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Abstract. This paper studies the damping of slow surface MHD When a magnetic interface is a true discontinuity the surface
waves propagating along the equilibrium magnetic field onveaves are eigenmodes of the ideal linear MHD equations. Dis-
finite-thickness magnetic interface. The plasma is assumedsigation in the solar atmosphere (e.g. viscosity, thermal conduc-
be strongly magnetised, and the full Braginskii's expressiotigity, and electrical resistivity) causes surface wave damping.
for viscosity and the heat flux are used. The primary focus ©he surface wave damping in the solar corona was considered
the paper is on the competition between resonant absorptiyn e.g., Gordon & Hollweg (1983) and Ruderman (1991). It
in the thin dissipative layer embracing the ideal resonant posias found that for typical coronal conditions dissipation in the
tion and the bulk wave damping due to viscosity and thermsdlar coronal plasma is not enough to cause substantial damp-
conductivity as damping mechanisms for surface MHD waveng of surface waves in the inner part of the solar corona unless
The dependence of the wave damping decrement on the wareae periods are very short (of the order of ten seconds or less).
length and the dissipative coefficients is studied. Application of In nature there are no true discontinuities. Instead there are
the obtained results to the surface MHD wave damping in theagnetic plasma configurations with plasma and magnetic field
solar chromosphere is discussed. parameters that rapidly vary in a thin layer. Such configurations

are very often called finite-thickness magnetic interfaces. Then

Key words: Magnetohydrodynamics (MHD) — waves — methsurface MHD waves are no longer eigenmodes of linear ideal
ods: analytical — Sun: chromosphere — Sun: corona — Sun: b#4D. However there are non-stationary solutions ofideal MHD
cillations that closely resemble the surface waves on true magnetic inter-

faces. These solutions are called quasi-modes or global modes.
Away from the inhomogeneous layer they behave like exponen-
tially damped surface waves. In the inhomogeneous layer there

1. Introduction is a resonant magnetic surface where the phase velocity of the

surface quasi-mode matches either the local &iffrequency

The solar atmosphere is strongly magnetically structured (see

e.g., Acton et al. 1992, Brekke et al. 1997, Fludra et al. 199
Kjeldseth-Moe & Brekke 1998, Schrijver etal. 1997). The pres-
ence of magnetic structuring drastically changes the characdief
of MHD wave propagation in plasmas. For instance, surfa
MHD waves can exist in magnetically structured plasmas. Suc
waves can propagate wherever there is a sharp change of plat%m
parameters across a surface called ‘magnetic interface’. The sur-
face MHD waves on magnetic interfaces have been intensive
studied (see, e.g., Miles & Roberts 1992; Miles et al. 1999,
Roberts 1981). In the solar atmosphere the surface MHD WaYﬁ'
can propagate, e.g., along the boundaries of sunspots, coron

o the local slow frequency. In the vicinity of this resonant mag-
netic surface there is strong coupling between the global plasma
scillation represented by the quasi-mode and the locaéalfv
O(raslow oscillations. This coupling results in the conversion of
Frhe global oscillation energy into the energy of the local small-
scale Alfven or slow oscillations. It is this energy conversion
atacauses damping of the global surface wave. In the vicin-
ity of the resonant magnetic surface spatial gradients linearly
row with time, so that they eventually tend to infinity (see,
&g Mann et al. 1995; Zorzan & Cally 1992). The decrease of
%Ispatial scale is stopped by dissipation. However, when dis-
Sipation is weak, this happens only when the spatial scale in the

holes, coronal loops, and in the canopy regions in the chromo-.

sphere.

vicinity of the ideal resonant surface is extremely small. Dis-
sipation only operates in a narrow dissipative layer containing

Send offprint requests toM.S. Ruderman (michaelr@dcs.st-
and.ac.uk)

large spatial gradients. This dissipative layer embraces the ideal
resonant magnetic surface. In the dissipative layer the small-
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scale oscillations are strongly damped and as a result the enarigynagnitude in the upper chromosphere, and thermal conduc-
of the global motion is converted into heat. Dissipation of th@rity along magnetic field lines is much larger than that in the
global motion energy due to energy conversion in the dissigdirections perpendicular to the magnetic field lines. Dissipation
tive layer is called resonant absorption. Resonant absorptionefted to finite resistivity and the Hall effect can be neglected
quasi-modes was studied by, e.g., Ofman et al. (1994a, 1995ge, e.g., discussion in Ruderman et al. 1996). However, these
Ofman & Davila (1995, 1996), Poedsts et al. (1989), Poedts@inclusions may be not valid in dissipative layers embracing
al. (1994), Steinolfson & Davila (1993), and Tirry & Goossengleal resonant positions. We calculate both contributions of res-
(1996). onantabsorption and the bulk viscosity and thermal conductivity
Resonant absorption makes it possible to effectively darmto the wave damping decrement.
MHD waves even in weakly dissipative plasmas. For typical The paper is organised as follows. In the next section we
coronal conditions the damping rate of resonant MHD wavegscribe the main assumptions and basic equations. In Sect. 3
can be a few orders of magnitude larger than the damping rate obtain the dispersion equation for surface waves in the long-
of non-resonant MHD waves. This property of resonant MHIRdavelength approximation under the assumption that the com-
waves to be relatively strongly damped even in weakly dissiparessional viscosity and the parallel thermal conductivity domi-
tive plasmas enabled lonson (1978) to suggest resonant MH&e all other dissipative processes in the slow dissipative layer.
waves as a possible mechanism for the heating of magnetic lobp$ect. 4 this dispersion equation is solved with the use of
in the solar corona. Since this original work resonant absorptitite regular perturbation method and the decrement of the wave
has grown into a popular mechanism for explaining the healamping is calculated. In Sect. 5 the dispersion equation is re-
ing of the solar corona (see, e.g., Davila 1987; Hollweg 199derived in the case where dissipative mechanisms other than
lonson 1985; Goossens 1991; Kuperus et al. 1981; also papkescompressional viscosity and parallel thermal conductivity
cited at the end of the previous paragraph). are important in the dissipative layer. In Sect. 6 the expression
The account of dissipation makes it possible to find the simr the damping decrement is used to study in detail the slow
lutions as eigenmodes of the linear dissipative MHD equatiossrface wave damping in isothermal equilibrium states. Sect. 7
even in case of finite-thickness magnetic interfaces. These sontains our conclusions.
lutions describe damped surface waves on a finite-thickness in-
terface. When dissipation is weak they differ from ideal quasé'—
modes only in a thin dissipative layer. Such solutions were stud-
ied by, e.g., Mok & Einaudi (1985) and Ruderman et al. (1992)1. Evaluation of dissipative terms

in the approximation of incompressible plasmas. . . .
It is commonly accepted that the solar corona is Stron%gr typical conditions in the solar chromosphere and corona

Basic equations

magnetically dominated in the sense that the magnetic pres Fecoronal P'asm? can be considered as collision-dominated
is much larger than the plasma pressure. This prompted m (%waves with periods Iarger_ than a few seconds (see, e.g.,
researchers to use the approximation of cold plasma in or .Ilweg 1.98.5)' F_:or waves with periods shorter than tens of
to describe propagation and damping of MHD waves in the i§_|nutes_ dlss!patlon in the solar. ghromosphgrg _and corona 1s
lar corona. However, the assumption of cold plasmas result e to viscosity, 'th'ermal conduc;tly ity, and reS|st|V|ty. V'SCO.S'IY’
the loss of slow MHD waves which can be also important f(SEermal conductivity, and resistivity are strongly anisotropic in
physical processes in the solar corona. As for importancet f" corona and the upper part of the chromosphere. In what

slow waves in application to the solar photosphere and ChronI;%-lqws we consider a steady eqwhpnum St.ate. where there is no
sphere, ithas never been questioned. Recéam;i & Ballester eqwhbnum_ﬂow..We use th? onE-fIU|d descr|ptlon of the plasma.
(1996) have shown that slow resonant surface waves can pr-g en th_e Ilpearlsed Bragmsl;us expression for the viscosity
agate along magnetic arcade boundaries. The conclusion { Qtsors is given by (see Braginskii 1965)
the resonant damping strongly dominates the bulk dissipatiye_ 170S0 -+ 11S1 + 19Se — 1353 — 14S4 1)
damping is only justified for resonant surface Afvwaves on
the basis of the cold plasma model. It is not obvious at all whathere
the relative importance of these two damping mechanisms is in 1
the case of slow surface waves. So = (b ®b- §|) @ @)

