

A1)(ω̄
2 − c2

S1k
2)C̄1

]

, (80)

γχ =
ω̄2k2

2H

[

χ‖2c
2
T2

v2
A2C̄2(ω̄2 − c2

S2k
2)

−
χ‖1c

2
T1

v2
A1C̄1(ω̄2 − c2

S1k
2)

]

,

(81)

γr =
πρ01Ā1ω̄

3

HΓ̄1|∆|ρ0cv4
Ack

2
, (82)

where

H =
1

C̄1
−

(c2
S1 − v2

A1)k
2

Ā1(ω̄2 − c2
S1k

2)
−

ω̄4 − 2c2
S2k

2C̄2

Ā2C̄2(ω̄2 − c2
S2k

2)
. (83)

It is straightforward to show thatγη > 0, γχ > 0 andγr > 0.
The quantitiesγη andγχ describe the effect of viscosity and
thermal conductivity in the outer regions determined by the con-
dition |x| > a. We see that viscosity and thermal conductivity
in the outer regions and resonant absorption in the dissipative
layer lead to wave damping as can be anticipated from a physical
argumentation.

4.3. Comparison of dissipative terms

Let us now check thead hocassumption adopted in this section
that the first and second terms on the left-hand side of Eq. (47)
can be neglected in comparison with the third term. Since we
only consider waves propagating along the equilibrium mag-
netic field (ky = 0), we have to compare the first and third terms
only. Far away from the ideal slow resonant position there are
no large gradients and the terms describing the compressional
viscosity and parallel thermal conductivity, which are terms pro-
portional toη0 andχ‖, dominate the other dissipative terms in
Eq. (47). Hence, we have to compare the terms on the left-hand
side of this equation in the dissipative layer only.

It is straightforward to obtain the following approximate
expression for the quantityα valid in the dissipative layer:

α

A
=

c2
T c2

S

R⊥
,

1

R⊥
=

1

Rm
+

v2
A

c2
SP⊥

e
+ 4

c2
S + v2

A

c2
SR

(1)
e

, (84)

whereR⊥ is the perpendicular total Reynolds number. All equi-
librium quantities in Eq. (84) are calculated atx = xc. Since in
the dissipative layer the characteristic scale in thex-direction is
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δ‖, and the real and imaginary parts ofΦ are of the same order,
it follows that

α

A

d3u

dx3
∼

c2
T c2

Su

R⊥δ3
‖

, |Φ| ∼
c4
T k2δ‖

R‖δ̃‖

. (85)

Using these estimates we get

αd3u/dx3

AΦdu/dx
∼

δ̃‖R‖

k2δ3
‖R⊥

. (86)

We have seen in Sect. 4.1 that slow surface waves can prop-
agate along the equilibrium magnetic field only whenvA

<
∼ cS .

Therefore we assume thatcS , vA, andcT are of the same or-
der in the dissipative layer and use the estimate|∆| ∼ ω̄2/a
and Eq. (74) to obtainkδ̃‖ ∼ ka/R‖. Then it follows from
Eq. (86) that the first term on the left-hand side of Eq. (47) can
be neglected in comparison with the third term only when the
condition
(

δ‖

δ̃‖

)3

≫
(R‖)

3

(ak)2R⊥
(87)

is satisfied. For typical conditions in the upper chromosphere we
obtain the very crude estimatesR‖ ∼ 104k−1, R⊥ ∼ 1010k−1,
wherek is measured inkm−1. Then condition (87) yields
(

δ‖

δ̃‖

)3

≫
100

k2(ak)2
. (88)

Takingak ≤ 0.1 we obtain that even for very short waves with
k ∼ 1 km−1 corresponding to the wave period smaller than 1
s the right-hand side of Eq. (88) is much larger than unity and
this condition cannot be satisfied. Hence we conclude that for
typical conditions in the upper chromosphere the shear viscos-
ity, perpendicular thermal conductivity and resistivity dominate
in the dissipative layer in spite that they are negligible in com-
parison with the compressional viscosity and parallel thermal
conductivity far away from the dissipative layer.

It is instructive to compare the contributions of different
dissipative mechanisms in the wave damping decrementγd. It
will be shown in the next section that expression (79) forγd

remains valid even when condition (87) is not satisfied. It is
straightforward to obtain the estimatesγη + γχ = O(ω̄R−1

‖ )

andγr = O(ω̄ak), so thatγr/(γη +γχ) = O(akR‖). Thus, the
damping decrement is mainly determined by resonant absorp-
tion whenakR‖ ≫ 1, while it is mainly determined by dissipa-
tion in the outer regions whenakR‖ ≪ 1. On the other hand,
2ω̄γd/δ̃‖|∆| = O(γdR‖/ω̄), so that2ω̄γd/δ̃‖|∆| = O(akR‖)
when akR‖ ≫ 1 and resonant absorption dominates, while
2ω̄γd/δ̃‖|∆| = O(1) whenγr

<
∼ γη + γχ and either the dis-

sipation in the outer regions dominates or the two dissipative
processes give contributions of the same order of magnitude.
These estimates, together with Eq. (74), show thatδ‖ < 0 in the
case where resonant absorption dominates over dissipation in
the outer regions. For typical conditions in the upper chromo-
sphereakR‖ ∼ 104(ak)k−1, soakR‖ ≫ 1 for k<

∼1 km−1 and

ak >
∼ 10−3, and the damping decrement is mainly determined

by resonant absorption.
The corresponding estimates for the solar corona are quite

different and show that for realistic wave parameters the struc-
ture of the dissipative layer and the damping can be determined
by the compressional viscosity and parallel thermal conductiv-
ity. However, since we restricted our analysis to the finite beta
plasma, we do not embark on a further discussion of this prob-
lem.

