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Abstract
In this dissertation I present developments in statistical methodologies that deal with interdepen-
dent data, i.e. data in which the units of observation are connected to each other resulting in a
network of interdependence between them. Data considered interdependent poses a challenge to
traditional statistical methodologies that assume units of observation to be independent and iden-
tically distributed. I focus on networks, and in particular social networks, as a tool to characterise
these units of observation, called nodes, their observable attributes, and the connections between
them. The developments in this dissertation are used to try to answer questions about the causal
relationship between the observed variables, conditional on the network structure.

In chapter 3 I present a causal analysis of the the Sexually Transmitted infections And Sexual
Health (STASH) intervention and find that it had a positive effect of treatment (direct effect), but
no effect of interference (effect of treatment spilling over to other individuals). I consider the
methodology developed by Forastiere et al. (2020), as well as a flexible regression approach, to
model the potential outcomes of the intervention for different levels of treatment and spillover,
conditional on the joint propensity to be treated, directly and indirectly. Using a simulation study,
I find that the proposed flexible approach has similar performance in terms of bias and uncertainty
to the approach by Forastiere et al. (2020) when estimating the effect of the intervention, without
the need for full information on the outcome model. In addition, our simulations suggest that
regardless of methodology, estimation using a small sample produces larger uncertainty bounds.

In chapter 4 I present a methodology to identify social influence and separate it from the ef-
fect of prior similarity in bipartite event cascades, when analysed using the relational event model
(REM). The REM can be used to analyse the interdependent nature of data where the behaviour
by an actor can be caused by the recent behaviour of similar actors (social influence). Homophily
statistics can test for such contagion, given one or more actor attributes or network relations. How-
ever, social influence along the cascade, and independent but similar behaviour as a consequence
of shared attributes, are generally confounded. Using Monte Carlo simulations, I show the limits of
a randomisation test as a tool to distinguish from these two competing mechanisms (influence and
prior similarities). The simulations, as well as an empirical example in political science, delineate
the scope conditions of the randomisation inference test used and demonstrate its efficacy under
different mixture regimes of influence and similarity.

Chapter 5 presents a Bayesian methodology to estimate parameters for social networks using
the exponential family of distributions via a network sampler that produces candidates in which
both the connections between the nodes and their attributes are considered endogenous. Parameter
estimation for networks with the exponential family is based on sampling networks candidates
conditional on a fixed value of the parameter. Traditional estimation produces networks where
only the connections between the nodes are switched to produce viable candidates. Fellows and
Handcock (2012) developed a sampler that produces networks where both the connections and
some nodal attributes are switched (toggled, as it is referred to in the literature) in order to generate
viable samples. I propose using a Bayesian estimation routine with a sampler that also toggles
node attributes and network connections, based on Caimo and Friel (2011)’s approach, to replace
estimation using maximum likelihood, and produce samples from the posterior distribution for the
parameter. This results in an estimating methodology that considers a data generating process in
which networks are generated by changing edges and node attributes, and conditional on having a
proper model, is less prone to produce degenerate results.
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In practice, individuals, and units of observation more generally, rarely exist independently

from one another. These observations are often assumed to be independent draws from a particular

probability distribution. What happens when they are not? The overarching topic covering my

research is the relationship between between units of observation, their observed attributes, and

how they connect to one another. The primary research question that I would like to answer

in this dissertation is "how to determine the causal relationship between different variables with

interdependent observations?". “Causal relationship” makes reference to the fact that we want to

understand how changing one variable changes another one. “Interdependent observations” means

that the units of observations I will consider in my analyses are connected to each other, that

their attributes are somehow interlinked, and that the causal relationship between two variables is

connected to the relationship between units of observations and their characteristics.

My dissertation is mainly motivated by two questions. In the context of empirical studies

where we have information about individuals and the relationships between them, can we identify

whether a change in the observed attributes of an individual happened because of changes in the

attributes of someone else in the network? Can we identify a change in the connections between

the individuals because of a change in their attributes? The first of these questions suggests that

changes in attributes can be transmitted from one individual to others through the interactions that

they have, a process known as social influence. The second implies that the connections formed

by individuals are determined by the observable attributes they have, a process known as social

selection (Leenders, 1997).

To approach these questions I will look at three specific methodologies in the field of statistics

known as social network analysis. A network is a way to represent units of observation and the

connections between them. When these units are individuals, we refer to these representations

as social networks. The fact that people are connected to each other means that their observable

characteristics are also somehow connected. I am interested in the causal relationships between

these characteristics (and not just their association), in the context of this interconnectedness.

Networks allow social scientists to explore phenomena in which connections between individ-

uals are locally emergent, are influenced by several factors (several of them occurring at the same

time), but ultimately, are structured and stochastic (Lusher et al., 2012). Lusher et al. referred to

the analysis of social networks using the exponential random graph model (properly introduced

12



in Section 2), because of the broad and rich mathematical background of the exponential family

of distributions allows it to be a great candidate to investigate all sorts of situations in network

science.

As such, I present developments in statistical methodologies that deal with data that are inter-

dependent, and which we would like to use to answer causal questions. These are divided into three

main chapters. The first (Chapter 3) considers interdependence in the field of causal inference in

the form of the treatment to one individual affecting the outcome of a different one. The second

(Chapter 4) looks at a randomisation inference-based methodology to attempt at disentangling the

effect of social influence from similar behaviours in sequences of events. The third (Chapter 5)

introduces a Bayesian approach to parameter estimation of social networks using the exponential

random network model. In this introduction I expose the general motivation for all three projects,

and how they are connected to each other.

Causal inference relates to the use of theory and methodology to estimate the effect of an

event or a decision on an outcome of interest. As an independent field of research, it has relied

on developments from statistics, econometrics and probability, as it was initially developed for

applications in policy interventions and other types of program evaluations. Progress in the field

has come with formalisations on language, notation, and more broadly, what it means to think in

terms of causal inference. Some notable examples include Rubin (1974), Pearl (2009), Angrist and

Pischke (2009), Rosenbaum (2010), and most recently Hernán and Robins (2020) and Cunningham

(2021).

The main question causal inference looks to answer is “what would have happened to the out-

come of one unit if it received treatment A instead of treatment B?” To be more precise, and

looking to frame causal inference within the topic of social network analysis, this question should

read “what would have happened to the outcome of one unit if it received treatment A instead of

treatment B, considering that a second unit connected to the first one received a specified treat-

ment?”

There are many contexts in which we can apply this question. One of the of the most widely

used examples in the literature considers the action of giving an aspirin to someone who has a

headache. Causal inference is concerned with estimating the effect of this action, even though we

can never know what would have happened to that individual if we had not given them the aspirin.

13



There are many different possibilities for estimating causal effects, but one of the best is to

find as many people that are similar to the to-be intervened individual, and randomly give the

medication to some, and a placebo to others. This is known in the literature as a randomised

control trial (RCT), and is considered the gold standard in causal inference research (Rubin, 1974).

There are other methodological alternatives for when we have no control over who gets assigned

to treatment or not. The literature commonly refers to these as quasi-experimental studies, or

observational studies, the former being a subset of the latter.

When intervening on a collection of units (like individuals or regions), it is common to assume

that the treatment applied to one of them does not affect the outcome of the others; this assumption

is a common one in causal inference. Formally, this is referred to as there being no interference

between units because they are considered independent from each other.

These are some examples which this assumption holds: in measuring the effect of an intra-

venous treatment on a group of patients, or of a legislation that is applied to one specific geographic

area. In both of these examples it is not plausible for the treatment to spill over to other units: in-

travenous treatments cannot be shared, and a legislation applied to one country does not apply in

another one. However, it is easy to think of situations where the assumption of no-interference

does not hold: in measuring the test performance of a group of students where some receive the

answers beforehand, and might share them with their friends, the effect of polluting a river which

affecting the quality of the water down the stream, or the impact a virus that travels through the air

has on a population.

Causal inference in the presence of interference is a particular subfield of causal inference

research where the assumption of ‘no interference’ is relaxed. Situations where the units of obser-

vation are inherently linked to each other, situations suited for network analysis and in particular

social network analysis, meet this criteria and hence provide an interesting range of applications

with high potential for impact.

Social network analysis is a natural fit for the study of causal inference in the presence of

interference. The methods developed to understand networks provide a rich background to explore

how individuals interact with each other, and hence, how the treatment to some might affect the

outcome of others. More specifically, I am interested in measuring the causal direct effect of a

treatment, as well as the causal effect of the spillover of the treatment, i.e. when the treatment to

14



one unit affects the outcome of another one. Developments like network-informed matching and a

special version of randomised control trials allow us to explore these questions from a experimental

design point of view (Hudgens and Halloran, 2008; Aronow and Samii, 2017). Dealing with

observational data requires some more refined methods. In Chapter 3, I focus on the methodology

developed by Forastiere et al. (2020) for observational data and show that a flexible regression

approach produces similar results without the need for the kind of perfect information required by

the authors.

The methodology is put to the test using data from an intervention developed by the Social

and Public Health Sciences Unit from the University of Glasgow. In the Sexually Transmitted

infections And Sexual Health (STASH) project, selected peer supporters were tasked with sharing

educational content with their peers. Using our flexible approach, we show (and corroborate the

finding) that the intervention did not work as intended and the imparted knowledge did not spread.

In Chapter 4, I change focus to a randomisation based approach to measure whether temporal

order matters in the way actors connect to a set of behaviours. I take the ideas on using randomi-

sation inference presented by Malang et al. (2019), and extend them to show that the effective

implementation of this methodology is limited by the some specific characteristics of available

data. Chapter 4 includes an empirical example where countries ratify environmental treaties at

different points in time and find that there is evidence that the order in which they decide to ratify

the treaties matters, conditional on their political and geographic characteristics.

In Chapter 5, I present a methodology that estimates parameters for a particular kind of model

used to analyse social networks with the exponential family of distributions. In this model, we

observe a given network and consider its characteristics, which include node attributes and the

connections between the nodes in the form of an adjacency matrix. The aim of this model is to

characterise the network through a set of statistics calculated on the these attributes and connec-

tions.

A likely output from this analysis are properties of the data generating process (DGP) that

produced the observed network. To determine how likely observing one network is, we need to see

what is the likelihood of sampling that particular one from all the different possibilities given the

data generating process. A common procedure to sample networks that come from the same DGP

is to use a Markov chain Monte Carlo process to generate several draws.
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The sampled networks have different network structures, i.e. a unique configuration of connec-

tions that reflect network attributes. Up to this point, most computational sampling implementa-

tions rely on software that only changes the connections in the network to produce new network

candidates, while maintaining the node attributes as a given. This speaks to a larger issue in net-

work inference: the data generating process only considers networks with different configurations,

but the same node attributes. Alternatively, models like the network autocorrelation model try to

estimate data generating processes for node attributes, given network structure.

Fellows and Handcock (2012) proposed a sampling algorithm that allows for network with

different network structures and different node attribute values, all stemming from the same data

generating process. The innovation presented in this dissertation couples that same sampler with a

parameter proposal algorithm that uses Bayesian inference and reduces the possibilities generating

unviable network samples.

The rest of this dissertation is organised as follows. Chapter 2 introduces the statistical back-

ground required for all of the presented developments. Chapter 3 presents the developments in the

field of causal inference in the presence of interference and the empirical application. Chapter 4

shows the developments related to the limits of a randomisation inference methodology, as well

as the practical example, while Chapter 5 presents the two algorithms used to sample networks

with toggling of both network connections and node attributes as well as the Bayesian approach

to estimation. Chapter 6 summarises the results from the three core methodological chapters and

presents some closing remarks.
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Statistical Background
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2.1 Statistical modelling

I begin this subsection with a small introduction to some notation and ideas behind inferential

statistics. The field of statistical inference is devoted to developing statistical tools to infer or

provide insight about a variable of interest using only observable information. This procedure of

‘belief’ (Young and Smith, 2010; Rougier, 2017) is present in different areas of science. However,

what makes the approach in statistics unique is the use of probability theory to quantify such belief.

A statistical model can be described as a device statisticians use to connect the things we would

like to know, which are often unobservable, with the things we are able to measure. We assume

that these two collections (the observable and the unobservable) are quantifiable, or in other words,

that they are numerical. This is equivalent to saying that they can both be taken from the same

distribution. They are also random variables, which means that before being measured, we do not

really know their actual value.

I will now introduce some important notation. Let X = {X1, X2, · · · Xn} be the set of observable

quantities we take as input for our statistical model. X is the set of all possible outcomes for X - it

can be referred to as the realm of X. Considering that statistical models take the form of a family

of probability distributions, we can define the complete set of probability distributions for X as

𝒫 =

⎧⎪⎪⎨⎪⎪⎩p = (p1, · · · , pk) ∈ Rk : p ≥ 0,
k∑︁

i=1

pi = 1

⎫⎪⎪⎬⎪⎪⎭ ,
where pi = P(X = xi), and represents the probability of observing the random variable X to

be equal to xi, and k = ‖𝒳‖ refers to the number of elements in 𝒳. A family of distributions is

a subset ℱ of the complete family of distributions, ℱ ⊂ 𝒫. The subset is used by the analyst to

rule out which probability distributions are not relevant for the statistical model being built. This

family is denoted a probability mass function in the case of countable 𝒳, and a probability density

function in the case of uncountable 𝒳, and they depend on a parameter θ and a parameter space Ω.

Formally,

ℱ =
{︁
p ∈ 𝒫 : ∀i, pi = fX(x(i); θ) for some θ ∈ Ω

}︁
.

18



ℱ is the basis for any statistical model. A sufficient statistic is an important part of many

statistical models used by statisticians to reduce the amount, but not the quality, of information

needed to perform statistical inference. Let fθ(x) be the probability density function for x given

θ as a parameter. We define T to be a sufficient statistic for θ if and only if two non-negative

functions h and g can be found such that

fθ(x) = h(x)g(θ; T (x)). (2.1)

When T is a sufficient statistic for θ, we are able to separate f into h, which does not depend

on θ, and g, which depends on θ but only through T . In other words, all the information we can get

about θ through x, we can get through T (x).

With these definitions we can move on to define a statistical model in a more formal manner. As

Rougier (2017) suggests, models are a simplification used by researchers to try and understand a

particular event. Because of this, models are subject to bias and require transparency so that readers

using the model can understand what assumptions are being made. Some of the most basic models

are parametric models, in which the probability distribution of interest is said to have a common

mathematical form indexed by a set of parameters. As with the observations X, the parameters θ

‘live’ in the parameter space Ω (by which we mean that θ is contained in Ω). Formally, a model

can be expressed using the triple

ℳ = {𝒳,Ω, fX}.

2.2 Social network analysis

In this section I present the background of statistical methodology for the analysis of networks,

with a particular focus on social networks. A network is a representation of a set of units of

observation and the connections between them. In the context of network science, we refer to

these units as nodes. Social networks are networks where the nodes consist of individuals and the

connections between the nodes are relationships that exist between those individuals. These can

be friendships, partnerships, business dealings, or almost any representation of a link between two
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people or organisations. In this section I will expand on how to describe networks statistically, as

well as a set of methodologies designed for making inferential claims around networks.

2.2.1 Networks

Here we look at the formal definitions of graphs and networks. It is assumed here that a graph

is a certain representation form of a network, in the form of a list of the connections between the

nodes. A network in turn is a social or a natural phenomenon in which relations are the primary

unit of interest. However, these two terms can be used interchangeably in this and other chapters

of the dissertation. Another possible representation of the connections between nodes is a matrix

referred to as the adjacency matrix. The rows and columns of the adjacency matrix correspond to

the nodes in the network, a 1 in the i-th row and j-th column means that the i-th node is connected

to the j-th node, and 0 that they are not.

In many analyses (Hunter et al., 2008; Morris et al., 2008; Lusher et al., 2012), it is assumed

that in the data generating process behind the creation of a network, the connections between nodes

are a realisation of a random variable, while the attributes of those nodes are taken as a given. This

assumption suggests that when considering a population, only the connections between them can

change, but not their observed attributes. This implication can be observed in the estimation pro-

cedure of the statnet suite of packages for estimation of social networks (Krivitsky et al., 2020)

(explained in detail later in Subsection 2.2.2), where the samples used to approximate the maxi-

mum likelihood estimator are limited by only proposing new networks with a different configura-

tion of connections, but the same attribute values. Fellows and Handcock (2012) developed a new

network sampler that allows for nodes to have different attributes that follows the same maximum

likelihood estimation procedure.

Methods developed for the study of social networks include in their toolset ways to account

for the connections between units of observation (Butts, 2001; Desmarais and Cranmer, 2012).

Traditional linear models assume that individuals are not connected to each other or that the con-

nections are somehow static and taken as a given. According to Ogburn (2017), models that do not

include the possible interaction between the observations are biased at best and wrong at worst,

since these are rarely observed isolated from one another. There is usually a web of connections
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that can produce an underlying structure of interdependence affecting the attributes and outcomes

of the individuals under observation, and hence the results from estimation (Ogburn et al., 2020).

Using the tools specifically designed for social network analysis allows researchers to question

findings from traditional statistical methods that do not account for these interdependencies. Ad-

ditionally, as high performance computational tools have become more widely available, the field

of social network analysis has considerably expanded considerably. See the change from the more

foundational Carrington et al. (2005) to the more practical introductions to the literature in Jackson

(2010) and Lusher et al. (2012), as well as Krivitsky et al. (2020). Cranmer et al. (2017a) includes

additional information on the different approaches to analyse networked data, and Kolaczyk (2017)

provides a clear exposition of the (then) frontier of statistics and network analysis.

I now introduce several concepts that we are going to use throughout the entire document.

Notation

This subsection includes a set of notation conventions, definitions and concepts used throughout

the graph and network literature.

A network G, is composed of a set of n nodes, and a set of edges, or connections between

those nodes. The set of n nodes is defined using the letter N. All the connections between the

nodes in a network are represented by a random variable Y , where y is a realisation of that random

variable. An element of y is represented by (i, j) ∈ y, indicating a link between nodes i and j, and

is called an edge. The edges can be either weighted (links have different relative importance in

the network) or unweighted (all links carry the same importance); and be directed (a connection

between node i and j does not imply a connection between node j and node i) or undirected (a

connection between node i and j is the same as a connection between node j and node i).

The adjacency matrix A associated with G is an n × n matrix, a random matrix, and contains

the information of the connections between nodes in G. a is a realization of A. In the unweighted

setting, if two elements i and j in G are connected (i.e. if the link (i, j) ∈ Y), ai, j = 1, and if they are

not, ai, j = 0. An undirected network’s adjacency matrix is represented by a symmetric adjacency

matrix. A directed network’s adjacency matrix is not necessarily symmetric.
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Nodes, N, in the network have attributes. We denote these attributes with the letter X and say

that X j
i is the j-th attribute from the i-th node. With this in mind, for all of this dissertation I will

represent a network G with corresponding attributes as G = (Y, X).

The following set of definitions will be useful for this dissertation.

∙ A dyad is a pair of nodes i and j in G, connected or unconnected.

∙ X, a matrix with n rows and k columns, representing the values of the k attributes for each of

the n nodes in the network.

∙ A walk from node i1 to node ik is a sequence of nodes {i1, i2, · · · , ik}, defining a sequence of

edges {(i1, i2), (i2, i3), · · · , (ik−1, ik)} such that ( j − 1, j) ∈ y, ∀ j ≤ k.

∙ A path is a walk (i1, · · · , ik) where each i j is distinct.

∙ A cycle is a walk that ends in the same node, i.e. i1 = ik.

∙ A geodesic is the shortest path in terms of number of edges on a walk between two nodes.

∙ Y is said to be connected if there exists a path between any pair of nodes in the network.

∙ It is said that a directed graph G is strongly connected if every node is reachable from every

other one following the direction of G. This is, for every pair of distinct nodes i and j there

exists a directed path that connects them.

∙ Alternatively, it is said that a directed graph G is weakly connected if when considering

it as an undirected graph it is connected (i.e. ignoring direction of edges from the original

network).

∙ An induced subgraph, often referred to as just s subgraph, G′ = (Y ′, X′) ⊂ G is a subset of

the nodes in a network, with all of the edges from the original network linking these nodes.

∙ A component G′ = (Y ′, X′) ⊂ G of a graph is a maximal connected subgraph such that

- (Y ′, X′) is connected

- i ∈ G′ and (i, j) ∈ Y ⇒ j ∈ N′ and (i, j) ∈ Y ′.

Individual nodes are also components.
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∙ The neighbourhood of i: 𝒩i(y) = { j | (i, j) ∈ y} when G is an undirected network. When G

is a directed network, we define the incoming neighbourhood of i as the set of all incoming

connections to i; an outgoing neighbourhood is the set of all outgoing connections from i.

Figure 2-1 shows a diagram of the neighbourhood around node A for a network G = (Y, X),

where diagram is defined as all nodes within one edge of the main node.

∙ The degree of i: degreei = |𝒩i(y)|, the number of nodes connected to i, with either incoming

or outgoing edges. The in-degree of a node is the number of edges coming into it. Its

out-degree is the number edges coming out of it.

∙ The average degree of G, d, is the average number of connections a node has in the network;

i.e.
n∑︁

i=1

di

n
.

∙ The diameter of a graph G is the longest geodesic. If G is disconnected, the diameter

represents the longest geodesic in one of the components of G

∙ The notion of centrality in a network can be described as a measure of the importance of a

node in the network. There are different measures, describing different types of connection

or risk. Some examples include degree centrality (defined as degree(i)/n) and closeness

centrality (the average of the shortest path length from the node to every other node in the

network).

∙ A graph model is a probability distribution over the space of all graphs.

∙ A bipartite network (also referred to as a two-mode network) is a network where the nodes

are classified into two separate categories or modes, and nodes from the first mode only

connect with nodes from the second one. A sender, s is an element of the first mode, that

creates a connection to the elements of the second mode, the receivers, r.

∙ An event is a tuple e = (s, r, t) that comprises a sender s (an actor, country etc.), a receiver r

(a behaviour, activity, treaty etc.), and time t. An event sequence is an ordered collection of

events.
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∙ A bipartite event cascade is a bipartite network where the order in which the connections

between the two modes happened is known, and hence can be also represented as an event

sequence.

∙ In social network analysis, the term homophily refers to the tendency of nodes in a network

with similar attributes to one another to form ties with each other, preferentially to anyone

else in the network. This is sometimes called selection. The term influence refers to the fact

that an observable attribute of a node can be because of the influence other nodes exert on it.

Figure 2-1: Diagram of neighbourhood of A, which comprises nodes B, D, and E. In this diagram
neighbourhood is defined as all the nodes that are within one edge of the main node.

See Robins et al. (2007), Kolaczyk (2009), Jackson (2010), Butts (2011) and Lusher et al.

(2012) for more information on these definitions.

2.2.2 The exponential random graph model

In this subsection I use the definitions previously introduced to define the concept of an exponential

family, random networks, and the model associated with them, the exponential random network

model, or ERGM. The exposition in this chapter is particularly important for Chapter 5.

The use of probability distributions to model connections between nodes stems from (Gilbert,

1959; Erdős and Rényi, 1960) The exponential family of distributions was first proposed by Hol-

land and Leinhardt (1981), looking to model the pattern of relationships between the nodes in a

network rather than the distribution of the observable attributes by those nodes. The motivation

to use exponential families came from the fact that the this family of distributions tied the value

of a sufficient statistic used to explain particular features exhibited by those relationships, with the
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estimation of a parameter for that statistic. Here I present the exponential family, and connect its

usage with the concept of sufficient statistics.

First we need to define the exponential family distribution in the network context as a proba-

bility distribution that admits the following canonical decomposition (Shalizi and Rinaldo, 2013;

Geyer, 2021):

pθ(Y = y) ∝ e(T (y)·θ−c(θ)), (2.2)

where T (y) is a vector of length d with sufficient statistics that explains the object we are trying

to understand, in this case Y , and, θ is the vector of d parameters (sometimes referred to as the

canonical parameter) associated with those sufficient statistics. T (y) · θ is the dot product between

T (y) and θ:

T (y) · θ =

d∑︁
i=1

Ti(y) · θi.

c(θ) is the log-normalizer, normalizer, or more formally, the cumulant generating function. Given

𝒴, the sample space as previously defined, c(θ) must be such that it represents all of the possibilities

of organising a network given a set number of nodes and a vector of node attributes:

ec(θ) =
∑︁
y∈𝒴

eT (y)·θ,

since, 𝒴 is countable, as there is a limit to the number of combinations of connections between

nodes. We can therefore write pθ(y) as

p(Y = y|θ) = pθ(Y = y) =
eT (y)θ∑︁

y′∈𝒴

eT (y′)θ
. (2.3)

The Fisher-Koopman-Pitman-Darmois theorem (Geyer, 2021), states that for smooth nowhere-

vanishing probability densities, a finite dimensional sufficient statistic exists if and only if the

densities are from an exponential family. Fisher (1922), then Darmois in 1935, and both Koop-

man and Pitman in 1936, state: when we are dealing with exponential family distributions we can

always find a sufficient statistics that would make parameter estimation possible with limited infor-

mation (Daum, 1986; Brown, 1986; Nielsen and Garcia, 2009). Some further generalisations have
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been subsequently introduced: an example being Barankin and Maitra (1963) who proved that the

probability densities do not need to be the same for the theorem to work.