For typical coronal conditions the collisional frequency of
protons is much smaller than the proton gyrofrequency, and T
the inverse electron collisional time is much smaller than tie = V ® v + (Vou) —boW-Wab

electron gyrofrequency. The first statement is also valid for the + (b®b—- )V -v+ (b b+ 1)b-V(b-v), (3)
upper part of the chromosphere, while the second is valid for
the whole chromosphere. As a result the first term of the Be =b@ W + W @ b —4(b®b)b- V(b - v), 4)

ginskii's tensorial expression for viscosity (which describes the
compressional viscosity, see Braginskii 1965) strongly domi- 1 T
nates all other terms being at least five orders of magnitute 2AbxV)@v+{(bx V)@ vl +V@(bxv)

larger than the other terms in the corona and at least two orders [V @ (b x v)]T —b® (b x W) — (b x W) @ b}, (5)
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Si=b(bxW)+(bxW)®b, (6) Solutions describing surface waves are singular at this position.
Dissipation removes the singularity. Instead the dissipative layer
Q=3b-V(b v)-V-v, W=V(b-v)+(b-V)v. (7) embracing the ideal singular position appears. However, when
) _ ) _dissipative coefficients are small this dissipative layer is very
Herev = (u,v, w) is the velocityb = Bo/Bo, By is the equi- hin_ As a result gradients in thedirection can be much larger
librium magnetic field (which is assumed to be unidirectionalan those in the- and z-direction. The viscous term in the
so thatb is constant)] is the unit tensor, and indicates the omentum equation ¥ - S. It is straightforward to check that
tensorial product of tvv_o ve_ctors. The superscript ‘T" indicateg . S, andV - Sy contain only the first order derivatives with
a transposed tenso; i.e., if the ten$ohas the COMpONents egpect tar. Sincens/no = O[(w,7,)"!] andw,, > 1 we
Sji, then the tensos™ has the components;;. Note that the can neglect the fifth term, which is the term proportionajp
terms proportional tay, 71 and, in Eq. (1) describe viscous i, the expression fok - S in comparison with the first term,
dissipation, while the terms proportionalijg andr, are non-  yhich is the term proportional tg,. However, the quantities
dissipative and describe wave dispersion related to the finite ign S,,V -S,, andV - S; contain the second order derivatives
gyroradius. For the first viscosity coefficiens the following \yith respect tar. This fact implies that the contribution of the
approximate expression is valid second, third, and fourth terms, which are terms proportional
to 11, n2, andns respectively, in the expression for the viscous
force can be of the order or even larger than the contribution of
wherep andT are the density and temperature, is the proton the first term in spite thaj,, 7., andzs are much smaller than
massk ; the Boltzmann constant, the proton collisional time, 7. In what follows we retain only terms containing the second
and the subscript ‘0’ indicates an equilibrium quantity. For tygrder derivatives with respect toin expressions fol - Sy,
ical conditions in the solar corong ~ 5 x 1072 kgem~!s~! V -S,, andV - Sz, and rewrite them in the simplified form
(see, e.g., Hollweg 1985). For the upper chromosphere the cor- Rv  Pw 9w 92u

No = mglp()kBﬂ)Tp ) 8)

responding estimate i) ~ 2 x 10~ kgm~'s~!. The other V-S; = Wﬁbﬁ’ V-Sy = bﬁ? V-S3 = eyﬁ,(ll)
viscosity coefficients depend on the quantityr,, wherew,, is v N _ v v
the proton gyrofrequency. When,r, > 1 these coefficients Wheree, is the unit vector in thg-direction.

) , given by (see Braginskii 1965)
m = g (WpTp) Mo, M2 = 4m, 9) BT,

q = —HHb b-VI"+ = —

1 —-1 BO dx

N3 = 5(WpTp) ™ Mo, M4 = 213. (10) B dT.
— K {VT/ ~b <b~VT’ + ;d“ﬂ

Since the first term in Eq. (1) determined by Egs. (2) and (7) 0 ar
conta?ns the term proportional %G - v, we cal! the yiscosity o albx VT — i@(em y B’)} 7 (12)
described by this term ‘the compressional viscosity’. In spite By dx

eree, isthe unitvector inthe-direction.B = (B,, B, B,)

e magnetic field, and the prime indicates the Eulerian pertur-
ftion ofa quantity. In what follows we call the thermal conduc-
ﬁity described by the first and the second term of this expres-
on ‘the parallel thermal conductivity’ and ‘the perpendicular
Rermal conductivity’, respectively. Once again the terms pro-
portional tox andx . in Eq. (12) describe dissipation, while the
term proportional toz, is non-dissipative and describes wave

dispersion related to the finite electron gyroradius.
The coefficients is given by

that this name does not completely reflect the physical natur
the first term, we use it for the sake of brevity. Similarly, we c%ﬁ‘(
the viscosity described by the sum of the second and third ter
in Eg. (1) ‘the shear viscosity’. Resonant absorption of the w
energy in Alf\en resonant layer in cold viscous plasmas wit
the viscosity described by the full Braginskii's expression wa
numerically studied by Eg&lyi & Goossens (1995) and Ofman
et al. (1994b).

For typical coronal conditions, 7, is of the ordei 0° — 106,
and itis of the ordet0? — 102 for typical conditions in the upper
chromosphere, so thatthe firsttermin Eq. (1) is much larger than
the other four terms. This seemsto imply thatalltermsinEq. (1)  3pok%Tp7e
can be neglected in comparison with the first one. However tfit ~ W
is not completely correct. In what follows we consider magnetic ) . ) _
plasma configurations where all equilibrium quantities depeH‘@ere 7 is the electron collisional time andh. is the
onz only in the Cartesian coordinatesy, z. We assume that the © ictron_Smass._lFor typical coronal conditiorg ~ 5 x
equilibrium magnetic field is perpendicular to thedirection 10" ms™" kg K™ The corresponding estimate for the upper

and we adopt a coordinate system with thaxis parallel to Chfomosphere is; ~ 0.2 ms=*kgK~". In strongly mag-
this field. Hence is the unit vector in the-direction. The aim Netised plasmas the coefficients and«, are given by the
of the present paper is to study the damping of surface wafdProximate expressions

propagating along an inhomogeneous slab of plasma. We shall 25 25|
see that the ideal resonant position can be present in the sfab.™ W’ KA

(13)

(14)

= b
3WeTe
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wherew, is the electron gyrofrequency. Since for typical coro- With the aid of Egs. (1), (2), (7), (9)-(11), (15), and (18) the
nal conditionsv,. 7. is of the orde 07, and it is of the ordet0? linear equations of viscous resistive thermal conductive MHD
inthe upper chromosphere, the coefficientsandx , are much can be written as

smaller thans. The dissipative term in the energy equation reg,/ dpo

lated to thermal conductivity is proportional¥o- g. The terms 7, +poV v+ Y T 0, (20)
proportional tor andr, in the expression fok - g contain

only the first order derivatives with respectitpwhile the term v - 1 , Bl dBy

proportional tor | contains the second order derivatives with° 5; — —VE ;(BO V)B' + e

respect tor. These facts enable us to neglect the term propor- 2 92u

tional tor,, in comparison with the term proportionaltg and ~ + 70b(b- VQ) +m 5 (v + 3bw) + me, 5, (21)
retain only the part containing the second order derivatives with . 5
i i i 0B dB 0°B
respect tar in the expression for_the term propornonalfig. —(By-V)v—u 0 _B,V-v+ A - (22)
As a result we arrive at the simplified expression ot or
B! dTy 0T’ o' d 9271’
V.g=-b-V b-VT' +==2— )| - . (15) 9P . o _ (. _ gL
q [’ﬂ < + By dx )] k1 o2 (15) ot + YpoV v +u dr ('Y DKy 02
Inthe on.e—flluid approxima}tion the linear g.eneralised Ohm’s + R(y—1)b-V (b VT 4 Bg/cho> ’ (23)
law for fully ionised plasmas is (see, e.g., Priest 1982) By dx
r_ / / / T/
E = UXBO+En0n7 (16) pizpi_i_? (24)
where the non-ideal terms are given by Po p.o 0 ) ) ) .
. Here is the adiabatic exponent and the Eulerian perturbation
E. = J 4 mp (j’ x Bo+ jo x B — %Vp’) . (17) of the total pressure modified by viscosity,, is given by
o €po - B 1
iy Bog gy
HereE is the electrical fieldj the density of the electrical cur-P =p L (b-B') + 3 Q. (25)
rent,p the pressure;, the elementary charge, andhe electrical We look for solutions to the set of Egs. (20)—(25) that are

conductivity. The firsF a_n(_j second term on the Ieﬂ—haqd side é’lfgenmodes. The time dependence of these solutions is given
Eq.. (17) describe res!stlwty and the Hall effgct, respectlvely.. FBU the factorexp(—iwt) with complexw. Since the equilibrium
typical chromospheric and coronal conditions these non-id antities depend anonly, we can Fourier-analyse the pertur-

effects are small in comparison with non-ideal effects due £Qtions and take them proportionaktep[i(k,y + k.z)]. Then
viscosity and thermal conductivity (see, e.g., the discussionm rewrite Eqs. (20)—(24) as Y =

Ruderman et al. 1996). However, once again this conclusion is

only valid when the.spatiall deri_vatives of the perturbations AL — pok - vy + id(Pou) —0, (26)
of the same order in all directions. The non-ideal effects are dx
represented in the induction equation by the t&fnx Ei}m}. dP'  By(k-b) , . 0%
Similarly to the cases of viscosity and thermal conductivity wepou = —i—-— — TB;C timg s, (27)
retain only terms containing the second derivatives with respect
to x in the expression for this quantity and arrive at . By(k-b) ., ibdBy
823/ wp()vpl = kP - pl 7EBI
U (18) . " 2
u
— no(k - b)bQ + i —— (vp1 + 3bw) + inse,—, (28
where\ = (uo) ! is the coefficient of magnetic diffusion and ol - B)bQ it 3 (e ) ¥imey gz, (28)
1 is the magnetic permeability of vacuum. When deriving this , d’B.,
equation we have used Ampere’s [&Wx B = 5. Note that Bz = —Bo(k - bu +ir=2%, (29)
expression (18) does not contain terms describing the Hall ef-
fect. WB;;I = By[b(k - vp1) — (k- b)vp]
i d d’B},
2.2. Derivation of equations far and P’ = b (Bou) +id—5~, (30)
The equilibrium quantities satisfy the equation of the total pres- du d
sure balance and the Clapeyron equation wp' +vpo {de — (k- vpl)} + iu%
B2 2 ‘
po+ 5, =const, po= L (9 __ kb {Z(k B ot — posl) + 2222 4 (m)]
H My v—1 Po By dz \ po
The equilibrium quantities vary in the laypr| < a, while they iyxy  d? , , 31
take constant values for < —a andz > a. po(y — 1) @(pop —Pop)- (31)
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In these equations = (0, k,, k), and we have introduced theln these equations
components of the velocity,; = (0,v,w) and the Eulerian )

perturbation of the magnetic fielB), = (0, B, B.), thatare A =w* —wi, C=w’=w?, D=w'—(c§+v3)k*C,(43)
parallel to theyz-plane. The quantity has the form the squares of the AlBn and slow frequencies are given by

