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A post-transcriptional regulatory 
landscape of aging in the female 
mouse hippocampus
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Aging is associated with substantial physiological changes and constitutes a 
major risk factor for neurological disorders including dementia. Alterations in 
gene expression upon aging have been extensively studied; however, an in-depth 
characterization of post-transcriptional regulatory events remains elusive. Here, 
we  profiled the age-related changes of the transcriptome and translatome in 
the female mouse hippocampus by RNA sequencing of total RNA and polysome 
preparations at four ages (3-, 6-, 12-, 20-month-old); and we  implemented a 
variety of bioinformatics approaches to unravel alterations in transcript abundance, 
alternative splicing, and polyadenylation site selection. We observed mostly well-
coordinated transcriptome and translatome expression signatures across age 
including upregulation of transcripts related to immune system processes and 
neuroinflammation, though transcripts encoding ribonucleoproteins or associated 
with mitochondrial functions, calcium signaling and the cell-cycle displayed 
substantial discordant profiles, suggesting translational control associated with 
age-related deficits in hippocampal-dependent behavior. By contrast, alternative 
splicing was less preserved, increased with age and was associated with distinct 
functionally-related transcripts encoding proteins acting at synapses/dendrites, 
RNA-binding proteins; thereby predicting regulatory roles for RBM3 and CIRBP. 
Only minor changes in polyadenylation site selection were identified, indicating 
pivotal 3′-end selection in young adults compared to older groups. Overall, our 
study provides a comprehensive resource of age-associated post-transcriptional 
regulatory events in the mouse hippocampus, enabling further examination of 
the molecular features underlying age-associated neurological diseases.
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Introduction

Aging is associated with a plethora of physiological changes linked to a wide spectrum of 
biological functions (Gorgoulis et al., 2019; Schaum et al., 2020) and is a major risk factor for 
several disorders including dementia (Hou et al., 2019; Vincent and Yaghootkar, 2020). Brain 
aging may be associated with mild cognitive impairment and neurodegenerative disorders, the 
incidence of which is rising world-wide. To identify the molecular processes associated with 
physiological and pathological aging, many preclinical studies focused on characterizing the 
effects of aging on gene expression, revealing that age-related alterations in gene expression are 
extensive, tissue- and sex-specific (Berchtold et al., 2008; Tower, 2017; Schaum et al., 2020). 
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Despite the well documented age-related decline in immune function, 
aging is generally associated with an upregulation of immune- and 
inflammation-associated processes. At the same time, mitochondrial 
function decreases substantially with age, which correlates with the 
downregulation of mRNAs coding for mitochondrial proteins. 
Additional gene expression features of aging concern a decrease of 
mRNAs coding for ribosomal proteins, a reduction in growth factor 
signaling and possibly the constitutive response to stress and DNA 
damage as well as the dysregulation of transcription and RNA 
processing (Bishop et  al., 2010; Frenk and Houseley, 2018). 
Importantly, the effects of aging on the brain’s transcriptome profiles 
are mostly concordant in humans and mice (Hargis and Blalock, 2017).

The hippocampus is a key brain region involved in learning, 
memory consolidation and retrieval, as well as forgetting (Bartsch and 
Wulff, 2015; Yonelinas et  al., 2019). Thus, it has been extensively 
studied in the context of aging and cognitive decline. Moreover, as 
part of the limbic system, it also plays a role in the regulation of 
emotions and is associated with the development of neuropsychiatric 
symptoms observed in dementia. Hippocampal neuroplasticity and 
neurogenesis are susceptible to adverse conditions such as stress, 
ischemia, neurodegeneration, and aging, the latter two being 
associated with the accumulation of proteins such as tau or β-amyloid 
peptide (Fjell et al., 2014; Bettio et al., 2017; Navarro-Sanchis et al., 
2017). Microarray and RNA sequencing studies identified age-related 
changes in the expression and alternative splicing of genes contributing 
to the immune response, inflammation, as well as protein processing, 
oxidative stress, and synaptic plasticity in the rodent hippocampus 
(Verbitsky et al., 2004; Xu et al., 2007; Stilling et al., 2014; Pardo et al., 
2017). Some of these changes were observed in parallel to the decline 
in spatial memory or novel object recognition memory (Verbitsky 
et al., 2004; Pardo et al., 2017). In addition, sex appeared to have a 
marked effect on the hippocampal transcriptome in middle-aged and 
old mice (Xu et al., 2007; Berchtold et al., 2008; Mangold et al., 2017), 
and similar sex differences have been observed in the human 
hippocampus (Guebel and Torres, 2016).

While characterizing the genome-wide expression of transcripts 
has provided valuable insights into the impact of aging on cellular and 
molecular functions, translation substantially contributes to the 
regulation of protein-coding gene expression (Sonenberg and 
Hinnebusch, 2009; Woodward and Shirokikh, 2021). As such, 
translatome analysis enables to monitor translational regulation of 
gene expression, solely by focusing on active transcripts associated 
with ribosomes (King and Gerber, 2016). A recent study combining 
RNA-sequencing and ribosome profiling showed decreased 
translation of transcripts involved in protein synthesis machinery with 
aging in the mouse liver and kidney, as well as alterations in the 
distribution of ribosome coverage (Anisimova et al., 2020).

In this study, we compared age-related changes in the translatome 
and transcriptome in the hippocampus of female C57BL/6 mice, and 
comprehensively monitored differences in gene expression, alternative 
splicing, and polyadenylation site selection. As most previous 
age-related studies were conducted with male mice, we thought to 
perform this analysis with female mice which are commonly 
underrepresented in mice studies. We also did not simply contrast 
young and older mice but instead studied mice at four ages, i.e., 3-, 6-, 
12-, and 20-month-old, revealing age-related changes in molecular 
processes that are highly time-dependent, and suggesting distinct 
subsets of transcripts prone to translational regulation. Alternative 

splicing was rather divergent between the transcriptome and 
translatome, became slightly increased with age and affected 
functionally related sets of genes different to those with changed 
expression. Conversely, we  could not identify age-dependent 
alterations of poly (A) site selection. Overall, this study revealed 
significant effects of aging at the level of translational efficiency and 
alternative RNA splicing, providing a unique resource for further 
study of mouse hippocampi function and the associated cognitive 
impairments associated with aging.

Results

To monitor the changes of the transcriptome and translatome 
during aging, we collected hippocampi from four age groups of female 
C57BL/6 mice encompassing mature adulthood (3- and 6-month-old) 
as well as middle- and old- age (12- and 20-month-old), equivalent to 
~20–30, ~40+, and ~65 years in humans (Flurkey et al., 2007). Total 
RNA was extracted to monitor global changes of the transcriptome, 
while sucrose density fractionation was performed to collect 
polysomes, which represents transcripts of the translatome 
(considering fractions 7–12 of the gradient; Figures 1A,B; polysomal 
profiles of all samples are displayed in Supplementary Figure  1). 
Polyadenylated (poly (A)) RNA was further selected from matched 
samples and subjected to RNA sequencing. Principal component 
analysis (PCA) and Pearson correlation of TMM normalized log2 
CPM were used to evaluate batch effects, outliers, and sample 
similarity. Batch correction/outlier analysis was performed (see 
Materials and Methods) and the processed data showed good 
segregation between the transcriptome and translatome and different 
ages (Figure 1C, PCA analysis of original and batch-corrected data is 
shown in Supplementary Figure 2).

Differential expression analysis reveals 
convergent age-related expression 
trajectories in the hippocampal 
transcriptome and translatome

We first used edgeR, a classical Bioconductor package to perform 
RNA-seq gene expression analysis based on count-based data 
(Robinson et al., 2010, McCarthy et al., 2012; processed edgeR data as 
well as raw count data is provided in Supplementary Table 1). Only a 
small fraction of all genes (3.9%) across the transcriptome and the 
translatome significantly changed in relative expression upon aging in 
at least one pairwise time comparison (Figures 2A,B; 672 out of 16,801 
genes with Benjamini Hochberg (BH) corrected p < 0.05 and abs 
(FC) > log2 (1.2); list of DEGs provided in Supplementary Table 2; the 
p-value distribution is displayed in the Supplementary Figure 3). The 
majority of these differentially expressed genes (DEGs) were 
up-regulated (83%, n = 559), which is consistent with previous 
transcriptome profiling in the mouse hippocampus (Swindell et al., 
2012; Gatta et al., 2014; Stilling et al., 2014). While 96% (n = 646) of 
those DEGs coded for proteins, the remaining included 25 ncRNA 
genes (e.g., Neat1) and one pseudogene (3000002C10Rik; 
glyceraldehyde-3-phosphate dehydrogenase pseudogene). Neat1 was 
previously seen to be  increasingly expressed during aging in the 
mouse hippocampus (Stilling et al., 2014) and in the human brain 
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(Butler et al., 2019); and the manipulation of Neat1 expression in the 
hippocampal CA1 region was recently shown to modulate 
hippocampus-dependent memory assessed by contextual fear 
conditioning in mice (Butler et al., 2019). Thus, along the emerging 
functional relevance of age-regulated ncRNAs (Szafranski et al., 2015; 
Barter and Foster, 2018), our results suggest that possibly dozens of 
lncRNAs are implicated in hippocampal aging and the associated 
cognitive functions. We wish to note that besides lncRNA, RNA-seq 
reads have also been mapped to several small non-coding RNAs (e.g., 
the snRNA Rnu7). Those instances would need further investigation 
as they may raise from reads of overlapping ORFs, such as Grcc10, a 
gene rich cluster overlapping with Rnu7.