In the next section we consider the case where the first term
on the left-hand side of Eq. (47) has to be retained.

5. Calculation of the wave damping for weak
compressional viscosity and parallel thermal
conductivity

In this section we consider the case where either condition (87)
is not satisfied orδ‖ < 0. However, we first define more pre-
cisely the meaning of the phrase ‘the compressional viscosity
and parallel thermal conductivity are strong’. Let us fix all pa-
rameters involved in the problem and vary the quantitiesη0 and
χ‖ in the dissipative layer only. Then the wave damping decre-
mentγd remains fixed and the quantitỹδ‖ varies. Whenη0 and
χ‖ are large enough in the dissipative layer we obtainδ‖ ∼ δ̃‖,
condition (87) is satisfied and the analysis in Sects. 3 and 4 is
valid. Hence, the phrase ‘the compressional viscosity and par-
allel thermal conductivity are strong’ exactly means that these
dissipative processes are strong enough to ensure that condition
(87) is satisfied. Let us now decreaseη0 andχ‖ in the dissipative
layer. Then the ratioδ‖/δ̃‖ decreases andR‖ increases and, for
small enough values ofη0 andχ‖, condition (87) is not satisfied.
This consideration gives sense to the phrase ‘the compressional
viscosity and parallel thermal conductivity are weak’.

While it is clear from the analysis in the previous section that
the first term on the left-hand side of Eq. (47) has to be retained
whenδ‖ > 0 andδ‖/δ̃‖ is small, it seems at first sight that this
term can be neglected whenδ‖ < 0 and |δ‖| ∼ δ̃‖. However,
we shall see in what follows that this is not correct. Whenδ‖ <
0 the thickness of the dissipative layer is|δ‖|. However, the
solution in the dissipative layer is strongly oscillatory with the
characteristic spatial scale in thex-direction much smaller than
|δ‖|. This characteristic spatial scale is determined by the first
term on the left-hand side of Eq. (47).

5.1. Solution in the dissipative layer and connection formulae

The concept of connection formulae was first introduced by
Sakurai et al. (1991) and then further developed by Erdélyi et
al. (1995), Erd́elyi (1997), Goossens et al. (1995) (see also the
review by Goossens & Ruderman 1995). This concept turned
out to be very useful in studying resonant MHD waves. It can
be described as follows. Since in weakly dissipative plasmas
dissipative layers embracing ideal resonant positions are very
narrow, we can use the method of matched asymptotic expan-
sions. In accordance with this method we look for the solution
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inside and outside the dissipative layer separately. Since dissipa-
tion is only important in the dissipative layer we use ideal MHD
when looking for the outer solution. When we are not interested
in the inner solution, which is the solution in the dissipative
layer, we can consider the dissipative layer as a surface of dis-
continuity. Then all we need from the solution in the dissipative
layer are expressions for the jumps in the normal component of
the velocity and in the perturbation of the total pressure across
the dissipative layer. These jumps are given by the connection
formulae.

To derive the connection formulae we first note that, in ac-
cordance with Eq. (79), dissipation due to viscosity and ther-
mal conductivity inside the slab containing the inhomogeneous
plasma and outside the dissipative layer does not contribute to
the wave damping. This conclusion is based on the analysis in
Sects. 3 and 4, which is only valid when condition (87) is satis-
fied. However, the conclusion itself is also valid when condition
(87) is not satisfied. To show this we denote the contribution of
dissipation in the region|x| < aand outside the dissipative layer
asγin. The contribution of dissipation in the regionsx < −a
andx > a to the wave damping decrement isγη + γχ. It is
straightforward to show thatγin/(γη + γχ) ∼ ak, so thatγin

can be neglected in comparison withγη + γχ. This fact enables
us to use ideal MHD to describe the plasma motion in the slab
outside the dissipative layer.

Let us introduce the characteristic scale in thex-direction
in the dissipative layerld. In accordance with the analysis in
Sect. 4.3,ld = δ‖ when condition (87) is satisfied and, anyway,
ld ≪ a. Following Sect. 4.2 we adopt the assumption that there
is a quantitysc such thatld ≪ sc ≪ a and all coefficient func-
tions in Eqs. (46) and (47) can be approximated in the interval
[xc − sc, xc + sc] by the first non-zero terms of their Taylor
expansions in the vicinity ofxc. This assumption enables us to
use expression (72) forΦ and take all other coefficient functions
in Eqs. (46) and (47) equal to their values atx = xc when solv-
ing these equations in the dissipative layer. In addition, since
|ω′| ≪ ω̄, we substitutēω for ω. Eliminating P̃ ′ from the set
of Eqs. (46) and (47) and taking into account thatky = 0 we
obtain

α
d4u

dx4
+ i

d

dx
Φ

du

dx
= −iDu −

ωD

ρ0A

(

η1 + ρ0λ
ω2

A

ω2

)

d2u

dx2
.(89)

It is straightforward to show that the ratio of the last term on the
right-hand side of this equation to the first term on the left-hand
side is of the order(kld)