I now present a couple of examples to show how the theorem applies to different distributions

from the exponential family (Geyer, 2021):

∙ A good first example is looking at the Poisson Family. X is defined as a Poisson random

variable with mean λ draws from the non-negative integers Z+ = {0, 1, 2, . . .} according to

the following formula

Pr
λ
{X = x} = pλ(x) =

e−λλx

x!
, x ∈ Z+

pλ(x) can be rewritten as

pλ(x) =
1
x!

e−λλx,

which allows for the canonical decomposition from Equation 2.2 and the sufficient statistics

definition from Equation 2.1:

· T (x) = x is the sufficient statistic.

· θ = log(λ) is the natural parameter, which has inverse function λ = eθ.

· c(θ) = λ = eθ is the cumulant generating function.

· 1/x! is h(x) in Equation 2.1.

∙ Random graph: Extending this example to the realm of graphs, a good way to understand

the application of sufficient statistics and exponential families is looking at the random graph

model (Geyer, 2021):

Let G = (Y, X, γ) be a graph with n = |N| nodes connected at random with probability γ,

independently from other edges, and adjacency matrix A. Consider the following statistic:

T (a) =
∑︁

i, j

ai j, which counts the number of edges in G. Assuming the model in which we

look at the probability of an edge, p(a|γ) would be

p(a|γ) =

n∏︁
i=1

n∏︁
j=1

γai j(1 − γ)1−ai j
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because the random connections between individuals are binomially distributed. Using the

logarithm of this likelihood,

p(a|γ) = exp

⎧⎪⎪⎨⎪⎪⎩∑︁
i, j

(︁
ai j log(γ) + (1 − ai j) log(1 − γ)

)︁⎫⎪⎪⎬⎪⎪⎭
p(a|γ) = exp

⎧⎪⎪⎨⎪⎪⎩n2 log(1 − γ) + log
(︃

γ

1 − γ

)︃∑︁
i, j

ai j

⎫⎪⎪⎬⎪⎪⎭ ,

Using this representation,

· T (x) = x is the sufficient statistic.

· θ = log
(︁

γ

1−γ

)︁
is the natural parameter.

· c(θ) = n2 log(1 − γ) is the cumulant generating function.

which follows the formulation of the Fisher-Koopman-Pitman-Darmois theorem. This im-

plies that T (a) =
∑︁

i, j

ai j is a sufficient statistic for the proposed model, and that the random

graph model is a full exponential family.

Having defined the concepts of graph, random variable, and statistical model, we now move

ahead to define the Exponential Random Graph Model: An Exponential Random Graph Model

(ERGM) is a statistical model set up for a network in which both its structure, and the charac-

teristics of its nodes are used to make inferences about how and why social ties arise. Using

the notation described before, a set of nodes N, associated edges y and attributes x, i.e., a graph

g = (y, x), is the realisation of a random variable (Y, X) with an assigned probability distribution

from the exponential family.

Equation 2.3 is key in understanding the exponential random graph model (and hence important

for the remainder of this dissertation), so let us spend some time explaining what it means.

We can represent a network g = (y, x), so that p(Y = y|X = x, θ) represents the probability of

observing the random variable Y be equal to y, conditional on the vector of parameters θ that ex-

plain the sufficient statistics assigned by the analyst to G. That probability is equal to the summary
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of our network through its summary statistics, eT (y)θ, divided by all the different possible configu-

rations of the network available with n nodes,
∑︁
y′∈𝒴

eT (y′)θ. So to determine how likely it is that we

observed G, summarised through T (y), we just need to add all the different possibilities y′, through

T (y′). Here lies the main problem with ERGM parameter estimation. There are 2(n
2) possibilities,

which becomes computationally expensive to calculate for networks with more than 20 nodes.

One possible alternative is to make the assumption that the probability of two nodes forming

a connection between them is independent of any other connections in the network. This as-

sumption makes the calculation of the probability observing the network, p(Y = y|X = x, θ), fairly

straightforward, since it’s the independent multiplication of all existing connections of an observed

network G:

p(Y = y|X = x, θ) =
∏︁
i, j

p(yi j|y−i j, θ, X = x),

where y−i j denotes the possible connections in the network G except for the one between i and

j, and p(yi j|y−i j, θ, X = x) refers to the probability of observing the link between nodes i and j,

given the rest of the network (Strauss and Ikeda, 1990). This assumption implies that the local

interactions in the networks are unaffected by global, or even regional, network behaviours. The

conditional probability of observing yi j = 1 is

p(yi j = 1|y−i j, θ, X = x) =
1

1 + exp
[︁
−θ(T (yi j = 1) − T (yi j = 0))

]︁ .
T (yi j = 1) is the calculation of the network statistics when yi j = 1. Following Desmarais and

Cranmer (2012), to estimate θ we can use a hill climbing algorithm to find

argmax
θ

∑︁
i j

ln
[︁
p(yi j = 1|y−i j, θ, X = x)yi j(1 − p(yi j = 1|y−i j, θ, X = x))(1−yi j)

]︁
.

This estimation procedure is called pseudo-likelihood estimation. The benefit of this estimation

is that it can be calculated using a generalised linear model. One of the downsides, aside from

having to use this independence assumption, is that it has been proven that the estimation is biased

(Desmarais and Cranmer, 2012).
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The best we can do then is an approximation that uses Markov chain Monte Carlo methods

(Frank and Strauss, 1986; Hunter and Handcock, 2006). We need this approximation to find the

vector of parameters that maximises the likelihood function in Equation 2.3. Following Hunter and

Handcock (2006) (who in turn follow Geyer and Thompson, 1992), we are looking to calculate

exp
(︁
c(θ) − c(θ0)

)︁
as a function of θ, where θ0 is fixed and known. We know that exp(c(θ)) =∑︀

y′∈𝒴 eT (y′)θ, which means that

exp{c(θ) − c(θ0)} =

∑︁
y′∈𝒴

(︁
eT (y′)θ

)︁
∑︁
y′∈𝒴

(︁
eT (y′)θ0)︁

=

∑︁
y′∈𝒴

(︁
eT (y′)θ

)︁
·

eT (y′)θ0

eT (y′)θ0∑︀
y′∈𝒴

(︁
eT (y′)θ0

)︁
which can be rearranged as

=
∑︁
y′∈𝒴

(︁
eT (y′)(θ−θ0)

)︁
·

eT (y′)θ0∑︀
y′∈𝒴

(︁
eT (y′)(θ0)

)︁
and this is just the expected value over θ0 of eT (y′)(θ−θ0)

=
∑︁
y′∈𝒴

(︁
eT (y′)(θ−θ0)

)︁
·

eT (y′)θ0∑︀
y′∈𝒴

(︁
eT (y′)(θ0)

)︁
We can estimate this expected value using a sample mean

exp{c(θ) − c(θ0)} ≈
1
M

M∑︁
m=1

e(θ−θ0)T (yi(m)), (2.4)

where yi(m) is a sample of a random graph from a distribution defined by θ0. A larger sample

ensures convergence to the desired expected value, and can be obtained via Markov chain Monte

Carlo. This is the methodology used by the statnet ERGM estimation procedure in R.

The next step, then, is to get valid samples of these networks. The way to do this is by using an

McMC sampler that uses a Metropolis-Hastings algorithm (Hastings, 1970). In short, the sampler

is a mechanism that generates new networks conditional on a specific set of parameters. A short
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description of the algorithm is given here:

For a given θ*, a set of summary statistics T (·), and a given number of nodes, n, we start the

algorithm with a network with edges allocated at random, and refer to it as G*:

1. We need to change one of n · (n − 1) dyads in the network, some of which are the edges that

are already present in G*, from its current value to the opposite value. If we select to change

ykl, and its value is 1, we assign it to 0, otherwise we turn 0 to 1. This procedure is referred to

as toggling the edge. This problem can be split in two, where with probability ρ we decide

to toggle one of the available non-connected dyads, and with probability 1 − ρ we decide to

toggle one of the existing edges.

2. Without loss of generality, we decide to toggle one of the existing edges. Randomly selecting

one to “turn on/off”, produces a new network G**, different from G* only in that one edge

we decided to goggle.

3. We now compare G* and G** using the vector of summary statistics T (·) to create the Hast-

ing’s ratio, r:

π =
pθ*(Y = G**)
pθ*(Y = G*)

=
eT (G**)θ*

eT (G*)θ*
·
�
�
���

1
c(θ*)
c(θ*)

.

c(θ*)
c(θ*) cancels to one since both values represent all the possible configurations of connections,

𝒴, so they approximate to the same value.

4. We decide to accept the proposal network, G**, when r is larger than a random uniform

number between 0 and 1, and make G* = G**.

After a large number of iterations, this algorithm will produce a network conditional on θ*, that

we can use for the approximation described in Equation 2.4.

Notice that in step 3 of the algorithm we are required to calculate both eT (G*)θ* and eT (G**)θ* ,

which will undoubtedly extend the time required to generate sample networks. This problem is

particularly noticeable when n is large, since the amount of time required for convergence increases

with the size of the network. The alternative is to use the concept of “change statistics” (Morris

et al., 2008).
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The relationship between the two mentioned probabilities, i.e., the change in probability that

selected node to toggle, (i, j) ∈ E, is e(T (G*)−T (G**))θ* . The key element in this equation is T (G*) −

T (G**), which determines the difference in the summary statistics between the two networks, and

is defined as ∆(G*,G**). In the case of the ERGM, this difference is the change in the value of the

statistics after only one of connections between two nodes is toggled. The problem of having to

calculate both eT (G*)θ* and eT (G**)θ* separately and for every step of the algorithm is then reduced

to calculate e∆(T (G*),T (G**))θ* . This ratio between the proposed network and the current network is

called the acceptance ratio.

Step 1 in the algorithm presented above allows some flexibility when it comes to choosing

when to toggle existing edges, or just any of the dyads in the network. The popular software for

estimating ERGMs, statnet, in their “tie-no tie” sampler (the default for ERGM estimation) uses

a 50/50 chance of selecting from the group of edges already present in the network or a random

empty dyad (see https://rdrr.io/cran/ergm/man/ergm-proposals.html). In the sampler

developed for this dissertation, described in detail in Chapter 5, we propose using a user-defined

probability of selecting an edge from the network.

2.2.3 Maximum likelihood estimation

A likelihood function models the joint density of data we are are interested in analysing, as a

function of the parameters we are trying to estimate (θ, in our case). The maximum likelihood

estimator, θ̂ is the value of θ that maximises the likelihood function (Wasserman, 2010). In or-

der to model complex processes, exact calculation of the maximum likelihood estimate (MLE) is

usually impossible, but approximation methods that use Markov chain Monte Carlo (like the one

described in the previous section) are available (Geyer, 1991). Maximising the likelihood function

is equivalent to maximising the log of the likelihood function, so often it is easier to proceed in this

manner. The parameters that come from the maximisation represent the log-odds of adding one

additional edge to the network.

Let us refer to the log-likelihood of Equation 2.3, by `(θ). From above we know that this is

the expectation of a function of a random network, where the random behaviour is governed by θ0

(Hunter and Handcock, 2006). The quantity `(θ) − `(θ0) is defined as the likelihood ratio between
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c(θ) and c(θ0). We want the θ that maximises this difference. We can approximate this quantity

by using the approximation defined above, 1
m

∑︀m
i=1 e(θ−θ0)T (yi). The difference in log-likelihoods, will

converge as m→ ∞, assuming the Markov chain version of the strong law of large numbers (Meyn

et al. (2009) (edition from 1993) in Hunter and Handcock (2006)). We will introduce a summary

of how this maximisation works, but for more details please follow Hunter and Handcock (2006)

for a detailed exposition on the procedure.

ωθ0(θ) � `(θ) − `(θ0) is a function of θ, with a known θ0. We can maximise this function with

respect to θ. This is, finding the value of θ that maximises the log-likelihood of Equation 2.3.

Using the approximation from above (Equation 2.4)

`(θ) − `(θ0) ≈ (θ − θ0)T (Y = y) − log

⎡⎢⎢⎢⎢⎢⎣ 1
m

m∑︁
i=1

e(θ−θ0)T (yi)

⎤⎥⎥⎥⎥⎥⎦ .
Choosing the right value of θ0 is crucial for the convergence of this maximisation. A common

approach used by the statnet suite of software for estimation of network parameters, is starting

with the estimate from the pseudolikelihood routine.

To find the maximum of ωθ0(θ), we differentiate it with respect to θ, and make it equal to 0.

The following calculation was made for a univariate function, but it can be extended to a vector

θ = {θ1, θ2, . . . , θn}. The implication of the canonical representation used in the sufficient statistic is

that the likelihood ratio only depends on θ through T (y). So, if we wish to maximize the likelihood,

we only need the information provided by T (y). Individually looking at the derivative of the log-

likehihood, log `(θ),

d log `(θ)
dθ

= 0

d log `(θ)
dθ

=
d
dθ

T (y)θ −
d
dθ

log c(θ) = 0.
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We know that T (y) is a sufficient statistic, which, following our definition of sufficient statistics in

Section 2.1 means that it only depends on y and not on θ. So now we have that

d log `(θ)
dθ

= T (y) −
d log c(θ)

dθ
= 0

Since c(θ) =
∑︁
y′∈𝒴

(︁
eT (y′)θ

)︁
,

d log c(θ)
dθ

=
1

c(θ)
d
dθ

(c(θ)) =
1

c(θ)

∑︁
y′∈𝒴

(︃
d
dθ

eT (y′)θ
)︃

=
1

c(θ)

∑︁
y′∈𝒴

(︁
T (y′)eT (y′)θ

)︁
,

which is just ∑︁
y′∈𝒴

(︃
T (y′)

eT (y′)θ

c(θ)

)︃
=

∑︁
y′∈𝒴

(︀
T (y′)pθ(y′)

)︀
= Eθ[T (y)].

When we evaluate the likelihood at the point which maximises its value, Eθ[T (y)] = T (y). In the

case of several θ parameters, this is equivalent to saying that the maximum likelihood estimator θ̂

satisfies

∇(`(θ)) = ∇(θ̂)[T (yobs) − Eθ̂T (y)] = 0,

as mentioned in Hunter and Handcock (2006). Hunter and Handcock propose the following

methodology to update the values of θ, using the method of Fisher scoring (see Efron, 1978),

which requires calculating the following value:

I(θ) = ∇(θ̂)
ᵀ
varθ̂[T (y)]∇(θ̂).

With this value, the updating of θ from θk to θk+1 to get to the maximum likelihood estimator is

done in the following way:

1. Select an initial value of θ, θ0.

2. Generate m samples of the network conditional on θ0.

3. Iterate using the following formula:

θk+1 = θk +
[︁
I(θk)

]︁−1 d`(θ)
dθ

,
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to obtain a maximising value of ωθ0(θ).

4. If the variance of ωθ0(θ) is relatively small, accept the proposed θ̂ to be the Markov chain

Monte Carlo Maximum Likelihood Estimator for θ.

To get an approximation of c(θ), that is, to generate the m samples from the above description,

we have to generate draws from the network random variable to estimate the probability of our ob-

served network occurring. This means taking the estimated parameters from our assumed model

ℰ and using them to estimate a probability distribution. A problem researchers have come across

while performing this estimation is that of degeneracy, in which the sampled networks are almost

always either empty or complete (Handcock, 2003; Caimo and Friel, 2011). This generates a prob-

lem in the estimation because empty and full networks are not useful in calculating the probability

of observing a one in particular (Lusher et al., 2012). There have been some attempts to solve this

problem mathematically (Li, 2015), but that research and some others (Hunter et al., 2012) have

suggested that the problem arises when poorly specified models are used, i.e. the set of summary

statistics used does not properly explain the observed network or contain redundancies, and hence

the requested samples are not valid.

Formally, following Rinaldo et al. (2009), degeneracy is a condition in the estimation of the

process where

∙ A combination of the estimated parameters (θ) suggests only a small number of graphs have

substantial non-zero probabilities of being observed;

∙ The estimate of θ available through Maximum Likelihood Estimation does not exist, or the

estimation procedure does not converge;

∙ The estimate of θ would make the observed network very unlikely.

One approach to deal with degeneracy is presented by Hanneke et al. (2010), in which degen-

eracy is regarded as a non-linear system, depending chaotically on different parameters. Alterna-

tively, Schweinberger and Luna (2017) developed an different approach to deal with degeneracy

by exploiting the local dependency, natural to hierarchical exponential random graph models. A

meticulous approximation proves to be a way of understanding it further.
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2.3 Bayesian estimation of exponential random graph models

In this section I present an alternative to maximum likelihood estimation in the form of Bayesian

estimation of parameters for exponential random graph models. From Section 2.2.1 we learned

that the problem of getting an estimate for θ in Equation 2.3 is that we need a sample of networks

we can use to estimate c(θ). The problem with this estimation routine is that, in many cases, and

in particular when the set of summary statistics we propose is not adequate, the sampling proce-

dure generates empty or full networks, or θ candidates that are not compatible with the observed

network, reducing the speed of convergence of the algorithm. The literature refers to this as de-

generacy. Caimo and Friel (2011) (following Koskinen (2008)) developed a methodology that

produces estimates of θ using Bayesian estimation and bypasses the problem of the intractability

of calculating c(θ) (see also Koskinen (2004); Koskinen et al. (2010)). Similarly to Subsection

2.2.2, the topics covered in this section are used in Chapter 5.

For this we need an introduction to Bayesian estimation.

2.3.1 Bayesian statistics

As mentioned in Section 2.1, the models we consider for statistical analysis are comprised of

data and an assumption of how these variables are distributed. This is referred to as the probability

model f (Y |θ), where θ is a vector of parameters, usually unknown, that determines how f is shaped.

Following this, we would like to use our observations Y to say something about, θ.

Using the law of conditional probability, we can say that the probability of two events taking

place P(A and B) is equal to the probability of A happening, conditional on B, times the probability

of B taking place. Symmetrically, we can say that the probability of A and B is the probability of

B conditional on A, times the probability of A. This leads to the equality

P(A|B)P(B) = P(B|A)P(A).

We can replace A and B with the data that we observe Y , and the parameter that describes the

probability function for said data θ. The probability of observing our data Y , conditional on the

observed parameter θ times the probability of observing that parameter P(θ), is equal to the prob-
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ability of observing that parameter θ conditional on the data Y , times the probability of observing

Y .

Formally,

f (θ|Y) =
f (Y |θ) f (θ)

f (Y)
. (2.5)

Equation 2.5 says that the posterior probability of θ being the parameter for the distribution function

for our data Y , after we have observed Y is equal to the probability of observing Y conditional on

θ, times our prior understanding of θ, divided by the marginal probability of Y , f (Y). In many

situations, this marginal probability is very hard to calculate, so we represent equation 2.5 as

f (θ|Y) ∝ f (Y |θ) f (θ).

where f (θ) represents the prior distribution of the parameter of interest. We can think about this

function as everything we think we know about θ without having seen any data related to it. We

will update this understanding using the observed data, to generate what is called the posterior dis-

tribution f (θ|Y). The estimate of this update can be done using the Metropolis-Hastings algorithm

when a closed form solution does not exist. The M-H algorithm navigates the parameter space,

and proposes new values of θ. These proposals are accepted according to a specific acceptance

rule (defined later), typical of Metropolis-Hastings procedures. When the proposed parameters

converge to a relatively set of stable values, the algorithm should stop and consider these samples

as being from the posterior distribution. It is important that the algorithm navigates as much of the

admissible parameter space to ensure that whatever posterior distribution is generated, has properly

covered the space.

In recent years, the literature has been focused on improving many aspects of the methodology

(Koskinen, 2008; Caimo and Friel, 2011; Thiemichen et al., 2015; Schweinberger et al., 2020). Of

particular interest for this dissertation is the mixing of the proposed parameters to ensure proper

navigation of the parameter space, as well as the use of auxiliary functions to deal with intractable

likelihood functions.
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2.3.2 Bayesian exponential random graph model

We can rewrite Equation 2.3 in terms of the Bayesian paradigm described above. This is:

π(y|θ) =
q(y|θ)
c(θ)

, (2.6)

where q(y|θ) = eT (y)·θ. This means that the probability of observing Y = y conditional on θ is the

exponential of the summary statistics times θ, divided by the normalising constant.

When performing Bayesian inference, as described in Subsection 2.3.1, we want to estimate

the posterior distribution of a parameter conditional on the observed data,

π(θ|y) ∝ π(y|θ)π(θ).

In the case of Equation 2.6, to estimate the posterior distribution of the parameters conditional

on the observed graphs we can use a Metropolis-Hastings algorithm like the one described in

Subsection 2.2.2 to decide on whether to move from one value of θ to the next proposed one (θ*)

by using the following Hasting’s acceptance ratio:

α = min
{︃

1,
q(y|θ*) · π(θ*)
q(y|θ) · π(θ)

·
c(θ)
c(θ*)

}︃
, (2.7)

which is the probability of accepting θ*. The problem in network analysis, as with the maximum

likelihood estimation, is the calculation of c(θ)
c(θ*) , since this requires calculating two intractable val-

ues. Following Murray et al. (2012) 1, Caimo and Friel (2011) propose using an algorithm that

samples from an augmented distribution. This means, instead of following

π(θ|y) ∝ π(y|θ)π(θ)

to arrive at the posterior distribution, they propose

π(θ′, y′, θ|y) ∝ π(y|θ)π(θ)η(θ′|θ)π(y′|θ′),
1originally published in the Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence

in 2006
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where η(θ′|θ) is an arbitrary distribution for the augmented θ′, that depends on θ. A possibility

for η() is a random walk distribution centred at θ. The distribution marginalised over θ′y′ is the

posterior distribution we are looking for. Let us explore how this algorithm proposes new values

of θ.

Given a current value of θ:

1. Draw a value of θ′ from η(θ′|θ).

2. Using the sampled θ′, draw an auxiliary sample of the network y, from the parallel distribu-

tion π(y′|θ′).

3. We are now going to evaluate moving from the current pair (θ, y) and (θ′, y′), to the exchanged

pair (θ′, y) and (θ, y′). This is done using the following ratio:

α = min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩1,
q(y′|θ)
q(y|θ)

π(θ′)
π(θ)

η(θ|θ′)
η(θ′|θ)

q(y|θ′)
q(y′|θ′)

·

�
�
�
�
�>

1
c(θ)c(θ′)
c(θ′)c(θ)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ . (2.8)

Notice how the problem of the intractable normalising functions is removed.

This calculation makes the proposal to “offer” the auxiliary θ′ to the data y, and in the same manner,

to “offer” the the current parameter θ to the auxiliary data y′ (Caimo and Friel, 2011). We evaluate

how likely it is that y and θ′ are affine to each other by using the ratio q(y|θ′)/q(y′|θ′). At the same

time, we measure how likely it is that y′ and θ are affine to each other using the ratio q(y′|θ)/q(y|θ).

The relationship between θ and θ′ is dictated through η(·). If this is a symmetric function, a

requirement that does not change the dynamics of the algorithm, Equation 2.8 can be rewritten as

α = min
{︃

1,
q(y′|θ)
q(y|θ)

π(θ′)
π(θ)

q(y|θ′)
q(y′|θ′)

}︃
. (2.9)

If we compare Equation 2.9 with Equation 2.7, we see that the ratio q(y′ |θ′)
q(y|θ) can be thought of as

the importance sampling estimate of the ratio between c(θ) and c(θ′). This means that the exchange

algorithm replaces the part in the maximum likelihood estimation routine that proposes a new value

of θ. If the proposed value of y is stable conditional on θ (similarly for the auxiliary draws), we
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ensure that we are approximating the true posterior distribution, guaranteed by the fact that the

summary statistics are sufficient statistics of the probability model (Caimo and Friel, 2011).

2.4 Relational event model with temporal decay

In Chapter 4, I present a methodology that helps disentangle the role that order plays in a sequence

of events conditional on the attributes of the agents that execute those events. To model the event

sequences, I first need to introduce the concept of a relational event model, which is what I do in

this section. Relational event models (REM) are survival models with network dependence across

events. Survival models typically bring several elements together: The hazard rate,

hi(t) = lim
∆t→0

Pi(t ≤ T < t + ∆t|T ≥ t)
∆t

, (2.10)

specifies the probability of an event to occur per time period, for example the probability that

some unit i produces an event at any point in time T , expressed as an instantaneous rate over time

increments, given that the event has not happened yet.

The survivor function,

S i(t) = Pi(T > t) = 1 − Fi(t), (2.11)

specifies the probability that an event has not occurred at time t, i. e., that unit i’s time to event, T , is

larger than the current time t. The survivor function can be parametrised with different functional

forms (with cumulative distribution function F), and in the case of no assumed dependence on time

(i. e,. the number of realized events at any time before t does not influence S (t)), this functional

form could be exponential, such that

S (t) = e−λt, (2.12)

which results in a constant (baseline) hazard rate h(t).