Functional enrichment analysis of the 646 protein coding gene 
transcripts revealed that 41% of them act in immune system processes 
(228 of the total of 553 annotated Entrez IDs for Gene Ontology (GO) 
Biological Process, FDR = 0), with 161 genes associated to cell-surface 
receptor signaling pathways (FDR = 0), such as the Toll-like receptor 
signaling pathway (e.g., 5 of the 6 genes acting in the toll-like receptor 
7 signaling pathway; p < 5 × 10−7, FDR < 1.7 × 10−5), and/or are related 
to infection and inflammatory responses; and acting in the response 
to external biotic stimulus (110 genes, FDR = 0), leading to leukocyte 
activation (98 genes, FDR = 0) and cytokine production (94 genes, 
FDR = 0; Supplementary Table 2). We  wish to note that likewise 
functional enrichment analysis of the 76 DEGs identified exclusively 
in the translatome (Figure 2B) did not reveal any striking differences 
to these functional themes (e.g., immune system processes; 
FDR < 2 × 10−3). Overall, these data recapitulate previous observations 

regarding the strong activation of immune and inflammatory 
responses during aging in the mouse and human hippocampus (e.g., 
Xu et al., 2007; Hargis and Blalock, 2017; Ianov et al., 2017; Frenk and 
Houseley, 2018; González-Velasco et al., 2020).

We next clustered the expression profiles of the 672 DEGs to 
identify groups of genes with similar expression trajectories across the 
four age groups (see Materials and methods). Six clusters were 
identified. They showed remarkably similar changes in expression at 
the transcriptome and translatome levels suggesting coherent 
responses (Figures 2C,D; Supplementary Table 2). The three most 
prominent clusters (C1–C3) included 83% of the DEGs (n = 559) with 
increased expression at the endpoint of 20 months (Figures 2C,D). 
Besides genes associated with immune system processes and 
inflammatory responses, these clusters included several cell 
senescence markers, such as Mmp3, Mmp12, Cdkn2a, Ccl8, Il1a, 
Timp1, which are known to be  increasingly expressed in various 
tissues of aged animals (Figures 2E) (Hudgins et al., 2018; Gorgoulis 
et al., 2019). Furthermore, we found that Irf1-q6 transcription factor 
binding sites were particularly overrepresented among the genes in C2 
and C3 clusters (i.e., C3: 19 of 116 annotated genes; FDR < 1.3 × 10−5; 
Supplementary Table 2). These represent putative binding sites for 
interferon regulatory factors (IRFs), which is a group of transcription 
factors (TFs) involved in modulation of cell growth, differentiation, 
apoptosis, and immune system activity. Finally, the C2 and C3 clusters 
also contained several genes coding for protocadherins (C2: 
Pcdhb1,2,3,5,6,14; C3: Pcdhb4,8,9), which code for cell-adhesion 
proteins with functions in the immune response and in the plasticity 

A

B C

FIGURE 1

Analysis of mRNA translation by sucrose density gradients and RNA-sequencing. (A) Experimental scheme: hippocampi from female mice aged 3, 6, 12, 
and 20  months were collected, extracts prepared and fractionated on sucrose gradients. Total RNA samples and polysomal RNA samples were 
sequenced, representing the transcriptome and translatome, respectively for further analysis (B) Representative absorbance profile at 254 nm across a 
sucrose gradient from hippocampi (on top). Positions of the 40S and 60S ribosomal subunits, 80S monosomes, and polysomes are indicated. Fractions 
7–12 of the polysomes were collected for RNA-seq representing the translatome. Bottom: RT-PCR with isolated RNA from fractions #1–12 of the 
sucrose gradient. Extract (Ex) refers to total RNA isolation corresponding to the transcriptome; (M) molecular weight marker. Rpph1: long non-coding 
RNA (lncRNA) not expected to be translated; Eef2: eukaryotic elongation factor 2 mRNA and 28S rRNAs are expected to be present in all fractions 
including polysomes. A negative control PCR reaction without RT for 28S rRNA is shown at the bottom. (C) PCA after outlier removal and batch 
correction of all samples (n = 36; left column), total mRNA samples (n = 18, circles), and polysomal mRNA samples (n = 18, triangles). Samples are 
colored by age. The component percentages are indicated in brackets.
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of hippocampal circuits (Kim et al., 2010; Keeler et al., 2015); and were 
previously shown to be  upregulated in astrocytes of aged mice 
(Boisvert et al., 2018). Besides those stably progressing profiling, 18 
genes that grouped in the smallest cluster (C4) showed a gradual 
increase in expression up to 12-month-old, followed by a drastic 
decline at 20 months (Figures 2C-E). Here, four of the 14 protein 
coding genes encode mRNA-binding proteins (mRBPs), with roles in 
splicing (Rbm11), mRNA decay/translation (Cirbp), translation 
regulation (Rbm3), or interacting with mRNA 3′-end formation/
polyadenylation complex (zinc finger CCCH type containing 6 
(Zc3h6) protein). The expression trajectories for these genes suggest 
dynamic post-transcriptional control, in accordance with the 
emerging role of RBPs in brain aging and cellular senescence (Wei 
et al., 2015; Dong et al., 2018; D'Amico et al., 2019). Only 95 genes 

(14%) displayed a gradual decline in expression with age and were 
grouped into two clusters (C5, C6; Figures 2C,D). These clusters were 
overrepresented for genes related to neurogenesis (29 of 82 mapped 
protein coding genes; FDR < 3 × 10−5), neuronal differentiation (25 
genes; FDR < 1.5 × 10−4) and development (21 genes; FDR < 10−3), 
many of the encoded proteins localized to the plasma membrane (25 
genes; FDR < 2.2 × 10−6) (Figure  2E). Interestingly, the C5 cluster 
contained three components of the polycomb repressive complex 1 
(PRC1; namely Cbx2, Cbx8, Ring1; FDR < 4 × 10−3), a multiprotein 
complex mediating mono-ubiquitination of lysine residues of histone 
H2A in mammals and required for long-term maintenance of 
transcriptionally repressed states and chromatin remodeling (Shao 
et al., 1999). PRC1 regulates Cdkn2A, whose expression increases in 
mammalian cells with senescence and age (identified in C2 cluster). 

A B

C D E

FIGURE 2

Gene expression trajectories in the transcriptome and translatome across four age groups identified with edgeR. (A) Scheme depicting the number 
DEGs in the transcriptome (total RNA) and translatome (polysomal RNA) across all pairwise time comparisons. (B) Venn diagram representing overlap 
of DEGs in the transcriptome and translatome. (C) Cluster heatmap and averaged temporal profiles of expression for the 672 DEGs identified in the 
transcriptome and translatome. The log2(CPM) values for each gene in a single age group were averaged to generate z-scored mean profiles, and six 
clusters (C1–C6; marked in different colors) were identified with the Bayesian Index Criterion based on the total RNA (transcriptome) data. The 
corresponding polysomal RNA (translatome) data are displayed to the right. The average profiles for each cluster are shown to the left with a 
continuous line for total RNA, a gray dashed line for polysomal RNA, and error bars showing 95% confidence intervals (CI). The number of genes within 
each cluster is indicated (n). (D) Expression levels (log2(cpm)) of selected genes. Total mRNA; solid line displays the mean and closed circle refer to 
individual samples. Polysomal mRNA; gray dotted line is the mean and open circles show individual values. (E) Enriched Gene Ontology (GO) terms for 
each cluster. The dataset with functional annotations is provided in Supplementary Table 2.
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Since Polycomb (PcG) proteins maintain chromatin in ‘off ’ states, 
thereby preventing expression, the reduced expression of PRC1 
components is consistent with the observed increased levels Cckn2A 
transcripts with age (O'Sullivan and Karlseder, 2012).