2 < (ak)2 ≪ 1, and the ratio of the first
term on the right-hand side to the second term on the left-hand
side is of the orderak2ld < (ak)2 ≪ 1. These estimates enable
us to neglect the right-hand side of Eq. (89) in comparison to
the left-hand side and reduce this equation to

α
d3u

dx3
+ iΦ

du

dx
= Uconst, (90)

whereUconst is the constant of integration. Using Eq. (47) and
taking into account that all coefficient functions in Eqs. (46) and
(47) are calculated atx = xc andω = ω̄ we obtain

Uconst =
c3
Sc2

T k2

ρ0v2
A

P̃ ′. (91)

This result, in particular, implies that̃P ′ is approximately con-
stant in the dissipative layer. The approximate constancy of the
total pressure in the dissipative layer was first used for study-
ing the resonant damping of surface waves on a finite-thickness
magnetic interface by Hollweg (1987a, b) and Hollweg & Yang
(1988). It was subsequently used by Hollweg (1988) and Saku-
rai et al. (1991) for studying driven resonant MHD waves in
one-dimensional planar and cylindrical equilibria. Goossens et
al. (1995) gave the rigorous mathematical derivation of the prop-
erty of perturbation of the total pressure to be constant in the
dissipative layer for Alfv́en resonance, while Erdélyi (1997)
showed it for slow resonance.

Since far away from the dissipative layer the quantityP̃ ′

tends to the perturbation of the total pressureP ′ given by
Eq. (25) withη0 = 0 andP̃ ′ is constant in the dissipative layer,
we obtain for the jump inP ′ across the dissipative layer

[P ′] = 0, (92)

where the square brackets indicate the jump in a quantity. This
is the first connection formula.

Let us make the substitution of the independent variable

τ =
1

δ⊥

(

x − xc +
2ω̄ω′

r

∆

)

, δ⊥ =

(

c4
T

v2
A|∆|R⊥

)1/3

(93)

in Eq. (90). Then with the use of Eqs. (72), (84), and (91) we
rewrite this equation as

d3u

dτ3
+

(

iτ sign∆ −
δ‖

δ⊥

)

du

dτ
=

k3c5
T

ρ0v4
A|∆|

P̃ ′. (94)

This equation coincides with the corresponding equation ob-
tained by Tirry & Goossens (1996) when studying quasi-modes
in one-dimensional axisymmetric equilibria in compressible
plasmas (see their Eq. (8)). Using Eq. (11) of Tirry & Goossens
(1996) we can immediately give the solution to Eq. (94)

u =
ik3c5

T P̃ ′

ρ0v4
A∆

G(τ) + const, (95)

G(τ) =

∫ ∞

0

exp(iτr sign∆) − 1

r
exp

(

−
δ‖r

δ⊥
−

r3

3

)

dr.

(96)

Note that this solution differs from that in Tirry & Goossens
(1996) by a constant. This solution also coincides with that ob-
tained by Ruderman et al. (1995) when studying the propagation
of surface waves on a finite-thickness magnetic interface in an
incompressible plasma (see their Eqs. (59) and (60)).

The jump in the quantityu is given by

[u] = lim
τ→∞

{u(τ) − u(−τ)}. (97)

It is straightforward to obtain[G] = πi sign∆. With the use of
this result we get

[u] = −
πk3c5

T P̃ ′

ρ0v4
A∆

. (98)

This is the second connection formula. Note that this formula
coincides with that obtained by Sakurai et al. (1991) and Erdélyi
(1997) in the case whereδ‖ = 0.
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5.2. Behaviour of the solutions in the dissipative layer

In this subsection we study how the solutions in the dissipa-
tive layer depend on the parameterδ‖/δ⊥. In addition to the
behaviour of thex-component of the velocity,u, we also study
the behaviour of thez-component,w, because, as we shall see
in what follows, this is the dominant component of the velocity
in the dissipative layer. Note, that for the parallel propagation
(ky = 0) v = 0. Using Eqs. (28)–(30), (95), and (96), and retain-
ing only the largest terms we obtain the following approximate
expression forw in the dissipative layer,

w = −
ik2c3

T P̃ ′

ρ0v2
A|∆|δ⊥

F (τ), (99)

F (τ) =

∫ ∞

0

exp

(

iτr sign∆ −
δ‖r

δ⊥
−

r3

3

)

dr. (100)

Let us first consider the case where condition (87) is satis-
fied. It is straightforward to show with the use of the estimate
kδ̃‖ ∼ ka/R‖ and Eq. (93) that this condition is equivalent to
δ‖ ≫ δ⊥. With the use of the asymptotic formulae (A.2) and
(A.3) we obtain that the quantitiesw andu are given by the
approximate expressions

w =
k2c3

T P̃ ′

ρ0v2
A∆δ‖

θ − i sign∆

1 + θ2
, (101)

u = −
k3c5

T P̃ ′

ρ0v4
A|∆|

{

arctan θ +
i

2
sign∆ log(1 + θ2)

}

+ const, (102)

with

θ =
δ⊥τ

δ‖
=

1

δ‖

(

x − xc +
2ω̄ω′

r

∆

)

. (103)

One can easily check that these expressions coincide with
the corresponding expressions for the parallel and normal com-
ponents of the velocity in the dissipative layer in a plasma with
strongly anisotropic viscosity and thermal conductivity obtained
by Ruderman & Goossens (1996) for the driven problem (see
their Eqs. (34) and (40)). The real and imaginary parts ofu and
w given by the exact expressions (95) and (99) forδ‖/δ⊥ = 5
are shown in Fig. 1 (solid lines). The rectangles show the asymp-
totic approximation given by formulae (101) and (102). We see
that the asymptotic formulae are actually very accurate. Note
thatu/w ∼ kδ‖ ≪ 1, sow is the dominant component of the
velocity in the dissipative layer.