The probability that an event occurs at time t is then the product of survival and hazard (in other

words, the probability that an event has not occurred yet and is about to occur), and the likelihood
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function is the multiplication of this product for all units:

ℒ =

n∏︁
i=1

S (ti)h(ti), (2.13)

assuming no censoring, defined as the partial observation or measurement of an event.ti makes

reference to the idea that if i < j, then ti ocurred before t j.

The proportional hazard model (Blossfeld and Rohwer, 2001; Butts, 2008) links covariates to

the model by exponentiating a predictor term and multiplying it with the baseline hazard, h0(t):

hi(t) = h0(t) exp
(︀
β⊤xi

)︀
, (2.14)

where h0(t) = 1 in the exponential case and exp
(︀
β⊤xi

)︀
represents unit-level differences that scale

the baseline hazard up or down. Here xi represents the vector of covariates and β is the parameter

that explains the correlation between xi and the hazard rate.

Relational event models differ from plain survival models by including sufficient statistics that

capture dependencies in the sequence of past events and their effect on the probability of an event

at the current time. The definition of the hazard of an event (known as the rate function) therefore

changes to:

h(e) = λ(se, re,Xe, Et−1, θ) = exp
[︀
λ0 + θ⊤u(se, re,Xe, Et−1)

]︀
, (2.15)

now including a function u, which returns a vector of sufficient statistics over the elements of a

hypothetical event e (like the senders se and receivers re), along with its set of covariates Xe (for

senders and receivers, depending on the vector of sufficient statistics being used), the past event

sequence before the current time, Et−1, and what Butts (2008, 166) calls a “pacing constant” (λ0),

which acts as a baseline temporal scale. (I omit different event types, as specified in the original

exposition by Butts (2008), for simplicity.)

With this definition in mind, the probability of an event e taking place is the product of its

hazard and the survivor function from the time of the last observed event to the current one for all

events that could have occurred, including the event and all non-events. The likelihood of the event
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sequence is the product of these probabilities for all events in the sequence:

ℒ(Et|X, θ) =

n∏︁
i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣h(ei)
∏︁
e′i |tei

S
(︀
tei − tei−1

)︀⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (2.16)

This formulation permits piece-wise constant hazards with conditionally exponentially dis-

tributed waiting times from one event to the next with survivor function S (t) = e−λ(t−t′), similar to

Equation 2.12. (For brevity, I assume the timeline ends with the time of the last event, such that we

do not have to account for the time between the last event and the end of the observation period.)

A simplified (partial-likelihood) version of the proportional hazard model and, analogously,

the relational event model is the stratified Cox proportional hazard model. It can be employed if

the functional form of time is unknown or erratic or if there is only information about the temporal

order of events but not the exact timing. In the plain (non-relational event) case, the conditional

probability of an event happening at time t j (conditional on it not having happened before) is the

hazard rate at t j over the sum of the hazard rates of all possible events in that could have taken

place at time t j (these are contained in the risk set, R j):

hi(t j)∑︀
l∈R j

hl(t j)
=

h0(t j) exp(x⊤i β)∑︀
l∈R j

h0(t j) exp(x⊤l β)
=

exp(x⊤i β)∑︀
l∈R j

exp(x⊤l β)
(2.17)

Here, the baseline hazard is cancelled out, and right-censored events (events where the event is

observed up to a specific point that not always coincides with its end, denoted by dummy variable

δ below) and time points without any event are omitted. This leads to the partial likelihood

ℒ =

n∏︁
i=1

⎡⎢⎢⎢⎢⎣ exp(x⊤i β)∑︀
l∈R j

exp(x⊤l β)

⎤⎥⎥⎥⎥⎦1−δi

(2.18)

(omitting right-censored events and time points without any event), which resembles a conditional

logit model and can be estimated accordingly. The risk set in the stratified Cox model – the set of

all events that can occur at time t j – is the equivalent of the matched set in conditional logit. For

simplicity, I employ the stratified Cox model with discrete time for estimation and simulation, but

the results should hold with other variants of the REM.
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Figure 2-2: Half-life parameter. Very strong decay (solid line); Strong decay (dotted line); Weak
decay (dot-dash line) ; Very weak decay (dashed line).

In the relational event model case, the analogous model can be written as

ℒ(Et|X, θ) =

n∏︁
i=1

⎡⎢⎢⎢⎢⎣ hei∑︀
l∈R j

hel

⎤⎥⎥⎥⎥⎦1−δi

, (2.19)

and the risk set is now the set of all events and non-events that could have occurred at te.

In the analyses and simulations presented in the Chapter 4, we employ this discrete-time, time-

ordered version of the relational event model estimated by conditional logit to keep the modelling

setup as simple and general as possible. Further details are provided in Butts (2008).

I also employ temporal weighting of past events with a geometric decay in the computation

of the statistics inside the u function, which was introduced by Brandes et al. (2009) and Lerner

et al. (2013). Instead of using the event time te of past events when iterating through Et−1 in the u

function in Equation 2.15, a weighted version of time w(e) is employed. Recent events are weighted

more strongly than earlier events, using a geometric decay function with half-life parameter T1/2 ∈

(1,∞), with larger values indicating less decay. The half-life parameter determines the extent to

which earlier events still matter; a higher parameter means relatively higher weights are attached

to early events. From Brandes et al. (2009) and Lerner et al. (2013):

w(e, t,T1/2) = exp
{︃
−(t − te)

(︃
ln(2)
T1/2

)︃}︃
ln(2)
T1/2

. (2.20)
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Here, t refers to the current event time and te to some prior event time. This temporal decay

is useful to limit the extent of long-range path dependence and has been employed in empirical

applications (e. g., Lerner et al., 2013; Malang et al., 2019; Brandenberger, 2019). Without the

temporal decay, elements of the past event sequence that occurred very long ago are as important

for the hazard rate as very recent events. The temporal smoothing enables the REM to distinguish

between cross-sectional network effects and temporal effects over the sequence of events, but it

does not solve the issue that cross-sectional similarities can be correlated with the hazard rate.

Figure 2-2 illustrates different half-life parameters for up to 500 time units in the past and shows

that a large T1/2 approximates the original REM formulation by Butts (2008) without temporal

smoothing; the weight of past observations remains the same for future ones, regardless of how far

away they are from each other.

I employ the following homophily statistic ξ to capture the extent to which a sender node

is guided by past behaviour of other senders through a covariate for sender–sender similarities,

following Malang et al. (2019):

ξe(Et,T1/2, as) =

∑︀
e*∈Et−1

[se* , se][re* = re] (1 − |q(se*) − q(se)|) w(e*, te,T1/2)∑︀
e*∈Et−1

[se* , se][re* = re]
, (2.21)

where [·] denotes Iversen brackets, which yield 1 if the condition in the square brackets is true

and 0 if false, and Et is the set of all of the events that have ocurred up to time t. Every sender

has an assigned attribute a, q(s) ∈ [0, 1] is a function that returns a nodal covariate value for the

time-invariant, continuously measured attribute a.

The homophily statistic in Equation 2.21 sums, for all past events that have the same receiver

(Mode II) and a different sender (Mode I), the temporally weighted absolute similarity (i. e., one

minus the absolute difference, 1 − |q(se*) − q(se)|) between the respective event’s sender attribute

value and the current focal event’s sender attribute value, standardized over a count of past events

with an identical receiver but different sender.

The statistic is calculated for the current sender in the event sequence, called the focal sender.

The statistic between this focal sender and a receiver is larger if many other senders with similar

covariate values as the focal sender established ties to the same receiver in the recent past. For

example, consider an event sequence where senders are countries, receivers are different treaties
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up for ratification, and the attribute for the senders are different levels of political rights granted to

its citizens (standardized between 0 and 1). The homophily statistic captures, from the perspective

of the countries se that are considering ratifying treaties re, the extent to which other countries with

a similar level of political rights have already ratified said treaties. Large values indicate strong

homophily-based incentives, and small values indicate the absence of such cues. ξ ∈ (0,∞).

The inclusion of this statistic in the REM therefore operationalizes the influence exerted by

“compatible” other individuals through similar recent behaviour. It can be included in empirical

applications alongside other statistics, some of which were introduced by Butts (2008).

2.5 Randomisation inference

This section introduces the concept of randomisation inference, a statistical methodology designed

for hypothesis testing. In short, the method considers a null hypothesis, calculates a statistic (de-

signed to distinguish between a null and an alternative hypothesis) based on the observed data,

generates a null distribution based on that hypothesis by permuting the original data, and deter-

mines whether the observed value of the statistic calculated can be considered extreme enough

relative to this distribution to reject the null hypothesis. Randomisation inference was initially

proposed by Fisher (1935), who stated that you can test a null hypothesis by permuting the labels

of the observations. Winkler et al. (2014) framed it as “how often the difference between means

would exceed the difference found without permutation” for tests of differences of means. The

same idea can be extended to the hypothesis testing of different statistics.

Randomisation approaches are commonly employed to test whether estimates obtained from

the observed data differ significantly from a randomized null distribution. In this dissertation, I

also refer to randomisation inference as a shuffle test. In Chapter 4 I consider a particular ap-

plication of randomisation inference, where the strategy is to break up the temporal sequence of

event sequences (described in Section 2.4), through random permutation of the time stamps of

observations.

The main operational steps to perform randomisation inference are:

1. Calculate a statistic with the observed data.
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2. Generate many (e. g., k = 1, 000) synthetic datasets by randomly reassigning the labels of

the individual data.

3. Calculate the same statistic as in Step (1) for each synthetic dataset, and save all calculate

statistic values to create an empirical null distribution.

4. Locate the original statistic in this empirical null distribution. Observe one of two outcomes:

For a two-sided test:

(a) Find the α/2 and 1−α/2 quantiles of the empirical distribution. If the original statistic

lies between them we fail to reject the null hypothesis that the value of the statistic cal-

culated with the original dataset is not extreme in relation to the empirical distribution.

(b) If the original statistic is above the 1−α/2 quantile or below the α/2 quantile, we reject

the null hypothesis.

For a one-sided (right-sided) test, we find the 1 − α quantile of the empirical distribution. If

the original statistic is above the 1 − α quantile, we reject the null hypothesis.

Shuffle tests have been employed in different contexts for modelling networks. One prominent

technique is the quadratic assignment procedure (QAP). It has been applied to multiple regression

to permit unbiased hypothesis testing on relationships between correlation matrices or network re-

lations (Krackardt, 1987; Dekker et al., 2007). In another application of shuffle tests to networks,

La Fond and Neville (2010) sought to disentangle network formation from behaviour formation in

co-evolutionary processes, but with panel data, assuming conditional independence, and a single

kind of behaviour. Anagnostopoulos et al. (2008) employed shuffling to disentangle social influ-

ence (contagion, diffusion) from prior similarities (correlation, confounding) in logistic regression

models of node behaviour regressed on the behaviour of network contacts. They specified a cus-

tom variant of a logit model that predicted whether a node was activated or not as a function of

how many network contacts of the node had been activated in the past, similar to the idea of net-

work autocorrelation models (Dittrich et al., 2017). Anagnostopoulos et al. (2008) argued that the

coefficient for the number of activated network contacts (ρ in the network autocorrelation litera-

ture) was either due to social influence (being activated by the behaviour of network contacts) or

confounding by potentially unobserved similarities among nodes. To distinguish influence from
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confounding, they posited that only influence had a temporal dimension to it and thus permuted

the temporal order of the observed node activation sequence.

2.6 Causal inference

Causal inference is the study of causal relationships between variables of interest. For example,

the effect an intervention had on a group of individuals. The way this intervention is designed

determines the different methodologies we can use to infer the causal effect. Experiments, or ex-

perimental studies, usually refer to interventions where the researchers randomise the application

of a treatment. They do this to make sure that none of the observable characteristics of the units of

observation affect how treatment is applied, influencing the estimation of the effect of the interven-

tion. Observational studies refer to interventions where the treatment was not randomised when

applied to the individuals, or when there was no intervention at all, but we are still interested in the

effect one variable might have over another one.

One of the most commonly known types of experiments is called a randomised control trial, or

RCT. In an RCT, units of observation are randomly allocated to be either treated or not. Because of

the fact that this treatment is applied with no relation to who the units are, this kind of experiment

is considered to be of the highest standard for causal inference research. Observational studies,

with or without an intervention, produces data that requires additional manipulation to be able to

produce causal conclusions. This section introduces some basic ideas used in the study of causality

and causal inference as a tool to make causal claims about the relationships between variables in

data that comes from experimental and observational studies. The topics of this entire section are

crucial to the developments in Chapter 3.

2.6.1 Directed acyclical graphs

In this subsection I introduce the concept of directed acyclical graphs, or DAGs, graphical repre-

sentations of the causal relationship between different variables. DAGs are useful to researchers

interested in causal inference because they allow a clear exposition of how two or more variables

interact (or do not interact) with one another. Consider two different variables, A and B. If the

value of one of them affects the value of another, we can draw an arrow from the first one to the

46



second one, like so:

A→ B.

Causal inference requires us to think in terms of counterfactuals. That is, to consider the way in

which all the possible values of A can affect B, and not just the way in which it was observed.

Herein, however, lies the fundamental problem of causal inference: we are never going to be able

to observe all the possible values of A and their effect on B, just what actually happened.

We define A as the parent of B, and B as the descendent of A. These diagrams are called,

unsurprisingly, directed graphs (as introduced in Section 2.2), and indicate that the value of B is

affected by the value of A, or that A has influence over B. If once we follow the direction of

influence of the diagram, we are not able to get back to the place where we started, we call this a

Directed Acyclical Graph, or DAG for short (Pearl, 2009; Shalizi, 2021). This kind of graphical

representation has been used in causal inference to show the assumptions made by researchers in

the expected flow of influence in a set of variables. As is the case with networks between nodes or

individuals, every link, present or absent, needs to be supported by evidence or by an assumption.

Let us now consider adding one additional variable, C to the diagram. Given these three vari-

ables, a subset of the ways in which we can organise them in relation to one another is (Pearl,

2009):

∙ A→ C → B. We refer to this as a chain that goes from A to B through C.

∙ A← C ← B. This is a another example of a chain, with the opposite influence as above.

∙ A← C → B. This is defined as a fork from A and B to C.

∙ A → C ← B. In this case, we define the relationship between A and B as colliding in C. In

other words, C is a collider for A and B.

We can study the way causal information flows through these representations to aid statistical

inference. An important fact to note here is that a link between A and B represents statistical

information (like for example the correlation between A and B). This information goes in both

directions of the graph, allowing us to explore the relationships between them. A is correlated to B

is the same as B is correlated to A. However, causal information usually only flows in one direction

(Janzing, 2007).
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Regarding the four relationships from above,

∙ In the case of both chains, we can say that B is not independent of A, but it is independent

from A, conditionally on C, B y A|C. Another way of thinking about this is saying once we

know something about C, we learn nothing new about A when observing B (or vice versa).

∙ Similarly in the case of the fork, following the Markov property of networks in which a

variable is independent of its non-descendants given its parents (which follows from Markov

assumptions in the same way that the future is independent of the past given the present

(Shalizi, 2021)), B ̸y A because they share the same parent, but conditioning on that, we

have that B y A|C.

∙ In the collider case, however, we have that A y B, but that B ̸y A|C. The explanation for

this is expanded below.

“Correlation does not imply causation” (see Engber, 2012) is a maxim commonly repeated

when discussing statistical analyses. Statistical information in the form of a correlation can flow

bidirectionally between two variables, with the causation flowing in just one direction. In some

other scenarios, two variables might be related to one another because of a third, potentially

unobserved variable. Causal inference uses statistical methods to formalise the flow of causality

between different variables (Pearl, 2009).

Figure 2-3 shows a set of variables and explains the relationships between them in terms of

statistical independence. Assume we have two factors F1 and F2 with causal influence on four

variables, A1, A2, A3, A4 (Shalizi, 2021).

F1 F2

A1A2A3 A4

Figure 2-3: Simple Graphical Model
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We would like to know what the conditional probability distribution of the variables given the

factors: p(A1, A2, A3, A4|F1, F2). Using the facts that:

∙ A1 and A2 are unconditionally dependent through of F1 and F2,

∙ A1 and A3 are unconditionally dependent through of F1. Similarly A2 and A4 because of F2,

∙ but A3 and A4 are unconditionally independent,

we can say that

p(A1, A2, A3, A4|F1, F2) = p(A1|F1, F2) · p(A2|F1, F2) · p(A3|F1) · p(A4|F2).

Graphical models help us understand the world in terms of relations of direct dependence, and

the conditional independence relations implied. In this example, the Fi variables are considered

the parents of the Ai variables. In the context of graphical models we say that a variable Ai is

exogenous if p(Ai|Aparents(i)) = p(Ai). However, if A3 and A4 are unconditionally independent,

conditioning by A1 makes them dependent. This is because A1 has information about both A3 and

A4’s parents. This is important because of how we build causal identification strategies, and what

we control for.

Pearl (2009) describes “conditioning on” as “knowing the value of the variable”. A variable C

blocks a path between A and B if and only if, in a chain or fork, the middle node is in C, or in a

collider, the middle node is not in C.

To understand the relation between colliders and conditional independence we can use a mod-

ified version of the example (see Figure 2-4) from Pearl (2009)’s book.

Once we know which season we are in, we can consider the fact that a tree shaker was used (to

harvest pecan nuts, for example), or seeing the wind bring the leaves down to be two independent

events.

However, we are interested in the sub-graph collider: Tree shaker → Floor full of leaves ←

Wind. The DAG in Figure 2-4 shows that a floor full of leaves is a common effect of two con-

ditionally independent causes, the wind or the tree shaker. If the floor is full of leaves, and we

make the assumption, without loss of generality, that no one came to shake the trees, we assign a
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Season

Tree shaker Wind

Floor full of leaves

Slippery floor

Figure 2-4: Basic DAG showing the effect of a collider on a variable

larger probability on the occurrence of strong gusts of wind. This effectively makes the two events

dependent.

The situation I just described can be framed in a more general way: we are interested in the

conditional distribution of a variable B given a set of variables grouped in A. If one or several

variables in A is unconditionally independent from B, it should not be considered when calculating

the conditional probability distribution. Including it will generate complications because the con-

ditional distribution is going to be based on a higher number of variables than actually required,

affecting converging rates and accuracy. The bias from including these variables can be reduced

by using cross-validation, as presented by (Hall et al., 2004).

Once we have laid out the relationship between the variables in our model in a graphical rep-

resentation, here are two ways of corroborating that we are on the right track: i) comparing the

conditional independence relations implied by graphical model with the data; or ii) inferring the

conditional independence assumptions from the data and determining how this translate into a

possible graphical model (Shalizi, 2021).

2.6.2 Identification

Before doing any sort of statistical inference, however, we need to consider the idea of identifica-

tion of our model. Given two variables of interest A and B, and additional potential variables that

might affect them both, ‘identification’, or an identification strategy, is the process of finding the

effect A has on B, clear from the influence of other variables that might affect B, or how A relates to
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B. This approach will indicate whether we can arrive at the true value of a parameter with infinite

observations, or if we cannot. In a way, identification determines what we can learn from infinite

samples, while statistics tell us what we can learn from a finite sample (Keele, 2015).

Hernán and Robins (2020) indicate that observational studies require us to make some addi-

tional assumptions in order to be able to reach causal conclusions. Consider the case where we

want to understand the effect of A on B, but A is not allocated in a way that is independent of

all other variables, but is related to B via a set of covariates, L. The three main requirements for

a causal effect to be identified are: i) the values of A correspond to a well defined intervention;

ii) the conditional probability of receiving a particular value of A depends only on L; and iii) the

probability of observing a particular value of A conditional on L is greater than zero.

When interest lies in establishing a causal link between two variables, or sets of variables,

especially in the context of an observational study, we need to think of the problem in terms of

the identification strategy. Statistics alone will not suffice. Another way of saying this is that

causality is a matter of understanding context. With this in mind, the question we are trying to

answer is whether we would be able to do causal inference for our problem given infinite amounts

of information (Keele, 2015).

U

A B

Figure 2-5: Unobserved confounding in a DAG

Consider the case presented above in Figure 2-5 in which a set of unobservable variables U

is parent to both A and B, and that additionally A → B. If we only observe A and B and have

absolutely no information about U, P(B|A = a) is going to be confounded (that is, affected through

the relationship) by the presence of U. As we will see in Chapter 4, we can use Directed Acyclical

Graphs to present an overview of the variables part of a statistical model, and that following a

specific set of assumptions, show that we have a appropriate identification strategy. The causal

identification technique used in that analysis follows the concepts from the example in Figure 2-5.
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Failure to include relevant variables in the identification will result in biased or spurious statistical

estimates.

According to Pearl (2009), there are three strategies we can follow to make sure that we care-

fully select an adequate set of control variables. These are: i) back-door criterion, or identification

by conditioning; ii) front-door criterion, or identification by mechanisms; iii) instrumental vari-

ables.

The key word in this sentence is “carefully select” control variables. For the purposes of this

dissertation and the strategy that we are looking to implement, we are going to look into the details

of the back-door criterion.

A back door, as defined by Pearl (2009), is a set of variables S , relative to an ordered pair of

variables (Ai, A j), in our model, this is, Ai → A j but not A j → Ai if

1. no node in S is a descendant of Ai, and

2. S blocks every path between Ai and A j that contains an arrow into Ai.

A back-door path is an undirected path between Ai and A j with an arrow into Ai. These paths create

confounding because of the open flow of information between the variables of interest (as we saw

in previously, statistical information can flow in the opposite direction of the assumed causal flow).

Given the definitions presented above, and knowing that we are dealing with network obser-

vations, we are going to use the back-door criterion. The following is a set of rules that helps

us determine whether the list of variables we are selecting to control for will meet the back-door

criterion (from Entner et al. (2013)). Let𝒲 be the set of all the variables that do not have neither

A nor B as a parent. Then,

1. If there is a set of controls S such that A y B|S , then A has no causal effect on B.

2. If there is a W ∈ 𝒲 and S ⊂ 𝒲, not including W such that:

i) W ̸y B|S , but

ii) W y B|S , A,

then A has an effect on B, and S satisfies the back-door criterion for estimating the effect.
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3. If there is a W ∈ 𝒲 and S ⊂ 𝒲, excluding W, such that:

i) W ̸y A|S , but

ii) W y B|S ,

then A has no effect on B.

Situations outside of those described here will require an identification strategy that depends

specifically on the causal diagram and is not going to be determined by the independence relations

among the observables. Additionally, Shalizi (2021) argues that we should not control for anything

which is a descendant of either B or A, that might block a directed path, activate a collider, or is

just irrelevant.

I introduce the idea of conditional independence in relation to the causal relationship between

the variables because of how helpful it is in terms of causal inference and interdependent data. In a

footnote in Shalizi (2021), the author gives draws attention to Fowler and Christakis (2008), Chris-

takis and Fowler (2007) and others’ research suggesting certain behaviours can spread throughout

a social network. Shalizi suggests that these studies rely on conditioning on the existence of a

social tie between two individuals, but that this tie is actually a collider because of the latent, and

hence unobservable, characteristics that determine both the outcome of a node but also its connec-

tions. As mentioned in subsection 2.6.1, activating a collider (i.e., conditioning on the variable in

the collider position) creates confounding. In the other words, having latent variables in the DAG

leaves a back-door open (Shalizi and Thomas, 2011).

Lerner et al. (2013) suggest that dependencies from network observations are complicated,

and that past observations might not be sufficient to control for the unobservables, specially when

they are not temporally close to each other. More generally, the authors suggest that conditional

independence models are inappropriate as a general model to understand network evolution.

One possibility to produce correct estimators is to try to control for as many variables as possi-

ble so we can reduce the number of open back-door paths. Theorem 3.3.2 in Pearl (2009) suggests

that if “a set of variables C satisfies the back-door criterion relative to (A, B), the the causal effect

of A on B is identifiable”. Note how this theorem does not imply that if an effect is identifiable,

then the set of variables C needs to meet the back-door criterion, only that if C represents the full
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set of parents of A, we might be able to find the effect without controlling for all unobservables. In

particular, C can include past observations of the outcome variable, in a way to control for all the

information therein contained. I will employ this strategy for the developments in Chapters 3 and

4.

Another possibility to produce correct estimators in the face of confounding is relying on partial

identification (Ho and Rosen, 2015) to determine bounds on the causal implications of a particular

variable. Partial identification is based on the idea of using fewer assumptions when building a

model to define a set of bounds to the desired estimates, instead of aiming to produce a particular

point estimate. The strategy places the focus on the assumptions the researcher is using for the

model: the stronger these are, the tighter the bounds. There are two possible directions to relax the

model. One is on the functional form of the relations between agents, and another is on the shape

of the distributions of the unobserved variables conditional on the observed variables (Ho and

Rosen, 2015). An example of this approach can be found in Kang and Imbens (2016), where the

authors look into the a new experimental design called “peer encouragement design”. It considers

network treatment effects under imperfect compliance, and define a set of estimands using partial

identification based on the extent of the treatment. Similarly, Swanson et al. (2018) define partial

identification for instrumental variables.