In conclusion, the six concordant age-related trajectories in 
transcript abundance emphasize previous findings for age-related 
alterations of genes associated with the immune system, inflammation, 
and neurogenesis, thereby validating our experimental approach. In 
addition, distinct temporal profiles, such as the progressive increase 
in expression trajectory from 3 month- to 12- month-old followed by 
a sharp decline were identified and include several RBPs suggestive of 
modulation of post-transcriptional control in older mice, while the 
observed repression of particular ‘neuron-related’ genes is reminiscent 
to the decline of associated brain functions with age.

Analysis of translational activity highlights 
divergence between the transcriptome and 
translatome for discrete subsets of genes

To further characterize the effects of aging on translation, 
we next applied analysis of translational activity (anota2seq; Oertlin 
et al., 2019). Anota2seq compares expression data originating from 
translated mRNA to data from matched total mRNA, enabling 
identification of (i) translated mRNA that are not paralleled by 
corresponding changes in total mRNA (interpreted as changes in 
translation efficiencies impacting protein levels; referred to as 
‘translation’ group), (ii) congruent changes in total and translated 
mRNA (interpreted as changes in transcription and/or mRNA 
stability; ‘abundance’ group); and (iii) changes in total mRNA not 
paralleled by corresponding alterations in translated mRNA 
(interpreted as translational buffering; ‘buffering’ group; Oertlin 
et  al., 2019). Applying the same criteria as for the differential 
expression analysis with edgeR (BH corrected p < 0.05; abs (FC) > log2 
(1.2)) and investigating all paired-age comparisons, anota2seq 
identified 1,729 DEGs, showing a strong overlap (82%; n = 554) with 
the previously identified 672 DEGs using edgeR (the processed 
annota2Seq data is given in Supplementary Table 3). 1,489 of those 
1,729 genes code for proteins (86%), 194 for lncRNAs (11.2%; 
including Neat1), 26 represent pseudogenes (1.5%), and 20 bear 
unknown or other functions (1.16%). As expected, the 1,489 protein 
coding genes were strongly enriched for immune response (249 
genes, FDR = 0) and cell-surface receptor signaling pathways (292 
genes, FDR = 0). Further noteworthy is the consistent allocation of 
genes coding for proteins acting at the cell-periphery (i.e., plasma 
membrane, cell-surface, and extracellular region) and the 
cytoskeleton (173 genes, FDR = 7 × 10−4), including 10 components 
of the kinesin complex (FDR = 0.016). While most of the selected 
DEGs were allocated to the ‘abundance’ regulatory mode (n = 929), 
601 DEGs were allocated to the translational ‘buffering’ mode; and 
401 genes were classified (in at least one of the paired age 
comparisons) in the ‘translation’ mode associated with significant 
changes in translational efficiencies (Figure  3A). Notably, only a 
minor fraction of genes (182 genes, <5%) were selected in at least two 
different regulatory modes, indicating consistent association of most 
transcripts with a particular regulatory mode over time.

Considering all age-comparisons, most changes in gene expression 
were identified comparing 20- vs. 6-month-old mice (894 genes; 

Figure 3B), while 20 vs. 12 months identified the least (176 genes; all 
pairwise time comparisons are displayed in Supplementary Figure 4). 
Furthermore, 6- vs. 3-month-old female mice revealed not only most 
changes (405 genes) among the “neighbored” time comparison but 
also the largest fraction of down-regulated genes (229 of 405 genes, 
57%). Therefore, as the number of DEGs progressively declined at later 
age comparisons (i.e., 207 and 176 genes comparing 12 vs. 6 and 20 
vs. 12 months aged mice, respectively), most changes in gene 
expression seem to occur during maturation from young adulthood 
to middle age and not at progressed age.

We next clustered the genes within each regulatory mode to 
identify common time-dependent expression trajectories. Thereby, 
seven temporal profiles were identified among transcripts allocated to 
the ‘translation’ regulatory mode prone to translational regulation 
(Figure  3C; complete dataset with GO annotation is given in 
Supplementary Table 4). Herein, the largest clusters (C1 and C2, 
n = 184) contained genes that were increasingly expressed with age and 
code for proteins acting in the immune response and inflammation, 
with many of them located on the cell surface or being secreted 
(Figures 3C-E). Interestingly, the other five clusters comprised genes 
undergoing peak expression at defined time-points: for 52 genes (C3) 
expression peaked at 12 months, encompassing 14 genes related to 
tissue development (p < 7.8 × 10−6) and ‘DNA binding’ (10 genes, 
p < 0.003; e.g., Alx, Ar, E2f7, Nlox3-1, Sall4, Zfp628), and two 
components of the integrin complex (Itga1, Itgbl1). For 39 genes (C4), 
the expression peaked in the translatome at 6-month, while three 
additional profiles suggested pronounced translational repression at 
20 months (C5; 58 genes), 12 months (C6; 39 genes) or extended 
repression between 6 and 12 months (C7; 29 genes). Since those 
clusters (C3–C7) contained relatively few transcripts, no functional 
associations could be  identified among those with an FDR < 0.05. 
Nevertheless, C4 contained a high proportion of known or predicted 
(long) ncRNAs (14 out of 39 genes, 36%), many of them expressed in 
the brain. The function of those lncRNAs in association with 
polysomes is not known, but it could relate to translational regulatory 
functions or encoding small peptides (Minati et al., 2021; Duffy et al., 
2022). C5 and C6 clusters contained protein coding genes involved in 
calcium signaling (e.g., Agtr1a), cell-cycle checkpoint (Cck2, E2f2, 
Sox11, Sox4, Aurkb, and C1) and a component of synaptonemal 
complex protein 2 (Sycp2); and the C7 cluster includes protein coding 
genes acting at the cilium and axomene (e.g., Mak, Ccdc114, Cfap73), 
and ribonucleoprotein granules (e.g., AjubA, Grb7, Piwil2). Overall, 
these data indicate time-dependent translational regulation of mRNA 
subsets, possibly fine-tuning physiological alterations occurring at 
specific ages.

Likewise clustering analysis identified five temporal profiles for the 
929 genes altering their “abundance” similarly in the transcriptome and 
translatome, and six clusters grouping the 601 DEGs identified in the 
‘buffering’ regulatory mode (i.e., where significant changes in 
transcriptome are not reflected at the translatome level), 
(Supplementary Figure 5; data in Supplementary Table 4). Most genes 
of the ‘abundance’ group showed a highly coordinated gradual increase 
in expression with age (Supplementary Figure 5A; clusters C2, C3; 554 
genes, 59.6%) and were mostly allocated to the immune response, the 
cell-surface and plasma membrane reminiscent of the differential gene 
expression analysis with edgeR. Conversely, the expression of 199 genes 
(clusters C4 and C5) was significantly reduced in aged animals at 
20 months, including 26 genes involved in neurogenesis (C5, 
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p < 8.5 × 10−5, FDR < 0.08), such as Ndnf and Draxin as well as 9 genes 
coding for proteins associated with the mitotic spindle like cyclin B1 
(Ccnb1). Remarkably, 176 genes showed a pronounced V-shape 
expression, with substantially lower expression at 6 months compared 
to 3 months but recovering the expression after 12 month and further 

increasing toward 20 months (C1 cluster in Supplementary Figure 5A). 
The genes in this cluster coded for proteins involved in transmembrane 
transport (34 genes, FDR < 1.8 × 10−4), especially ion transporters (33 
genes, FDR < 9 × 10−4), such as copper/iron ion importers (i.e., 
Steap1/2/3;  Knutson, 2007) and several solute carriers (Slc) that belong 

A B

C D E

FIGURE 3

Translational efficiency analysis identifying age-related changes of mRNA expression. (A) Venn diagram shows overlap of numbers of transcripts 
identified with anota2seq across the indicated three regulatory modes. (B) Fold-changes (FC) in total mRNA (x-axis) and polysomal mRNA levels 
(y-axis) of 20-month-old vs. 6-month-old mice. Colors depict genes allocated to the three regulatory modes. Number of genes is indicated within 
brackets. (C) Cluster heatmap and averaged temporal profiles of genes displaying alteration in the ‘translation’ regulatory mode during aging (n = 401 
genes). Clustering was based on the polysomal RNA (translatome) profiles; corresponding total RNA (transcriptome) data is displayed to the right. 
Average profiles for each cluster are shown to the left with a continuous line for total RNA, a gray dashed line for polysomal RNA, and error bars 
marking 95% CI. (D) Expression levels (log2(cpm)) of selected genes. Total mRNA; solid line displays the mean and closed circles refer to individual 
samples. Polysomal mRNA; gray dotted line is the mean and open circles show individual values. (E) GO terms enriched with each cluster. GO 
categories: BP, biological process, CC, cellular compartment, MF, molecular function. The complete dataset including GO annotations is given in 
Supplementary Table 1.
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to the largest family of transmembrane transporters, facilitating the 
exchange of ions, nutrients, metabolites and drugs across biological 
membranes (i.e., Slc12a2, Slc16a6, Slc16a8, Slc31a1, Slc37a2, Slc24a5, 
Slc2a12, Slc39a4). The temporal profiles of the 601 DEGs identified in 
the ‘buffering’ regulatory mode showed greater diversity 
(Supplementary Figure 5B). Only a minor fraction of genes (265 genes, 
44%) steadily increased expression with age, mainly including genes 
associated with immune and inflammatory response, while fluctuating 
or V-shape expression concerned most genes. The latter group included 
genes coding for cellular compartments such as the cilium, 
cytoskeleton, and the chromosome (Supplementary Figure  5B; 
Supplementary Table 4). In conclusion, substantial fluctuations in the 
temporal expression were observed among genes selected in the 
‘translation’ and ‘buffering’ mode, while most genes steadily changed 
expression unidirectionally with time in the ‘abundance’ group and 
reflect coordinate changes in the transcriptome and translatome.