When|δ‖|
<
∼δ⊥ the behaviour ofu andw is similar to that for

δ‖ = 0. In accordance with Eq. (93) the characteristic thickness

of the dissipative layer isδ⊥, which is proportional toR−1/3
⊥ .

In Fig. 2 the real and imaginary parts ofu andw are shown for
δ‖ = 0. This figure coincides with Figs. 1 and 2 in Goossens et
al. (1995). SinceF (τ) andG(τ) are of order1 when|τ | ∼ 1
and|δ‖|

<
∼ δ⊥, we obtainu/w ∼ kδ⊥ ≪ 1, so thatw is once

again the dominant velocity component.

Fig. 1.Dependence of the real (left panels) and imaginary (right panels)
parts ofuandw onθ for∆ > 0. The upper and lower panels correspond
to u andw, respectively. The solid curves show the exact solution with
δ‖ = 5δ⊥ and the rectangles show the asymptotic approximation. Note
thatu andw are given in arbitrary units, however the same units are
used for the real and imaginary parts of a quantity.

Now we proceed to the case whereδ‖ < 0 and|δ‖| ≫ δ⊥.
We use Eqs. (A.8) and (A.14) to obtain the asymptotic expres-
sions

w =
ik2c3

T P̃ ′

ρ0v2
A|∆|δ⊥

{

ǫ

1 + iǫτ sign∆
(104)

−

(

π2ǫ

1 + iǫτ sign∆

)1/4

exp
[

2

3
(ǫ−1 + iτ sign∆)3/2

]

}

,

u = −
ik3c5

T P̃ ′

ρ0v4
A|∆|

{

log(1 + iǫτ sign∆)

+ (π2ǫ3)1/4 exp
(

2

3
ǫ−3/2

)

−
(πǫ3)1/2(1 + ǫ2τ2)3/4

(1 + iǫτ sign∆)3/2

× exp
[

2

3
(ǫ−1 + iτ sign∆)3/2

]

}

, (105)

We use these asymptotic expressions to obtain the estimate
u/w ∼ k(δ3

⊥/|δ‖|)
1/2 ≪ 1, so that once againw is the domi-

nant component of the velocity. It is straightforward to get, with
the use of the asymptotic formula (105), that atτ = 0

w

wout
∼

a

δ⊥
ǫ1/4 exp

(

2

3
ǫ−3/2

)

, (106)

wherewout is the value ofw far away from the dissipative
layer. Even for the very moderate valueǫ = 1

4 this formula gives
w/wout ∼ 150 a/δ⊥, so that the velocity in the dissipative layer
can reach huge values even when it is very small far away from
the dissipative layer. It is instructive to compare this estimate
with the similar estimatew/wout ∼ a/δ⊥ valid for |δ‖|

<
∼ δ⊥.
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Fig. 2.Dependence of the real (left panels) and imaginary (right panels)
parts ofu andw on τ for δ‖ = 0 and∆ > 0. The upper and lower
panels correspond tou and w, respectively. Note thatu and w are
given in arbitrary units, however the same units are used for the real
and imaginary parts of a quantity.

The real and imaginary parts ofu andw given by exact ex-
pressions (95) and (99) forǫ = 1

4 are shown in Fig. 3 (solid
lines). The rectangles show the asymptotic values given by for-
mulae (105) and (105). We see that the asymptotic formulae
give a very good approximation forw. Although the asymptotic
approximation reproduces the main properties of the real and
imaginary parts ofu fairly well, it noticeably differs from the
exact solution. If we recall how the asymptotic expressions foru
were derived, this difference is not surprising at all. The asymp-
totic expression (A.9) is accurate enough, but the asymptotic
formulae (A.11) and (A.13) give not very good approximations
for ǫ = 1

4 . For example, the difference between the left-hand
side and the write-hand side of Eq. (A.11) is about 12% for this
value of ǫ. It is worth to note that the dependences ofu and
w on τ have the form of wave packets with quasi-sinusoidal
carrying waves. The width of the wave packets is of the order
|δ‖|, and the wavelength is of the order(δ3

⊥/|δ‖|)
1/2 ≪ δ⊥,

which, according to Eq. (93), is proportional toR−1/2
⊥ . Let us

recall that the characteristic thickness of the dissipative layer is
proportional toR−1/3

⊥ when|δ‖|
<
∼ δ⊥.

The dependence ofu andw on τ for different values ofǫ
can be found in Ruderman et al. (1995) and Tirry & Goossens
(1996).

5.3. Calculation of the wave damping

In case where eitherδ‖
<
∼ δ⊥ or δ‖ < 0 the derivation of ex-

pression (79) forγd given in Sect. 4 is not valid. Here we give a

Fig. 3.Dependence of the real (left panels) and imaginary (right panels)
parts ofu andw on τ . The upper and lower panels correspond tou

and w, respectively. The solid curves show the exact solution with
δ‖ = −4δ⊥ and ∆ > 0, and the rectangles show the asymptotic
approximation. Note thatu andw are given in arbitrary units, but the
same units are used for the real and imaginary parts of a quantity.

different derivation valid in this case and show that expression
(79) remains the same.