2.6.3 Potential outcomes framework

In this subsection we introduce the concept of potential outcomes. An important assumption made

in traditional causal inference research is that the treatment being applied to one unit of observation

only affects its own outcome, and does not affect the outcome of other units in the sample. The

literature refers to this as the no-interference, or no spillover assumption, and it is a core component

of as assumption made by many causal approaches: the Stable Unit Treatment Value Assumption,

or SUTVA (Cox, 1958; Rubin, 1980). The Stable Unit Treatment Value Assumption has two parts.

The first assumes that there are not multiple versions of treatment (also known as consistency). This

assumption ensures that the potential outcomes and the realised outcomes coincide under the same

treatment application. The second refers to the fact that the treatment to one unit of observation

does not affect the outcome of a second one, called treatment interference. The potential outcomes
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framework posits that we can consider the outcome without the treatment as missing data (as

opposed to data that is impossible to recover). The name “potential outcomes” suggests that an

individual potentially has two outcomes, but we only directly observe one.

Consider a binary treatment, Z = {0, 1}, and an outcome variable W(Z) that depends on that

treatment. As mentioned above, a unit i can be either treated, Z = 0, or not, Z = 1. The poten-

tial outcomes for units i and j, that is, the possible outcomes that W can take depending on the

treatment, can be represented by Table 2.1.

Table 2.1: Potential Outcomes example (reduced)

Unit Potential outcomes Real World
Z = 0 Z = 1 Z = 0 Z = 1

i W(0) W(1) W(0) ?
j W(0) W(1) ? W(1)

However, this can be considered an abuse of notation. Consider the following expanded version

of Table 2.1, Table 2.2.

Table 2.2: Potential Outcomes example (complete)

Unit Potential outcomes Real World
Zi = 0,Z j = 0 Zi = 1,Z j = 1 Zi = 0,Z j = 0 Zi = 1,Z j = 1

i Wi(Zi = 0) Wi(Zi = 1) Wi(Zi = 0) ?
j W j(Z j = 0) W j(Z j = 1) ? W j(Z j = 1)

Without the full notation present in Table 2.2, we might fail to see that Table 2.1 makes the

assumption that Wi(Zi,Z j) = Wi(Zi). In other words, the assumption that the outcome of i only

depends on the treatment to i and not the treatment to j.

One representation of the fundamental problem of causal inference is that we are never going

to be able to observe the potential outcomes panels in Table 2.1. In a world where this was not the

case, we could study what happens to the outcome with the observed treatment and with a different

treatment strategy, i.e. the counterfactual outcome.

Let’s explore the concept of potential outcomes using a guiding example. Consider a sam-

ple, 𝒮 of size n from a larger population. 𝒮 = (s1, . . . , sn). A unit i has a set of m observable

characteristics: Xi = (Xi,1, . . . , Xi,m), a measurable outcome variable Wi, and an assigned treatment
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Zi = {1, 0} depending on whether it was selected into treatment or not. Z = (Z1, . . . ,Zn) represents

the treatment allocations of all units of observation, and 𝒵(n) is the set of all possible allocations

of treatment for a sample of size n. For the simplest case of a binary treatment, this would be

{0, 1}n. Similarly X refers to the matrix of covariates for all units of observation.

The potential outcomes framework (Rubin, 1974, 1977, 2005) posits the existence of the out-

come of interest for each unit after the application of the treatment, and the non-application of

treatment, just as the left columns of Table 2.1 and 2.2. This approach transforms the fundamental

problem of causal inference (as presented Subsection 2.6.1), into a missing data problem. The

fundamental problem of causal inference is that these data will always be missing.

The treatment allocation is considered a random variable with realisation for each individual

Zi = zi, and every other unit within the same sample, Z−i = {Z1, . . . ,Zi−1,Zi+1, . . . ,Zn} = z−i =

{z1, . . . , zi−1, zi+1, . . . , zn}.

I now consider the scenario in which the treatment to one unit might have an impact on the out-

come of another one. In other words, what happens when we remove the assumption of no interfer-

ence between units. We can define the individual average potential outcomes (Tchetgen Tchetgen

and VanderWeele, 2012; Perez-Heydrich et al., 2014; Papadogeorgou et al., 2019) for a unit i as all

the possible treatment allocation combinations affecting the outcome, multiplied by the probability

of observing said treatment:

W̄i(Z = z; X) =
∑︁

z−i∈𝒵(n−1)

Wi(Zi = zi,Z−i = z−i)PX(Z−i = z−i|Zi = zi,X), (2.22)

where:

∙
∑︁

z−i∈𝒵(n−1)

: We sum z−i over𝒵(n − 1), all the different possible treatment allocations for n − 1

observations.

∙ Wi(Zi = zi,Z−i = z−i): The outcome of unit i given its own treatment and given everyone

else’s treatment allocation according to z−i
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∙ PX(Z−i = z−i|Zi = zi,X): the probability of everyone else’s treatment allocation determined

by z−i, given that unit i’s treatment is zi, and all relevant observable covariates, X. Notice

that PX(Z−i = z−i|Zi = zi,X) is a function of X.

∙ The left hand side of the equation (W̄i(Z = z; X)) dependes on the entire vector of treatment

allocations Z = z and not just Zi = zi because under treatment interference, the outcome

of unit i depends not only on its specific treatment Zi, but also on the treatment to all other

units, represented by Z−i.

We assume that the treatment allocations of two individuals, Zi and Z j are conditionally indepen-

dent given X, when these include all the information to specify the probability of observing the

treatment. This means that PX(Z = z|X) =

n∏︁
i=1

PX(Zi = zi|X).

Traditional statistical models assume that observations are independent and identically dis-

tributed random draws from a probability density function. This allows the probability of observ-

ing Zi = zi given X, the information of all the individuals the sample, P(Zi = zi|X), to be equal to

P(Zi = zi|Xi) the probability of observing Zi = zi given only Xi.

As we will see in later chapters, as we relax the assumption of no interference between units,

we cannot assume that there is no interdependence of the observable covariates in the network, so

the equality above is not straightforward. However, we assume that the interdependence between

the units follows, at least in part, information contained in X. In other words, we can include the

ways in which these interactions and interdependences play out using network related variables.

This suggests that, in terms of our conditional probability of treatment

n∏︁
i=1

PX(Zi = zi|X) =

n∏︁
i=1

PX(Zi = zi|Xi), (2.23)

where Xi is the vector of attributes for unit of observation i. A similar argument was made by

Robins et al. (2007) explaining the Markov assumptions (initially introduced in Frank and Strauss,

1986) for network analysis in the context of the exponential random graph model. The authors

argue that given the correct network terms, a pair of edges in a network that do not share a node

are conditionally independent from each other.
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Forastiere et al. (2020) propose a different way of estimating average potential outcomes under

the presence of interference. In their approach, group average potential outcomes depend on the

individual treatment and the treatment of the individuals that are in every unit’s neighbourhood.

The definition of neighbourhood affects the estimation, as I will present in Chapter 3. The de-

velopment of that chapter depends on the theory of average treatment effects, as presented in the

following subsection.

2.6.4 Average treatment effect

One possibility to determine the effect of a treatment over a group of individuals is by looking at the

average treatment effect, or ATE. This is defined as the expectation of the difference of unobserved

potential outcomes. The ATE is defined as:

E[Wi(Zi = 1) −Wi(Zi = 0)] = E[Wi(Zi = 1) −Wi(Zi = 0)] = E[Wi(Zi = 1)] − E[Wi(Zi = 0)],

The population mean for the effect of Zi. This equation requires us knowing the potential outcomes

for all units. Since this is unknowable, we are going to estimate this mean effect by splitting

the ATE into parts we can actually observe. Let us assume the the proportion of the population

assigned to the treatment condition is π.

ATE = E[Wi(Zi = 1) −Wi(Zi = 0)]

= E[Wi(Zi = 1) −Wi(Zi = 0)|Zi = 1]p(Zi = 1) + E[Wi(Zi = 1) −Wi(Zi = 0)|Zi = 0]p(Zi = 0)

= E[Wi(Zi = 1) −Wi(Zi = 0)|Zi = 1]π + E[Wi(Zi = 1) −Wi(Zi = 0)|Zi = 0](1 − π)

= π (E[Wi(Zi = 1)|Zi = 1] − E[Wi(Zi = 0)|Zi = 1])

+ (1 − π) (E[Wi(Zi = 1)|Zi = 0] − E[Wi(Zi = 0)|Zi = 0])

= π {E[Wi(Zi = 1)|Zi = 1] − E[Wi(Zi = 0)|Zi = 1]}⏟                                                         ⏞                                                         
*

+ (1 − π) {E[Wi(Zi = 1)|Zi = 0] − E[Wi(Zi = 0)|Zi = 0]}⏟                                                                 ⏞                                                                 
**

, (2.24)

where Wi(Zi = 1) refers to the potential outcome of unit i with treatment Zi = 1, and Wi(Zi = 0)

is the potential outcome of unit i with treatment Zi = 0. Given that we cannot observe both
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of these potential outcomes, this quantity is cannot be calculated, so must estimate it. The first

term in Equation 2.24 (*), called the average treatment on the treated (ATT), the population mean

treatment effect on the units that were assigned to treatment, and the second (**), called the average

treatment effect on the untreated (ATU), is the population mean treatment effect on the units that

were not assigned to treatment (Cunningham, 2021). The following assumptions show that we can

only estimate three out of the five terms introduced:

∙ We assume that we have a good idea of how Z is going to be distributed in the population,

which means that we are able to know how many people are treated. This is, we can estimate

E[Zi].

∙ We also assume that the way treatment is assigned is independent of the outcome. Using

the arithmetic properties of conditionality (the properties of the expected value conditional

on a specific occurrence), we can calculate E[Wi(Zi = 1)|Ti = 1] using E[Wi|Zi = 1] and

E[Wi(Zi = 0)|Zi = 0] using E[Wi|Zi = 0].

In other words, we can estimate the expected outcome for treated observations when they were

effectively treated, and the expected outcome for non-treated observations when they were not

treated.

We cannot, however, estimate the expected outcome on the treated when they were in the con-

trol group, and vice versa. To proceed, we need to use the assumption that treatment is independent

of the potential outcomes (which hints at why randomized control trials, or RCTs, became the gold

standard for social experiments. More information on the benefits and shortcomings of RCTs can

be found in Pearl, 2009). The expectation of the observed outcome conditional on Zi = 1 is

E[Wi|Zi = 1] = E[Wi(Zi = 0) + Zi(Wi(Zi = 1) −Wi(Zi = 0))|Zi = 1]

= E[Wi(Zi = 1)|Zi = 1]

= E[Wi(Zi = 1)], which follows from the assumption of independence.

Assuming that treatment is independent of the outcome allows to connect the observed outcomes to

the potential outcomes. With this, the average treatment effect AT E = E[Wi(Zi = 1)−Wi(Zi = 0)] =

E[Wi|Zi = 1]−E[Wi|Zi = 0]. This is, “the expectation of the unobserved potential outcomes is equal
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to the conditional expectations of the observed outcomes conditional on treatment assignment”

(Keele, 2015). The situation when the treatment is not independent from the outcome will be

explored in the next section.

2.7 Propensity scores

Propensity scores were developed by Rosenbaum and Rubin as a way to reduce the complexity

when comparing two groups of individuals who were assigned to a treatment in a non-experimental

setting (Rosenbaum and Rubin, 1983). A propensity score is the coarsest balancing score that al-

lows researchers to stratify a population into groups for comparison. This is, a value that ensures

if two units assigned to different treatments have the same propensity score, their observable char-

acteristics will have similar values. This is done by estimating a conditional probability model of a

particular variable (usually a treatment assigned to a group of individuals) on a group of covariates

that determines that treatment. Except for very special circumstances, there is no analytical for-

mula for the propensity score, so it is usually modelled and estimated using a logit model to ensure

predicted values are bounded between 0 and 1, but other functional forms are allowed (Shalizi,

2021, pp. 517). These predicted values are then used as a scalar value, called a propensity score,

to compare the outcomes of units with similar values of the propensity score, but were assigned

different treatments (Cunningham, 2021).

The propensity score methodology looks to estimate P(Zi = 1|Xi) ≡ E[Zi = 1|Xi], where

Zi represents a treatment variable for unit i, and Xi is the vector of covariates for that same unit.

The propensity score theorem introduced by Rosenbaum and Rubin (1983) states that if a treatment

variable is conditionally independent from an potential outcomes conditional on a set of covariates,

the treatment variable is also conditionally independent from the potential outcomes conditional

on a scalar function of the covariates, the propensity score. Formally, {Wi(Zi = 0),Wi(Zi = 1)} y

Zi = 1|Xi, implies that {W0,i,W1,i} y Zi = 1|P(Zi = 1|Xi). Although powerful, the theorem requires

the right set of variables in Xi for the outcome to be conditionally independence of the treatment.

This is, we need to assume the correct specification with respect to confounders.

There are several uses for the propensity score that help reduce confounding in causal analysis.

We can use the predicted values of P(Zi = 1|Xi) to create strata that ensure the individuals inside
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of each one are similar in the attributes that were used to estimate the propensity score. In addi-

tion, we can use these same predicted values to do a one-to-one matching and then estimate the

average treatment effect on the treated by comparing the outcome of the matched units (Angrist

and Pischke, 2009). The fact that P(Zi|Xi) is a scalar reduces the dimensionality problem of trying

to balance groups of treatment assignment. Furthermore, a small manipulation of the main result

of the propensity score theorem, that {W0,i,W1,i} y Zi|P(Xi), means we can estimate the average

treatment effect E[W1,i −W0,i] as

E[W1,i −W0,i] = E
[︃

WiZi

P(Zi|Xi)
−

Wi(1 − Zi)
1 − P(Zi|Xi)

]︃
.

,Using the estimated propensity score as weights to adjust the value of the outcome (called in-

verse probability weighting) eliminates the need to match units with each other or into different

groups since the weight produces a sense of relative importance in the sample. In Chapter 3 I

follow Forastiere et al. (2020) in using the estimated propensity score as an explanatory variable

in an outcome regression, a procedure usually referred to as covariate adjustment or regression

adjustment.

2.8 Causal inference in the presence of interference

Statistical inference usually relies on the assumption that the units of observation in an analysis are

independent from one another. There are several scenarios in which making this assumption is not

valid, since individuals might influence each other, and this might lead to incorrect estimates of

causal quantities. This is referred to in the literature as spillover or interference effects. Failing to

properly consider these can lead to incorrect or misleading conclusions, as shown by Ogburn and

VanderWeele (2014).

One of the first formal considerations of spillover effects in the statistics and causal inference

literature is Manski’s 1993 paper on endogenous social effects. In it, Manski discusses the difficulty

in disentangling how an individual’s outcome can be influenced by their own characteristics and by

their context, where context is often described as a reference group of individuals. This difficulty

in identifying the reason an individual might behave in a certain way is described by the author as
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a result of three scenarios: endogenous effects, exogenous (contextual) effects, and/or correlated

effects. Manski indicates that correct inference is only possible if we have information about the

composition of reference group, which in turn determines the influence affecting every individual.

Recently, the literature on causal inference with interference has made important progress. We

rely on some of these recent developments to analyse the data from STASH (in Forsyth et al.,

2018). The causal inference framework we are going to consider is that of potential outcomes, as

presented in Subsection 3.2.1, initially defined by Splawa-Neyman et al. (originally from 1923;

translated into English in 1990) and formalised by Rubin (1974). After the application of a simple

treatment to a sample of individuals, each individual’s outcome can only be observed with the

treatment or without the treatment, but not both. Let us assume without loss of generality that we

observe the outcome on an individual who was given the treatment.

One important assumption often invoked when considering this framework is that units of ob-

servation in a sample do not interact with one another in a way that affects their resulting outcomes

(Rubin’s potential outcome’s framework can indeed accommodate spillover Rubin (1986)). This

is, that the treatment to one does not interfere with the outcome of another. In their foundational

work, Hudgens and Halloran (2008) (following Sobel, 2006) developed an estimator that removes

the assumption of no-interference between individuals by grouping the observations into fully con-

nected subgraphs, that are not connected to each other. This subgraphs are also called clusters. In

this strand of the literature the units of observation inside each cluster are connected to all the other

ones inside the same cluster (and therefore interfere with each other), but not connected to those

in different clusters (preventing the interference to spill over onto other clusters); this structure is

usually referred to as partial or clustered interference. Cluster-randomised control trials are RCTs

where the randomisation occurs at the cluster or subgraph level, not at the individual level.

The methodology developed by Hudgens and Halloran (also used in Halloran and Hudgens,

2012, 2016; Saul et al., 2017) allows for causal identification of the direct and spillover (indirect)

effects when the assignment to treatment follows a two-stage randomisation procedure: first at the

cluster level, and then at the individual level inside of each group. Tchetgen Tchetgen and Van-

derWeele (2012) extended these results into observational studies by using an inverse-probability-

weighting estimator that corrects the lack of randomisation in the application of treatment at both

levels. Building on these, Perez-Heydrich et al. (2014) and Papadogeorgou et al. (2019) calculate
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cluster-level direct and indirect causal treatment effects by considering many clusters comprised

of few units of observation, where every one interacts with the others in the same cluster. Both

Perez-Heydrich et al. and Papadogeorgou et al. estimate the average potential outcomes using in-

verse probability weights to account for differences between individuals assigned to treatment and

control groups.

There are other approaches that address the presence of interference performing inference about

estimands of interest. Athey et al. (2018) study how to calculate exact p-values for several null

hypotheses where all units in the sample belong to a single connected network. Aronow and

Samii (2017) present an inverse probability weighted estimator for the average unit-level causal

effects from a randomised experiment with arbitrary but known interference. In their research,

Aronow and Samii introduce the concepts of treatment mapping and exposure mapping to suggest

a difference in who get assigned to treatment, and who actually gets exposed via the treatment

that spills over. While treatment mapping refers to the way the experiment designers expect the

intervention to be distributed through the population, the exposure mapping aims at understanding

how it was actually distributed by taking into consideration the interference. One possible way of

understanding this approach is that assuming no interference implies the treatment mapping and

the exposure mapping are identical.

Ogburn and VanderWeele (2014) show that the kind of interference under consideration matters

in terms of the assumptions needed for identification; furthermore, Ogburn (2017) and Lee and Og-

burn (2020) suggest that the problems caused by statistical interference can be more widespread

than initially assumed, since many studies do not meet the assumptions required by commonly

used estimators. The most notable example is Ogburn et al. (2020), which challenges the long es-

tablished result that obesity is socially contagious (see Christakis and Fowler (2007)). The interest

in this particular area of research is growing, and the tools available for researchers looking into

causal inference in the presence of interference are becoming more advanced. Further examples

of this area of research can be found in Toulis and Kao (2013); Kang and Imbens (2016); Paluck

et al. (2016); Athey and Imbens (2017); Jagadeesan et al. (2020).
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2.9 Summary

In this chapter I presented an overview of the statistical concepts used in the rest of the disserta-

tion divided into three major themes: social network analysis (an introduction and notation, the

exponential random graph model and how to estimate it using maximum likelihood estimation

as well as using Bayesian inference), relational event models (including randomisation inference

for hypothesis testing), and causal inference (basic definitions and ideas, the potential outcomes

framework, propensity scores, and causal inference in the presence of interference). These three

themes correspond to the methodologies presented in three following chapters.
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Chapter 3

Causal estimation of spillover effects in a

social network setting: attempting to

increase confidence in positive sexual health

attitudes
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3.1 Background on causal inference in the presence of interfer-

ence

Small-scale public health interventions can be an important tool to investigate how to improve the

lives of individuals in society. Given that many habits are formed during high school - adolescence

is a period of increased openness (Kirby et al., 2007) - school interventions have been used to

modify behaviour from an early age. Research has shown that although teachers or mentors are

better at imparting factual information, behaviour and social norms of students can be more easily

modified when guided by their peers (Harden et al., 2001). This suggests that peer-led interventions

can be considered an alternative to more traditional, adult-led methods when we aim to influence

adolescent behaviour.

The University of Glasgow’s Social and Public Health Sciences Unit carried out a feasibil-

ity study for an intervention to improve sexual and reproductive health education in high-school

students (Forsyth et al., 2018), known as Sexually Transmitted infections And Sexual Health

(STASH). Aiming to augment school based education, the intervention intended to connect nom-

inated students, trained as peer supporters, with other students to capitalise on the existing social

relations in the school. This intervention followed steps previously proven to reduce the uptake

of smoking among young people in the A Stop Smoking in Schools Trial (ASSIST) intervention.

In that study, a cluster-randomised controlled trial with a similar peer-driven approach found that

smoking was reduced over a two-year period (Campbell et al., 2008).

A key element to these interventions is the set of connections between students. I will refer

to this as the social network of a group of individuals. Both STASH and ASSIST assume that

units of observation (individual adolescents) are not independent from each other, but rather that

their behaviour is guided by a structure of dependence, likely to be correlated with the network of

connections between them (Rogers, 2002; Ogburn, 2017). By design, intervened upon individuals

get in touch with their close connections and try to modify their behaviour. This presents a chal-

lenge to traditional causal inference research, which assumes that treatment given to one unit of

observation does not affect the outcome of another unit. Here I am not only interested in correctly

identifying the direct effect of the treatment. I am also interested in the effect of the treatment for
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those individuals that were not treated but who were exposed through their connections (these are

called spillover effects), so I need to know how people are connected to each other.

The STASH feasibility study aimed to assess the recruitment and retention of peer supporters,

fidelity and reach of the delivery of the intervention by trainers and peer supporters, as well as

refine the theory behind the intervention. My aim is to estimate the causal direct effect of being

a peer supporter, and investigate the effect of the intervention spilling over to other individuals

in the sample, i.e. the causal indirect effect of the intervention. The intervention produced data

with information on the individual characteristics of the students, the connections between them,

and their treatment status. I will use that as a case-study for the regression approach proposed by

Forastiere et al. (2020) that uses generalised propensity scores for determining causal direct and

spillover effects of an intervention.

The main analysis carried out adopts the approach of Forastiere et al. (2020) (hereafter referred

to as FAM for Forastiere, Airoldi, Mealli, the authors of the paper), as it was developed in a context

similar to ours, where (fully-connected) clustered interference does not hold as not all individuals

within a cluster are socially connected (for more on clustered interference see Hudgens and Hallo-

ran, 2008). As I detail in the next section, the approach relies on considering treatment as bivariate:

direct treatment and indirect exposure to this treatment through social contacts, with generalised

propensity scores (Hirano and Imbens, 2005) used to model each component of this bivariate treat-

ment separately and then included these as covariates in an outcome regression model.

The direct effect estimates what happens, on average, if individuals received the treatment

versus if they did not, in counterfactual terms. This is, estimating the average treatment effect.

Similarly, for the indirect effect, we can estimate the average spillover effect for both units that

were treated as well as those untreated.

The relevant literature for causal inference in the presence of interference can be found in

Section 2.8, and in particular a practical implementation of FAM’s methodology can be found

in Del Prete et al. (2020). Section 3.2 presents a description of the methodology used by FAM

to determine the causal direct and spillover effect of an intervention. I introduce an alternative

way of estimating the direct and spillover effects by way of cubic splines in the outcome model.

My proposal uses flexible modelling as an alternative to the reliance of the FAM estimators on

researchers’ a priori understanding of the functional form of the outcome model. As I shall detail
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in the methodology below (Section 3.2.2), one of the main requirements for the FAM methodology

to produce unbiased estimators is full knowledge of the form of an outcome model, as well as two

different treatment models. The first treatment model relates to the direct treatment, while the

second one relates to the way individuals are exposed to the treatment indirectly via their social

connections with the peer supporters. Peer supporters can also experience spillover from their

treated connections.

In Section 3.3, I investigate the sensitivity of the FAM approach to violations of the assumption

of full information of the outcome model, and present my alternative modelling strategy. I expand

on the work of the authors by estimating the direct and spillover effects using directed networks,

as opposed to undirected ones, and show that the suggested subclassification approach is limited

by the sample size. Section 3.4 presents a description of the STASH intervention, an overview of

the data, and the methodologies that will be used to estimate STASH’s main and spillover effects.

In Section 3.5, I discuss my findings.

3.2 Propensity-score regression for data with interference

For this analysis, I will consider the potential outcomes framework. An important assumption in

traditional causal inference research is that the treatment applied to one unit of observation only

affects its own outcome, and does not affect the outcome of other units in the sample. The literature

refers to this as the no-interference, or no spillover assumption, and it is a core component of an

assumption made by many causal approaches: the Stable Unit Treatment Value Assumption, or

SUTVA (Cox, 1958 and Rubin, 1980). To recap, the Stable Unit Treatment Value Assumption

has two parts. The first assumes that there are not multiple versions of treatment (also known

as consistency), such that the potential and realised outcomes under the same treatment coincide.