Gene set enrichment analysis underscores 
translational repression of transcripts 
coding for ribosomal proteins, 
mitochondrial components, and cell cycle 
factors in older mice

The identification of DEGs based on threshold fold changes and 
statistical significance may be  well suited to uncover key factors/
pathways and biomarkers, nevertheless biologically relevant 
coordinated responses in the gene expression landscape may 
be overlooked. We therefore performed a comprehensive GSEA analysis 
of the annota2seq data across all age comparisons, considering ranked 
lists of all 16,801 genes ordered by changes in (i) ‘total RNA’ levels (total 
RNA transcriptome, x-axis of scatter plot showed in Figure  3B; 
Supplementary Figure 4), (ii) polysomes, referred to as ‘translated’ RNA 
(y-axis of scatter plot in Figure 3B), (iii) net ‘translation’ that eases 
changes in the total RNA levels, and (iv) ‘buffering’ that alleviates 
translational response effects (Oertlin et al., 2019). Overall, 469 terms 
were selected with an FDR < 0.05 in at least one paired-age comparison, 
which were then manually allocated to 16 functional classes (Figure 4 
depicts a selection of 74 themes in 11 functional classes; the complete 
data is shown in Supplementary Figure 6).

While many biological processes were distributed across all 
expression categories, such as the continuous decrease in the 
expression of genes related to microtubule bundle, cilium organisation, 
and the steadily increase in inflammatory and immune response 
genes, selective variation in total and translated mRNAs changes and 
the associated net effects (translation/buffering) were detected 
(Figure 4). Most prevalent was the translational repression of mRNAs 
coding for ribosomal proteins (RPs) in older animals (i.e., particularly 
prominent by comparing 20- vs. 3- or 6-month-old mice). 
Translational repression of RPs was previously recognised in other 
tissues and could thus frame a hallmark of aging (Anisimova et al., 
2020; Woodward and Shirokikh, 2021). Interestingly though, 
we found that the observed translational repression is preceded by a 
significant increase of respective mRNA levels from young adults to 
middle-aged animals (i.e., comparing 6 vs. 3 months). Therefore, the 
age-induced translational repression counters the transcriptome 
changes in young adults, suggesting a turning-point in the gene 
expression programme in early to middle-aged animals. Likewise, 

we  observed that mRNAs coding for mitochondrial components 
became translationally repressed after 12 months, but the respective 
RNA levels remained unchanged or even slightly increased from 
young toward middle-aged adults (6 vs. 3 months). Furthermore, cell-
cycle checkpoint factors were also translationally repressed in older 
animals (12-months old), that could be  linked to the previously 
observed reduced cell division rates with age (Tomasetti et al., 2019), 
while cell-death components and caspase activated processes became 
translationally activated with age (comparing 20- vs. 6-month 
animals). Overall, prominent diffraction and reprogramming of 
translation seems to occur between middle-age toward old animals 
including the propensity to deactivate translation of key cellular 
components required for cell growth, propagation, and maintenance, 
while factors related to cell degradation become activated with age.

Alternative splicing events increase with 
age, and occur in sets of genes distinct 
from differentially expressed genes

Changes in splicing activity could substantially reshape gene 
expression during aging (Stilling et  al., 2014). Nevertheless, how 
alternative splicing (AS) events are synchronized between the 
transcriptome and translatome during aging is not known. Therefore, 
we implemented the SUPPA2 pipeline to search for AS events (Trincado 
et  al., 2018). This analysis across all the different age comparisons 
revealed 1,474 significant splicing events in 1,138 genes (p (BH) < 0.05), 
corresponding to 6.7% of all expressed genes (annotated list of all AS 
events displayed in the Supplementary Table 5). 883 events in 712 genes 
were identified comparing transcriptomes at different ages, 835 events 
in 672 genes were identified comparing the translatomes, while 244 
events (16.5% of all events, corresponding to 223 genes) were observed 
in both the transcriptome and translatome, representing a significant 
overlap (Fisher’s exact test, p = 10−256 considering 65,311 possible events; 
Figure  5A). Importantly, the selected AS genes were substantially 
different from DEGs: only 66 (5.7%) and 33 (2.9%) of all AS genes were 
identified as DEG in age comparisons with anota2seq and edgeR, 
respectively. This finding is in line with a previous report on the 
hippocampal transcriptome of aged mice (Stilling et  al., 2014), 
underscoring independent control of AS events and DEGs during aging. 
Interestingly though, we recorded a slight but significant increase in the 
overall number of AS events with age (increase by 49.6%; Chi-square 
test, p = 3.9 × 10−4) that was most prevalent comparing translatomes 
(increase by 53%; Chi-square test, p = 3 × 10−5), while only a minor 
increase was observed in the corresponding transcriptomes (1.5%; 
Chi-square test, p = 0.3; Figure 5B). This tendency toward enhanced 
alternative splicing in older mice describes henceforth a reverse trend 
to less prevalent changes in gene expression at later ages, possibly 
indicating a shift to splicing control in older animals.

We next sought whether functional themes were associated with 
time-dependent splicing events (Figure  5C; complete list of 
overrepresented GO terms is given in Supplementary Table 6). On the 
one hand, we identified functionally related themes among all AS 
genes that remained consistent over time and were detected in the 
transcriptome as well as the translatome. This category included gene 
transcripts associated with neurons (‘neuron projection/part’) and the 
‘synapse’, underlining constant AS activity on genes with neuronal 
functions and in accordance with previous observations (Stilling et al., 
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2014). On the other hand, we observed functionally related groups 
among all AS genes that were prevalent at certain age-comparisons 
and preferentially detected in either the transcriptome or translatome. 
For instance, AS changes in early lifetimes were particularly allocated 

to ‘alternative mRNA splicing, via spliceosome’ (6 vs. 3 months) and 
mRNA binding (12 vs. 3 months), including serine/arginine-rich 
splicing factors/regulators (Srsf1, Srsf6, Rsrp1), ELAV-like family 
members (Celf1, Celf2), and splicing associated RBPs (e.g., Rbm7, 

FIGURE 4

GSEA of the transcriptome (“Total RNA”), translatome (“Translated”) and the “Buffering” and “Translation” regulatory modes defined with anota2seq. 74 
significantly enriched terms (left: ID numbers) across time comparisons (bottom horizontal axis) are shown. Normalized enrichment scores (|NES|) for 
each term are displayed and are proportional to the circle size. The colormap refers to p-values indicated at the bottom, circles with a black border line 
refer to terms with FDR < 0.05. Red: terms associated with up-regulated genes (+ NES score); blue: terms associated with down-regulated genes (− NES 
score). 74 terms were manually allocated to 11 functional classes (colors in left vertical axis) and described in the bottom right legend.
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Rbmx), and mainly driven by AS events seen in the transcriptome 
(Supplementary Table 6). Likewise, genes associated with the 
‘mitochondrion’ were preferentially AS up to 12 months and code for 
mitochondrial ribosomal proteins (Mrpl13, 23, 30, 58), cytochrome c 
oxidase subunits (Cox6b2, Cox7a2), sirtuin 3 (Sirt3, a regulator of 
mitochondrial transcription), and peroxiredoxins (Prdx1, Prdx6), 
which are implicated in the removal of superoxide radicals. AS events 
at later-ages (e.g., 20 vs. 12 months) were enriched for genes allocated 
to the ‘Golgi membrane’ and included transcripts coding for syntaxins 
(Stx16, Stx18) and other neuronal related Golgi-proteins like 
N-acetylgalactosaminyltransferases (Galnt6, Galnt13); while AS 
events in the translatome at that time comparison were 
overrepresented for mitotic ‘spindle’ components (FDR = 0.0046). 
Thus, the data suggests that time-dependent AS activity on certain 
compartment-specific gene products could be  associated with 
alterations of splicing activity in the aging hippocampi.