. . du
Q:3z(k~b)(b-vp1)—zk-vp1—£. (32) W =0k b)?, =2k b)2 (44)
The coefficientsy andy . are given by and the squares of the Alw, sound, and cusp velocities are
determined b
~my(y = 1)k _my(y = 1)%y neavy
2vkBpo 2vkBpo o2 B 2 _ P o C5U4 (45)
The effect of viscosity in Egs. (25)—(31) is characterised bf‘ poo 0 po T T vy
the Reynolds numbers o ) -
] ] o We use Egs. (38)—(42) to eliminate all variables bund P’
RO _ POl p(1) _ POIYL - p(3) _ Polwl 34) from Egs. (25)-(31) and obtain
€ n()kQ 9 € nlkg ) € 773,/€2 ( ) )
L : dP’"  ipoA wq\ Pu
The effect of thermal conductivity is characterised by the pat-—— = ——u + | n + poA—5 | =, (46)
allel and perpendicular Pecklet numbers dz w w? ) dz
[ |wl i |w] 35 dBu . kw(+03)Cd%u . du wD -,
= , = . — iy —— 4 jAD— = —— P (47
€y k? € xLk? (35) Yz B 00 dz? e dx 00 (“47)
The effect of resistivity is characterised by the magnetg, . e
Reynolds number
2, .3 A2
cgw” A MW r 2, 2 2422
w a = — — — |k“(cs +vy)°C
Rm = % (36) “TD poD [k (es + %)
. 2A — 03w?) (3R A + v3w?)(k - b)?
The dissipative coefficients dependorso that we choose the + E\CSQ vaw’)Bes A+ vaw)( ) ]
i v
rep())resentatlve values for them. In what follows we assume that_ TB [ws _ C(C?s + U%)(wél + D)(k - 5)2} , (48)
RY>1, Pl>1. (37)
Since for typical conditions in the upper chromosphere afd = (c& +v3)C (49)
coronaR(el), Rff), Ry > Rg)) and P2 > P(‘f', conditions CwA o Lo 212 9 o 2
(37) imply that the dissipative effects are weak. Consequently, D | 3pg [w Ses(k - b) } +xwes(k - b)" o

when calculating the dissipative terms in Egs. (25)—(31), which i
are terms proportional tgy, 71, 73, X X, and\, we can use Note that we have neglected small terms proportional to prod-

results obtained on the basis of ideal MHD. As a result we arrit&tS Of dissipative coefficients when deriving Eq. (47).
at the approximate equations The set of Egs. (46) and (47) farand P’ is similar to that

used by Ruderman & Goossens (1996) for studying driven slow

0= _é[wz —3¢2(k - b)?] CLU’ (38) resonant waves in plasmas with the compressional viscosity and
D dx parallel thermal conductivity, i.e., in the case where all dissipa-

tive coefficients but), andx are zero (see their Egs. (24) and

2 (30)). If we taken; = 13 = y. = A = 0 then Eq. (46) co-

d .
5 (v +3bw) = 55 [blk - b)(w?0% — 3c34)

dx? incides with Eq. (24) of Ruderman & Goossens (1996), while
) 9y d3u Eq. (47) differs from their Eq. (30) in that Eq. (30) contains an
— k(cs + “A)C]ﬁv (39)  additional term proportional tdc% /dz in its right-hand side.
. ) This difference is due to an erroneous expression for the heat
d°B; _ Bo(k - b) d’u (40) flux g used by Ruderman & Goossens (1996) (see their Eq. (2)).
dz? w dx?’ This expression misses the term proportionalfp/dz. Fortu-
LB, B, u nately, intheir analysjs Rudgrman & Gopssens (1996) neglected
dx;’ = E[( % +03)C(k-b)k — w4b]@’ (41) the erroneous term in the right-hand side of their Eq. (30) be-

cause it was small in comparison to the other term. Hence, the
error in the linear expression for the heat flgxlid not affect

i(k-b) (pop’ — pop’) + poB; d (po) the results obtained by Ruderman & Goossens (1996).
By dz \ po In the next section the set of Egs. (46) and (47) is used to
(v = 1)(k - b)wpoct A du derive the dispersion equation for the surface waves propagating

= ~D dz (42)  on finite-thickness magnetic interfaces.
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3. Derivation of dispersion equation for weakly damped side of Eq. (46), which is the dissipative term, in comparison
surface waves when compressional viscosity and parallelwith the first term.

thermal conductivity are strong Now we neglect the first and second terms on the left-hand
: D ,
In this section we consider the case where the compressio?ll%f; t%ffti'a(ii?) and eliminatg” from the set of Eqs. (46) and
viscosity and parallel thermal conductivity everywhere domi-

nate all other dissipative processes, so that all dissipative termispoA® du Au (53)
but the terms proportional tgy andy in Eq. (47) can be ne- dz D dx Pos34-

glected. We conventionally refer to this case as the case Wherg ratio of the right-hand side of this equation to the left-
the compressional viscosity and parallel thermal conductivifgnd side is of the ordérk)? < 1. In what follows we only

are strong. retain the terms of the ordeik, 1/Rf€0), andl/P”, while we
neglect smaller terms. In particular, we neglect the right-hand
3.1. Solutions in homogeneous regions side of Eq. (53) in comparison with the left-hand side. Then it

In this subsection we obtain the solutions to the set of Egs. (@)sé;agggrward to obtain the following approximate solution

and (47) in the regions < —a andz > a, where the equilib-
rium quantities are constant. In these regions there are no char- v D(z)dz
acteristic spatial scales except the wavelength. This implies tHat po(T)A(Z)2(Z)’

there are no large spatial gradients and, in accordance with the Wi bit tant. The | limit of int i
discussion in Sect. 2.1, the first and second terms on the | 1erelVis an arbitrary constant. 1he lower imit otintegration

hand side of Eq. (47) can be neglected in comparison with iy Eq. (54) is arbitrary, so that we do not show it explicitly. Now

third term, and the second term on the right-hand side of Eq. (A%iollows from Eq. (47) that

can be also neglected. Then we eliminBtdrom Egs. (46) and 2 W

(54)

(47) to arrive at T (55)
d?u ) so that in the long-wavelength approximation the Eulerian per-
de2 Pu=0, (50)  turbation of the total pressure modified by viscosi®y, does

) ) ) . hotvary across the inhomogeneous layer.
wherel™ = —D/F . The solution to Eq.(S0) in the region  a¢ the houndary of the inhomogeneous layer determined
¢ < —a has to vanish as — —oo, while the solution in the 1y, e equations: = +a the quantities: and P have to be
regionz > a has to vanish ag — oc. The solutions satisfying ¢ontinyous. It follows from the condition of continuity 6t

these conditions are and Egs. (52) and (55) that
up = U1, g = Upe 127, 51 WT wr

! ! 2 2 1) U= — Al et Uy = A2 e, (56)
whereU; andU, are arbitrary constant®(T; ») > 0, % indi- po141 po2£i2

cates the real part of a quantity, and subscripts ‘1’ and ‘2’ reflow we use the condition of continuity efand Egs. (51), (54),
to quantities atr < —a andx > a, respectively. The solutions and (56) to obtain

/ / H H .
for P{ and P; follow immediately from Eq. (46): r, Ty /a D(x) dx

P = Mefw P = _MG—FM. (52) porAr  po2Aa _a Po(2)A(2)®(2)
! wF1 ’ 2 LUFQ

(57)

This is the dispersion equation which determines the depen-
dence ofu onk. In the next sections we find the solution to this
equation.

In what follows we restrict our analysis to the long wavelength

approximation and assume thdt < 1. In addition we assume 4. Solving the dispersion equation by perturbation method
ad hocthat the first and second terms on the left-hand side of

Eq. (47) can be neglected in comparison with the third terfVe use the_ regular perturba_tion method to find the solutior_1 to
This ad hocassumption will be discussed in Sect. 4 where V\ng dispersion Eq. (57). In this method we look for the solution
obtain the solution to the dispersion equation. In Sect. 5 we sHaIthe form w = & + ', where '] < |w|.
consider the case where this assumption is not valid.