Dissipation is only important in the dissipative layer. There-
fore we can use Eqs. (46) and (47) with all dissipative coeffi-
cients equal to zero to describe the plasma motion outside the
dissipative layer. We use the connection formulae (92) and (98)
to connect solutions to the left and the right of the dissipative
layer.

The analysis in Sect. 3 and, in particular, Eq. (55), is always
valid in the region|x| < a outside the dissipative layer. Hence,
P̃ ′ is constant to the left and the right to the dissipative layer.
Since, in accordance with connection formula (92),P̃ ′ does not
vary across the dissipative layer, this quantity is constant in the
whole region|x| < a.

It follows from Eqs. (51), (54) and (55), and the continuity
conditions atx = ±a thatu in the region|x| < a outside the
dissipative layer is given by

u =







iωP̃ ′
∫ x

−a
Υ(x̄) dx̄ + U1e

−aΓ1 , x < xc,

−iωP̃ ′
∫ a

x
Υ(x̄) dx̄ + U2e

aΓ2 , x > xc,
(107)

where

Υ(x) =
D(x)

ρ0(x)[c2
S(x) + v2

A(x)]A(x)C(x)
.

The jump inu can be calculated as

[u] = lim
ǫ→+0

{u(xc + ǫ) − u(xc − ǫ)}.

Then we obtain from Eq. (107)

[u] = U2e
aΓ2 −U1e

−aΓ1 − iωP̃ ′P

∫ a

−a

D dx

ρ0[c2
S + v2

A]AC
.(108)
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On the other hand,[u] is given by Eq. (98). Comparing Eqs. (98)
and (108) and using Eq. (52) we arrive at

Γ1

ρ01A1
+

Γ2

ρ02A2
= P

∫ a

−a

D dx

ρ0[c2
S + v2

A]AC
+

πik3c5
T

ρ0v4
A|∆|ω

.(109)

The ratio of the right-hand side of this equation to the left-
hand side is of the orderak, so that we can substitutēω for ω
in the right-hand side when calculatingω with the use of the
regular perturbation method. Then Eq. (109) coincides with the
dispersion Eq. (57) with the right-hand side given by Eq. (78).
This implies that the wave damping decrementγd is given by
the same Eq. (79).

6. Wave damping in isothermal plasmas

To further simplify the analysis and give numerical examples we
consider the case where the equilibrium plasma is isothermal,
so thatcS = const. In particular,cS1 = cS2 = cS . Now the first
order approximation (61) of the dispersion equation is reduced
to

K1ω̄
4 + 2K2c

2
Sω̄2k2 − 4K3c

4
Sk4 = 0, (110)

where

K1 = 4(γ − 1)c4
S + γ2c2

S(v2
A1 + v2

A2) + γ2v2
A1v

2
A2, (111)

K2 = 4c4
S + 2c2

S(v2
A1 + v2

A2) + γ(2 − γ)v2
A1v

2
A2, (112)

K3 = c2
S(v2

A1 + v2
A2) + γv2

A1v
2
A2. (113)

When deriving Eq. (110) we have used the condition of total
pressure balance (19), which can be re-written as

ρ0(x)[2c2
S + γv2

A(x)] = const. (114)

The positive root of Eq. (110) is given by

(

ω̄

kcS

)2

=
(K2

2 + 4K1K3)
1/2 − K2

K1
. (115)

It can be checked that this root satisfies the inequalities (65).
WhenvA1 = 0 the expression (115) for̄ω2 coincides with the
corresponding expression obtained by Roberts (1981) (see his
Eq. (29)).

In what follows we assume that the dissipative coefficients
η0/ρ0 andχ‖ are constant. Then the expressions forγη andγχ

reduce to

γη =
J(v2

A1 − v2
A2)

R
(0)
e

, γχ =
3χ‖Jc2

Sω̄2k2

P
‖
e

, (116)

where

J =
ω̄(v2

A1 − v2
A2)

6Hk2(c2
S + v2

A1)(c
2
S + v2

A2)(ω̄
2 − c2

T1k
2)(ω̄2 − c2

T2k
2)

.

Let us assume thatv2
A is a linear function ofx. Then it is

straightforward to calculatexc, ∆, vAc andρ01/ρ0c, and obtain

the expression forγr

γr =
2πac2

S [2c2
Sk2 − (2 − γ)ω̄2]

Hω̄(v2
A2 − v2

A1)(2c2
S + γv2

A1)

×

[

(c2
S + v2

A1)(ω̄
2 − c2

T1k
2)(ω̄2 − v2

A1k
2)

(c2
Sk2 − ω̄2)3

]1/2

. (117)

For our numerical examples we takeP ‖
e ≪ R

(0)
e and

vA2 = 2cS , which is realistic for the upper chromosphere, and
γ = 5/3. We follow Roberts (1981) anďCaděz & Ballester
(1996) and assume that the dynamical pressure at one side of
the inhomogeneous layer is much larger than the magnetic pres-
sure, so that we can takevA1 = 0 (nevertheless, the magnetic
field is assumed to be strong enough to cause anisotropy of
viscosity and thermal conductivity). Then̄ω = 0.717 kcS and

P
‖
e = 2.06 R‖,

γr

γη + γχ
= 1.6 akR‖. (118)

Using the same estimate as in Sect. 4.3,R‖ ∼ 104k−1, and
takingk <

∼ 1 km−1, we obtainγr ≫ γη + γχ for ak <
∼ 10−3,

in complete agreement with the analysis in Sect. 4.3. For the
damping decrementγd we have

γd ≈ γr ≈ 0.48 (ak)cSk = 0.67 (ak)ω̄, (119)

so the wave damping is independent of the dissipative coeffi-
cients and completely determined by the parameterak.