Distinct splicing event types are associated 
with functionally related genes

We next wondered about differences among transcripts associated 
with the seven splicing event types informed from the SUPPA2 
analysis (Figure  6A; selected examples are displayed in the 
Supplementary Figure 7). Overall, the fraction of transcripts allocated 

to different event types was comparable between the translatome and 
transcriptome; exon skipping (SE) being the most frequent and 
mutually exclusive exons (MX) being the least prevalent AS event 
during aging (Figure 6B). Most AS involved one splice event per gene 
(>90%, simple events) and only 99 genes were associated with at least 
two different splice events (i.e., 60 out of 712; 8.4% genes identified in 
the transcriptome; 51 (out of 672; 7.6%) in the translatome; and 12 
genes in both). The latter included transcripts coding for proteins 
regulating gene expression/transcription/translation, apoptotic 
processes, cell aging and cellular senescence, as well as processes 
relevant to the amyloid deposition in aging and Alzheimer’s disease 
(e.g., Flot2, Rab11a, Mdm2, Apbb1).

Interestingly, substantial differences among functional themes 
were associated with the different AS event types (Figure 6C; a display 
of all 51 overrepresented themes is given in Supplementary Figure 8). 
The exon skipping (SE) events were overrepresented for ‘neuron’ and 
‘synapse’ components (FDR < 0.05) and RBPs (38 genes, 11% of all 345 
SE genes, FDR = 0.021) with splicing regulators (e.g., Srsf1, Hnrnpr, 
Imp4, Mbnl2, Matr3, Puf60, Lsm4) and protein synthesis components 
(e.g., Rpl14, Eif4g1, Eif4enif1) including DEAH-box translational 
regulators (Dhx32, Dhx37). Transcripts coding for RBPs were also 
enriched among intron retention (RI) splicing events, covering 19 
RBPs (20% of all annotated genes in RI; FDR = 0.0084), five of them 
acting in spliceosome assembly (Celf1, Celf2, Luc7l3, Rbm5, Srsf6; 
FDR = 0.05; Figure 6C). Alternative first exon selection (AF) was the 
second most observed splicing event, and the associated genes 
commonly coded for proteins involved in regulation of intracellular 
transport, peptide/protein transport and secretion as well as enzyme 
and kinase regulator activity; and they were confined to specific 
cellular compartments including the dendritic tree, axon, 
somatodendritic compartment, presynaptic active zone, and 
glutamatergic synapse (FDR < 0.05; Figure 6C). Notably, AF events 
were registered in four transcripts coding for histone H3-K9 
methylation components (Kdm4a, Kdm4c, Mecp2, Suv39h2), 
corroborating a potential role in chromatin remodeling during aging 
(Keenan et al., 2020); seven transcripts associated with the regulation 
of the Notch signaling pathway (e.g., Dkl2, Hes1) which plays an 
important role in aging (Balistreri et al., 2016); and seven transcripts 
encoding ribosomal proteins, whose expression is translationally 
repressed in aged animals (cytoplasmic Rpl5, Rpl7, Rpl18a, Rpl37rt; 
and mitochondrial Mrpl23, Mrpl30, and Mrps5). Alternative 5′ splice-
site (A5) events included mRNAs coding for proteins acting at the cell 
cortex, cytoskeleton, and the presynaptic active zone cytoplasmic 
component, with further specification in the translatome for 
microtubular components such as the spindle and spindle pole body 
(FDR < 0.05  in the translatome); whereas alternative 3′ splice-site 
selection (A3) was particularly seen among nuclear euchromatin 
components (4 genes: Nsmf, Prdx, Rbmx, Rbmxl1), cell projection and 
leading-edge membrane or organelle outer membrane (Figure 6C). 
The lowest number of splicing events were allocated to alternative last 
exon (AL) and mutually exclusive exons (MX) event types. Here, no 
significant functional themes among associated transcripts could 
be retrieved with FDR < 0.05. However, AL associated genes showed a 
tendency for enrichment of proteins acting in transport vesicles 
(p < 0.0011, FDR = 0.39), while MX events referred two splicing events 
in the Apbb1 transcript, which is known to be  AS during aging 
(Stilling et al., 2014), as well as in the ionotropic glutamate receptor 
complex (Dlg3, Eps8, Porcn; p = 0.00038, FDR = 0.22). Overall, the 
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FIGURE 5

Age-dependent alternative splicing (AS) in the transcriptome and 
translatome. (A) Number of identified AS events and genes (in 
brackets) across the transcriptome and translatome (polysome). 
(B) Number of identified splicing events at the indicated time 
comparisons, considering all genes (all), the ones identified in the 
polysomes and transcriptome. ***p < 10−3 (Chi-square test). 
(C) Selection of enriched GO terms (FDR < 0.05) across indicated time 
comparisons considering all AS genes identified in the transcriptome 
and the translatome. NES for each term proportional to the circle 
size; FDR values are color coded.
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different splicing event types were allocated to distinct functionally 
related genes, many of which bear biological relevance in aging in the 
brain and hippocampus. In most cases, those functional themes were 
commonly identified among AS genes in the transcriptome and 
translatome – suggesting functional coordination – although the 
actual transcripts undergoing significant AS can be different.

RNA targets of the RNA-binding proteins 
CIRBP and RBM3 represent a significant 
portion of identified genes with AS events 
during aging

As our differential expression analysis suggested dynamic 
expression of RBPs, possibly leading to variation of post-
transcriptional control during aging, we wondered whether the RNA 
targets for RBPs may be associated with changes in expression or 

splicing. Focusing on the cluster of RBPs showing higher transcript 
abundance in 12 month-old mice followed by a drastic decline at 
20 months (Figure  2, Cluster 4), the experimentally determined 
mRNA targets for RBM3 and CIRBP from fibroblasts (Morf et al., 
2012; Liu et  al., 2013) were available and retrieved via POSTAR3 
(Zhao et al., 2022). The mRNA targets for those two stress-related 
proteins were underrepresented among DEGs during aging (i.e., 44 
RBM3 mRNA targets, 121 CIRBP mRNA targets); but they overlapped 
significantly with the list of AS genes targeted either by RBM3 (229 
genes, 20.2% of all AS genes associated with 310 events; p = 2.3 × 10−8, 
hypergeometric distribution), or CIRBP (369 genes, 32.4%; related to 
490 events; p = 7 × 10−11, hypergeometric distribution; RNA targets 
marked in Supplementary Table 5). Among them, 140 gene transcripts 
were targets for both RBPs (12.6%) and preferentially code for RBPs 
(FDR < 10−6) including splicing factors (FDR < 10−5) and/or are part of 
synapses (FDR < 2 × 10−4). These significant correlations suggest 
critical roles for these stress regulated RBPs in splicing regulation of 
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FIGURE 6

AS event types in the transcriptome and translatome. (A) Scheme of the seven different event types identified with the SUPPA2 analysis. The relative 
inclusion levels (Ψ) concern the region depicted in black; a gray area indicates alternative forms of the event. (B) Number of events and genes 
associated with each of the seven event types across the transcriptome and translatome (polysome). (C) Selection of 20 enriched themes 
overrepresented among genes displaying different splicing event types. The diameter of the circle is proportional to the NES score, the colormap refers 
to the p-value, circles in bold refer to FDR < 0.05.
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neuron-related transcripts during aging and hence comprise valuable 
targets for further evaluation.

No substantial differences in poly(A) site 
usage during aging

Differences in polyadenylation site selection during aging was 
previously reported in the brain cortex, claiming a significant shift 
toward distal UTR usage at 52 weeks (i.e., 12 months) compared to 
6-week-old mice (Shafik et al., 2021). Furthermore, it was suggested 
that RBM3 and CIRBP could regulate circadian gene expression by 
controlling alternative polyadenylation (APA) in mouse embryonic 
fibroblasts (Liu et al., 2013). Thus, we wondered whether differences 
in 3′UTR end selection may apply during age progression, and 
we searched for differences in poly (A) site selection using LABRAT, 
a pipeline that quantifies the usage of APA and cleavage sites in 
RNA-seq data (Goering et al., 2021). Essentially, we did not observe a 
global shift in APA selection between different age groups 
(Supplementary Figure 9). Only ten transcripts significantly changed 
polyadenylation sites across age comparisons (p (BH) < 0.05; 
Supplementary Table 7). Specifically, transcriptome analysis suggested 
APA in Fam76b (20 vs. 12/6 months), Nmt2 (20 vs. 3 months), Mindy2 
(12 vs. 3 months), and Gtf3c2 (6 vs. 3 months); the latter being a 
mRNA target for RBM3, while the other transcripts are known CIRBP 
targets. Translatome analysis suggested significant changes in UTRs 
for Lnx1 and Dcp1 (12 vs. 3 months), Gemin8 (12 vs. 6 months), 
Tmem201, Comtd1, and Taf6l (all 20 vs. 6 months), the latter being a 
RBM3 target. In conclusion, these results suggest only minor changes 
of poly (A) site selection between 3 and 20 months, suggesting rather 
decisive poly (A) site selection in young adults for an extended period 
of life.