Forastiere et al. (2020) frame it as “the mechanism used to assign the treatments does not matter

and assigning the treatments in a different way does not constitute a different treatment”. The

second refers to the lack of interference between units of observation. Formally, this is that the

outcome of one individual which could depend on the treatment to everyone in the sample, Wi(Z),

only depends on the treatment applied to that individual, Wi(Zi).
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Under many scenarios, when the assumption of no interference is valid, it is possible to obtain

unbiased estimators for treatment effects. However, in the case of inherently interconnected data

this assumption is harder to justify, suggesting the potential for bias and incorrect inference. Con-

sider the following example: if (by design) treated individuals expose control individuals to the

treatment (like in the STASH study, where treatment consists of educational material provided to

peer supporters who are then requested share that to their peers), we would like to know what the

effect of the intervention was on the units in the first group, but it is also of interest how the indirect

exposure to the treatment affected the outcome of the units in the second group. Assuming that

the outcomes of this second group of students were not affected by the treatment would result in

an underestimation (or overestimation, depending on the specifics of the intervention) of the true

effect.

In this regard, interference presents a challenge for statistical inference because the potential

outcomes for each individual depend on the individual treatment, as well as the (spilled over)

treatment received by all the units, which violates the second component of SUTVA. Forastiere

et al. (2020) developed a method to determine the direct and spillover effects from an intervention

using observational data, considering the treatment as a bivariate vector in which the balance of

each covariate for each component of the vector is achieved via (generalised) propensity score

methods (following Hirano and Imbens, 2005).

3.2.1 Potential outcomes framework under interference

Extending the definition of potential outcomes originally laid out by Rubin (1974), Forastiere et al.

(2020) suggest a modified version of SUTVA called Stable Unit Treatment on Neighbourhood

Value Assumption (SUTNVA). Similar to previous work by van der Laan (2014), they assume that

the propagation of treatment only occurs between immediate connections (i.e., a person may be

influenced by their friends, but not by friends of their friends). The causal estimands proposed by

the authors are average comparisons of the potential outcomes under different combinations of the

treatment and the interference.

SUTNVA and the rest of our analysis rely the following notation and definitions introduced in

Section 2.2, recalled here:
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∙ A network is a pair (Y,X), composed of a set n nodes, and a set of edges, or connections

between those nodes, represented by Y , and X represents a matrix with n rows and k columns,

representing the values of the k attributes for each of the n nodes in the network. For a given

pair of nodes i and j, the pair (i, j) represents a connection between i and j. Networks can

be “directed”, which means that (i, j) ∈ 𝒴 ⇏ ( j, i) ∈ 𝒴. In this case, i sends a connection to

j ( j has an incoming connection from i). For “undirected” networks, (i, j) ∈ 𝒴 ⇔ ( j, i) ∈ 𝒴.

∙ 𝒩 is the set of nodes in the network.

∙ 𝒩 can be partitioned as (i,𝒩i,𝒩−i, ), where𝒩i refers to all the nodes in𝒩 that are connected

by links incoming to i, and𝒩−i are all the nodes that are not connected by incoming links to

i. In the case of undirected networks, 𝒩i is referred to as the neighbourhood of unit i. In

directed networks, we use incoming neighbourhood when considering the incoming edges

to i, or outgoing neighbourhood for the outgoing edges from i.

∙ Zi ∈ {0, 1} is a binary random variable representing the treatment of unit i, 0 if not treated

and 1 if treated. Z is the vector that contains the treatment assignments for all nodes in 𝒩 .

∙ Similarly, Wi is a random variable representing the observed outcome of unit i. W is the

vector that contains the outcomes for all nodes in 𝒩1.

∙ Xi is the vector of covariates for node i. Xind
i refers to a vector of individual covariates for

node i, and Xnet
i refers to a vector of network-related covariates for observation unit i. Xnet

can, for example, be the average value of Xind
𝒩i

for the individuals in the neighbourhood of i,

or the number of incoming connections of i, ‖𝒩i‖.

∙ Neighbourhood treatment: this is the treatment that spills over onto unit i from the units in

the sample belonging to the incoming neighbourhood of i. For clarity, this is a measure of

treatment and not an estimand of an effect.

Under interference, the observed outcome for unit i, Wi, may be a function of the entire treat-

ment assignment vector Z, or Wi = Wi(Z). The first component of SUTVA, that there is but a

1Most of the causal inference literature refers to the outcome of a unit with the variable Y , however, for consistency
with the rest of the dissertation I change this to W.
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single version of treatment, implies that assigning treatments in different ways does not constitute

a different treatment. SUTNVA does not modify this assumption. In other words, the mechanism

of assigning a treatment to individuals does not change the outcome even in spite of the fact that the

outcome explicitly depends on the entire vector of treatments. van der Laan (2014) and Forastiere

et al. (2020) relaxed this somewhat such that the outcome of individual i depends not on the entire

vector of treatments, but only on the treatments of the incoming neighbourhood of i, or explicitly

only those nodes of the neighbourhood of i whose edges are directed into i.

To see how this assumption is defined in terms of network interference, we can divide our

sample in three main parts: a single unit, i, its incoming neighbourhood, 𝒩i, and all the units

that are not in its incoming neighbourhood 𝒩−i. The “no-interference” assumption implies that

Wi(Zi,Z𝒩i ,Z𝒩−i) = Wi(Zi,Z′𝒩i ,Z′𝒩−i) for all different Z𝒩i ,Z𝒩−i ,Z′𝒩i ,Z′𝒩−i . In other words, no-

body’s exposure but i’s matters.

However, in our case, we are interested in how i is exposed to the treatment assigned to the

units in its incoming neighbourhood, 𝒩i.

Forastiere et al. (2020) propose a modified version of the no-interference assumption: Consider

gi : {0, 1}Ni → 𝒢i,

a function that takes the vector of all possible treatments for a group of individuals in an incoming

neighbourhood, 𝒩i, {0, 1}Ni , with Ni being the number of nodes in 𝒩i, and produces an aggregate

version of that treatment applied to that group of units. 𝒢i is the domain of gi and ultimately

depends on the definition of the function and what we mean by “aggregation”. For example, in one

case, gi could the number of treated peers in 𝒩i, 𝒢i = {0, · · · ,Ni}, and in another, gi could be the

proportion of treated peers in 𝒩i, which makes 𝒢i = [0, 1].

We can then say that for all Z𝒩i ,Z′𝒩i
(different treatment allocations of the incoming neigh-

bourhood of i) and for all Z𝒩−i ,Z′𝒩−i
(different treatment allocations for the units outside of the

neighbourhood of i), if the aggregation of the treatment allocation to units in 𝒩i (that is, Z𝒩i) is

the same as the aggregation of a different allocation of treatment to the same units (Z′
𝒩i

), in other

words, that gi(Z𝒩i) = gi(Z′𝒩i
), then unit i’s outcome is the same under both treatment allocations,

Wi(Zi,Z𝒩i ,Z𝒩−i) = Wi(Zi,Z′𝒩i ,Z
′
𝒩−i),
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regardless of the values of Z𝒩−i and Z′𝒩−i

Under the proposed assumptions, FAM only required that the potential outcomes be indexed

by the individual treatment Zi and the neighbourhood treatment of unit i, Gi = gi(Z𝒩i). 𝒢 is the

space of all possible values of Gi. Because of this, the potential outcome for unit i, Wi(z, g), can

only be calculated for the subset of nodes where Gi can be take value g, defined as Vg by the

authors. The cardinality of Vg is expressed as νg. In other words, if gi is a function that aggregates

neighbourhood treatment as the share of treated peers, and unit i only has two peers, it will not

belong to V0.25, since there is no way for that unit to be exposed by a quarter of its peers, and so

the potential outcome for that unit with g = 0.25 is not defined.

To clarify, I use the same example provided by the authors: “in the case where Gi is the number

of treated neighbours, Vg is the set of nodes with degree Ni ≥ g.” Note this is just an example of the

how Vg can be expressed based on the definition of Gi. Different Gi’s lead to different definitions

of Vg.

Regarding the individual direct effect of treatment for a particular level of interference g, the

causal estimand can be expressed as

τ(g) = E
[︁
Wi(Zi = 1,Gi = g) −Wi(Zi = 0,Gi = g)|i ∈ Vg

]︁
,

where it must be noted that this effect is conditional on a given value g. This is, the effect of

individual treatment, (Zi = 1) vs (Zi = 0), when the neighbourhood treatment level is set to g.

The overall, or marginal, direct effect τ is calculated by averaging the individual treatment over

the probability distribution of the neighbourhood treatment:

τ =
∑︁
g∈𝒢

τ(g)P(Gi = g).

Regarding the neighbourhood effect, the authors define this as the spillover effect of having a

neighbourhood treatment effect set to g versus 0, when the unit is under individual treatment z:

δ(g, z) = E
[︁
Wi(Zi = z,Gi = g) −Wi(Zi = z,Gi = 0)|i ∈ Vg

]︁
.
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Similarly, the overall spillover effect, marginalised over G, is defined as

∆(z) =
∑︁
g∈𝒢

δ(g, z)P(Gi = g), for z = 0, 1.

The direct and spillover effects are based on the comparison between the marginal (over the

covariates) mean of two different potential outcomes, and represent the values I want to estimate. In

the case of the direct effect, τ(g) compares, for a given neighbourhood treatment, the effect of being

assigned to treatment versus not being assigned to treatment. In the case for the neighbourhood

treatment effect, δ(z, g) compares, for a given level of individual treatment, the effect of a set level

of neighbourhood treatment, versus receiving no neighbourhood treatment at all. This marginal

(again over the covariates) mean of the potential outcome for a subset Vg is defined as

µ(z, g) = E[Wi(z, g)|i ∈ Vg], ∀z ∈ 0, 1, g ∈ 𝒢.

The innovation proposed by Forastiere et al. is that µ(z, g) can be seen as an average dose-

response function depending on the dose of a bivariate treatment, where one component of the

treatment vector captures the direct effect and the other the indirect or spillover effect, with

marginalisation occurring over the space of the covariate vector, X. I detail the estimation proce-

dure from Forastiere et al. (2020) in the next chapter.

3.2.2 (Generalised) propensity score regression for direct and spillover

treatment effects

The method proposed by Forastiere et al. (2020) considers two different propensity scores: one that

determines the individual treatment, and one that determines the neighbourhood treatment. Con-

sider the joint distribution of the bivariate treatment vector: ϕ(z, g|x) = P(Zi = z,Gi = g|Xi = x),

the probability for unit i of being assigned to individual treatment z and exposed to neighbourhood

treatment g, given the observed characteristics x.

The authors establish that the joint propensity score for these two kinds of treatment is: i) a

balancing score, which means that if a set of units differ in terms of their direct treatment z or their
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neighbourhood treatment g but have the same value of ϕi(z, g|x), the distribution of the covariates

x is the same; ii) conditionally unconfounding of Zi and Gi, which means that the outcome Wi is

conditionally independent of the individual and the neighbourhood treatments given ϕ(z, g|x); and

iii) factorisable as

ϕ(z, g|x) = P(Zi = z,Gi = g|Xi = x)

= P(Gi = g|Zi = z, Xg
i = xg)P(Zi = z|Xz

i = xz)

where Xz refers to the group of variables that estimate the individual propensity score, P(Zi =

z|Xz
i = xz), and Xg is the set of variables that estimate the neighbourhood propensity score, P(Gi =

g|Zi = z, Xg
i = xg). These two sets of variables do not need to be the same. The probability

of having neighbourhood treatment at level g conditional on a specific value z of the individual

treatment and on Xg, P(Gi = g|Zi = z, Xg
i = xg), is denoted by λi(g|zi, x

g
i ), and is referred to

as the neighbourhood propensity score. The probability of having individual treatment at level z

conditional on Xz, P(Zi = z|Xz
i = xz) is represented by φi(z|xz

i ) and is referred to as the individual

propensity score.

The estimation strategy proposed by Forastiere et al. (2020) proceeds as follows:

1. Estimate the individual propensity score, φ(z|xz), using a logistic regression for the treatment

conditional on Xz.

2. Predict the propensity to be selected into treatment, φ̂i(z|xz
i ) for each unit.

3. Subclassify the data based on the predicted individual propensity score, φ̂(z|xz) into J parts.

4. For each subclass j, estimate µ j(z, g) = E[Wi(z, g)|i ∈ Bg
j], where Bg

j is the collection of units

in subclass j, and in Vg. These values will then be used to calculate the overall µ(z, g), i.e.

dose-response function. To get each µ j(z, g) we:

(a) Estimate parameters for the neighbourhood treatment, assuming a specific distribution

for the neighbourhood effect. The original functional form proposed was:

logit(λ[ j](g|z, Xg)) = γ
[ j]
0 + γ

[ j]
Z Zi + γ

[ j]
Xg

′Xg
i ,
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but others are also allowed. Predict individual values of λ(g, z|Xg) inside of each sub-

class j, and refer to these as λ̂[ j]
i , for individual i in subclass j.

(b) Use the observed data (Wi,Zi,Gi, Xi) and the estimated λ̂[ j]
i to estimate the parameters

of a model for the potential outcome Wi(z, g) as a function of treatment, of the indi-

vidual and neighbourhood propensity score, and also of covariates. FAM proposed a

parametric outcome model that depends on the individual treatment, the neighbourhood

treatment, and the estimated neighbourhood propensity score:

Wi(z, g) = f (zi, gi, λ̂
[ j](zi, gi, X

g
i )). (3.1)

The actual functional form of f depends on the actual outcome we want to analyse.

The estimation of λ̂[ j]
i can present complications due to the small size of the strata in

studies such as STASH.

(c) For a particular level of the joint treatment (Zi = z,Gi = g), for each unit in the subclass

we predict the neighbourhood propensity score evaluated at that level of the treatment,

i.e., λ̂i(g|z, Xi), and use it to predict the potential outcome Wi(z, g) using the parameters

estimated in step (b). This is the most important step of the entire estimation, since this

is where the potential outcomes are calculated.

(d) Estimate the subclass-specific dose-response values, µ̂ j(z, g,Vg) by averaging the in-

dividual potential outcomes for every combination of individual and neighbourhood

treatment:

µ̂ j(z, g,Vg) =

∑︀
i∈Bg

j
Ŵi(z, g)

|Bg
j |

.

5. With all the µ j(z, g), calculate the average dose-response function as the weighted average of

the subclass-specific dose-response values, where the weights are calculated as the propor-

tion of individuals in each class:

µ̂(z, g,Vg) =

J∑︁
j=1

µ̂ j(z, g,Vg)

⎛⎜⎜⎜⎜⎜⎝ |Bg
j |

vg

⎞⎟⎟⎟⎟⎟⎠.
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6. With the dose-response average potential outcome, estimate the direct and spillover effects

of the intervention.

The subclassification mentioned in step three can be done in different ways, always looking

for balance (where the average value of the observable variables, xz, is the same for all subclasses

(Cunningham, 2021)) between the subclasses. Having a large number of subclasses makes balance

harder to achieve when samples are small because of the lower number of observations in each

subclass. FAM reports using two subclasses for their estimation.

A clear challenge presented by this methodology is that it requires correct specification both

in the individual treatment model. Another challenge is requiring the correct specification of the

outcome model. I am going to study the behaviour of the estimator proposed by Forastiere et al.

(2020) considering different model specifications. Additionally, the simulations presented by those

authors have a relatively large sample size. I replicate their simulation using diverse sample sizes

and use directed rather than undirected networks.

3.2.3 Flexible regression using cubic splines

As an alternative model specification, I consider a flexible regression on the outcome model, with

cubic splines on the estimated individual and neighbourhood propensity scores in addition to terms

for the treatment, spillover variables and their interaction. This means including a cubic polynomial

for both propensity scores, and introducing a knot at the median of the variable. The flexibility

provided by this modelling specification reduces the need to know the exact functional form of the

model we are estimating, while capturing the complexity of the interaction between the outcome

and the propensity scores.

Using splines in the outcome model should allow for greater flexibility in the estimation of the

direct and spillover effects, without having complete information of the data generating process.

I am interested in including the variables that both affect the outcome and the way treatment is

distributed throughout the sample both directly and by means of the spillover. A flexible regression

approach includes these variables in an agnostic way, requiring less information about the outcome

model from the researcher who intends to use this methodology. My investigation led to using two

comparable flexible regressions: one that considers the subclasses, as determined by the authors
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(Section 3.2.2, step 3), and one that does not. This subsection presents the details of my proposed

approach.

For clarity, I first explain our approach without subclasses, and then the one with subclasses:

Approach without subclasses:

1. Estimate the individual propensity score, φ(z|xz), using a logistic regression for the treatment

conditional on Xz (same as step 1 in the FAM approach).

2. Predict the propensity to be selected into treatment, φ̂(z|xz) for each unit (same as step 2 in

the FAM approach).

3. Estimate the potential outcomes for Wi when Zi = 0 and when Zi = 1. To do this, estimate

parameters for the neighbourhood treatment model, according to the proposed functional

form:

logit(λ(g|z, Xg)) = γ0 + γZZi + γxg Xg
i .

4. Use the following flexible outcome model for the calculation of the potential outcomes:

Wi(Zi,Gi) ∼ βZZi + βGGi + βZGZiGi + βφ̂spline(φ̂i) + βλ̂spline(λ̂i),

where φ̂ is the predicted propensity score for the treatment model, and λ̂ is the predicted

propensity score for the neighbourhood model when Z = 0 and Z = 1. Similarly to the way

the dose-response function was calculated in Subsection 3.2.2, I calculate Wi(Zi = z,Gi = g)

for every value of z and g available.

5. Predict individual values of λ(g,Zi = z|Xg), and refer to them as λ̂i(Zi = z). This is then used

to estimate the potential outcome Ŵi(Zi = z,Gi = g), following the same approach described

in the estimation strategy above in steps 4.c and 4.d.

6. With the dose-response average potential outcome, estimate the direct and spillover effects

of the intervention.

Approach with subclasses: This approach works very similarly to the one without subclasses,

with the particular distinction that we perform the estimation of the potential outcomes (therefore
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estimate the direct and spillover effects) inside of each subclass. The final estimate is the weighted

average of the direct and spillover effects, where the weights are given by the number of individuals

in each subclass.

1. Estimate the individual propensity score, φ(z|xz), using a logistic regression for the treatment

conditional on Xz.

2. Predict the propensity to be selected into treatment, φ̂(z|xz) for each unit.

3. Subclassify the data based on the predicted individual propensity score, φ̂(z|xz) into J parts.

4. For the individuals whose value of φ̂(z|xz) lies in subclass j, and for every subclass:

(a) Estimate the potential outcomes for W [ j]
i when Zi = 0 and when Zi = 1. To do this, we

first need to estimate parameters for the neighbourhood treatment model, according to

the proposed functional form:

logit(λ[ j](g|z, Xg)) = γ
[ j]
0 + γ

[ j]
Z Zi + γ[ j]

xg

′Xg
i ,

to then include it the following flexible outcome model:

W [ j]
i (Zi,Gi) ∼ βZZi + βGGi + βZGZiGi + βφ̂spline(φ̂i) + βλ̂spline(λ̂[ j]

i ),

where φ̂ is the predicted propensity score for the treatment model, and λ̂[ j] is the pre-

dicted propensity score for the neighbourhood model, calculated inside of the j-th sub-

class. Similarly to the way the dose-response function was calculated in Subsection

3.2.2, we calculate W [ j]
i (Zi = z,Gi = g) for every value of z and g available.

(b) This is, we predict individual values of λ[ j](g,Zi = z|Xg) inside of each subclass j,

and refer to them as λ̂[ j]
i (Zi = z). This is then used to estimate the potential outcome

Ŵ [ j]
i (Zi = z,Gi = g).

(c) To calculate the potential outcomes, follow the same approach described in the estima-

tion strategy above in steps 4.c and 4.d. I estimate the subclass-specific dose-response
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values, µ̂ j(z, g,Vg) by averaging the individual potential outcomes for every combina-

tion of individual and neighbourhood treatment:

µ̂ j(z, g,Vg) =

∑︀
i∈Bg

j
Ŵi(z, g)

|Bg
j |

.

5. With all the µ j(z, g), we calculate the average dose-response function as the weighted aver-

age of the subclass-specific dose-response values, where the weights are calculated as the

proportion of individuals in each class:

µ̂(z, g,Vg) =

J∑︁
j=1

µ̂ j(z, g,Vg)

⎛⎜⎜⎜⎜⎜⎝ |Bg
j |

vg

⎞⎟⎟⎟⎟⎟⎠.
6. With the dose-response average potential outcome I estimate the direct and spillover effects

of the intervention.

3.3 Simulation

I present a simulation study to examine how the discussed estimation methodologies perform when

calculating the direct and spillover effects of an intervention and compare alternative approaches,

while also considering model misspecification. In this section I present the data generating process

and the fitting of the models.

3.3.1 Data generating process

Our simulation is designed similarly to that of Forastiere et al. (2020) and is used compare the

results when the drawn sample is large to when the sample size is more in line with the number of

observations in the STASH trial. Importantly, I also test the robustness of the method to misspecifi-

cations in the models used by the data analyst. The unit of observation is going to be a student in a

school. Schools work like clusters (in the Hudgens and Halloran, 2008 sense) in that the transmis-

sion of treatment between schools should not be allowed, meaning that they are distinct networks
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with no connections between them. I do this to try to replicate the way in which the data for the

STASH intervention was collected. I now explain the simulation and the estimation procedure.

The number of schools/clusters is going to determine the ultimate sample size. Every

school is generated with 100 students, and each student has two independent variables xind
1 ∼

Bernoulli(1, 0.3) and xind
2 ∼ Poisson(λ = 2). Within each school, we sample a friendship network

between the students using the network package (Butts et al., 2021). The formula used for the

generation of all of these networks was

network ∼ edges + mean degree + gwesp(0.5),

with coefficients (-4, -7, -0.5). The set of network terms as well as their respective coefficients were

chosen because they produce networks compatible with the ones from the STASH study (see Table

A.1 and Figure A-1 in the Appendix for this chapter). For this simulation, I consider a “treated

individual” to be those that receive the treatment directly, and those individuals who are in the

neighbourhood of the treated individuals are considered “exposed individuals”.

Following the restriction on the STASH friendship questionnaire, we cap the maximum number

of friends at 5. With the information on everyone’s friends, following FAM, we calculate the

average values of xind
1 and xind

2 across each individual’s incoming connections to create xnet
1 and

xnet
2 , respectively. I use the average to generate xnet

1 and xnet
2 , following Forastiere et al. (2020).

The variables that correspond to individual information are noted as xind
1 and xind

2 , and I refer

to them as Xind. The variables that correspond to the network information for each individual are

noted as xnet
1 and xnet

2 , and referred to as Xnet. The number of incoming friendships each individual

has is referred to as that individual’s in-degree. Reciprocally, the number of outgoing friendships

each individual has is referred to as that unit’s out-degree.

Individual treatment, zi, is generated as a Bernoulli(µzi), where µzi is modelled as follows:

logit(µzi) = −12 + 1.5xind
1 i + 3xind

2 i − 0.5xnet
1 + xnet

2 .

xind
1i is the value of xind

1 for individual i. The same notation is used for all other variables. Under this

scenario, interference is determined by the proportion of peers that are treated that each individual

has. I calculate this by dividing the number of treated incoming treated peers by the number of

80



incoming connections for each individual:

gi(X𝒩i) = Gi =
treated peersi

in-degreei
.

Following the definition introduced in Section 3.2, when I mention the neighbourhood of stu-

dent i, it is in reference to the incoming neighbourhood of i, as it was defined in Section 3.2.1

The outcome, a variable that increases with treatment and exposure to treatment, is determined

by several influences including individual connections and the connections’ treatment status, which

is in turn determined by their covariates

Wi(z, g)|Xind, Xnet ∼ N(µWi(Z,G, X
ind, Xnet), 1)

where

µWi(Z,G, X
ind, Xnet) =

33 + xn
i1 + 7xn

i2 − 101(φi(Zi|Xind
i , Xnet

i ) ≥ 0.7)

+ 10Zi + δGi − 10λ̂i(Gi|zi, Xind
i , Xnet

i ) + 5Gi1(φi(Zi|Xind
i , Xnet

i ) ≥ 0.7) + 3ZiGi.

(3.2)

There are several things to be highlighted from Equation 3.2. The first is that in these simula-

tions, λ̂(G|Z, Xind, Xnet) is not the data-generating “propensity score” for G, but rather a prediction

of G given Z, Xind, and Xnet, fit after G is observed in the data-generating process.

The second is that −δGi + 5Gi1(φi(Xind, Xnet) ≥ 0.7) + 3ZiGi represents the spillover effect

to unit i from its peers. Additionally, the inclusion of the indicator function taking a value of 1

when the predicted propensity score of the individual treatment exceeds 0.7, creates a very precise

break exploited by the subclass methodology. I propose a second, alternative data generating

model without a step function and compare the results for all estimation procedures and both data

generating processes in Equation 3.3.

81



µWi(Z,G, X
ind, Xnet) =

33 + xn
i1 + 7xn

i2 − 10(φi(Zi|Xind
i , Xnet

i ))
3

+ 10Zi + δGi − 10λi(Gi|zi, Xind
i , Xnet

i ) + 5Gi(φi(Zi|Xind
i , Xnet

i ))
3

+ 3ZiGi.