Let us now place our results in the context of the solar chro-
mosphere. Recent observations obtained during the SOHO mis-
sion clearly show that small amplitude oscillations with periods
of a few minutes exist in the solar chromosphere (Carlson et
al. 1997; Curdt & Heinzel 1998; Doyle et al. 1999; Gallagher
et al. 1999; Judge et al. 1997). MDI observations (Schrijver
et al. 1997) indicate that the chromospheric network magnetic
field is constantly evolving, which, in particular, leads to the
creation of tangential discontinuities in the overlying field. The
presence of tangential discontinuities gives the possibility that
at least some of oscillations, observed in the chromosphere, are
surface MHD waves. Now it is almost commonly accepted that
the lower internetwork chromosphere is heated by dissipation
of non-magnetic acoustic shocks (Carlson et al. 1997; Carlson
& Stein 1997; Doyle et al. 1999). However in the network the
heating required must be in excess of that provided by acoustic
shocks (Gallagher et al. 1999). Damping of surface MHD waves
can be considered as an additional source of heating.

To give a numerical example we consider the chromo-
sphere as an isothermal fully ionised plasma with a temperature
T0 ≈ 104 K, and a corresponding density scale hight6×105 m
and sound speedcS ≈ 104 m/s. In our analysis we have used
the local approximation and assumed that the magnetic inter-
face is planar and the equilibrium quantities are constant in the
outer regions. This local approximation is only valid when the
wave length2π/k is much smaller than the density scale hight.
This condition can be written ask ≫ 10−5 m−1, which corre-
sponds to waves with periods smaller than 60 s. However, we
do not expect that the account of stratification would drastically
change our analysis. In addition, for horizontally propagating
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surface waves, e.g. waves on the magnetic canopy, the criterion
of applicability of the local approximation can be reduced. The
point is that the wave amplitude exponentially decreases with
the distance from the surface on the scale of the orderk−1, which
is about 6 times smaller than the wave length. As a result we
obtain the restrictionk ≫ 2×10−6 m−1, which corresponds to
wave with periods smaller than 300 s. This discussion enables
us to consider waves with the period equal to 3 min., which is
one of the most pronounced periods in the observations.

So, let us consider waves with the period 3 min., which
corresponds tok = 3.5 × 10−6 m−1 and the wavelength ap-
proximately1800 km. We takeak = 0.1, so thata ≈ 30 km.
In accordance with Eq. (119) we obtain for the characteristic
damping time of surface wavesγ−1

d ≈ 7 min. We see that the
resonant absorption provides very efficient wave damping in the
chromosphere.

7. Conclusions

In the present paper we have considered slow surface wave
damping in plasmas with strongly anisotropic viscosity, ther-
mal conductivity, and resistivity, as in the upper part of the solar
chromosphere and in the solar corona. Far away from the dis-
sipative layer we neglected electrical resistivity and we only
retained the first term in the Braginskii’s expression for the vis-
cosity tensor and for the heat flux. These are terms that describe
the compressional viscosity and the parallel thermal conductiv-
ity. For typical coronal conditions the retained terms are much
larger than other terms in the Braginskii’s expressions. How-
ever, when studying the motion in the dissipative layer, we used
the full Braginskii’s expressions for viscosity and the heat flux
and took electrical resistivity into account.

The analysis has been restricted to waves propagating along
the equilibrium magnetic field. This condition removes the ideal
Alfv én singularity which is otherwise present in the region
where the equilibrium quantities are inhomogeneous. Slow sur-
face waves cannot propagate along the magnetic field in a low-
beta plasma, so our analysis is only applicable to the upper
chromosphere. The dispersion equation has been derived in the
long-wavelength approximation and the decrement of the wave
damping has been calculated. This decrement has been written
as a sum of three terms. The first term is due to viscosity in the
two outer regions where the equilibrium quantities are constant.
The second term is due to thermal conductivity in the two outer
regions. The third term is due to resonant absorption related
to the ideal slow resonant position that is present in the layer
with inhomogeneous equilibrium quantities. The qualitative ar-
gumentation shows that resonant absorption dominates over the
viscous and thermal conductive damping whenakR‖ ≫ 1,
while the viscous and thermal conductive damping dominates
over resonant absorption whenakR‖ ≪ 1. We recall thata is
the thickness of the inhomogeneous layer,k is the wavenum-
ber, andR‖ is the parallel total Reynolds number characterising
dissipation due to the compressional viscosity and parallel ther-
mal conductivity. Estimates show that for typical conditions in

the chromosphereakR‖ ≫ 1, so the surface wave damping is
mainly due to resonant absorption.