Discussion

Our comprehensive analyses of RNA sequencing data in adult 
female mouse hippocampus across four ages showed a substantial 
concordance in relative changes of transcript levels of the 
transcriptome and translatome, while divergences imposed by 
age-dependent changes in translational efficiencies concerned genes 
encoding ribosomal and mitochondrial components, cell-cycle and 
apoptosis related factors, as well as a subset of lncRNAs. Furthermore, 
a divergence of the effects of aging was uncovered for the alternative 
splicing in the translatome and transcriptome, and transcripts targeted 
by the RNA-binding proteins CIRBP and RMB3 represented a 
significant subset of genes displaying splicing events with aging. 
Finally, aging was only marginally associated with changes in 
alternative polyadenylation sites. Thus, the herein outlined 
combination of various RNA sequencing analyses highlight the 
complex picture for multi-level post-transcriptional control of 
hippocampal genes during chronological aging, and it provides a 
unique resource for further investigation of affected pathways and its 
associations with age-associated diseases.

In accordance with previous reports considering the transcriptome 
(Stilling et al., 2014), only a relatively small fraction of genes was 
differentially expressed from young to aged adults in the mice female 
hippocampi. Most genes were commonly upregulated with remarkable 

parallel and progressive changes in the transcriptome and translatome 
and code for proteins contributing to immune system processes and 
neuroinflammation (Toll-like receptor signaling pathway, leukocyte 
activation, cytokine production); while the few downregulated genes 
were associated with neurogenesis and consistent with age-related 
changes observed at the transcriptome level in one of the main 
neurogenic niches (i.e., subgranular zone of the hippocampal dentate 
gyrus) in humans (Bitar et  al., 2022). Overall, these findings are 
consistent with aging being the major risk factor for 
neurodegeneration/dementia and that neuroinflammation plays a 
crucial role in the development Alzheimer’s disease and 
frontotemporal dementia (Leyns and Holtzman, 2017; Leng and 
Edison, 2021).

Our analysis also revealed age-dependent expression of more than 
200 lncRNAs and pseudogenes. This includes Neat1 that plays a key 
role in the modulation of neuronal activity and hippocampal-
dependent memory formation in mice (Barry et al., 2017; Butler et al., 
2019) and has been implicated in Alzheimer’s disease (Riva et al., 
2016; Yang et al., 2017; Wu et al., 2019). Age-associated changes in 
lncRNAs expression were previously reported in mouse and human 
tissues and could – as previously reported – contribute to immune 
function via modulation of the NF-kappaB signaling pathway, as well 
as inflammation and transcription (Hammond et al., 2020; Marttila 
et al., 2020; Zhou et al., 2020; Cai and Han, 2021). Besides potential 
diverse regulatory functions of lncRNAs in translation, short ORFs 
translated from lncRNA could give rise to micropeptides (referred to 
as proteins <100 amino acids; Minati et  al., 2021). Hundreds of 
different micropeptides produced from lncRNAs or upstream ORFs 
have very recently been found to be expressed in human brain cortex. 
Many of them contain RGG-rich peptides, which comprises a 
potential RNA-interaction domain that may infer RNA regulatory 
functions (Duffy et al., 2022). It remains to be determined whether the 
herein identified polysomal-associated lncRNAs give raise to 
micropeptides or bear other regulatory functions related to the 
aging phenotype.

The analysis of translational efficiencies using the anota2seq 
algorithm refined detection of convergent and divergent alterations in 
the transcriptome and translatome associated with age. Besides 
various convergent responses including well-known transcriptional 
inferred responses (e.g., immune and inflammatory response) that 
mainly changed in a mono-typic fashion (i.e., steadily increasing 
expression with age), subsets of DEGs displayed rather unique peak- 
or V-shaped expression trajectories. These non-monotonic age-related 
changes were observed in all three regulatory modes though were 
more prominent in the ‘translation’ and ‘buffering’ regulatory mode 
likely associated with post-transcriptional regulation. For example, an 
overall decline between 3 and 6 months was observed for DEG in the 
‘translation’ and ‘buffering’ regulatory modes (where translation 
deviates from changes in the transcriptome) and preferentially coding 
for proteins located at the cilium and axoneme cellular compartments 
(C7, Figures 3C-E), which could go along with known changes in 
neural homeostasis and hippocampal neurogenesis (Kirschen and 
Xiong, 2017). In the ‘abundance’ regulatory mode, a notable example 
V-shaped gene expression profile concerned transmembrane and ion 
transporters, such as solute carriers (Slc) belonging to the largest 
family of transmembrane transporters that modulate essential 
physiological functions including nutrient uptake and ion transport 
(C1). The highly temporally controlled and coordinated expression of 
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these transporters across chronological age further reflects the 
importance of age-related alterations in energy metabolism (Hu 
et al., 2020).

Discordant translational repression was also observed for specific 
genes involved in the modulation of memory and may contribute to 
neurodegenerative diseases. For instance, genes encoding proteins 
acting in calcium mediated signaling, which is consistent with 
disruption of age-related changes in long-term potentiation and 
deficits in hippocampal-dependent behavioral tasks in the aging mice 
(Pereda et al., 2019); and ribonucleoprotein (RNP) granules, that have 
been involved in the development of Alzheimer’s disease and 
frontotemporal dementia (Wolozin and Ivanov, 2019; Desai and 
Bandopadhyay, 2020). More ‘broad’ translational repression concerns 
mRNAs coding for ribosomal proteins (RPs) that was particularly 
prominent comparing 20- vs. 3- or 6-month-old mice. The 
translational repression of RPs has been previously observed in aged 
liver and kidney mice tissues and likely reflect changes in mTOR 
signaling as these transcripts contain 5′ terminal oligopyrimidine tract 
(5’TOP) motifs (Anisimova et  al., 2020). Remarkably though, 
we further observed that this repression was preceded by elevated 
levels of respective mRNAs for up to 6 months, which could suggest 
that neurons of younger adults’ build-up a ‘reservoir’ of those mRNAs 
enabling rapid engagement and synthesis of RPs on demand. Since 
active translation is linked to memory formation, it is tempting to 
speculate that such ‘readiness’ is beneficial for learning, which is better 
performing in young adults. Conversely, translational repression of 
RPs at advanced age may promote alterations in synaptic plasticity and 
synaptic transmission in the hippocampus that could eventually lead 
to cognitive deficits (Schimanski and Barnes, 2010).

Alternative splicing is increasingly recognised as a key post-
transcriptional regulatory element involved in aging, and its 
dysregulation has been identified as a key mechanistic feature in 
Alzheimer’s disease (Raj et al., 2018). Reminiscent to previous reports 
obtained with mouse skin, skeletal muscle and bone (Rodriguez et al., 
2016), we observed a significant increase in the number of AS events 
with age, preferentially in the translatome. Notably, a recent study 
reported an age-dependent increase in the use of distal 3′ splice sites 
in mRNA targets in the nematode C. elegans (Ham et al., 2022). Maybe 
related to this finding or by coincidence, the highest number of distal 
splicing sites (A3) was identified at later ages, comparing 12 vs. 
20-months old animals (50 and 51 events in the transcriptome and 
translatome, respectively). Further investigation would be required to 
consolidate a potential bias toward distal splicing events in the 
hippocampus of aged mice.

Remarkably, although AS genes significantly overlap, many 
different mRNA isoforms were found in the transcriptome and 
the translatome over the ages and across the seven different splice 
event types. While the underlying reasons for divergence of 
mRNA splicing isoforms have not been further explored, it may 
account for selection of AS transcript’s for association with 
ribosomes, which could be  particularly selective in neurons 
(Floor and Doudna, 2016; Weatheritt et al., 2016). Whatsoever, 
despite the observed divergence of mRNA isoforms, in many 
cases AS genes commonly coded for functionally related classes 
of proteins with confounding functions in axons, dendrites and 
at synapses. AS could also generate numerous RBP isoforms, 
some of them acting in splicing, which suggests evolution of 
complex regulatory feedback networks. Moreover, the set of 

differentially spliced mRNAs were distinct from the differentially 
expressed ones, suggesting broad decoupling of those processes. 
In this regard, while we observed a striking expression profile for 
some RBPs, such as CIRBP and RBM3 (i.e., progressive increase 
up to 12-month-old followed by a sharp decrease at 20 months), 
their RNA targets represented a significant portion of genes 
displaying splicing events. Moreover, these potentially AS RNA 
targets were enriched for genes coding for RBPs. Along previous 
observations showing that RBM3/CIRPB could interact with 
intronic sequences in the nucleus and RBM3 is associated with 
the spliceosome (Zhu et al., 2016), it is possible that those RBPs 
could be  part of a highly controlled RNA-splicing network 
controlling neuronal homeostasis and aging. The complex 
splicing-network could also create resilience to balance 
dysfunction imposed by diminished mitochondrial function and 
energy status of cells with age (Ferrucci et al., 2022).