In what follows we consider solutions to the set of Egs. (4@) 1. The first order approximation
and (47) that possess the slow resonant position in the approxi- o I
mation ofideal plasmas. In the vicinity of the ideal slow resonaf{en calculatings we neglect terms of the ordét *, Pe
position gradients of perturbations are large @he 0, so that andak_ indispersion Eq. (57). As aresult we obtain the following
the dissipative terms on the right-hand side of Eq. (47) are ifgduation fow:
portant. However, in this vicinity the quantity is not smallat 1, Dy
all, so that we can neglect the second term on the nght-ham + poads

3.2. Solution in the inhomogeneous region

0. (58)
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Eq. (58) is the dispersion equation for surface waves on a tlnequality (65) can be satisfied only when
magnetic discontinuity in an ideal plasma. It is straightforwaréj var (67)

to show by means of squaring that Eq. (58) is equivalent to thjéz, ) . o
set of equation while inequality (66) can be satisfied only when

9 9 min(csy, va2) > cgo. (68)

2 2 2 Alcl 2 2 2 A202 . . . .
po1(cs1 + var) = po2(Cs + viaz) ; (59) Roberts (1981) considered a non-magnetic plasma in the region
D, D, ) o>

x < —a (va; = 0) and called solutions satisfying Eqgs. (65)
and the two inequalities and (66) slow and fast surface waves, respectively. We gener-

alise Roberts’ definition and use the same names for the two
C1D; <0, A1A; <0, (60)

types of surface waves in the general case wheie= 0. In

what follows we assume that inequality (67) is satisfied and con-

o anda is assumed to be real. sider only the slow surface waves. A graphical investigation of
Eqg. (61) shows that under conditions (63) and (67) Eq. (61) has

It follows from the second inequality (60) that = 0 at a . o : 4
positionz — ., called the Alfén singularity, inside the in- gxactly one solution that lies in the interval determined by (65),

homogeneous layer, so that the integral in the right-hand side: there is exactly one solution to Eg. (58) that corresponds to
of Eq. (57) is divergent. However, when the wave propagat@?low §urface wave.'Thie consideration of symmetry enables us
along the equilibrium magnetic field) = A(w? — c3k?) and 10 restrict t2he ar;alysys © > 0.

the Alfvén singularity is not present in Eq. (57). Inwhatfollows ¢ = (€5 +v4)C in an ideal plasmag, = x = 0) and the

we only consider waves propagating along the equilibrium ma{alegfal on the right-hand side of Eq. (57) is singular at the slow

where the quantitied; », C; 2, andD; » are calculated ab =

netic field. Then Eq. (59) is reduced to resonant position. whereC' = 0. This position is determined
. . by
P(Q)l(cgl + U,241)(‘D2 - 0,241k/’2>(‘*72 - CQleQ) % = c%(xc)kQ. (69)

(@% — ¢, k?)

Sincecrm k? < ©% < epok? there is at least one solution to
2 2 2 —2 2 2\ (2 2 2
_ Po2(Cop £ 0) (07 — v3k7) (O — c7pk”)

(61) Ea. (69). In what follows we assume that(z) is a monotonic

(@2 = c&yhk?) function, so that there is exactly one resonant position.
We can assume without loss of generality that < v4-. Then
inequalities (60) reduce to 4.2. The second order approximation
03k < @ < v%ok?, Ak < @ < kP (62) In the second order approximation we calculateIn accor-

dance with the general rule we have to substituter « and
These inequalities can be simultaneously satisfied onlysif> taker = x = 0 when calculating the integral in the right-hand
va1. Hence surface waves can propagate along the equilibrigide of dispersion Eq. (57). However, in this case the integrand is
magnetic field only if singular at the slow resonant position= x.. Hence we have to
retain terms proportional t@, x|, andw’ in expression (49) for
VA1 < Cs1. (63) @ inthe dissipative layer that embraces the resonant position.

. oo )
In what follows we assume that inequality (63) is satisfied. Th%ncei“” | < |w] we use the approximate formula
is a very important inequality. It, in particular, shows that sloW = C' + 2ww’. (70)

surface waves cannot propagate along the magnetic field in Iq@ywhat follows we use the rule that a quantity with the bar is
beta plasmas. Since the coronal plasma s a low-beta plasmagii@ined from the same quantity without the bar by substituting
results that will be obtained in what follows are only applicable for w. For large values ok and P! the thickness of the

. e e

to the upper chromosphere, but they are not applicable to ﬁ]gsipative layer is very small. This enables us to use the Taylor
corona. expansion for the quantity in the vicinity of the resonant posi-

. ll)t fO”gwsr:_ror:n Eq. (59) and the first inequality (60) thag;,, 1\ 1o retain only the first non-zero term in this expansion.
2Dy < 0, which gives As a result we obtain

—2 2 12 _ 9

We can substitutes for w when calculating the second term
in expression (49) fo in the vicinity of the ideal resonant
position. Then with the aid of Egs. (70) and (71) we arrive at

This inequality is satisfied if either* > c3,k? orw? < c,k?.
The first inequality can be satisfied onlyeifs < v 5.
Summarising we state thaf has to satisfy either

041 k? < 0% < min(ck k2, cak?), (65) the approximate expression

or ® = (& +vY)[A(x — x.) + 20w]
—3
w

— 2 .2
max (v, k?, ci,k?) < @? < min(cg k?, vik?). (66) — i@ | 2(cs +va)va - KR | (72)
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Herew,. andw/ are the real and imaginary partof, v = —w, We use this result and the dispersion equation of the first order

is the wave damping decrement, and the total parallel Reynolgsgoroximation (58) to get from Eq. (57) in the second order

numberR) is given by approximation
1 3cZ 4+ 202)2 L + 3 _

== ( S (Aa)) + = (73) Va="Tn+ 1+ (79)
I 3cgvy Re cPe

herey,, v, and~, are the contributions to the wave damping

All equilibrium quantities in Egs. (72) and (73) are calculated %‘ecrement due to viscosity, thermal conductivity and resonant

x = .. The thickness of the dissipative laygris determined : : e .
by the condition that the real and imaginary partsboére of absorption, respectively. These quantities are given by

the same order. This condition leads to 1 { No2(@? — 3¢, k?)?
5 — 2074 \ 5 5 w* (74) 7 6H po2(cBy + v35) (@2 — cZ,k?)Co
” silar) T RAIR (¢ + 03 no1 (& — 3¢, k%)
<  poz(cEy 4+ 0% @2 — &, k2)C | (80)
whered| is the thickness of the slow dissipative layer in the 021%s1 T PAL S1 !
steady state of driven resonant oscillations (i.e., whénreal,
see Ruderman & Goossens 1996). Once again all equilibrium_ 02k? X\|2C%2 X\|102T1
quantities in Eq. (74) are calculatedrat= ... In this section we Y 02, Co(@? — 2, k?) 03,01 (0? — &, k?) |
assume that; > 0, whereas the casg < 0 will be considered (81)
in the next section.

Following Sakurai et al. (1991) and Goossens et al. (1995)  7pg; A;&° 82
we assume that there is a quantifysuch that| < s. < aand = HT|Alpocv’ k2 (82)
the Taylor expansion (71) is valid in the interyal — s., z. +
sc]. Then we use Egs. (72) and (74) to rewrite the integral ayhere
the right-hand side of Eq. (57) as - ~

i 9 9.(57) H- i B ,(6%1 — 0%, )k? B f‘fi_ 20%2k202 . (83)
/ D(l‘) du Cy Al(@z — C%1k2) AQOQ(LDQ — 62521412)
po(@)A(2)®

X
To—se ( 2 D(x) dz It is straightforward to show that, > 0, v,, > 0 and~, > 0.
= ( + / > 5 5 _ The quantitiesy, and~, describe the effect of viscosity and
zetse) Po(@)[cs(2) + vy (2)]A(z)C(2) thermal conductivity in the outer regions determined by the con-
N Tetse dx 5 dition |z| > a. We see that viscosity and thermal conductivity
B pocvh k2 /I Az — z¢) + 20wl + 10| Al (75) in the outer regions and resonant absorption in the dissipative

where the subscript ‘c’ indicates that a quantity is calculat
atz = z.. We make the substitution — z. = §7 in the last

integral in this equation. The variabtés of the order one in the
dissipative layer whilee — x. & s. corresponds te — +oo. 4.3. Comparison of dissipative terms

In the f|rs_t t\.NO integrals on the rlght-hand side of Eq. (75) WI?et us now check thad hocassumption adopted in this section
take the limits, — +0. As a result we arrive at

that the first and second terms on the left-hand side of Eq. (47)

c—Se

é%yer lead to wave damping as can be anticipated from a physical
argumentation.

* Ddz _ /" Ddzx _ can be neglected in comparison with the third term. Since we
—a P0AD _a polck +0v3)AC only consider waves propagating along the equilibrium mag-
ot oo dr netic field ¢, = 0), we have to compare the firstand third terms
- ———P - . (76) onl from the ideal s ition th
pocvi k2 |- oo AT 420wl /6 + A only. Far away from the ideal slow resonant position there are

oo o . no large gradients and the terms describing the compressional
HereP indicates the principal Cauchy part of an integral. Weis qsity and parallel thermal conductivity, which are terms pro-

use the symbol for the first integral in Eq. (76) because 0f,,njona] toy, andy;;, dominate the other dissipative terms in
the singularity in the integrand at = x., and in the second Eq. (47). Hence, we have to compare the terms on the left-hand
integral because it diverges logarithmicallylas— oc. Taking - gjge of this equation in the dissipative layer only.