The behaviour of the velocity in the slow dissipative layer
has been studied. It has been shown that this behaviour is de-
termined by the compressional viscosity and parallel thermal
conductivity when these two dissipative processes are strong
enough. The characteristic spatial scale of the velocity variation
is of the order of the thickness of the dissipative layer, which is
proportional toR−1

‖ . In case where the compressional viscosity
and parallel thermal conductivity are relatively weak the veloc-
ity behaviour is determined by the shear velocity, perpendicular
thermal conductivity, and resistivity. When these three dissipa-
tive processes are strong enough the characteristic scale of the
velocity variation is of the order of the thickness of the dissi-
pative layer, which is proportional toR−1/3

⊥ . HereR⊥ is the
perpendicular Reynolds number characterising dissipation due
to the shear viscosity, perpendicular thermal conductivity, and
resistivity. When these three dissipative processes are weak the
dependence of the velocity on the spatial coordinate normal to
the dissipative layer takes the form of a wavepacket. The width
of the wavepacket is proportional to the wave damping decre-
mentγd, and the wavelength of the carrying wave toR

−1/2
⊥ .

The example for isothermal equilibrium state has been con-
sidered. The equilibrium state was taken to be non-magnetic at
one side of the inhomogeneous region. This example confirms
the conclusions obtained on the basis of the qualitative consid-
eration of the general expression for the increment of the wave
damping that, for typical chromospheric conditions, the wave
damping is mainly due to resonant absorption. For equilibrium
quantities typical for the solar chromosphere and for the waves
with the period 3 min. the characteristic damping time is 7 min.
Hence, resonant absorption provides very efficient wave damp-
ing in the solar chromosphere.
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Appendix A: asymptotic behaviour of F (τ ) and G(τ )

In this Appendix we study the asymptotic behaviour of the func-
tionsF (τ) andG(τ) for two cases:δ‖ ≫ δ⊥ and−δ‖ ≫ δ⊥.
We start with the case whereδ‖ ≫ δ⊥ and introduce the small
parameterǫ = δ⊥/δ‖. The second term in the exponent in ex-
pression (100) forF (τ) dominates over the third term when
r ≪ ǫ−1/2. Let us take any large quantity that is much smaller
thanǫ−1/2, for example,ǫ−1/3. Then we have the asymptotic
expression

F (τ) ≃

∫ ǫ−1/3

0

exp(iτr sign∆ − ǫ−1r)dr

+

∫ ∞

ǫ−1/3

exp
(

iτr sign∆ − ǫ−1r −
1

3
r3
)

dr. (A.1)
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It is straightforward to show that the second integral on the right-
hand side of this expression is exponentially small (it is smaller
thanexp(−ǫ−4/3)). We can substitute∞ for the large upper
limit ǫ−1/3 in the first integral. As a result we obtain

F (τ) ≃
ǫ

1 − iǫτ sign∆
. (A.2)

To obtain the asymptotic expression for the functionG(τ) we
can either use the same approach as forF (τ), or simply note
thatdG/dτ = iF (τ) sign∆ and use expression (A.2). In both
ways we arrive at

G(τ) ≃ − log(1 − iǫτ sign∆), (A.3)

where the fact thatG(0) = 0 was used.
By using partial integration we can show thatF (τ) ≃

iτ−1 sign∆ as |τ | → ∞. Integrating this asymptotic relation
we obtainG(τ) ≃ − log |τ | as|τ | → ∞. It is interesting to note
that, although asymptotic formulae (A.2) and (A.3) are derived
under the assumption|τ | ≪ ǫ−1, they actually give the correct
asymptotic behaviour forF (τ) andG(τ) as|τ | → ∞. More-
over, Eq. (A.3) correctly reproduces the jump ofG(τ) across
the dissipative layer (see Sect. 5.1).

Let us now obtain the asymptotic expression forF (τ) in the
caseδ‖ < 0 and|δ‖| ≫ δ⊥. We introduce the small parameter
asǫ = −δ⊥/δ‖ and rewrite expression (100) as

F (τ) = ǫ−1/2

∫ ∞

0

exp[ǫ−3/2h(r)] dr (A.4)

with h(r) = (iǫτ sign+1)r − 1
3r3. In what follows we assume

thatǫ|τ | <
∼ 1.

To obtain the asymptotics ofF (τ) for ǫ → +0 we use the
method of steepest descent (see, e.g., Nayfeh 1981; Bender &
Orsźag 1987). Since the change of sign of eitherτ or ∆ causes
the substitution ofF (τ) by its complex conjugate, we assume
in what follows thatτ > 0 and∆ > 0. The functionh(r) has
the stationary pointr0 in the complexr-plane given byr0 =
(1+iǫτ)1/2, where we take a branch of the square root satisfying
the conditionℜ(r0) > 0. In Fig. A.1, the left panel, we show the
contours of steepest descent that pass through the pointsr = r0

andr = 0. Since the integrand in the expression (A.4) is an
analytical function ofr, this expression can be rewritten as

ǫ1/2F (τ) = I1 + I2 ≡

(
∫

γ1

+

∫

γ2

)

exp[ǫ−3/2h(r)] dr, (A.5)

where the integration along the contours of the steepest descent
γ1 andγ2 is carried out in the direction shown by arrows near
these contours in Fig. A.1.