(3.3)

According to this model, the true direct effect τ* and the true spillover effect δ*(z), as functions

of Z and G, are the terms in the outcome model where the direct treatment and the spilt-over

treatment are present. The direct effect for a particular level of interference, g is

τ*(g) = −10 + 3g. (3.4)

The overall true direct effect, across all values of G, is calculated as an expected value over G,

τ* =
∑︁
g∈G

τ(g)P(Gi = g).

In the specific case of this data generating process, this value is τ* = −10 + 3E[Gi].

The spillover effect given a particular level of interference and treatment value, δ*(z, g), is

δ*(z, g) = −δGi − 10λi(Gi,Zi, Xind
i , Xnet

i ) + 5Gi1(φi(Xind
i , Xnet

i ) ≥ 0.7) + 3ZiGi, (3.5)

for the original data generating process, and

δ*(z, g) = −δGi − 10λi(Gi,Zi, Xind
i , Xnet

i ) + 5Gi(φi(Zi|Xind
i , Xnet

i ))
3

+ 3ZiGi, (3.6)

for the new generation process.

In both Equation 3.5 and 3.6, δ is the impact of the share of treated peers each student has.

δ*(z, g) is calculated as the contrast between the potential outcome considering G = g and G = 0.

The general spillover effect across all values of g for a particular value of z, ∆*(z), is calculated as
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an expected value like with the direct effect.

∆*(z) =
∑︁
g∈G

δ*(g, z)P(Gi = g)

For the specific case of these two data generating processes, this is:

∆*(z) = δE[Gi] − 10E[λ(Gi|Zi, Xind
i , Xnet

i )] + 5E[Gi]E[1(φi(Zi|Xind
i , Xnet

i ) ≥ 0.7)] + 3ZiE[Gi],

and

∆*(z) = δE[Gi] − 10E[λ(Gi|Zi, Xind
i , Xnet

i )] + 5E[Gi]E[(φi(Zi|Xind
i , Xnet

i ))
3
] + 3ZiE[Gi],

respectively.

Estimation

Several estimation procedures are used to try to recover the true values of the direct and spillover

effect. I will consider three scenarios with methodology proposed by Forastiere et al. (2020): in the

first, I specify the individual, the neighbourhood propensity score and the outcome model as the

correct (generated) models; this scenario is referred to as “FAM (correct)”. In the second scenario,

I specify the correct individual and neighbourhood propensity score models, but under-specify the

true outcome model by omitting xn
1 and xn

2 from Equation 3.1. I refer to this scenario as “FAM

(incorrect outcome)”.

The third scenario, which is referred to as “FAM (incorrect PS)”, considers the correct outcome

model, but allows for misspecification of the individual treatment model by omitting xn
2. I do not

expect this exclusion to produce assumption violations since we are including the variable in the

outcome model, i.e. there is no omitted variable bias.

Following the methodology described in Subsection 3.2.2, I present the results using the three

models described above. Given that I am calculating the outcome models inside of the subclasses

in two of the three estimation methods, the estimated coefficients have a superscript indicating in

which subclass they are being calculated, this is, β[ j]
xn

2
is the coefficient for xn

2 in subclass j.
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In addition to the estimate based on generalised propensity scores, I calculate the direct and

spillover effects of the intervention using unadjusted and adjusted linear models. The details for

all of these estimation methods is found in Table 3.1.

For the unadjusted and the adjusted models, I recover the direct effect as β̂z + β̂zgzÊ[Gi], and

the spillover effect as β̂gzÊ[gi] when Z = 0, and (β̂g + β̂zg)zÊ[Gi] when Z = 1. Ê[Gi] is the sample

average. The neighbourhood propensity score model and the outcome model in the FAM estimates

have a j superscript indicating that the models are fit inside of every subclass. In the flexible

regression models, the j superscript is only present when I estimate it using subclasses, similar to

the FAM methodology.
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Table 3.1: Summary of estimation methods for calculation of direct and spillover effects. SC = Subclasses

Name Outcome model (E[Wi|.] =) Individual PS (logit(E[Zi|.]) =) Neighbourhood PS (logit(E[G|.]))

Unadjusted βZZi + βGGi + βZGZiGi NA NA

Adjusted βZZi + βGGi + βZGZiGi + βXZG XZG
i NA NA

Flexible (correct)
βZZi + βGGi + βZGZi Gi+

βφ̂zspline(φ̂i) + βλ̂zspline(λ̂i)
αxind

1
xind

i1 + αxind
2

xind
i2 + αxnet

1
xnet

i1 + αxnet
2

xnet
i2

βZZi + βin−degreein − degreei+

γxind
1

xind
i1 + γxind

2
xind

i2 + γxnet
1

xnet
i1 +

γxnet
2

xnet
i2Flexible (incorrect PS)

βZZi + βGGi + βZGZizGi+

βφ̂zspline(φ̂i) + βλ̂zspline(λ̂i)
αxind

1
xind

i1 + αxind
2

xind
i2 + αxnet

1
xnet

i1

Flexible (correct) - SC
βZZi + βGGi + βZGZizGi+

βφ̂zspline(φ̂i) + βλ̂zspline(λ̂[ j]
i )

αxind
1

xind
i1 + αxind

2
xind

i2 + αxnet
1

xnet
i1 + αxnet

2
xnet

i2

β
[j]
Z

Z
i +

β
[j]
in
−

degree in
−

degree
i +

γ
[j]
x ind

1
x

ind
i1

+
γ

[j]
x ind

2
x

ind
i2

+
γ

[j]
x net

1
x

net
i1

+
γ

[j]
x net

2
x

net
i2

Flexible (incorrect PS) - SC
βZZi + βGGi + βZGZizGi+

βφ̂zspline(φ̂i) + βλ̂zspline(λ̂[ j]
i )

αxind
1

xind
i1 + αxind

2
xind

i2 + αxnet
1

xnet
i1

FAM (correct) - SC
β

[ j]
Z Zi + β

[ j]
G Gi + β

[ j]
ZGZiGi+

β
[ j]
xnet

1
xnet

i1 + β
[ j]
xnet

2
xnet

i2 + β
[ j]
λ̂
λ̂

[ j]
i

αxind
1

xind
i1 + αxind

2
xind

i2 + αxnet
1

xnet
i1 + αxnet

2
xnet

i2

FAM (incorrect outcome) - SC β
[ j]
Z Zi + β

[ j]
G Gi + β

[ j]
ZGZiGi + β

[ j]
λ̂
λ̂

[ j]
i αxind

1
xind

i1 + αxind
2

xind
i2 + αxnet

1
xnet

i1 + αxnet
2

xnet
i2

FAM (incorrect PS) - SC
β

[ j]
Z Zi + β

[ j]
G Gi + β

[ j]
ZGZiGi+

β
[ j]
xnet

1
xnet

i1 + β
[ j]
xnet

2
xnet

i2 + β
[ j]
λ̂
λ̂

[ j]
i

αxind
1

xind
i1 + αxind

2
xind

i2 + αxnet
1

xnet
i1
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3.3.2 Simulation results

This section presents the results from the simulations carried out and determines some limitations

of the estimation procedure laid out in Section 3.2.2. For each simulation, I generate a specific

number of schools as described in the data generating section. I compare the results when consid-

ering 100 schools and 5 schools to simulate both the scenario presented by the authors, as well as

a scenario more in line with the data available from the STASH intervention. Using Equation 3.4

and Equation 3.5 I calculate the true direct and spillover effects. In each simulation, the different

estimates to the truth are compared to determine the bias in the estimation procedure.

Bootstrap estimates

To get uncertainty bounds we use the egocentric bootstrap method. As described in the appendix

of Forastiere et al. (2020), the egocentric bootstrap method consists of drawing independent sam-

ples with replacement from the original sample of individuals, with the same number of obser-

vations. Every “observation” in a re-sample carries with it its individual-level covariates, as well

as its neighbourhood-related variables (the exposure from other units being treated, as well as the

neighbourhood-related covariates), even when the units in its neighbourhoods that contributed to

these variables were not included in the re-sample. Following Kolaczyk (2009), egocentric sam-

pling is valid because the observed data were obtained following the same procedure, namely,

there is a chance we do not observe the entire school network but we sample the individuals at

every school, ask them about their connections in the school, and then match with the names of

other individuals. For each simulation we drew 500 re-samples using this bootstrap method.

Bias and variation

In the simulation study, my primary interest is the behaviour of the bias from the estimation,

defined as the difference between the calculated estimates and the truth. Additionally, we want to

know the level of uncertainty around that calculation. For this we compute the average standard

deviation from the bootstrapped estimates. Table 3.2 shows the difference between carrying out

the simulations with 100 schools and with 5 schools for the original data generating process when

estimating the direct effect in three 2-column panels: one for the bias, and two to describe the level
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of uncertainty from the estimates. The first panel shows the average bias (calculated as the truth

minus the estimate) from estimating the direct effect. In the second panel I use the bootstrap to

calculate the standard deviation of the direct effect for each simulation, and then average across

simulations. The final panel shows the standard deviation of the bias estimates, also referred to

as the population standard deviation. One way of looking at the data generating process is as if it

were the population we want to draw inference on. This means that each simulation is a draw from

the population, and the information in column 3 is the truth we use to determine how closely the

average bootstrapped standard errors (column 2) are to the empirical variability. Table 3.5 shows

the same information for the simulations based on the data generating process that stems from

Equation 3.3.

Following Forastiere et al. (2020), we use an egocentric bootstrap method to produce con-

fidence intervals around every estimate. The observations are resampled 500 times to create a

confidence intervals. The confidence intervals are calculated using the a Wald type of confidence

interval. This approach from Wasserman (2004), considered the normal interval, produces esti-

mates according to the following formula:

Tn ± zα/2ŝeboot

where Tn is the estimated statistic from the original sample, and ŝeboot is the bootstrap standard

error. z α
2

represents the level of confidence we are interested in capturing, i.e. 95%, which makes

z α
2

= 1.96.

Following the logic of Table 3.2, Tables 3.3 and 3.4 show the same column configuration for

the spillover effect for untreated (Z = 0) and treated (Z = 1) cases, respectively for the original

data generating method.

From Tables 3.2, 3.3, and 3.4 we can see that the bias from the estimation is similar with dif-

ferent sample sizes, but the uncertainty around that estimate increases with smaller sample size.

The FAM methodology from Forastiere et al. produces estimates with little bias when we know

the propensity score model for the individual and neighbourhood treatments as well as the true

outcome model. However, in the case of underspecification of the outcome model (i.e. FAM (in-

correct outcome)), there is evidence of considerable bias in estimation of the spillover effects. I
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Table 3.2: Bias and standard error (SE) in estimation of direct effect. Comparison: 100 vs 5 schools across 100
simulation replicates. True value of direct effect: 100 schools = 10.5; 5 schools = 10.45

Estimation method
Bias

Standard Error
Average Bootstrap SE Monte Carlo SE

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted -3.93 -2.95 0.23 1.07 0.21 1.37
Adjusted -3.88 -3.38 0.17 0.72 0.16 0.79
Splines (correct) -0.06 -0.32 0.22 0.94 0.18 0.85
Splines (incorrect PS) 1.87 1.52 0.24 1.07 0.16 1.21
Splines (correct) - Subclasses 0.07 -0.30 0.21 2.27 0.15 0.75
Splines (incorrect PS) - Subclasses 2.32 1.78 0.24 1.53 0.19 1.30
FAM (correct) -0.03 0.03 0.17 0.71 0.06 0.48
FAM (incorrect outcome) 1.25 0.83 0.27 1.24 0.19 0.70
FAM (incorrect PS) -1.61 -1.94 0.14 0.75 0.16 0.67

Table 3.3: Bias and standard error (SE) in estimation of spillover effect when (Z = 0). Comparison 100 vs 5
schools across 100 simulation replicates. True value of direct effect: 100 schools = 3.55; 5 schools = 3.28

Estimation method
Bias

Standard Error
Average Bootstrap SE Monte Carlo SE

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted 1.77 1.38 0.10 0.42 0.13 0.50
Adjusted -1.19 -1.03 0.05 0.23 0.05 0.23
Splines (correct) -0.04 -0.37 0.12 0.45 0.12 0.48
Splines (incorrect PS) -0.04 -0.34 0.11 0.44 0.12 0.45
Splines (correct) - Subclasses 0.14 -0.21 0.13 0.64 0.14 0.48
Splines (incorrect PS) - Subclasses -0.07 -0.17 0.13 1.74 0.12 0.50
FAM (correct) -0.10 -0.00 0.06 0.35 0.08 0.33
FAM (incorrect outcome) 3.20 2.92 0.13 0.65 0.18 0.52
FAM (incorrect PS) -0.18 0.02 0.07 0.34 0.07 0.39

highlight this result because it suggests that the FAM approach does not operate in the same way as

traditional propensity score regression. This is, it is not enough to assume the propensity score is

modelled correctly and to include any treatment-covariate interactions properly; omitting key vari-

ables in the outcome model has a considerable impact on the bias. Removing xnet
1 and xnet

2 does not

result in unmeasured confounding because we are including it the individual and neighbourhood

propensity scores, and both of these are used in the outcome model through the subclasses and

λ̂, respectively. In the case of misspecification of the individual treatment model (FAM (incorrect
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Table 3.4: Bias and standard error (SE) in estimation of spillover effect when (Z = 1) Comparison: 100 vs 5
schools across 100 simulation replicates. True value of direct effect: 100 schools = 4.08; 5 schools = 3.74

Estimation method
Bias

Standard Error
Average Bootstrap SE Monte Carlo SE

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted 1.93 1.41 0.14 0.58 0.18 0.88
Adjusted -1.09 -0.94 0.08 0.36 0.10 0.33
Splines (correct) 0.81 0.38 0.17 0.65 0.13 0.85
Splines (incorrect PS) 0.32 -0.00 0.16 0.59 0.14 0.75
Splines (correct) - Subclasses 0.33 -0.03 0.21 0.82 0.15 0.62
Splines (incorrect PS) - Subclasses 0.04 -0.16 0.17 0.73 0.12 0.76
FAM (correct) -0.09 -0.13 0.09 0.43 0.10 0.43
FAM (incorrect outcome) 3.46 2.74 0.22 1.01 0.22 0.87
FAM (incorrect PS) -0.25 -0.16 0.08 0.41 0.09 0.49

PS)), there appears to be more bias when calculating the direct effect when compared to the FAM

(correct) model.

Using splines regressions (with and without subclasses) produce similar estimates as the FAM

method when the right individual propensity score model is assumed for the direct effect, as well

as for the spillover effect when Z = 0. When we consider the spillover effect when Z = 1 (Table

3.4), the bias is reduced when we calculate the potential outcomes within subclass. However, in

all cases, we see that using our proposed flexible regression model produces less biased results

than the comparable FAM model (FAM (incorrect outcome)). The bias of the estimates decreases

when we use subclasses compared to when do not use subclasses, both with the correct and the

incorrect individual propensity score models. These results are important because they show that

we can recover the relatively unbiased estimates when we have the correct individual propensity

score model by using the cubic splines methodology instead of the FAM methodology, and that

these results can be improved by using the subclassification methodology. However, we cannot

recover the true estimates when the individual propensity score model is misspecified, regardless

of how we estimate the outcome model.

In all tables we can see that the uncertainty around the estimates increases when the sample size

is reduced from 100 schools to five schools only. This is particularly noticeable when comparing

the standard errors (second panel) of the ‘Splines (correct)’ with those of the ‘Splines (correct) -

Subclasses’, and of the ‘Splines (correct)’ with that of the ‘Splines (incorrect PS) - Subclasses’.
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The Monte Carlo standard errors are the same or smaller when compared to the average bootstrap

standard error across simulations. The results considering no-spillover effects (i.e., δ = 0) in 3.2 in

tables A.2, A.3, and A.4 are produced to check the robustness of our results in a different scenario

and presented in the Appendix.

Alternative data-generation with smooth outcome function

As mentioned in Section 3.3, I designed an alternative data generating process, mostly determined

by the change in Equation 3.2 from a using the individual propensity score in a step function with

break at 0.7, to a cubic function (see Equation 3.3). I present here the results as discussed in the

previous section, for the simulations that used this function to generate the outcome. Table 3.5, 3.6

and 3.7 follow the same format as their counterparts from the previous section.

Comparing Table 3.5 with Table 3.2 suggests that my proposed flexible regression outperforms

the FAM approach assuming the individual propensity score is correct. These results remain valid

for the estimation of the spillover effect when Z = 0. In the case of the spillover when Z = 1,

the FAM methodology outperforms the flexible regression, assuming that it is using the correct

individual propensity score model. The takeaway from these results is similar to the one from the

previous section: when we have the correct individual propensity score model, flexible regression

seems to outperform the FAM methodology in most estimation routines without the need have

perfect information about the outcome model. Deviations from the individual propensity score

affect both methodologies in a similar way.

3.3.3 Coverage

Coverage is the average of the number of times the true estimate lies in the confidence interval

given by +/- 1.96 the bootstrap SE for every simulation. From Table 3.8 we can see that the es-

timates recovered using our flexible regression approach, both with and without subclasses, and

the “FAM (correct)” estimates, perform similarly for the direct effect in terms of coverage. When

it comes to coverage of the spillover effects, the increased performance of the method with sub-

classes, shows that the it is the subclasses, and not necessarily the used outcome model, the part

of the estimation routine that improves the results. Considering the results from Table 3.2, 3.3 and
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Table 3.5: Bias and standard error (SE) in estimation of direct effect. Comparison 100 vs 5 schools across 100
simulation replicates. Alternative data generating model. True value of direct effect: 100 schools = 10.5; 5 schools
= 10.45

Estimation method
Bias

Standard Error
Average Bootstrap SE Monte Carlo SE

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted -3.03 -2.00 0.22 1.03 0.19 1.17
Adjusted -3.01 -2.46 0.13 0.56 0.13 0.76
Splines (correct) -0.02 -0.06 0.20 0.87 0.22 0.68
Splines (incorrect PS) 2.20 1.98 0.22 1.00 0.13 0.84
Splines (correct) - Subclasses 0.08 -0.16 0.20 2.20 0.18 0.65
Splines (incorrect PS) - Subclasses 2.48 2.23 0.22 1.85 0.16 1.00
FAM (correct) -1.09 -0.86 0.08 0.47 0.09 0.73
FAM (incorrect outcome) 0.21 0.27 0.21 1.11 0.16 0.62
FAM (incorrect PS) -1.56 -1.61 0.09 0.48 0.11 0.44

Table 3.6: Bias and standard error (SE) in estimation of spillover effect when (Z = 0). Comparison 100 vs 5
schools across 100 simulation replicates. Alternative data generating model. True value of direct effect: 100
schools = 3.54; 5 schools = 3.27

Estimation method
Bias

Standard Error
Average Bootstrap SE Monte Carlo SE

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted 1.77 1.39 0.10 0.42 0.18 0.47
Adjusted -1.16 -1.04 0.05 0.22 0.06 0.23
Splines (correct) -0.00 -0.34 0.12 0.46 0.14 0.46
Splines (incorrect PS) -0.01 -0.32 0.11 0.45 0.13 0.44
Splines (correct) - Subclasses 0.11 -0.17 0.13 0.64 0.15 0.47
Splines (incorrect PS) - Subclasses -0.06 -0.18 0.12 2.03 0.14 0.43
FAM (correct) -0.14 -0.01 0.06 0.32 0.10 0.32
FAM (incorrect outcome) 3.12 2.95 0.13 0.62 0.22 0.51
FAM (incorrect PS) -0.18 0.01 0.07 0.32 0.09 0.31

3.4, we can say that the higher coverage in the case of the small sample size is due to the compar-

atively larger standard errors, and not because of higher estimator accuracy. The lower coverage is

correlated with the accuracy of the estimator, which explains why the values that have less accuracy

and high sample sizes have a coverage of 0 most of the time. In other words, the poor coverage

occurs because the bias does not decrease with increasing sample size, but standard errors do. This

also translates into the fact that Table 3.9 shows that when we use our alternative data generating
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Table 3.7: Bias and standard error (SE) in estimation of spillover effect when (Z = 1). Comparison 100 vs 5
schools across 100 simulation replicates. Alternative data generating model. True value of direct effect: 100
schools = 4.07; 5 schools = 3.75

Estimation method
Bias

Standard Error
Average Bootstrap SE Monte Carlo SE

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted 1.83 1.31 0.13 0.55 0.23 0.89
Adjusted -1.16 -1.03 0.07 0.33 0.13 0.34
Splines (correct) 0.75 0.24 0.17 0.63 0.17 0.73
Splines (incorrect PS) 0.31 -0.08 0.15 0.58 0.16 0.66
Splines (correct) - Subclasses 0.37 0.05 0.20 0.82 0.18 0.69
Splines (incorrect PS) - Subclasses 0.15 -0.19 0.17 0.71 0.18 0.74
FAM (correct) -0.04 -0.08 0.08 0.37 0.14 0.43
FAM (incorrect outcome) 3.47 2.86 0.21 1.01 0.23 0.89
FAM (incorrect PS) -0.16 -0.15 0.08 0.37 0.13 0.47

process, the splines estimators outperform the FAM estimators in terms of coverage for all three

quantities of interest.

Table 3.8: Nominal 95% coverage of Wald-type confidence intervals with standard errors based on 500 bootstrap
resamples for each of the 100 simulations for the original data generating method

Estimation method
Main effect Spillover effect (Z = 0) Spillover effect (Z = 1)

Simulation setting Simulation setting Simulation setting
100 schools 5 schools 100 schools 5 schools 100 schools 5 schools

Unadjusted 0.00 0.26 0.00 0.00 0.00 0.28
Adjusted 0.00 0.00 0.00 0.00 0.00 0.08
Splines (correct) 0.98 1.00 0.98 0.80 0.00 0.98
Splines (incorrect PS) 0.00 0.74 0.96 0.80 0.54 1.00
Splines (correct) - Subclasses 0.96 1.00 0.78 1.00 0.82 1.00
Splines (incorrect PS) - Subclasses 0.00 0.80 0.98 1.00 1.00 1.00
FAM (correct) 1.00 1.00 0.94 1.00 1.00 1.00
FAM (incorrect outcome) 0.00 1.00 0.00 0.02 0.00 0.22
FAM (incorrect PS) 0.00 0.14 0.02 1.00 0.08 1.00

3.4 STASH

The Sexually Transmitted infections And Sexual Health feasibility study was carried out by the

Social and Public Health Sciences Unit of the University of Glasgow in six schools throughout
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Table 3.9: Nominal 95% coverage of Wald-type confidence intervals with standard errors based on 500 bootstrap
resamples for each of the 100 simulations for the alternative Data Generation Process

Estimation method
Main effect Spillover effect (Z = 0) Spillover effect (Z = 1)

Simulation setting Simulation setting Simulation setting
100 schools 5 schools 100 schools 5 schools 100 schools 5 schools

Unadjusted 0.00 0.54 0.00 0.00 0.00 0.30
Adjusted 0.00 0.00 0.00 0.00 0.00 0.02
Splines (correct) 0.84 0.98 0.98 0.78 0.00 1.00
Splines (incorrect PS) 0.00 0.70 1.00 0.76 0.56 1.00
Splines (correct) - Subclasses 0.82 1.00 0.96 1.00 0.60 1.00
Splines (incorrect PS) - Subclasses 0.00 0.54 0.98 1.00 0.92 0.98
FAM (correct) 0.00 0.34 0.28 1.00 1.00 1.00
FAM (incorrect outcome) 0.88 1.00 0.00 0.00 0.00 0.12
FAM (incorrect PS) 0.00 0.06 0.00 1.00 0.52 1.00

Scotland for students between the ages of 14 and 16. The intervention was designed to encourage

influential students, chosen by their peers, to start conversations with other students about sexual

health on social media and face to face.

Figure 3-1 shows all six schools, its students, the connections between the students, and how

some students are peer supporters (blue), exposed to treatment (yellow), peer supporters who were

also exposed to treatment (green), and pure controls (white). Table A.6 (in the Appendix) shows

a summary of relevant variables from the STASH dataset. In this analysis, and following Forsyth

et al. (2018), we consider as outcome of the intervention an index created by adding up the level of

confidence students have in answering three questions related to sexual behaviours: “how confident

are you to get condoms on your own?”, “how confident are you to put a condom on yourself or

a partner?”, and “how confident are you to refuse to have sexual intercourse if they won’t use

a condom?”. I refer to this outcome variable as the Confidence in Sexual Health (CSH) index

throughout this section; it ranges from 3 to 15 with a mean of 10.96 and a median of 11.
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Figure 3-1: Social network of students in STASH schools indicating treatment (blue), exposition
to treatment (yellow), treatment and also being exposed to treatment (green), and controls (white).