Into account that, in acco_rdance with our assumpigns; 0 it It is straightforward to obtain the following approximate
is straightforward to obtain expression for the quantity valid in the dissipative layer:

7?/Oo dr S 77) 2 .2 2 2 2
oo AT 1 200 /5 1 dA] JA] o_as S - T R R
2
With the use of this result we finally derive the approximate R Re Bmo cgle cshe
expression ) whereR | is the perpendicular total Reynolds number. All equi-
“ Ddx P @ Ddx it 78 librium quantities in Eq. (84) are calculatedhat= .. Since in
_a PAD _a po(ck +v3)AC T pocvy K2|A| (78) the dissipative layer the characteristic scale imtkdrection is
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d), and the real and imaginary parts®fre of the same order, ak Z 1073, and the damping decrement is mainly determined
it follows that by resonant absorption.
The corresponding estimates for the solar corona are quite
. (85) different and show that for realistic wave parameters the struc-
ture of the dissipative layer and the damping can be determined
by the compressional viscosity and parallel thermal conductiv-
ity. However, since we restricted our analysis to the finite beta
ad3u/dx? SHRH 86 plasma, we do not embark on a further discussion of this prob-
A®du/dz " K20FR. (80) " lem. . . .
In the next section we consider the case where the first term
We have seen in Sect. 4.1 that slow surface waves can prop-the left-hand side of Eq. (47) has to be retained.
agate along the equilibrium magnetic field only when< cg.
Therefore we assume tha¢, v4, andcr are of the same or-
der in the dissipative layer and use the estinmaig ~ ©?/a 5. Calculation of the wave damping for weak
and Eq. (74) to obtaikd; ~ ka/R;. Then it follows from compressional viscosity and parallel thermal
Eq. (86) that the first term on the left-hand side of Eq. (47) can conductivity

be neglected in comparison with the third term only when the . . . "
d P y In this section we consider the case where either condition (87)

3 2 2 472
adiu  Gciu _ crkd

Using these estimates we get

condition . e . .
is not satisfied ob; < 0. However, we first define more pre-
J ° (R))? cisely the meaning of the phrase ‘the compressional viscosity
Sil\ > (ak)?R, (87)  and parallel thermal conductivity are strong'. Let us fix all pa-

rameters involved in the problem and vary the quantijiesnd
is satisfied. For typical conditions in the upper chromosphere we in the dissipative layer only. Then the wave damping decre-
obtain the very crude estimaté§ ~ 10%k~1, R, ~ 10'%%~1, menty, remains fixed and the quantity varies. Whem, and

wherek is measured ikkm . Then condition (87) yields X are large enough in the dissipative layer we obbgin- SH,
3 condition (87) is satisfied and the analysis in Sects.3 and 4 is
ﬂ > 100 88) valid. Hence, the phrase ‘the compressional viscosity and par-
S” k2(ak)? allel thermal conductivity are strong’ exactly means that these

dissipative processes are strong enough to ensure that condition

Takingak < 0.1 we obtain that even for very short waves withg7) is satisfied. Let us now decreageandy in the dissipative

71 . . ~
k ~1km" " corresponding to the wave period smaller than I%%er. Then the ratié; /0 decreases anll| increases and, for

s the right-hand side of Eq. (88) is much larger than unity aagh 5| enough values of; andy;;, condition (87) is not satisfied.

this condition cannot be satisfied. Hence we conclude that s consideration gives sense to the phrase ‘the compressional
typical conditions in the upper chromosphere the shear V'ch%'cosity and parallel thermal conductivity are weak'.

ity, perpendicular thermal conductivity and resistivity dominate \wnijeitis clear from the analysis in the previous section that

in the dissipative layer in spite that they are negligible in cofie first term on the left-hand side of Eq. (47) has to be retained
parison with the compressional viscosity and parallel them\ﬁhenéu >0 and5‘|/5” is small, it seems at first sight that this

condu_ct|_V|ty far away from the d|35|pat|ve_lay_er. . tterm can be neglected wheép < 0 and|d)| ~ S”. However,
It is instructive to compare the contributions of differen . S
dissipative mechanisms in the wave damping decremenit we shall_see in what folloyvs_tha_t this is nqt correct. Whgr:
0 the thickness of the dissipative layer |i§|. However, the

will be shown in the next section that expression (79)~er L T : . .
: . - : S solution in the dissipative layer is strongly oscillatory with the
remains valid even when condition (87) is not satisfied. It | o . i S
Characteristic spatial scale in thedirection much smaller than

. : . _ —p—1

stralghtforwzi\rd to obtain the estimates + 7, = O(WRH ) || This characteristic spatial scale is determined by the first
andy, = O(wak), sothaty, /(v +7y) = O(akRy). Thus, the 1o on the left-hand side of Eq. (47).

damping decrement is mainly determined by resonant absorp-

tionwhenak R > 1, while itis mainly determined by dissipa- o - _
tion in the outer regions whemk R < 1. On the other hand, 5.1. Solution in the dissipative layer and connection formulae

2074/0|A| = O(vaR) /w), so thatwya/d)|Al = O(akR|) The concept of connection formulae was first introduced by
whenakR; > 1 and resonant absorption dominates, whilgakurai et al. (1991) and then further developed byéBjicet
20ya/0)|Al = O(1) when-, S 7, + 7 and either the dis- al. (1995), Erélyi (1997), Goossens et al. (1995) (see also the
sipation in the outer regions dominates or the two dissipatixeview by Goossens & Ruderman 1995). This concept turned
processes give contributions of the same order of magnitudet to be very useful in studying resonant MHD waves. It can
These estimates, together with Eq. (74), showdhat 0Ointhe be described as follows. Since in weakly dissipative plasmas
case where resonant absorption dominates over dissipationligsipative layers embracing ideal resonant positions are very
the outer regions. For typical conditions in the upper chromparrow, we can use the method of matched asymptotic expan-
sphereik R ~ 10*(ak)k™!, soakR > 1for k<1km *and sions. In accordance with this method we look for the solution
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inside and outside the dissipative layer separately. Since dissiphis result, in particular, implies thad’ is approximately con-
tion is only important in the dissipative layer we use ideal MHBtant in the dissipative layer. The approximate constancy of the
when looking for the outer solution. When we are not interestéatal pressure in the dissipative layer was first used for study-
in the inner solution, which is the solution in the dissipativang the resonant damping of surface waves on a finite-thickness
layer, we can consider the dissipative layer as a surface of digagnetic interface by Hollweg (1987a, b) and Hollweg & Yang
continuity. Then all we need from the solution in the dissipatiyd988). It was subsequently used by Hollweg (1988) and Saku-
layer are expressions for the jumps in the normal componentaf et al. (1991) for studying driven resonant MHD waves in
the velocity and in the perturbation of the total pressure acramse-dimensional planar and cylindrical equilibria. Goossens et
the dissipative layer. These jumps are given by the connectaln(1995) gave the rigorous mathematical derivation of the prop-
formulae. erty of perturbation of the total pressure to be constant in the
To derive the connection formulae we first note that, in adissipative layer for Alfén resonance, while Eeyi (1997)
cordance with Eg. (79), dissipation due to viscosity and theshowed it for slow resonance.
mal conductivity inside the slab containing the inhomogeneous Since far away from the dissipative layer the quanfity
plasma and outside the dissipative layer does not contributeends to the perturbation of the total pressiite given by
the wave damping. This conclusion is based on the analysisHq. (25) withr, = 0 and P’ is constant in the dissipative layer,
Sects. 3 and 4, which is only valid when condition (87) is satiste obtain for the jump i’ across the dissipative layer
fied. However, the conclusion itself is also valid when Conditiogy} —0, (92)
(87) is not satisfied. To show this we denote the contribution of o ) ] . ]
dissipationin the regiojx| < a and outside the dissipative layetVhere the square brackets indicate the jump in a quantity. This
as~,. The contribution of dissipation in the regions< —a S the first connection formula.

andz > a to the wave damping decrementdis + 7. It is Let us make the substitution of the independent variable
straightforward to_show tha;in / (%_4- V) ~ a_k, so thaty;, 1 20w, 5 e 1/3 -
can be neglected in comparison with-+ ~, . This fact enables 7 = T — T A ) 0T ivilAIRL

us to use ideal MHD to describe the plasma motion in the slab )
outside the dissipative layer. in Eq. (90_). Then .Wlth the use of Egs. (72), (84), and (91) we
Let us introduce the characteristic scale in thdirection €Write this equation as
in the dissipative layet,. In accordance with the analysis ind*u o o\ du k3 P 94
Sect. 4.3]4 = 0 when condition (87) is satisfied and, anyway 3 + (ZT Siena 5¢> dr — povh|AlT T (94)
la < a. Following Sect. 4.2 we adopt the assumption that thefg,is equation coincides with the corresponding equation ob-
is a quantitys. such thaty < s. < a and all coefficient func- yained by Tirry & Goossens (1996) when studying quasi-modes
tions in Egs. (46) and (47) can be approximated in the interygl one_dimensional axisymmetric equilibria in compressible
[tc = s¢,xc + 5] by the first non-zero terms of their Taylor,|aqmas (see their Eq. (8)). Using Eq. (11) of Tirry & Goossens

expansions in the vicinity of .. This assumption enables us t‘{1996) we can immediately give the solution to Eq. (94)
use expression (72) fdr and take all other coefficient functions

in Egs. (46) and (47) equal to their values:a . when solv- , _ deCE%P'G(T) + const (95)
ing these equations in the dissipative layer. In addition, since povh A ’
|'| < @, we substitutes for w. Eliminating P’ from the set . o 5 ;
of Egs. (46) and (47) and taking into account that= 0 we  G(7) = / exp(irrsignA) — 1 exp ( mor ) dr.
0

obtain r oL 3

d*u d _du wD w?\ d%u (96)
ar—r +i—®— = —iDu— —- (g + )\A) ——.(89

det  dx dx poA (771 PO ) da? (89) Note that this solution differs from that in Tirry & Goossens

Itis straightforward to show that the ratio of the last term on tH&996) by a constant. This solution also coincides with that ob-
right-hand side of this equation to the first term on the left-hat@ined by Ruderman et al. (1995) when studying the propagation
side is of the ordefkl,)? < (ak)? < 1, and the ratio of the first of surface waves on a finite-thickness magnetic interface in an
term on the right-hand side to the second term on the left-hanRgompressible plasma (see their Egs. (59) and (60)).

side is of the ordesk?l; < (ak)? < 1. These estimates enable ~ The jump in the quantity: is given by

us to neglect the right-hand side of Eq. (89) in comparison g — 1im {u(r) — u(—7)}. (97)
the left-hand side and reduce this equation to 700
3 It is straightforward to obtaifG] = 7isignA. With the use of
d°u . _du .
a—rs + 1P — = Uconst, (90) this result we get
dx3 dx o
wherelU,.n; is the constant of integration. Using Eq. (47) anrf _ kPP (98)
taking into account that all coefficient functions in Egs. (46) a povh A
(47) are calculated at = z. andw = & we obtain This is the second connection formula. Note that this formula
cicak? coincides with that obtained by Sakurai et al. (1991) andyid