According to the method of the steepest descent the asym-
ptotics of the first integral in Eq. (A.5) is given by the contribu-
tion of the infinitesimal vicinity ofr = 0, and the asymptotics of
the second integral by the infinitesimal vicinity ofr = r0. The
calculation of these contributions is straightforward and yields
the asymptotic expressions

I1 ≃ −ǫ3/2(1 + iǫτ)−1. (A.6)

Fig. A.1. Contours of the steepest descentγ1 andγ2 in the complex
r-plane. The arrows on the contours show the directions of the steepest
descent, while arrows near the contours show the direction of integra-
tion.

I2 ≃

(

π2ǫ3

1 + iǫτ

)1/4

exp
[

2

3
ǫ−3/2(1 + iǫτ)3/2

]

. (A.7)

Recalling the dependence ofF (τ) on the signs ofτ and∆ we
finally arrive at

F (τ ) ≃ −
ǫ

1 + ǫτ sign∆
(A.8)

+

(

π2ǫ

1 + iǫτ sign∆

)1/4

exp
[

2

3
ǫ−3/2(1 + iǫτ sign∆)3/2

]

.

It is instructive to compare the first and the second term on
the right-hand side of Eq. (A.8). When|ǫτ | < 31/2, ℜ(1 +
iǫτ sign∆)3/2 > 0, the first term is exponentially small in
comparison with the second term, i.e. the first term is sub-
dominant, and the asymptotic behaviour ofF (τ) is given
by the second term. On the other hand, when|ǫτ | > 31/2,
ℜ(1+ iǫτ sign∆)3/2 < 0, the second term is subdominant, and
the asymptotic behaviour ofF (τ) is given by the first term. This
exchange of identities of the dominant and subdominant terms
is called the Stokes phenomenon (see, e.g., Bender & Ország
1987).

The asymptotic formula (A.8) has been derived under the
assumption that|ǫτ | <∼ 1. However, it is interesting to note that
it correctly reproduces the behaviour of the functionF (τ) as
|τ | → ∞.

To obtain the asymptotic expression forG(τ) we once again
use the relationsdG/dτ = iF (τ) sign∆ andG(0) = 0 and, as
a result, arrive at

G(τ)

≃ − log(1 + iǫτ sign∆) + i sign∆

∫ τ

0

(

π2ǫ

1 + iǫτ̃ sign∆

)1/4

× exp
[

2

3
(ǫ−1 + iτ̃ sign∆)3/2

]

dτ̃ . (A.9)

With the use of obvious transforms of the integration variable,
in a few steps we arrive at

G(τ) ≃ − log(1 + iǫτ sign∆) −
4

3
π1/2ǫ−3/4 (A.10)

×

[
∫ 1

0

exp
(

2

3
ǫ−3/2z2

)

dz − r
3/2
0

∫ 1

0

exp
(

2

3
ǫ−3/2r3

0z
2
)

dz

]

,
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where nowr0 = (1+ iǫτ sign∆)1/2. Using integration by parts
we immediately obtain
∫ 1

0

exp
(

2

3
ǫ−3/2z2

)

dz ≃
3

4
ǫ3/2 exp

(

2

3
ǫ−3/2

)

. (A.11)

To calculate the asymptotics of the second integral on the right-
hand side of Eq. (A.11) we once again use the method of the
steepest descent. In Fig. A.1, the right panel, the contours of
the steepest descentγ1 andγ2 passing throughz = 0 andz =
1 respectively in the complexz-plane are shown. The second
integral in the square brackets in Eq. (A.11) can be written as a
sum of two integrals along the contoursγ1 andγ2, where the
integration is carried out in the direction shown by the arrows
nearγ1 andγ2. The asymptotic behaviour of the integral along
γ1 is determined by an infinitesimal vicinity ofz = 0, and the
integral alongγ2 by the infinitesimal vicinity ofz = 1. The
straightforward calculation gives

∫

γ1

exp
(

2

3
ǫ−3/2r3

0z
2
)

dz ≃ iǫ3/4(3π)1/2

(

r∗
0

2|r0|2

)3/2

, (A.12)

∫

γ2

exp
(

2

3
ǫ−3/2r3

0z
2
)

dz ≃
3ǫ3/4

4

(

r∗
0

|r0|

)3

exp
(

2

3
ǫ−3/2r3

0

)

.

(A.13)

With the aid of Eqs. (A.11)–(A.13) we eventually arrive at

G (τ) ≃ − log(1 + iǫτ sign∆) − (π2ǫ3)1/4 exp
(

2

3
ǫ−3/2

)

+
(π2ǫ3)1/4(1 + ǫ2τ2)3/4

(1 + iǫτ sign∆)3/2
exp

[

2

3
(ǫ−1 + iτ sign∆)3/2

]

.

(A.14)

Once again the first term on the right-hand side of Eq. (A.14)
is subdominant and can be neglected in comparison with the
third term when|ǫτ | < 31/2. When|ǫτ | > 31/2 the third term
is subdominant and can be neglected. We do not compare the
first and the third term with the second one because only the
first and the third term determine the dependence onτ .

Once again, in spite that the asymptotic formula (A.14) is
derived under the assumption that|ǫτ | <

∼ 1, it correctly repro-
duces the behaviour of the functionG(τ) in the main order
approximation,G(τ) ≃ − log |τ |, as |τ | → ∞. However, it
gives a wrong sign for the quantity[G].
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Erdélyi R., Goossens M., 1995, A&A 294, 575
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