In addition to the individual covariates, we are interested in the distribution of network variables

for the students in the schools. The network information gathered by the researchers is that of

admiration or “looking up to”, capped at 6 in the questionnaire, which has a clear effect in the

distribution of the “out-degree” variable (as seen Figure A-3 in the appendix). Most students have

between one and four other students who look up to them, with fewer being looked up to by 6 or

more.
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For this particular application the network variable of interest is the out-degree. This is in

contrast to using in-degree as the network variable of interest for the simulation in Section 3.3.

In both cases I am trying to capture how the intervention might flow from one individual to the

next. In the particular case of STASH, out-degree is important because students look up to peer

supporters, which assumes they are more inclined to follow their actions than if we considered

the incoming connections. For the purpose of this section, we consider a peer supporter a treated

individual, and an individual who is in the neighbourhood of that peer supporter to be an exposed

individual.

3.4.1 Model

The previous section explained how Forastiere et al. (2020) estimate direct and spillover effects

using their generalised propensity score methodology. This section shows my modelling of the

individual and neighbourhood propensity scores for the STASH dataset. The models here are used

for the FAM and for the flexible regression approaches described in Section 3.3. Let us begin with

the individual propensity score.

∙ Individual Propensity Score. Following an initial survey which establishes an admiration

network between the students at every treated school, approximately the top 25% of the

in-degree distribution (those who were considered most looked up to by their peers) were

asked if they wanted to participate in the intervention as peer-supporters. Half of these were

randomly selected to be part of the treatment group and trained as peer supporters. I refer to

the fact of being nominated as a peer supporter as being treated (using Z as the variable that

indicates treatment). The questions that determined admiration were designed to encourage

nominations to peers that were close and important for every student.

The function that determines the propensity of being assigned to treatment, φ(z; xz) depends

on the observed values for the set of variables Xz. I assume that the variables that determine

the propensity of being assigned to treatment are: in-degree and whether the individual has

had sex before or not.

∙ Neighbourhood Propensity Score. The nominated peer supporters were tasked with get-

ting in touch with their connections via Facebook and off-line, discussing the main STASH
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talking points and also advertising local sources of information on the topic of sexual and

reproductive health. I refer to this interference in treatment as the neighbourhood effect, G.

The function that determines the propensity of being exposed to treatment by a treated peer,

λ(g; z, xg) depends on the observed values for the set of variables Xg. I assume that the

variables are the treatment, out-degree, and level of self-esteem.

∙ The outcome variable we are using to measure the effect of the intervention is the CSH index

defined in the beginning of this section. The battery of questions used to create this index

are considered the main outcome variable by the researchers who carried out the interven-

tion. Considering the delicate nature of the topic and how relatively uncomfortable teenagers

might feel with it, an index, and not a specific variable or variables is best suited to determine

the effectiveness of the intervention.

Estimation I estimate the results using a subsection of the methodologies described in Section

3.3. Since we believe the specification of the individual treatment model, as well as the neighbour-

hood treatment model to be right, we do not need to estimate the direct and spillover effects using

different specifications. In terms of the FAM methodology, we suggest an outcome model to be

used in step 4.b from Section 3.2, with the following functional form:

CS H ∼ βgendergender + βzz + βgg + βφ̂φ̂ + βλ̂λ̂ + βλ̂,zλ̂z + βλ̂2 λ̂2. (3.7)

This is, the outcome depends on the treatment, how much exposure they received to the treatment

via their peers, the propensity of to be assigned to treatment, the propensity to be exposed to

treatment, the interaction between the propensity to be exposed to treatment and treatment itself,

and the square of the propensity of being exposed to treatment (as suggested by Hirano and Imbens,

2005 and Forastiere et al., 2020, to include some higher order terms that might affect the dose in

the dose-response function). I include the gender (assigned at birth) of the individual as a control

for the outcome model.

Regarding the flexible regression approach, we follow the procedure described in Section 3.3,

using the same individual and neighbourhood propensity scores as the FAM methodology, and the

following outcome model:
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Wi(Zi,Gi) ∼ βZZi + βGGi + βZGZiGi + βφ̂spline(φ̂i) + βλ̂spline(λ̂i)

in the case for no subclassification, and

W [ j]
i (Zi,Gi) ∼ βZZi + βGGi + βZGZiGi + βφ̂spline(φ̂i) + βλ̂spline(λ̂[ j]

i )

in the case where the data are split into subclasses.

3.4.2 Results

The results presented in the panel of Table 3.10 indicate a higher level in the aggregate measure of

confidence in sexual health related issues for the intervened individuals that is not greatly affected

by confounding. As explained in Section 3.4, the treated individuals are the peers selected as peer

supporters. The FAM methodology, which is supposed to filter out the effect of the spillover from

the causal direct effect of the intervention, estimates the latter to be around 1 CSH index point. The

second and third panels of Table 3.10 show that the spillover had little to no effect on the exposed

or unexposed individuals, even though there was perhaps some slight suggestion in the data that

the exposed adolescents were slightly more susceptible to messaging from their treated peers than

those teens chosen to be controls.

In this relatively small, feasibility study, any reduction in bias from the estimation of direct

and spillover effects may be offset by increased variability, as we saw with the large standard

errors in Tables 3.2 to 3.7. The approach nevertheless serves to provide confidence in the findings,

especially in light of the recent publication by Hirvonen et al. (2021) suggesting that the level of

influence intended to change the behaviour of exposed students in the school was not achieved.

The authors mention a failure in the implementation of the interference mechanism. Specifically,

the way the peer supporters were expected to share or propagate the intervention over to their

peers was by getting in touch with them on online social forums. Their qualitative study of the trial

indicates that both peer supporters and their intended audience did not interact as actively and often

as desired. Hirvonen et al. (2021) suggest that this was one of the primary reasons the treatment
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did not show differences in the composite CSH index for the individuals that were not selected as

peer supporters.

Similarly, as discussed in Section 3.3, it is important to consider the uncertainty of the estimated

values. I use the same methodology described in Section 3.3 to generate the standard errors around

the point estimates.

Table 3.10: STASH - main and spillover effects of the intervention. Total number of students: 605;
6 schools.

Estimation method Main effect
Spillover Effect

Z = 0 Z = 1
Estimate Bootstrap CI Estimate Bootstrap CI Estimate Bootstrap CI

Unadjusted 1.04 [0.37, 1.74] 0.03 [-0.14, 0.21] 0.13 [-0.15, 0.40]
Adjusted 0.99 [0.32, 1.69] 0.01 [-0.15, 0.19] 0.09 [-0.20, 0.36]
Splines 1.09 [0.30, 1.88] -0.01 [-0.40, 0.38] -0.06 [-0.60, 0.37]
FAM 0.95 [0.16, 1.73] 0.02 [-0.34, 0.21] 0.22 [-0.49, 0.61]

3.5 Discussion

I show, using an extension of the methodological tools proposed by Forastiere et al. (2020), that

the Sexually Transmitted infections And Sexual Health feasibility study carried out by the Univer-

sity of Glasgow’s Social and Public Health Sciences Unit did not seem to have the intended effect

of disseminating its treatment through social connections onto the individuals that were not inter-

vened. I consider the Confidence in Sexual Health index as our main outcome variable, according

to the study’s report (Forsyth et al., 2018), and find that the intervention increased the value of the

CSH index for treated individuals as it was expected, but not for individuals that were indirectly

exposed to treatment, as it was desired.

My results are in line with a recent publication (Hirvonen et al., 2021) by part of the team

that performed the feasibility study stating that the message sharing carried out by peer supporters

was hindered by the irregular engagement with the platform the students were using. In other

words, the “spillover” part of the intervention did not work as intended, essentially eliminating the

transmission of the treatment to peers originally considered to be controls.
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The simulation analysis shows that the methodology proposed by Forastiere et al. (2020) re-

quires knowledge of the true model for individual treatment as well as the true outcome model

in order to produce the desired results. I further show that underspecifying the outcome model

produces bias in the estimation of the spillover effects. In contrast, using the flexible regression

methodology with the individual and neighbourhood treatment estimated propensity score in the

outcome model, bias in the estimation of the spillover effect is reduced. This result is maintained

when we consider a different data generating process that does not neatly fit with subclass (i.e. a

step function), but rather has a more general shape. The flexible regression generates results with

different degrees of bias depending on whether we use the methodology with subclasses or not, as

explained in Subsection 3.2.3. Relevant to our empirical case study, I show that the uncertainty

around the estimates increases when the sample size is small.

Note we do not know what the exact true neighbourhood model is, nor we study the perfor-

mance of the estimators in relation to different specifications of the neighbourhood model. This

is because spillover is determined by the number of connections each unit has, and this is in turn

determined by the structure of the network. Future research should focus on looking at different

network generating processes, i.e. how the connections between the individuals are formed. For ex-

ample, networks that exhibit more homophily (connections are formed based on existing attributes)

can generate different influence patterns than networks where connections are, for example, pro-

duced at random. This is particularly important for the case in which the variable that drives the

homophily pattern also drives the selection of individuals into behaviour. For the STASH analysis,

it is possible that gender homophily, or some other kind of homophily producing groupings of

similar individuals, affects the prediction of neighbourhood effects biasing the results. However,

without more experimentation or a different simulation analysis than the presented here, there is

no way of knowing how homophily can affect the estimation.

Additionally, the limit of the maximum number of connections to 5 will likely impose a limit

to how much interference is captured by the model. In relation to the analysis of the STASH

intervention, it could mean an underestimation of the actual amount of interference, since students

have more connections that were disclosed, albeit less strong ones. Note that this is not a problem

in the simulation analysis because the interference is introduced with the restriction on the number

of connections already in place. More research is needed to determine the how limiting the number
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of connections, especially when these are weaker connections, affects the estimation of spillover

effects.

One of the limitations of my methodological approach that uses splines to estimate the direct

and spillover effects, is that the uncertainty around the point estimate is larger when compared to

the FAM methodology proposed by Forastiere et al. (2020). Additionally, as shown in the results

tables in 3.3, the uncertainty with the egocentric bootstrap approach around the point estimates

increases with a small sample size like that of the STASH study. This is particularly noticeable

with smaller sample sizes. In general this highlights the need for more research in understanding

appropriate variance estimators in the context of interdependent data.
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Chapter 4

Identification of social influence in bipartite

cascades of political behaviour
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4.1 Bipartite event cascades and political behaviour

Political actors make interdependent choices. Their behavior is often embedded in a system of

behavior displayed by other actors. In international relations, for example, states declare war on

countries or forge alliances based on the war and alliance portfolios of other countries (Cranmer

et al., 2012). They ratify international treaties in relation to the ratification behavior of other

states (Campbell et al., 2019). In domestic politics, legislators may vote on the adoption of laws

or cosponsor bills conditional on past voting or sponsorship behavior of other legislators (Ringe

et al., 2013; Fowler, 2006). Interest groups and government agencies signal their policy beliefs

to decision makers and the public through public debate. They react to the adoption of policy

beliefs by other actors in the pursuit of influencing the outcome of the policy process (Leifeld,

2017). In these examples of iterative and interactive politics, actors from a well-defined population

– legislators in a legislature, countries in the international system, and interest groups in a policy

process – display publicly observable ties to categorical choices in a temporal sequence – treaties,

international organizations, bills, and policy beliefs.

Political science tries to explain events in these sequences: Why do countries attack a certain

target? Why do legislators cosponsor a certain bill? The behavior of each actor at any time point

depends, in part, on the observable behavior by others earlier in the sequence. Hence the data

can be modeled as temporal bipartite networks, in which a first-mode node (the actor or “sender”)

develops a tie to a second-mode node (the categorical behavior or “receiver”) conditional on the

past sequence of events. Such kinds of networks are also known as bipartite behavior cascades

(Kleinberg, 2007). Until recently, political science focused on explanations of ties in bipartite

behavior cascades using single nodes on one mode, or node pairs in a two-mode networks. Ties

were assumed to be exogenously determined and modeled as a function of characteristics of the

sender, the receiver, the sender–receiver pair, and/or time, often in a time-series cross-sectional

modeling approach (Franzese and Hays, 2007, 144).

Different parts of the discipline have now developed a more nuanced understanding of endoge-

nous processes playing a role in bipartite behavior cascades. One active field of research is Political



Networks (Victor et al., 2017). It posits that dependencies between observations matter theoret-

ically and statistically, and their omission would lead to omitted variable bias (Cranmer et al.,

2017b). Temporal models include extensions of exponential random graph models or latent space

models to panel data, and relational event models for modeling dependence in event history data.

Another area recognizing the interdependence of behavior cascades is Policy Diffusion, which

disentangles different endogenous mechanisms by which behavior spreads across actors over the

course of a cascade (Shipan and Volden, 2008; Desmarais et al., 2015). A third research area that

recognizes interdependent behavior of actors over time is the literature on Spatio-Temporal Au-

toregressive Models. Here, the behavior of an actor depends on the contemporaneous and past

behavior of other actors in a panel of cross-sectional observations, and the workhorse model is the

spatial autoregressive model (SAR) and its extensions (Franzese and Hays, 2007).

In all three areas of inquiry, the goal of causal identification of endogenous mechanisms has

grown in importance in recent years. The biggest challenge stems from the observation that the

temporally unfolding dependence of behavior between actors is often compatible with multiple

plausible causal pathways. Separating these pathways has proven difficult. One prominent causal

identification problem is the confounding between social influence and homophily among actors

(Aral et al., 2009). Social influence means that one actor influences another actor’s behavior in a

cascade. Homophily usually means that actors develop network ties because they share predisposi-

tions. Here I take it to mean that actors display similar cascade behavior because they were similar

to begin with, and there is no endogeneity in the choices.

Both causal mechanisms frequently co-occur in political behavior. For example, it is hard

to separate the effect of states learning from politically similar states in a policy diffusion study

from the effect of shared political characteristics independently leading to similar policy adoption

behavior. How can we disentangle them in event-based cascades of behavior in order to explain

politics more effectively? That is, how can we distinguish social influence statistically from the

effect of prior similarity of units in bipartite network cascades? In the present chapter, I contribute
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to exploring this problem by proposing a shuffle test and evaluating its effectiveness and boundary

conditions.

4.2 Confounding in cascades of political behavior

The problem of confounding in bipartite behavior cascades is an aggravated version of the prob-

lem of causal confounding in temporal networks more generally. In this more general setting,

one can observe both the network and the behavior of nodes (“attributes”) over time. The task is

to disentangle the causal relationships between network formation and the behavior of the nodes

in the network. Do network ties cause individual behavior (e. g., through diffusion, contagion,

or imitation), or does behavior cause tie formation or dissolution (e. g., through homophily, i. e.,

similarities in behavior leading to network ties) (Aral et al., 2009)? This question is highly conse-

quential for understanding many real-world outcomes, such as the complex relationships between

war, peace, conflicts, alliances, democracy, and autocracy in the study of international relations

(Gleditsch and Ward, 2006; Lee Ray, 2013). Yet, statistical identification of the causal direction is

one of the hardest problems in network science because “homophily and contagion are generically

confounded in observational network studies” (Shalizi and Thomas, 2011).

Adding to the severity of the challenge, in many real-world applications the underlying so-

cial network is unobserved. In such cases, the questions of whether the behavior of one node

in a network influences the behavior of another node in the network over time and what covari-

ates predict this process must be answered solely based on the observed sequence of behavior of

the units, without knowledge of the actual underlying social network (Gomez-Rodriguez et al.,

2012, 2013; Rodriguez et al., 2014; Desmarais et al., 2015; Campbell et al., 2019; Marrs et al.,

2019). I refer to data organised in a two-mode as call bipartite event cascades. Examples abound:

Gomez-Rodriguez et al. (2012) inferred the latent diffusion paths among blogs (Mode I) through

the sequence of shared memes (Mode II); Desmarais et al. (2015) inferred the latent diffusion path-

ways among U.S. states (Mode I) through the sequence of policy adoptions (Mode II); Campbell
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et al. (2019) modeled the ratification sequence of international environmental treaties (Mode II)

by countries (Mode I) as a function of similar levels of economic development (homophily co-

variate); and Malang et al. (2019) explained the sequence of expressions of negative opinions by

national parliaments in the European Union (Mode I) on legislative bills (Mode II) as a function of

ideological similarities among parliaments (homophily covariate).

However, sequences of behavior can either be governed by nodes adopting other nodes’ behav-

ior over time in the sequence (“contagion” or “diffusion”), or some prior similarity variable can

structure the observed behavior, without any influence over time taking place. As Anagnostopou-

los et al. (2008, 2) put it, under this similarity regime, “the probability that an individual is active

can be affected by whether their friends become active, but not by when they become active.” For

example, do states in the international system independently ratify the same treaties over time be-

cause they have similar geopolitical resources and interests, allies etc. (i. e., joint prior variables),

or do they ratify the same treaties over time because one country’s adoption is triggered by the

recent adoption of the same treaty by another country that had similar geopolitical resources and

interests or was an ally (i. e., contagion or diffusion)? The literature on bipartite event sequences

tends to focus on inferring (Gomez-Rodriguez et al., 2012, 2013; Rodriguez et al., 2014; Malang

and Leifeld, 2021; Desmarais et al., 2015) or explaining (Campbell et al., 2019; Marrs et al., 2019;

Malang et al., 2019) latent pathways of influence and to ignore the possibility that prior similar-

ities may lead to similar rates of behavior. For example, the fact that two nodes share a similar

ideology may lead both of them to adopt a behavior rather quickly (or often) – but independently

of each other. How can one ensure that any dyadic explanations of shared behavior capture in-

fluence/contagion/diffusion and not antecedent similarities leading to similar rates of independent

behavior?

A powerful modeling framework for bipartite event sequences like these is the relational event

model (REM) (Butts, 2008). The REM is a network model that explains the time until a network tie

occurs as a function of covariates and endogenous properties of the past network sequence, such as

prominence (emergence of key nodes in the network), inertia (the tendency to keep connecting to
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a previously connected node), and other sufficient statistics for capturing network endogeneity. In

a bipartite setting, the REM can capture the role of dyadic covariates between actors for triggering

ties to second-mode behavioral nodes as a homophily effect. A more similar dyadic value between

two actors on the first-mode dyadic covariate (e. g., two actors have the same ideology or party af-

filiation), coupled with recent relevant behavior ties of the peer actor (e. g., the other actor engaged

in behavior B recently), increases one’s hazard of behavior ties (e. g., to B), where hazard is to be

understood in the survival analysis sense. The bipartite REM is an attractive model for many ap-

plications in political science. However, just like related statistical approaches, the bipartite REM

cannot per se distinguish between prior similarity and contagion in these homophily effects.

To explore this further, in this chapter I present the following contributions: (1) A simulation

model is presented that can create bipartite event sequences where an underlying dyadic variable

causes new bipartite events through either influence or prior similarity or a linear combination

of both. (2) Given these simulations, I illustrate how similarity and contagion can be temporally

confounded in empirical applications of relational event models to bipartite event sequences with

homophily effects. (3) A shuffle test, which can distinguish between the two mechanisms in empir-

ical applications. (4) Using simulations, I delineate the scope conditions under which the shuffle

test permits identification and describe which conditions would render the test meaningless for

distinguishing between similarity and influence in empirical applications. And (5) I illustrate the

efficacy of the approach using a toy example on international environmental treaty ratification.

4.3 Influence versus similarity in bipartite sequences

The homophily statistic in Equation 2.21 captures the influence of recently observed congruent

behavior by compatible other senders. It is tempting to interpret a significant coefficient as proof

of social influence over the event sequence. However, in some cases it may not be influence over

the course of the event sequence, where senders “learn” from other senders, but rather the prior,

time-invariant attribute similarity that leads independently to similar behavior.
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To illustrate this point, this section presents a simulation model that can create artificial bipartite

event sequences i) based on social influence given a sender covariate, ii) based on time-invariant

sender similarity given the covariate, or iii) any linear combination of the two. Consider the exam-

ple presented in Figure 4-1. In this diagram, we show senders connecting to receivers at different

points in time. The diagram shows what influence could look like in a real event sequence: Sender

S 1 connects with a couple of receivers, R1 and R3. After sender S 2 connects with receiver R3, S 1

follows it and connects with R3 as well.

Figure 4-1: Diagram of an event sequence showing some possible evidence of influence, where
sender S 1 connects with receiver R3 after sender S 2 connected with the same receiver (R1) after S 1

did.

In this model, I assume that there is a set of sender nodes S = {s1, . . . , sm} on the first mode and

a set of receiver nodes R = {r1, . . . , rn} on the second mode. Different simulation scenarios with

number of senders m ∈ {5, 10, 20, 50} and number of receivers n ∈ {1, 2, 5, 10, 20} are explored

below. Each sender and each receiver carry an attribute, stored in vectors as ∼ U(0, 1) and ar ∼

U(0, 1), where q(s) or q(r) is a function that retrieves the attribute value of any sender s or receiver

r from as or ar. q(s) and q(r) are aggregation functions that compress the attributes of a sender or

a receiver into a scalar which can then be used to compare with other senders or receivers.

For the receivers, the attribute represents an intrinsic quality, and for the senders, the attribute

value is interpreted relative to those qualities. For example, if senders are countries and receivers

are behaviors like ratifying treaty A (e. g., q(r1) = 0.2) or treaty B (e. g., q(r2) = 0.7), an individual

value of q(s) = 0.4 can be interpreted as having a closer ideal point to treaty A than treaty B. (I

assume here for simplicity that the preference space is one-dimensional.)

At each time point t ∈ {1, . . . ,T } in an event sequence over T discrete time points, draws

from the binomial distribution with parameter (n, p) determine, for each single time point, how
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many events take place. I choose simulation scenarios with T ∈ {50, 100, 200, 300, 500, 1000}

and (n, p) = (2, 0.7) to allow for moderate amounts of simultaneity and a moderate probability of

generating time points without any events, as is often observed empirically (e. g., Malang et al.,

2019; Brandenberger, 2019). In each of these events e ∈ ET = (s, r, t), sender s and receiver r are

chosen with probability

P(se = s, re = r|t,T1/2, as, ar) = P(se = s|re = r, t,T1/2, as, ar)P(re = r|t,T1/2, as, ar)

= P(re = r|se = s, t,T1/2, as, ar)P(se = s|t,T1/2, as, ar),
(4.1)

where T1/2 represents the half-life parameter, a variable introduced for temporal weighting of past

events with geometric decay (see Section 2.4). This probability, which leads to the decision of

which sender forms a tie to which receiver, is a finite mixture of two probability mass functions I

call similarity and influence,

Pdecision(se = s, re = r|t,T1/2, as, ar)

= πPsimilarity(se = s, re = r|as, ar) + (1 − π)Pinfluence(se = s, re = r|t,T1/2, as), (4.2)

where π ∈ [0, 1] is a parameter that determines the way in which similarity and influence are

blended, ranging from complete similarity (π = 1) to complete influence (π = 0) to determine

the decision outcome. Note that the probability of s choosing r is independent of time under

the similarity regime, but it depends on time and the pre-chosen half-life parameter (T1/2) under

the influence regime. Additionally, that the probability of s choosing r is independent of the

ideological position of the receiver under the influence regime.

The similarity component of the decision is proportional to the absolute similarity (i. e., one

minus the absolute difference) between the attribute of the sender and the attribute of the receiver,

with a normalizing constant that sums these values over all sender and receiver combinations:

Psimilarity(se = s, re = r|as, ar) =
1 − |q(s) − q(r)|∑︀m

i=1
∑︀n

j=1

(︁
1 − |q(si) − q(r j)|

)︁ (4.3)
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This mechanism corresponds to senders choosing the same receiver as other senders who have a

similar attribute value. This is made apparent by the fact that for two different s and s′,

1 − |q(s) − q(r)| = 1 − |q(s′) − q(r)|

⇔ Psimilarity(se = s, re = r|as, ar) = Psimilarity(se = s′, re = r|as, ar). (4.4)

The similarity function is thus a homophily mechanism without regard for time, in which senders

with similar prior or time-invariant attributes tend to choose similar receivers, without any social

influence taking place.

In contrast, the social influence component of the decision is proportional to the similarity

between the attribute of the sender and the attributes of past senders who chose the focal receiver

r, weighted geometrically by time:

Pinfluence(se = s, re = r|t,T1/2, as)

=

∑︀
e*∈Et−1 [se*,s][re*=r](1−|q(se* )−q(s)|)w(e*,te,T1/2)∑︀

e*∈Et−1 [se*,s][re*=r]

n∑︁
i=1

m∑︁
j=1

∑︀
e*∈Et−1

[se* , si][re* = r j] (1 − |q(se*) − q(si)|) w(e*, te,T1/2)∑︀
e*∈Et−1

[se* , si][re* = r j]

(4.5)

This probability is identical to the definition of the homophily statistic defined in Equation 2.21,

with a normalizing constant that sums the same values over all possible sender and receiver combi-

nations. Note that this probability is a function of time (i. e., it depends on the past event sequence

at time t) and the pre-chosen half-life parameter T1/2, just like in the REM estimation case out-

lined above. This congruence of the influence mechanism and the homophily statistic enables us

to recover the coefficient for social influence using simulated data with identical T1/2 using REM

estimation for discrete data. Simulation scenarios with T1/2 ∈ {5, 10, 20, 50} is chosen to cover a

broad range of cases. Because of the time dependence of the influence mechanism, simulations

must proceed chronologically with each simulation step building on the simulated prior event se-

quence.