D/
Uconst = P

pov? (91) (1997) in the case wherg = 0.
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5.2. Behaviour of the solutions in the dissipative layer

In this subsection we study how the solutions in the dissip )
tive layer depend on the parametgy/s . In addition to the
behaviour of thec-component of the velocity;, we also study
the behaviour of the-componentw, because, as we shall see |
in what follows, this is the dominant component of the velocit -A
in the dissipative layer. Note, that for the parallel propagatic .
(k, = 0)v = 0.Using Egs. (28)—(30), (95), and (96), and retair -1
ing only the largest terms we obtain the following approximat
expression fotw in the dissipative layer,

w =

ik2c3. P!
—m (1), (99)

5HT T3

F(r)= / exp <i7r signA — — — ) dr. (100)
0 (5J_ 3

Let us first consider the case where condition (87) is sati
fied. Itis straightforward to show with the use of the estimat
ké ~ ka/Rj and Eq. (93) that this condition is equivalent tc

3
theta

) > ¢.. With the use of the asymptotic formulae (A.2) anétig. 1.Dependence of the real (left panels) and imaginary (right panels)
(A.3) we obtain that the quantities and« are given by the parts ofu andw oné for A > 0. The upper and lower panels correspond

approximate expressions to u andw, respectively. The solid curves show the exact solution with
~ 0 = 5. and the rectangles show the asymptotic approximation. Note
k203TP’ 0 — isignA thatu andw are given in arbitrary units, however the same units are
w= poquA(SH 1462 (101)  ysed for the real and imaginary parts of a quantity.
- ) Now we proceed to the case whee< 0 and|d)| > d. .
w = el {arctan@ + L signA log(1 + 92)} We use Egs. (A.8) and (A.14) to obtain the asymptotic expres-
povi|Al sions
+ const, 102 9 3 5
(102) w - ik?c3. P’ € (104)
with pov4|Al6L | 1+ ieTsignA
1/4
0— ot 1 200w, 103 _ 77726 exp [3(6—1 + iTsignA)?’/Q}
T (;7” T =Tt A ) (103) 1+ ieT signA 3 ’

One can easily check that these expressions coincide with i35 P!
. . T

the corresponding expressions for the parallel and normal catn—
ponents of the velocity in the dissipative layer in a plasma with 31/ 2 2\3/4
strongly anisotropic viscosity and thermal conductivity obtained + (W2€3)1/4 exp <g6_3/2) _ (me3) 2 (1 4 €°12)
by Ruderman & Goossens (1996) for the driven problem (see 3 (1 + deT signA)3/2
their Egs. (34) and (40)). The real and imaginary parts afd 20, 1. 3/2
w given by the exact expressions (95) and (99)dgfé, = 5 X exp [5(6 +i7signA) } }’ (105)
are showninFig. 1 (solid lines). The rectangles show the asymp- ) ) . )
totic approximation given by formulae (101) and (102). We s&d€ Use these asymptotic expressions to obtain the estimate

3 1/2 [T i
that the asymptotic formulae are actually very accurate. NGt&w ~ *(91/191) /? <1, so that once agaim is the domi-
thatu/w ~ ké, < 1, sow is the dominant component of thehant component of the velocity. Itis straightforward to get, with
velocity in the”dissip,ative layer. the use of the asymptotic formula (105), thatat 0

When|d \5@ the behaviour of.andw is similarto thatfor W @ 14 2 —3/2
I ! e —— ~ —c/"exp | z€ , (106)
4| = 0. In accordance with Eq. (93) the characteristic thicknesgu: 91 3

of the dissipative layer i8, , which is proportional td%ll/?’. where wqy IS the value ofw far away from the dissipative

In Fig. 2 the real and imaginary parts@findw are shown for layer. Even for the very moderate vakue- ithisformula gives

4 = 0. This figure coincides with Figs. 1 and 2 in Goossens et/w..: ~ 150 a/d 1, o that the velocity in the dissipative layer
al. (1995). SinceF'(r) andG(7) are of orderl when|r| ~ 1 can reach huge values even when it is very small far away from
and|oy | < 6., we obtainu/w ~ ki, < 1, so thatw is once the dissipative layer. It is instructive to compare this estimate
again the dominant velocity component. with the similar estimate /wout ~ a/d valid for [0 | SOl

———*— 1< log(1 + ieT signA
AT )
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tau
3 8
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& 3 3 6
tau
-1
tau
b
0.5
r r — 0.8 1
-3 J b
tau
-8 Fig. 3.Dependence of the real (left panels) and imaginary (right panels)
-1.2 parts ofu andw on 7. The upper and lower panels correspond:to

Fig. 2.Dependence of the real (left panels) and imaginary (right pane?ﬁd w, respectively. The solid curves show the exact solution with

parts ofu andw on 7 for §; = 0 andA > 0. The upper and lower = .74% andNAt Th:t andd the reptangles E.TOW the.tas%mtpttr?tlc
panels correspond te and w, respectively. Note that and w are approximation. Note andw are given in arbitrary units, but the

given in arbitrary units, however the same units are used for the rggme units are used for the real and imaginary parts of a quantiy.

and imaginary parts of a quantity.
different derivation valid in this case and show that expression

(79) remains the same.
_ _ ) Dissipation is only important in the dissipative layer. There-

The real and imaginary parts ofandw given by exact ex- fore we can use Egs. (46) and (47) with all dissipative coeffi-
pressions (95) and (99) far = ; are shown in Fig.3 (solid cients equal to zero to describe the plasma motion outside the
lines). The rectangles show the asymptotic values given by f@fssipative layer. We use the connection formulae (92) and (98)
mulae (105) and (105). We see that the asymptotic formulgeconnect solutions to the left and the right of the dissipative
give a very good approximation far. Although the asymptotic layer.
approximation reproduces the main properties of the real and The analysis in Sect. 3 and, in particular, Eq. (55), is always
imaginary parts of. fairly well, it noticeably differs from the yajid in the regionz| < a outside the dissipative layer. Hence,
exact solution. If we recall how the asymptotic expressiona forps is constant to the left and the right to the dissipative layer.
were derived, this difference is not surprising at all. The asymgince, in accordance with connection formula (92)does not

totic expression (A.9) is accurate enough, but the asymptafigry across the dissipative layer, this quantity is constant in the

formulae (A.11) and (A.13) give not very good approximationghole regionz| < a.

for e = 1. For example, the difference between the left-hand |t foliows from Egs. (51), (54) and (55), and the continuity

side and the write-hand side of Eq. (A.11) is about 12% for thigngitions atr = +a thatu in the region|z| < a outside the

value ofe. It is worth to note that the dependencesuofind jssipative layer is given by

w on T have the form of wave packets with quasi-sinusoidal .

carrying waves. The width of the wave packets is of the order [ WP’ [©, Y(z)dz + Ure """, = <z,

|61, and the wavelength is of the ordef? /|§;)1/? < 6., "= o - (107)
) . . ) _1/2 —iwP’ [["Y(Z)dT 4+ Use™2, x>z,

which, according to Eq. (93), is proportional i, /~. Let us

recall that the characteristic thickness of the dissipative layeiy§ere

proportional toR "/ when|§;| < 5, . (@) = D(z)
The dependence af andw on 7 for different values ot ~ po(x)[c(z) + v (2)]A(z)C(z)

<(:an b;} found in Ruderman et al. (1995) and Tirry & Goosseﬁ;ﬁejump inu can be calculated as

1996).

[u] = Jimn fuze +€) = ulze — )}
5.3. Calculation of the wave damping Then we obtain from Eq. (107)

In case where eithe <4, or d) < 0 the derivation of ex- @ Ddx

_ al’y —al'y _ D/
pression (79) fory,; given in Sect. 4 is not valid. Here we give aul = Use Ure wP'P 1c-(108)

—a pO[C% + U,QA}
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On the other handk] is given by Eq. (98). Comparing Egs. (98)he expression fof.
and (108) and using Eq. (52) we arrive at 2mac[2¢4k? — (2 — 7)o
Ho(vi, —v3)(2¢% +7v%;)

(0?9 + ”,241)(‘*72 - 0%1/“2)(@2 - “,241]{2)
(c%k;? —2)3

Yr =

r r «  Dd k3
Lo 2 79/ w TR T (109)

po1d1  po2ds  J_q polcd +vA]JAC T povd|Alw 1/2

117
The ratio of the right-hand side of this equation to the left- (17

hand side is of the orderk, so that we can substitute for w E ical | | © and
in the right-hand side when calculatingwith the use of the i)r20ur nhgn'rl]e_rlca f_’xfi”}p esh we taI@eh < Re h an q
regular perturbation method. Then Eq. (109) coincides with thé2 — ¢s, Which s realistic for the upper chromosphere, an

dispersion Eq. (57) with the right-hand side given by Eq. (78}, ° 65/ 5 e follow Roberts d(1981? andada & Ballester o of
This implies that the wave damping decrements given by ) and assume that the dynamical pressure at one side o

the same Eq. (79) the inhomogeneous layer is much larger than the magnetic pres-
' ' sure, so that we can take; = 0 (nevertheless, the magnetic
field is assumed to be strong enough to cause anisotropy of