Mitochondrial dysfunction plays an important role in aging and 
is anticipated to contribute to age-related neurodegenerative diseases 
(Cenini and Voos, 2019; Haas, 2019). Interestingly, we observed that 
nuclear genes coding for mitochondrial proteins were preferentially 
AS up to 12 months (Figure 5). Furthermore, and as previously seen 
for cytoplasmic RPs, we recorded substantial translational repression 
of gene sets related to mitochondrial physiology (i.e., genes coding for 
mitochondrial translation factors, the electron transport chain and 
oxidative phosphorylation) in 20-month compared to 3-month-old 
mice (Figure 4). While the decline in mitochondrial function during 
aging is well-documented (Frenk and Houseley, 2018), the potential 
association with splicing and translational control has not yet been 
established in other tissues and may therefore be critical in hippocampi 
and possibly other neuronal tissues. Maybe – as we speculate – the 
observed effects could also relate to alterations of mTOR signaling 
through translation initiation factor 4E-binding proteins (4E-BP) 
dependent translational regulation as likely inferred for translational 
repression of cytoplasmic RPs. Although the proposed relations need 
to be further investigated, it has been shown that TORC1 is linked to 
the expression of mitochondrial proteins and possibly splicing in 
cancer cells (de la Cruz Lopez et al., 2019).

In conclusion, our study highlights the complexity and importance 
of translational control and splicing in adult brains as compared to 
other post-transcriptional control points, such as polyadenylation site 
selection at the 3’end mRNAs to generate different 3’UTR. The 
definition of age-dependent gene clusters for translation and splicing 
regulation enables detailed studies on functional impact in 
hippocampi and its associated functions in memory formation and 
neurogenerative diseases. Nevertheless, our study was carried out only 
with one sex (female mice currently underrepresented in mice studies) 
and a relatively low sample size. To deepen our understanding of 
age-related alterations, future studies should consider a greater 
number of animals from both sexes, enabling the investigation of sex 
differences in aging. Furthermore, our study was focused on one brain 
tissue (hippocampus) and did not consider alterations of specific cell 
types in that tissue. An expansion of the study to other brain tissues 
may be  feasible though currently limited by the good amounts of 
tissue/cells required for translatome analysis. Thus, the application 
and further development of single-cell ‘-omics’ approaches for 
transcriptome and translatome analysis could open up a new area to 
further our understanding of gene expression regulation in aging 
brain cells and associated diseases.
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Materials and methods

Subjects

Four age groups of female C57BL/6 J mice (Charles River 
Laboratories, Margate, United Kingdom) were included in this study 
(n = 6, 84–91 days; n = 6, 23 weeks; n = 4, 59 weeks; n = 6, 88 weeks). 
Following arrival in the facility, mice were group-housed by age group 
for an 18-day habituation period, under a 12 h:12 h light/dark cycle, 
controlled ambient temperature (20–22°C) and humidity (55% ± 10%) 
in IVC ventilated cages (Optimice® System, AnimalCare|Systems, 
Centennial, Colorado, United  States). Cages were enriched with 
nesting material, red domed house, forage mix and aspen chew blocks. 
Food (A04 maintenance diet) and water were available ad libitum. 
Tissue collection was randomised by age groups and started at 
Zeitgeber (ZT) ZT1 (i.e., start of the collection 1 h after light onset) 
and was completed within 40-min to control for circadian rhythms. 
The hippocampus (as well as hypothalamus, cortex, liver, heart kidney, 
and surrenal glands) were collected in this order and immediately 
snap-frozen in liquid nitrogen and stored at −80°C. The experimental 
procedures were approved by the Animal Welfare and Ethical Review 
Body of the University of Surrey and were conducted in accordance 
with the UK Animals (Scientific Procedures) Act 1986.

Extract preparation

Each hippocampus (mean ± SD: 41.1 ± 4.6 mg) was ground to a fine 
powder with a pestle in a mortar filled with liquid nitrogen and 
transferred to ice-cold lysis buffer (20 mM Tris–HCl (pH 7.5), 150 mM 
NaCl, 10 mM MgCl2, 0.1 mg/ml cycloheximide, 0.2 mg/ml heparin, 
0.5% Triton-X-100, 0.1% sodium deoxycholate, 0.5 mM DTT, 100 U/
mL RNasin (Promega #N2615), 1× complete protease inhibitor (Roche 
#11836170001), 10 U/mL DNase I (Promega #M6101)). Samples were 
thawed on ice. The suspension was homogenized and centrifuged at 
12,500g for 5 min at 4°C. The supernatant was adjusted with lysis buffer 
to 1 ml. One fourth of the obtained samples was used for total RNA 
extraction with the Zymo RNA MiniPrep Isolation Kit (Zymo #R1) 
applying on-column DNase I digest. RNA was precipitated with 2.5 M 
LiCl at −20°C to remove residual heparin (see below).

Polysomal profiling and RNA isolation

Polysomal profiling was performed as previously described (King 
et al., 2017). 0.75 mL of hippocampal extracts were layered on top of a 
linear 15–50% sucrose gradient prepared in 20 mM Tris–HCl, pH 7.5, 
150 mM NaCl, 10 mM MgCl2, 0.1 mg/mL cycloheximide and 0.2 mg/mL 
heparin. The samples were centrifuged at 100,000g for 2.5 h at 4°C in a 
SW41 swinging bucket rotor, and 0.8 ml fractions of the gradient were 
collected while continuously recording the absorbance at 254 nm (A254) 
with a flow cell UV detector (ISCO). For subsequent RNA sequencing 
of polysomes, 0.4 ml (50%) from each of the fractions 7 to 12 
representing polysomes were combined and RNA was isolated by 
addition of 3 M guanidine hydrochloride, 50% ethanol, 15 μg glycoblue 
(Ambion), vortexed and incubated overnight at −20°C. The RNA was 
pelleted by centrifugation at 16,000g for 90 min at 4°C, resuspended in 
RNase-free water (Sigma) and subjected to a second precipitation with 

2.5 M LiCl at −20°C overnight to remove residual heparin. After 
centrifugation, the RNA pellet was washed with 75% ethanol, dried and 
resuspended in RNase-free water and treated with DNase (TURBO 
DNA-free, Ambion #1907). RNA was quantified with a Quantus 
(Promega) device and quality assessed with a Bioanalyzer for calculation 
of RNA integrity numbers (RIN). Data attrition occurred for 2 samples: 
one sample for the 20 month-old group was lost during preparation; one 
sample for 3-month-old group had low-quality polysomal profile 
(polysomal profiles are given in Supplementary Figure 1).

Monitoring gradients with RT-PCR

RNA was isolated from individual polysomal fractions as 
described for pooled fractions and resuspended in 20 μL RNase-free 
water and DNase-treated. 9 μL of the isolated RNA was reverse 
transcribed (RT) using a mixture of oligo(dT)18 and random hexamer 
primers with the Precision nanoScript 2 Kit (Primer Design) for 2 h at 
42°C. PCR was then performed with gene-specific primers for Rpph1 
(forward: 5′-GAGGGAAGCTCATCAGTGGG-3′, reverse: 5′-GCCCT 
AGTCTCAGACCTTCC-3′); Eef2 (forward: 5′-GGTACTTTGACCC 
AGCCAACG-3′; reverse: 5′-AAGATGGGGTCCAGGATCAGC-3′), 
and 28S rRNA (forward: 5′-CAAAGCGGGTGGTAAACTCC-3′; 
reverse: 5′-CTCTTAACGGTTTCACGCCC-3′) with GoTaq Green 
(Promega, M7822). The following temperature program was used: 
2 min at 95°C, followed by 30–35 cycles of the sequence 95°C for 30 s, 
59°C for 30, and 72°C for 30 s and a final extension for 5 min at 72°C 
in an Applied Biosystems Veriti Thermocycler.

RNA sequencing, alignment, and mapping

Total RNA samples (n = 20; representing the transcriptome) and 
RNA from matched polysomes (i.e., translatome; n = 20, 
Supplementary Figure  1) were subjected to RNA sequencing 
(Wellcome Trust Sequencing Facility, Hinxton, Cambridge). RNA-seq 
was thus performed on matched samples from 20 subjects, comprising 
five samples from mice at the age of 3 months, six mice at 6 months, 
four mice at 12 months, and five mice at 20 months. Poly(A) RNA was 
selected from total RNA, converted to cDNA and amplified for library 
preparation. Libraries were sequenced on an Illumina HiSeq 4000 
platform using 75 nt paired-end sequencing runs. Quality checks were 
performed via FastQC (v 0.11.4; Andrews, 2010). Reads were mapped 
to the mouse genome (Gencode release M12 (GRCm38.p5) primary 
assembly genome and comprehensive gene annotation) using STAR 
[v 2.5.2b] (Dobin et  al., 2013), generating output of genomic 
alignments in genome and transcriptome coordinates. The function 
featureCounts from the R package Rsubread [v 1.16.1] (Liao et al., 
2014) was used to assign mapped sequencing reads to genome 
features. Genome features were defined by the tool’s in-built gene 
annotations for the mouse genome (NCBI RefSeq gene annotations 
Build 38.1) resulting in the mapping of reads to 27,179 genes. Genomic 
features were annotated using the R package org.Mm.eg.db [v 3.10.0] 
and GenBank (accessed 20-25th November 2019 via the R package 
Annotate [v 1.64.0]). Filtering of low abundant genes was performed 
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counts per million (CPM) in at least 4 samples derived from total (i.e., 
transcriptome) or polysomal RNA (i.e., translatome). A total of 16,899 
genes remained after filtering. Data were normalized using the 
trimmed mean of M-values (TMM) normalization (Robinson and 
Oshlack, 2010).

Batch-effects and data attrition

Principal component analysis (PCA) and Pearson correlation 
of TMM normalized log2 CPM were used to evaluate batch 
effects, outliers, and sample similarity. PCA analysis showed a 
clear separation of the transcriptome and translatome samples. 
However, it also revealed a batch effect of gradient date and 
containing two outlier samples (Supplementary Figure 2). In this 
regard, samples were classified as outliers if their average pairwise 
correlation to all samples within their set (i.e., total mRNA or 
polysomal mRNA samples) fell more than 1.5 times the 
interquartile range below the first quartile of the average pairwise 
correlation of the set. The two outlier samples (n = 1 subject aged 
20 months and n = 1 at 6 months) were associated with lower 
quality of the gradient for polysome preparation and excluded 
from further analysis (Supplementary Figure 1). Batch effects 
were subsequently corrected using the ComBat method from the 
R package sva [v 3.34.0]. We used ComBat as it uses an empirical 
Bayes approach to avoid over-correction with small batches. Data 
were then pre-processed again, leading to a total of 16,801 genes 
(Entrez IDs) across remaining 18 matched samples for further 
analysis. PCA analyses showed that the batch correction was 
successful, and samples have higher similarity within age groups 
with very similar distribution within total mRNA and within 
polysomal samples (Figure  1C; Supplementary Figure  2). For 
differential expression analysis between age groups performed 
with edgeR, batch effects were hence incorporated in the model. 
For anota2seq analysis, batch effects were removed prior to 
analysis using Combat function from the R package sva [v 3.34.0] 
(Jeffrey T Leek et al., 2012). Batch correction for the total mRNA 
and polysomal mRNA samples was performed independently.

Differential expression analysis between 
age groups with edgeR

Differential expression was performed using the edgeR quasi-
likelihood pipeline (Robinson et  al., 2010; Chen et  al., 2016). 
Briefly, a quasi-likelihood (QL) negative binomial generalized 
log-linear model was fit to the count data using the edgeR 
Bioconductor package [v 3.28.0]. Gene-wise Empirical Bayes 
quasi-likelihood F-tests were then performed to specific contrasts 
(20 vs. 3 months, 12 vs. 3 months, 6 vs. 3 months, 20 vs. 6 months, 
12 vs. age 6 months, and 20 vs. 12 months). The QL dispersion 
estimation and hypothesis testing were performed with the 
functions glmQLFit and glmQLFTest. The batch effects were 
controlled by adding them to the design matrix, such that 
differential expression is tested while adjusting for differences 
between batches. Genes classified as having a significant change 
in expression with age were defined as those having a Benjamini-
Hochberg (BH) corrected p < 0.05 and abs(FC) > log2(1.2).

Anota2seq analysis

Anota2seq analysis was performed using the anota2seqRun 
function [anota2seq v 3.33.1] (Oertlin et al., 2019). The input consisted 
of the batch corrected, filtered TMM normalized log2 CPMs (16,801 
genes), hence, the filtering and normalization within the anota2seq 
pipeline were switched-off. Significant events were selected based on 
all default settings except for a decrease in the BH adjusted p-value 
threshold (maxPAdj = 0.05, default 0.15) and an increase in the 
minimum effect for inclusion (minEff = log2(1.2), default 0). Model 
assumptions were assessed using the QC plots produced by the tool.

Aging trajectories and clustering

For each gene, a temporal expression profile was generated by 
averaging the TMM normalized log2 CPM values of replicates within 
each age group and z-scoring the resulting four averages. Total mRNA 
temporal profiles were used as input for the clustering analysis of 
genes significant in anota2seq abundance mode, anota2seq buffering 
mode, and edgeR, while polysomal mRNA was used for the clustering 
analysis of genes significant in anota2seq translation mode. Temporal 
profile matrices from both total mRNA and polysomal mRNA samples 
were used in the visualization of the results via heatmaps and 
scatterplots. Clustering based on circular Self-Organizing Maps 
(SOM) was performed on the temporal profiles (Möller-Levet and 
Yin, 2005). Briefly, the circular SOM based on the co-expression 
coefficient was used for grouping and ordering expression profiles 
based on their temporal properties. Linear interpolation was applied 
for profile modeling in the calculation of the co-expression coefficient. 
For each gene list, the number of clusters was established using the 
Bayesian Index Criterion (BIC; Schwarz, 1978).

Detection of alternative splicing events

RSEM [v 1.2.19] (Li and Dewey, 2011) was used to quantify 
transcript expression from the STAR alignments. Given the 
abundances for all transcript isoforms, SUPPA2 [v 2.3] (Trincado 
et al., 2018) was used to test differential relative inclusion values of 
alternative splicing events across age groups. Comprehensive gene 
annotation on the mouse primary assembly (Gencode release M12 
(GRCm38.5)) was used to generate the different splicing event types. 
Relative abundances of the splicing events are described in terms of a 
percentage or proportion spliced-in index (PSI). PSI per event is 
calculated as the ratio of the transcript abundances from one form of 
the event to the combined transcript abundances of both forms of the 
event. Differential splicing is given in terms of the difference of these 
relative abundances, or ΔPSI, between conditions.

Detection of alternative polyadenylation 
sites

LABRAT was used to quantify the usage of alternative polyadenylation 
(APA) sites and identify genes whose usage of these sites varies across 
experimental conditions (Goering et al., 2021). APA sites for each gene 
are defined using transcript-terminal-fragments. These fragments 
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correspond to the final two exons of every transcript. The expression of 
these transcript-terminal-fragments is quantified using Salmon (Patro 
et al., 2017). Close terminal-fragments (with 3′ ends within 25 nt of each 
other) are grouped together to define a single APA site. The term psi is 
used to quantify a gene’s relative APA site usage. Genes that show exclusive 
usage of the most gene-proximal APA site are assigned a psi value of 0 and 
those that show exclusive usage of the more distal-gene APA site are 
assigned a psi value of 1. Depending on the relative usage of both sites, psi 
can take a value between 0 and 1. LABRAT was further applied to 
compare psi values of experimental replicates across experimental 
conditions to identify genes that show statistically significant 
(p(BH) < 0.05) different psi values.

Gene set overrepresentation and 
functional enrichment analysis

Gene sets were searched for overrepresented GO, KEGG pathways 
and transcription factor binding sites with Webgestalt using Entrez 
IDs as identifier and an FDR < 0.05 as default cut-off (Liao et al., 2019). 
Annotations obtained for the 16,801 mouse genes (Entrez IDs) from 
filtered and batch-corrected RNA-seq data were used as the 
background gene list. p-values were determined with hypergeometric 
test and FDRs represent BH corrected p-values for multiple-testing.

GSEA was performed with the ranked list of genes for each of the 
four regulatory modes (total RNA, translated, buffering, translation) 
across all time comparisons, considering GO and pathway annotations 
(Wikipathways, KEGG, Panther, Reactome) implemented in 
Webgestalt (Liao et  al., 2019). Data were initially retrieved with 
FDR < 0.15 across all conditions. All terms with FDR < 0.05 in any 
condition were selected, and NES, p-values and FDRs were retrieved 
across all data with R to generate a GSEA matrix. Terms were classified 
manually into 16 categories (Supplementary Figure 6), representatives 
for 11 categories are shown in Figure 4.
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