6. Wave damping in isothermal plasmas viscosity and thermal conductivity). Than= 0.717 kcg and
To further simplify the analysis and give numerical exampleswel _ 5 g Ry, T _ 6 akRy. (118)
consider the case where the equilibrium plasma is isotherma(f, T

sothatcg = const. In particularcg; = cg2 = cg. Now the first Using the same estimate as in Sect. 423, ~ 104%-1, and

rder roximation (61) of the dispersion ionisr i .
order approximation (61) of the dispersion equation is eductea ingk < 1 km~", we obtainy, > o+ 7 for ak < 103,

t . . X

° in complete agreement with the analysis in Sect. 4.3. For the
Ko + 2Kyck0%k? — 4K3ckk* = 0, (110) damping decrement; we have

where Ya = vr = 0.48 (ak)cgk = 0.67 (ak)w, (119)

4 2 9, 2 9 9 9 9 so the wave damping is independent of the dissipative coeffi-

Ky =4(y = Des +97s(ar + Vag) + 97010, (111) cients and completely determined by the parameter

(112) Let us now place our results in the context of the solar chro-
mosphere. Recent observations obtained during the SOHO mis-

(113) sion clearly show that small amplitude oscillations with periods
of a few minutes exist in the solar chromosphere (Carlson et

When deriving Eq. (110) we have used the condition of tot@l- 1997; Curdt & Heinzel 1998; Doyle et al. 1999; Gallagher

K2 = 4c§ + 20%(”,241 + 1)1242) + ’7(2 - 7)”?411}2123

_ 2,2 2 2 2
K3 = c5(vag + vaz) + 7041040

pressure balance (19), which can be re-written as et al. 1999; Judge et al. 1997). MDI observations (Schrijver
et al. 1997) indicate that the chromospheric network magnetic
po(x)[2¢% + yv% (x)] = const. (114) field is constantly evolving, which, in particular, leads to the

creation of tangential discontinuities in the overlying field. The
presence of tangential discontinuities gives the possibility that
N at least some of oscillations, observed in the chromosphere, are
K2 +4K,K3)Y/? - K. ;
<w) _ (K + IK 3) 2. (115) surface MHD waves. Now it is almost commonly accepted that
1 the lower internetwork chromosphere is heated by dissipation

k‘Cs
It can be checked that this root satisfies the inequalities (68).non-magnetic acoustic shocks (Carlson et al. 1997; Carlson
Whenwv 4, = 0 the expression (115) fap2 coincides with the & Stein 1997, Doyle et al. 1999). However in the network the

corresponding expression obtained by Roberts (1981) (seeffating required must be in excess of that provided by acoustic

The positive root of Eq. (110) is given by

Eqg. (29)). shocks (Gallagher et al. 1999). Damping of surface MHD waves
In what follows we assume that the dissipative coefficien¢&n be considered as an additional source of heating.
1m0/po andy are constant. Then the expressionssfpand-, To give a numerical exa_mple we consid_er the chromo-
reduce to sphere as an isothermal fully ionised plasma with a temperature
) ) v TR R Ty ~ 10* K, and a corresponding density scale hight 10° m
oy = J(0a, — ”Az), = X[/ €sw , (116) and sound speets ~ 10* m/s. In our analysis we have used
Réo) P,‘f| the local approximation and assumed that the magnetic inter-

face is planar and the equilibrium quantities are constant in the
outer regions. This local approximation is only valid when the
@(0,241 — 032) wave lengthez /k is much smaller than the density scale hight.
— _ _ ) . " . s g s
6HE?(c2 + v%,) (2 + v2,) (@2 — 2, k2) (@2 — 2k?) This condition can pe written @s> 107> m™", which corre
sponds to waves with periods smaller than 60 s. However, we
Let us assume that] is a linear function ofe. Then itis do not expect that the account of stratification would drastically
straightforward to calculate,., A, v 4. andpg1/po., @and obtain change our analysis. In addition, for horizontally propagating

where

J
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surface waves, e.g. waves on the magnetic canopy, the critetioé chromospherek 2| > 1, so the surface wave damping is
of applicability of the local approximation can be reduced. Theainly due to resonant absorption.
point is that the wave amplitude exponentially decreases with The behaviour of the velocity in the slow dissipative layer
the distance from the surface on the scale of the drdérwhich  has been studied. It has been shown that this behaviour is de-
is about 6 times smaller than the wave length. As a result wemined by the compressional viscosity and parallel thermal
obtain the restrictiok > 2 x 10~°m~!, which corresponds to conductivity when these two dissipative processes are strong
wave with periods smaller than 300 s. This discussion enab&®ugh. The characteristic spatial scale of the velocity variation
us to consider waves with the period equal to 3 min., whichis of the order of the thickness of the dissipative layer, which is
one of the most pronounced periods in the observations.  proportional toRr. In case where the compressional viscosity
So, let us consider waves with the period 3 min., whicind parallel thermal conductivity are relatively weak the veloc-
corresponds t& = 3.5 x 107% m~* and the wavelength ap- ity behaviour is determined by the shear velocity, perpendicular
proximately1800 km. We takeak = 0.1, so thata ~ 30 km. thermal conductivity, and resistivity. When these three dissipa-
In accordance with Eq. (119) we obtain for the characteristige processes are strong enough the characteristic scale of the
damping time of surface waveg ' ~ 7 min. We see that the velocity variation is of the order of the thickness of the dissi-
resonant absorption provides very efficient wave damping i”tbﬁtive layer, which is proportional @11/3. Here R, is the
chromosphere. perpendicular Reynolds number characterising dissipation due
to the shear viscosity, perpendicular thermal conductivity, and
resistivity. When these three dissipative processes are weak the
dependence of the velocity on the spatial coordinate normal to
the dissipative layer takes the form of a wavepacket. The width
In the present paper we have considered slow surface wa¥ehe wavepacket is proportional to the wave damping decre-
damping in plasmas with strongly anisotropic viscosity, thement~,, and the wavelength of the carrying waveR_of/ .
mal conductivity, and resistivity, as in the upper part of the solar The example for isothermal equilibrium state has been con-
chromosphere and in the solar corona. Far away from the diftered. The equilibrium state was taken to be non-magnetic at
sipative layer we neglected electrical resistivity and we onphe side of the inhomogeneous region. This example confirms
retained the first term in the Braginskii's expression for the Vighe conclusions obtained on the basis of the qualitative consid-
COSity tensor and for the heat flux. These are terms that deSC@b@tion of the genera| expression for the increment of the wave
the compressional viscosity and the parallel thermal conductiyamping that, for typical chromospheric conditions, the wave
ity. For typical coronal conditions the retained terms are mugfamping is mainly due to resonant absorption. For equilibrium
larger than other terms in the Braginskii's expressions. Hoyantities typical for the solar chromosphere and for the waves
ever, when studying the motion in the dissipative layer, we usggth the period 3 min. the characteristic damping time is 7 min.

the full BraginSkii,S eXpreSSionS for ViSCOSity and the heat ﬂlpqence, resonant absorption provides very efficient wave damp_
and took electrical resistivity into account. ing in the solar chromosphere.

The analysis has been restricted to waves propagating along
the equilibrium magnetic field. This condition removes the ideatknowledgementsA part of this work was carried out when MSR
Alfv én singularity which is otherwise present in the regiomas a guest at the Departament dsi¢a of the Universitat de les llles
where the equilibrium quantities are inhomogeneous. Slow sBelears. MSR acknowledges the financial support from UK PPARC.
face waves cannot propagate along the magnetic field in a Id#? and JLB wish to acknowledge the financial support from DGICYT
beta plasma, so our analysis is only applicable to the upp@gergrant PB96-0092. RE would like to thank Mendy for patient
chromosphere. The dispersion equation has been derived inGhgPuragement.
long-wavelength approximation and the decrement of the wave
damping has been calculated.. This dec;rement ha_s begn WriKﬁBendix A: asymptotic behaviour of F(r) and G()
as a sum of three terms. The first term is due to viscosity in the
two outer regions where the equilibrium quantities are constalitthis Appendix we study the asymptotic behaviour of the func-
The second term is due to thermal conductivity in the two outé@ns (1) andG(7) for two casesd) > 6, and—d > 4.
regions. The third term is due to resonant absorption relatd start with the case whede > ¢, and introduce the small
to the ideal slow resonant position that is present in the layegrametee = 6, /6. The second term in the exponent in ex-
with inhomogeneous equilibrium quantities. The qualitative a@ression (100) fo”(7) dominates over the third term when
gumentation shows that resonant absorption dominates overthe €~ '/2. Let us take any large quantity that is much smaller
viscous and thermal conductive damping when?; > 1, thanéfl_ﬂ, for example¢~1/2. Then we have the asymptotic
while the viscous and thermal conductive damping dominateX¥pression
over resonant absorption whek | < 1. We recall that is /s
the thlckne_ss of the inhomogeneous layers the wavenum- F(r) ~ / exp(iTr signl — 671r)d7,
ber, andR) is the parallel total Reynolds number characterising 0
dissipation due to the compressional viscosity and parallel ther- o0 o 1 1 3
mal conductivity. Estimates show that for typical conditions in + /6 eXp (”’" SignA — e — g7 ) dr. (A1)

—1/3

7. Conclusions
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Itis straightforward to show that the second integral on the right-
hand side of this expression is exponentially small (it is smaller
thanexp(—e~—*/3)). We can substitutec for the large upper Vs
limit e~1/3 in the first integral. As a result we obtain / /

Flr)~ — S A2 |
1 —deT signA v, ) 7,

To obtain the asymptotic expression for the functi®r) we —

can either use the same approach asF6r), or simply note 0 0 y

thatdG/dr = iF (1) signA and use expression (A.2). In both

ways we arrive at Fig. A.1. Contours of the steepest descentand~ in the complex
r-plane. The arrows on the contours show the directions of the steepest

G(7) ~ —log(1 — ieT signA), (A.3) descent, while arrows near the contours show the direction of integra-
tion.

where the fact thaf?(0) = 0 was used.
By using partial integration we can show thB{(7) ~ 9 3 \1/4
i~ !signA as|r| — oo. Integrating this asymptotic relationz, ~ < e > exp {§673/2(1 T i67)3/2] (A7)
we obtainG(7) ~ —log|7| as|r| — oo. Itis interesting to note 1 +der
that, although asymptotic formulae (A.2) and (A.3) are deriv%g llina th he si
) \ A
under the assumptign| < ¢~ 1, they actually give the correct ecalling the dependence 51r) on the signs of andA we

asymptotic behaviour foF'(7) andG(r) as|r| — co. More- finally arrive at

over, Eg. (A.3) correctly reproduces the jump@fr) across F(r)~— € i (A.8)
the dissipative layer (see Sect.5.1). 1+ ersignA

Let us now obtain the asymptotic expressionfgr) in the e 1/4 2 32 o 3o
cased < 0and|d| > 4,. We introduce the small parameter + (1+ze¢mgnA> exp {gﬁ (1 + deTsignA) }

ase = —0, /J and rewrite expression (100) as

- It is instructive to compare the first and the second term on
F(r) = 172 / exple=?/2h(r)] dr (a.4) the right-hand side of Eq. (A8). Whear| < 3172 R(1 +

0 ieTsignA)3/2 > 0, the first term is exponentially small in
. o 1.3 comparison with the second term, i.e. the first term is sub-
with h(r)<: (ieT sign + 1)r — 57°. In what follows we assume dominant, and the asymptotic behaviour B{7) is given
thate|r| S 1. . by the second term. On the other hand, wherj > 3!/2,

To obtain the asymptotics df () for ¢ — +0 we use the (1 4 jer signA)?/2 < 0, the second term is subdominant, and
method of steepest descent (see, e.g., Nayfeh 1981; Bendgh&asymptotic behaviour &#(r) is given by the first term. This
Orszg 1987). Since the change of sign of either A causes gychange of identities of the dominant and subdominant terms
the substitution of’(7) by its complex conjugate, we assumes calied the Stokes phenomenon (see, e.g., Bender 8&a@rsz
in what follows thatr > 0 andA > 0. The functionhi(r) has 1987).
the gtatllo/r;ary pointy in the complexr-plane given byr =  The asymptotic formula (A.8) has been derived under the
(1-+ier) /=, where we take a branch of the square root satisfyiggsumption thatr| S 1. However, it is interesting to note that
the conditiorii(ro) > 0.InFig. A.1, the left panel, we show theit correctly reproduces the behaviour of the functiBr) as
contours of steepest descent that pass through the points 7| — o0.
andr = 0. Slnpe the mt_egrand in _the expression (A.4) is an' 1q obtain the asymptotic expression &fr) we once again
analytical function ofr, this expression can be rewritten as  se the relationdG/dr = iF(r) signA andG(0) = 0 and, as

aresult, arrive at
dPF(r =L+ 1= (/ +/ ) exple3/2h(r)] dr, (A.5)
Y1 Y2 G(T)

where the integration along the contours of the steepest desceﬁgti1 14+ ier sionA) + i sionA T e 1/4
~1 and~y, is carried out in the direction shown by arrows near og(1 + deT signA) + i sign T ama
these contours in Fig. A.1. 9
According to the method of the steepest descent the asynic P |3
p_toﬂcs of t_he_ f|_rst |_ntegr§1|_|n_ Eq. (A.5) s given by the Co.nmbu\'Nith the use of obvious transforms of the integration variable,
tion of the infinitesimal vicinity of- = 0, and the asymptotics of in a few steps we arrive at
the second integral by the infinitesimal vicinity o= ry. The
calculation of these contributions is straightforward and yiel@s(r) ~ —log(1 + ier signA) — §W1/26—3/4 (A.10)
the asymptotic expressions

1 1
- 2 _-3/2,2 3/2 2 _-3/2,3.2
I~ —2(1 +ier) L. (AB) < [/0 exp(ge 122 )dz—ro /0 exp (56 12p32 )dz} ,

(e +i7 signA)?’/Q} d7. (A.9)
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where now, = (1+ier signA)'/2. Using integration by parts Carlsson M., Judge P.G., Wilhelm K., 1997, ApJ 486, L63

we immediately obtain Curdt W., Heinzel P, 1998, ApJ 503, L95
1 Davila J.M., 1987, ApJ 317, 514
/ exp (%6_3/222)@ ~ 253/2 exp (%6_3/2). (A.11) Doylsi\;.(;.é;an den Oord G.H.J., O'Shea E., Banerjee D., 1999, A&A
O ’

i ) . Erdélyi R., 1997, Solar Phys. 171, 49
To calculate the asymptotics of the second integral on the rightwelyi R., Goossens M., 1995, A&A 294, 575
hand side of Eq. (A.11) we once again use the method of theklyi R., Goossens M., Ruderman M.S., 1995, Solar Phys. 161, 123
steepest descent. In Fig. A.1, the right panel, the contoursFafdra A., Brekke P., Harrison R.A., et al., 1997, Solar Phys. 175, 487
the steepest descent andv, passing through = 0 andz = Gallagher P.T., Philips K.J.H., Harra-Murnion L.K., Baudin F., Keenan
1 respectively in the complex-plane are shown. The second  F.P., 1999, A&A 348, 251 _
integral in the square brackets in Eq. (A.11) can be written a§80ssens M., 1991, In: Priest E.R., Hood A.W. (eds.) Advances in So-
sum of two integrals along the contouys and~., where the lar System Magnetohydrodynamics. Cambridge University Press,

. S : . : : Cambridge, p. 135
integration is carried out in the direction shown by the arrow : _
neary; andy,. The asymptotic behaviour of the integral alonggossenS M., Ruderman M.S., 1995, Physica Scripta T60, 171

) : L . ossens M., Ruderman M.S., Hollweg J.V., 1995, Solar Phys. 157,
~1 is determined by an infinitesimal vicinity af = 0, and the 75

integral alongy, by the infinitesimal vicinity ofz = 1. The Gorgon B.E., Hollweg J.V., 1983, ApJ 266, 373
straightforward calculation gives Hollweg J.V., 1985, J. Geophys. Res. 90, 7620
. \3/2 Hollweg J.V., 1987a, ApJ 312, 880
2 _-3/2.3 2)d ~ ie3/4(3)1/2 "o A12 Hollweg J.V., 1987b, ApJ 320, 875
/MeXp (36 roz” )dz = ie7 (37) Aro2) (A12) ollweg V.. 1988, ApJ 335, 1005
Hollweg J.V., 1991, In: Ulmschneider P., Priest E.R., Rosner R. (eds.)
Mechanisms of Chromospheric and Coronal Heating. Springer-

9 3e3/4 [\ 9 _ Verlag, Berlin, p. 423
/ exp (56 3/27%22)6[2 = 4 (|rg|> eXp (56 3/27"8)' Hollweg J.V,, Yang G., 1988, J. Geophys. Res. 93, 5423
i A13) lonsonJA. 1978, ApJ 226, 650
(A-13) lonson J.A., 1985, Solar Phys. 100, 289
Judge P., Carlson M., Wilhelm K., 1997, ApJ 490, L195
Kjeldseth-Moe O., Brekke P., 1998, Solar Phys. 182, 73
Kuperus M., lonson J.A., Spicer D., 1981, ARA&A 19, 7
Mann I.R., Wright A.N., Cally P.S., 1995, J. Geophys. Res. 100, 19441
) Miles A.J., Roberts B., 1992, Solar Phys. 141, 205
exp |5 (et +ir signA)?’/z} . Miles A.J., Allen H.R., Roberts B., 1992, Solar Phys. 141, 235
Mok Y., Einaudi G., 1985, J. Plasma Phys. 33, 199
(A.14) Nayfeh A.H., 1981, Introduction to Perturbation Techniques. Wiley

. . . . Interscience, New York
Once again the first term on the right-hand side of Eq. (A.1k 140 | Davila J.M.. 1995 ApJ 444, 471

is subdominant and can be neglected in comparison with §fnan L., Davila J.M., 1996, ApJ 456, L123

third term whenjer| < 3!/2. When|er| > 3'/2 the third term  Ofman L., Davila J.M., Steinolfson R.S., 1994a, Geophys. Res. Let.

is subdominant and can be neglected. We do not compare the21, 2259

first and the third term with the second one because only tbénan L., Davila J.M., Steinolfson R.S., 1994b, ApJ 421, 360

first and the third term determine the dependence.on Ofman L., Davila J.M., Steinolfson R.S., 1995, Geophys. Res. Let. 22,
Once again, in spite that the asymptotic formula (A.14) is 2679

derived under the assumption that| < 1, it correctly repro- Poedts S., Goossens M., Kerner W., 1989, Solar Phys. 123, 83

duces the behaviour of the functicofl?l(T) in the main order Pqedts S., Belien A.J.C., Goedbloed J.P., 1994, Sola_r Phys. 151, 271

approximation,G(r) ~ —log|r|, as|r| — oo. However, it Priest E., 1982, Solar Magnetohydrodynamics. D.Reidel, Dordrecht

. . . Roberts B., 1981, Solar Phys. 69, 27
gives a wrong sign for the quantifg]. Ruderman M.S., 1991, Solar Phys. 131, 11

Ruderman M.S., Goossens M., 1996, ApJ 471, 1015

With the aid of Egs. (A.11)—(A.13) we eventually arrive at
G (1) ~ —log(1 + iersignA) — (723)/* exp (§6_3/2>

(7T263)1/4(1 +62T2)3/4
(1 + deT signA)3/2
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