109



Table 4.1: Comparison of REM with simulated high-influence (π = 0.1) and high-similarity (π =

0.9) sequences with m = 5, n = 2, T = 300, T1/2 = 5, and (n, p) = (2, 0.7). *** indicates
significance at the 0.05 level.

Model 1 (π = 0.1) Model 2 (π = 0.9)

Homophily (ξ) 273.33 (23.48)*** 239.02 (23.90)***

Num. events 529 541
Num. obs. 2571 2427
***p < 0.001; **p < 0.01; *p < 0.05

Each simulation run with pre-chosen m (number of senders), n (number of receivers), T (num-

ber of time points), B(n, p) (number of events per time unit), T1/2 (half-life of past event sequence),

π (relative importance of similarity vis-a-vis influence), and randomly drawn uniform values in

as and ar (attribute for senders and receivers) yields one artificial event sequence. γ = 100 such

sequences are simulated per scenario and subsequently supplied to a REM estimation routine to

recover homophily coefficients. The REM estimation is performed on the last T − T
10 time points.

Discarding the first ten percent of the simulated data allows for a proportional burn-in period during

which the simulations build up a sufficient history for the influence mechanism to work effectively.

REMs cannot reliably distinguish between the effects of prior, or time-invariant, similarity

of attributes and social influence. I measure this using the homophily statistic (ξ) To illustrate

this point, Table 4.1 shows a comparison of two estimated REMs. I simulated two sequences,

one with high influence and one with high similarity, and estimated the homophily coefficient

from Equation 2.21, which corresponds directly to the definition of the influence mechanism in

Equation 4.5. The coefficients are both positive and significant. Consequently, the identification

of the causal mechanism is likely hindered in empirical studies, where analysts may be tempted to

interpret prior similarity as influence, contagion, or diffusion. In the next section, I will present a

shuffle test to rectify the problem.
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4.4 Directed acyclic graphs and identifiability

In this section I present diagrams representing the data-generating process for the simulations de-

scribed in the main document. I highlight the relationships between the different variables using

a Directed Acyclic Graph (DAG), which indicates the flow of causal influence between variables.

The DAG is directed because there is a directional flow from one variable to the next and acyclic

because causality cannot simultaneously flow back to prior variables on a path. Causal identifica-

tion requires not just the absence of cyclical edges in the graph, but also the absence of plausible

unmodeled backdoors (confounders) (Pearl, 1995). Hence I present extensions of the model be-

low, where the possibility of factors that may jeopardize causal identification is discussed further

and empirical remedies are suggested. Table 4.2 describes the variables and constants in the DAG.

They correspond to the notation of the simulation model in the main text.

Table 4.2: Legend for Figures 4-2, 4-3, and 4-4. The (observed and latent) variables and the
(constant) parameters cover the elements of the model underpinning the assumed data-generating
process.

Variable/constant Type Description

q(si) observed Attribute for sender i.
q(s−i) observed Attribute for sender other than i.
as observed Vector of sender attributes.
q(ri) latent Attribute for receiver j.
Et observed Event sequence observed at time t.
ξ(Et,T1/2, as) observed Homophily statistic. Captures the extent to which a sender

node is guided by past behavior of other senders.
Psimilarity(si, r j) latent Similarity matrix with the row corresponding to sender si

and column corresponding to receiver r j.
Pinfluence(si, r j) latent Influence matrix with the row corresponding to sender si

and column corresponding to receiver r j.
Pdecision(si, r j) latent Decision matrix with the row corresponding to sender si

and column corresponding to receiver r j.
T1/2 parameter Half-life parameter.
π parameter Mixing parameter value between similarity and influence

for decision matrix.

There are two additional scope conditions of the causal identification of social influence con-

sidered noteworthy. The sender attributes must be uncorrelated with the hazard rate (other than
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through influence or similarity), and they must be exogenous. I will briefly summarize both con-

ditions and their diagnosis, and detailed them further in their respective subsection using directed

acyclic graphs.

The first condition states that the sender attribute under consideration must not influence the

event sequence directly, i. e., other than through social influence or similarity. Consider an example

in which countries can ratify environmental treaties independently as a function of their attributes,

such as climate vulnerability or political rights, or as a function of social influence, for instance by

learning from politically or physically similar countries (see the toy example in the next section).

The shuffle test fails to distinguish reliably between similarity and social influence if countries

with a higher vulnerability (e. g., because they have longer coast lines) or more political rights

ratify environmental treaties faster and this effect is temporally structured in a similar way as

the social influence effect. It is sufficient to demonstrate the absence of an empirical correlation

between the sender attribute and time to ensure identifiability of social influence in the shuffle test

(provided there is sufficient statistical power). In the example below, this is the case as several

social influence model terms are shown to have corresponding sender main effects with effect sizes

close to 0 and p values close to 1.0, including climate vulnerability and political rights.

The second condition states that sender covariates must be exogenous – they must not be af-

fected temporally by the development of the event sequence. The simulations above considered

only temporally constant sender attributes for reasons of simplicity. Yet sender covariates are al-

lowed to change over time – but only as long as they are not a function of the unfolding behavior

cascade. Complex feedback loops like these bear some resemblance with network-behavior co-

evolution (e. g., La Fond and Neville, 2010) but are a distinct problem. For example, consider the

possibility that the cascade of past ratifications of environmental treaties by countries may sys-

tematically cause stronger or weaker political rights or longer or shorter coast lines, with a time

horizon resembling the time horizon of the social influence effect. Causal pathways like these are

somewhat uncommon. No statistical remedy exists for this confounding, but the required assump-
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tion of exogeneity can often be justified on theoretical grounds, similar to the exclusion restriction

for instrumental variables.

4.4.1 Baseline scenario

Figure 4-2 shows the DAG for the simulations described in the main text. This will be called the

baseline scenario, and will be expanded with possible confounders later.

q(si)
(attr for si)

q(s−i)
(attr for sk , k , i)

T1/2

(half-life)

q(r j)
(attr for r j)

Psimilarity(si, r j; t) Pinfluence(si, r j; t) Et

(sequence at t)

ξ(ET ,T1/2, as)
(homophily)

Pdecision(si, r j; t)

π 1 − π

t = Tt + 1

Figure 4-2: Base scenario underpinning the simulations in the main text. Unless otherwise stated,
arrows are considered at time t.

The attributes of the sender nodes, for example the political rights or vulnerability of the sender

country, and of the receiver nodes, for example treaties, are exogenous to the causal process, i. e.,

there are no cyclic paths or confounders leading to them, neither from within the diagram nor

outside of the diagram. In empirical studies, the sender attributes are observed while the receiver

attributes are unobserved.

Jointly, the attributes determine the probability that a tie between a sender and a receiver occurs

at the next time step, through either of two processes (similarity or influence) or a blend between

them as determined by the π parameter. In the simulations, π can be set to generate custom blends

of the two scenarios. In empirical studies, this parameter is unknown. The probability in the

similarity scenario is determined by the attributes of the sender and the receiver for each sender–
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receiver dyad. Conversely, the probability for a sender–receiver dyad in the influence scenario is

additionally affected by the attributes of the other senders and their past observed behavior in Et.

Over time the dyadic decisions create the event sequence Et, which both feeds back into new

decisions (if influence plays a role) and lets us measure the extent of homophily in the overall

sequence (where homophily can be comprised of similarity and influence as underlying causal

mechanisms). The dependence of the influence probability on time through the path from Et and

the non-dependence of the similarity probability on time through the absence of a temporal path

from Et is what enables the shuffle test to discriminate between the two mechanisms in empirical

studies using the relational event model by breaking the temporal order.

(Note that the temporal, orange edges are not cyclic because they are not simultaneous; I use

an abridged DAG notation because otherwise 3t additional nodes in the diagram would have to

created.)

4.4.2 Extension: attribute influence on event sequence

One of the assumptions of the model is that the sender attributes do not have a direct influence on

the event sequence. To examine this as a scope condition of the shuffle test, Figure 4-3 adds such

causal edges to the DAG.

q(si)
(attr for si)

q(s−i)
(attr for sk , k , i)

T1/2

(half-life)

q(r j)
(attr for r j)

Psimilarity(si, r j; t) Pinfluence(si, r j; t) Et

(sequence at t)

ξ(ET ,T1/2, as)
(homophily)

Pdecision(si, r j; t)

π 1 − π

t = Tt + 1

Figure 4-3: A possible source of unidentifiability of social influence: Sender attribute influence on
the event sequence.

114



A causal effect of sender attributes on the event sequence means in an empirical context that

an attribute is correlated with the hazard rate. In my running example of treaty ratification, this

could manifest itself, for example, in a correlation between countries’ climate vulnerability and

their timing of ratifying environmental treaties – i. e., states that are more at risk because they have

longer coast lines ratify faster, independently of how other countries behave.

Such a correlation between the sender attribute and the event sequence would make social in-

fluence unidentifiable because causality would bypass the decision probability. The shuffle test

permutes the temporal sequence and would therefore shuffle both the temporally structured influ-

ence effect and the temporally structured sender attribute effect simultaneously to create a new null

distribution – hence identification would fail.

Given the other scope conditions of the shuffle test, it is consequently sufficient to demonstrate

the absence of causal paths between the sender attributes and the event sequence to ensure identi-

fiability of influence in the shuffle test. Practically, this can be done simply by showing that there

is no correlation between the sender attribute and time. For example, in the toy analysis in Sec-

tion 4.7 I find small correlations of 0.13 or 0.11 between climate vulnerability or political rights

and time, with p values for the correlations of close to 1.0, which translates into conditional main

effects for climate vulnerability and political rights in the model of around 0.

In empirical applications of the shuffle test, the recommended procedure is to theorize about

possible correlations between the sender attributes of interest and time. If they seem plausible, I

recommend ruling these correlations out empirically by testing the correlation between the sender

attributes in question and time. This test can be unconditional because the goal is to rule out

the possibility of a causal path from the sender attributes to the event sequence, irrespective of

other nodes in the diagram. If a correlation between sender attribute and time is present, causal

identification of social influence is increasingly jeopardized the stronger the correlation.
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4.4.3 Extension: endogenous sender attributes

Often, sender attributes do not change over time (i. e., they are fixed, or constant) and exogenous

(i. e., they are not affected by other variables in the DAG). For example, the length of a country’s

coast lines over its area, which measures climate vulnerability, can be reasonably assumed to be

exogenous and fixed.

Sometimes, sender attributes can vary over time. As per Figure 4-2, time variability of sender

covariates does not change the identifiability of social influence as long as the sender covariates

are exogenous. For example, political rights can change over time with regime changes and other

exogenous events.

However, social influence is no longer identifiable if the variability in sender covariates over

time is endogenously affected by the event sequence. Figure 4-4 shows an aggravated version of

a correlation between sender attributes and the event sequence, where the event sequence causally

affects the sender attributes. The causation can be bidirectional over time. (As a reminder, or-

ange arrows are temporal and therefore exempt from the acyclicality property of the graph in the

abridged notation.)

The presence or absence of early behavior leads to increased or decreased sender attributes

in this scenario. For example, if countries’ treaty ratifications led to increased political rights or

decreased climate vulnerability in the short term, the decision probability of countries with early

ratifications would go up or down and lead to more or less behavior, respectively, in turn. In the

physics of complex systems, this is known as a feedback loop.

Empirically, this possible source of non-identifiability is hard to detect by assessing correla-

tions, as in the previous case, because the causal paths can now flow in both directions. The conse-

quence of this endogeneity is that social influence indirectly affects the similarity-based probabil-

ity: Causality flows from the influence probability to the decision, on to the event sequence, on to

the sender attributes, on from a focal sender’s attribute to the similarity probability, and from there

back into the decision matrix at the next time step. The shuffle test then fails to distinguish between

the similarity- and influence-based mechanisms because both are temporally closely related.
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With this limitation of the shuffle test in mind, I believe this possible source of non-

identifiability will affect only a small minority of empirical contexts because it happens only

in the subset of cases where current events affect future sender attributes among the subset of cases

where sender attributes are temporally variable to begin with. Theoretical considerations can help

to rule out this confounding: Is the sender attribute temporally variable? If no, identification is

unaffected. If yes, is it theoretically plausible that a sender changes its attributes as a consequence

of its own or others’ behavior? If no, identification is again unaffected. The assumption is similar

to the exclusion restriction in instrumental variables regression and must be justified in a similar

way on a theoretical basis.

q(si)
(attr for si)

q(s−i)
(attr for sk , k , i)

T1/2

(half-life)

q(r j)
(attr for r j)

Psimilarity(si, r j; t) Pinfluence(si, r j; t) Et

(sequence at t)

ξ(ET ,T1/2, as)
(homophily)

Pdecision(si, r j; t)

π 1 − π

t = Tt + 1

Figure 4-4: Feedback loops from the event sequence to the sender attributes.

Endogenous sender attributes make the relation between behavior cascades and the literature

on network–behavior co-evolution (e. g. La Fond and Neville, 2010) apparent. In this literature,

individuals’ current network ties can influence their future behavior, and their current behav-

ior can influence whom they choose to connect with in the future state of the network. In my

model of behavior cascades, the probability of sender si to choose receiver r j in the influence

regime Pinfluence(si, r j; t) is a function of the similarity between sender si and the other senders,

1 − |q(se*) − q(si)| (see Equation 4.5). This dynamically changing similarity matrix can be inter-

preted as a network matrix similar to the network in a co-evolutionary model, except that it is

the result of two attributes rather than a social tie and it is based on the same variable that also
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defines the behavior. The similarity-based probability Psimilarity(si, r j; t), on the other hand, is not

the immediate result of any network matrix involving the other senders. It would correspond to

the behavior variable in a co-evolutionary model. In contrast to the baseline scenario, the behavior

cascade model with dynamic causality from the event sequence to the sender attributes as depicted

in Figure 4-4 can therefore be interpreted as a special case of the co-evolutionary model: The

attribute-based behavior affects the attribute similarity network underpinning the influence effect

through changes in the event sequence, and the attribute similarity network underpinning the in-

fluence probability in turn affects the behavior dynamically through changes in the attributes as a

consequence of the updated event sequence. The link between the behavior cascade model pre-

sented here and the co-evolutionary perspective is hence rather weak and holds only in special

cases, but a relation exists.

4.5 Hypothesis testing with randomisation inference

In this section I explain how to use randomisation inference to hypothesis testing in the context

of relational event models and bipartite event cascades. I am interested in distinguishing specific

similarity variables that cause either independent similar behavior or act as influence channels.

For example, if two countries both have long coast lines, does one country adopt marine policies

by observing the policy adoptions by the other country (influence, policy diffusion), or does the

similar attribute of having long coast lines cause both countries independently to adopt marine

policies (similarity, confounding)? The attribute, in this case having long coast lines, is the explicit

influence or correlation channel that is tested.

I use the fact that the relational event model employs temporal decay in forming the homophily

statistic (the halflife parameter, as set out in Equation 2.20 in Section 2.4). The next section shows

how temporal decay matters for the efficacy of the approach.

My approach can operate on multiple kinds of behavior, which are modeled as second-mode

nodes (e. g., multiple different marine policies in the previous example), and multiple influence
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channels (e. g., coast lines and the strength of the fishing industry in the previous example), where

each separate channel relates to all behaviors. Malang et al. (2019) showed an empirical example in

which senders were parliaments, receivers were different legislative proposals, and influence chan-

nels were ideological compatibility, similar population size, similar location, and other possible

channels. Previous approaches assumed that there was only one behavior and that the channels/-

sources of influence or confounding were unknown.

In addition to this, my approach does not explicitly measure the social network ties but operates

on bipartite sender–receiver event sequences, where the homophily statistic serves to uncover the

variables or network relations that trigger influence (or similar behavior).

Figure 4-5: Diagram of a shuffled event sequence, showing a different ordering to that of the
original, as an example of how the shuffling is done to test for the presence of influence.

The shuffle test described on this section follows the four steps introduced in Section 2.5.

Figure 4-5 shows a possible shuffling of the event sequence introduced in Figure 4-1. In particular

for bipartite relational event sequences, where we are shuffling on the order in which events took

place. Step by step this is:

1. Estimate a bipartite REM, including a parameter for at least one homophily (ξ) statistic, θ̂.

Observe one of two outcomes:

(a) If the original homophily coefficient is not considered to be statistically significant at

the 95% level in the estimation of the parameter relevant to ξ, we fail to reject the null

hypothesis that there was neither influence nor similarity.

(b) However, if the estimation of the model described in step 1 results in statistical signif-

icance for ξ, then the null hypothesis that there was neither influence nor similarity is
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rejected. As I showed in Table 4.1, the significance of the statistic could be caused by

either influence or similarity. Proceed to Step (2).

2. Generate many (e. g., k = 1, 000) synthetic event sequences ̃︀E by randomly reassigning the

time stamps t of the events et in E.

3. Estimate the same model as in Step (1) for each synthetic event sequence and save the ξ

estimates ̃︀θ as a new empirical null distribution ̃︀Θ.

4. Locate the original θ̂ in ̃︀Θ. Observe one of two outcomes:

(a) If θ̂ ≤ ̃︀Θ1−α: Failed to reject the null hypothesis that θ̂ represented the effect of prior

similarity (rather than influence).

(b) If θ̂ > ̃︀Θ1−α: Null hypothesis that θ̂ represented the effect of prior similarity (rather than

influence) is rejected.

This shuffle test is illustrated in Figure 4-6 for the two models reported in Table 4.1. Indeed,

Model 1 with π = 0.1 (influence) yields a θ̂ > ̃︀Θ0.95 while Model 2 with π = 0.9 (similarity) yields

θ̂ ≤ ̃︀Θ0.95, as expected.
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Figure 4-6: Application of the shuffle test to Model 1 (top) and Model 2 (bottom) from Table 4.1.

Having described the mechanics of the approach, I will now turn my attention to the scope

conditions under which the shuffle test is effective and the conditions under which it breaks down,

using Monte Carlo simulations. I will answer two questions: (i) Up to what level of π can social

influence be reliably distinguished from selection if both are present in the same data-generating

process? (ii) Under what other parameter conditions of m, n, T , and T1/2 does the shuffle test break

down and lose its discriminatory power?
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Figure 4-7: Simulation results for mixtures of influence and selection in the data-generating pro-
cess under plausible conditions.

4.6 Scope conditions of the shuffle test

I established in the previous section that the shuffle test can distinguish social influence from prior

similarity when the data-generating process is a mixture predominantly dominated by influence or

by similarity (e. g., π = 0 or π = 1). However, some empirical applications may feature a mixture

of similarity and influence in their underlying data-generating process.

For instance, if the senders are states, the receivers are policies, the ties are instances of adop-

tion of policies by the states, and the attribute is a dummy variable indicating whether the state

is red or blue, then two mechanisms may compete: Similarity may dictate that states of the same

color adopt the same policies at a similar rate, and influence may dictate that states adopt policies

that were recently adopted by other states of the same color (“policy diffusion”). It is conceivable

that both mechanisms occur in parallel (e. g., π = 0.3 or π = 0.6). Can I identify the share of

influence under a given π regime?

122



Figure 4-7 extends the simulations from Figure 4-6 to different π regimes. The simulation

results are based on n = 5 receivers, T = 300 time points, and a half-life parameter of T1/2 = 5,

like in the previous simulations as a baseline case. The horizontal axis shows different values of π

from 0.0 to 1.0. For π ∈ {0.05, 0.1, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.9, 1.0}, γ = 100 simulations

were run with k = 50 permutations per simulation. The vertical axis shows the proportion of the

100 simulations in which θ̂ was in the right tail of ̃︀Θ with α = 0.05 (one-sided test). The curve

shows the results for each π regime: The higher the curve on the y-axis, the larger the probability

that influence is detected in the relational event sequence through obtaining a significant result with

the shuffle test.

For values of 0 < π ≤ 0.5 the test is highly sensitive to the presence of influence. The more

influence in the data-generating process, the more significant results the shuffle test produces.

There is one caveat. Cases where there is only selection but no influence effect (π = 1) yield

slightly too many significant results (false positives). I do not consider cases where the data-

generating process is purely driven by influence (π = 0), since in a purely social influenced world,

where agents exclusively follow each other’s behaviour, the simulated data is extremely dependent

on the starting conditions (i.e. the attributes of the senders and the receivers), and does not yield

consistent results.

Compelling evidence for social influence can thus only be produced in empirical settings where

the data-generating process is dominated by social influence. If similarity plays a strong role, the

homophily coefficient will be significant, but likely not the shuffle test. This has implications

for how the shuffle test must be interpreted: It is a technique to assess the weight of evidence

of influence versus similarity; it should not be interpreted as a tool for detecting small traces of

social influence in a data-generating process that is otherwise dominated by similarity – unless one

increases the statistical power of the test, as shown below.
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4.6.1 Further scope conditions of the shuffle test

Having established that the shuffle test works in the baseline case (Section 4.6), I will examine

further scope conditions of the test here. The discriminatory performance of the test breaks down

when (i) there are few time steps (i. e., fewer than about 300 in the simulations); (ii) the half-life

parameter is too large, which means there is little temporal decay in the homophily statistic; and

(iii) the number of receiver nodes is very small (i. e., smaller than 5 in the simulations). Violations

of these scope conditions decrease the statistical power of the test. Combinations of violations

aggravate the lack of statistical power while a violation in one area can be compensated for in

another area. The more favourable each condition, the smaller the traces of influence in the data

that can be identified (i. e., the higher the sensitivity of the test). The lack of a significant result

indicates either exclusive similarity, as opposed to influence, or a lack of statistical power because

of a short observation period, few events per time span, a slow decay of homophily, or a small

number of behavior alternatives that can spread interdependently. The presence of a significant

result, in contrast, conclusively demonstrates social influence.

Unequal event frequencies over time, such as bundling of behavior towards the end of the ob-

servation period of a cascade because of a deadline, are no cause for concern because the temporal

permutations retain the temporal frequency distribution of events in the observed cascade.

Like in any regression model, the usual assumptions hold. In particular, there must be no

omitted variables; all confounders must be controlled for.

Figure 4-8 shows how the performance of the shuffle test is altered by the number of time steps

(left panel) and the half-life parameter (right panel). A longer half-life and a shorter event sequence

both undermine the statistical power of the test. The shuffle test breaks down with short cascades

(or, equivalently, a small event rate); fewer observations lead to less statistical power like in any

hypothesis test.
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Figure 4-8: The shuffle test breaks down with a large half-life parameter or few time steps.

Additionally, a longer half-life parameter in the population process leads to long-term depen-

dence, which increasingly resembles an atemporal similarity effect, diminishing the discriminatory

power of time and rendering the shuffle test ineffective (cf. Figure 2-2). This means the shuffle test

is only able to detect somewhat short- to medium-range influence. As reported by Malang et al.

(2019) in an empirical case, the choice of the half-life parameter during estimation matters rela-

tively little with a fixed data-generating process; it is the population half-life parameter that matters

for test performance. The size of T1/2 in the population at which the test breaks down is a func-

tion of the event rate and should not be evaluated in absolute terms. I expect that longer cascades

should make up for longer half-life in empirical settings. On a positive note, if the shuffle test

detects social influence, this is strong evidence for contagion.
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Figure 4-9: Simulation results for mixtures of influence and selection in the data-generating pro-
cess when parameters m, and n are changed.

Figure 4-9 shows different combinations of the number of senders and receivers, with the re-

maining parameters duplicating the baseline configuration. Fewer senders (actors) and more re-

ceivers (behavior types) lead to better test performance. The performance breaks down with one

or two receivers, e.g., the case of a single treaty that can be ratified successively by countries. This

result can be interpreted as a lack of statistical power as there is little evidence for influence. The
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discriminatory power becomes worse if this one behavior type is successively displayed by many

senders – again a case of little statistical power. With the same m and n, the problem would increas-

ingly disappear with longer cascades of repeatable behavior. Conversely, with only two senders

and many receivers, increasingly smaller traces of social influence can be identified.

4.7 Example: ratification of environmental treaties

I now apply the procedure to an empirical example. The literature on international environmental

politics posits that interdependencies between countries explain the ratification of international

treaties (e. g., Simmons, 2000; Elkins et al., 2006; Bernauer et al., 2010; Perrin and Bernauer,

2010; Hugh-Jones et al., 2018; Shim and Shin, 2020). Political rights and civil liberties (e. g.,

as measured in the Freedom House, 2020 Index) have been shown to play a role in the timing

and magnitude of environmental treaty ratification at the country level. Conclusive evidence on

whether countries are influenced by countries with similar values on these variables is missing;

positive results have been produced at the country level, assuming independence. Similarly, GPD

per capita and climate vulnerability have been shown to increase the speed of ratification, and

the past number of ratifications in the same geographical region has been shown to be positively

associated with ratification decisions – a homophily effect (Bernauer et al., 2010).

I draw inspiration from this research and examine for a set of eleven environmental treaties

(those with at least 170 ratifications)1 whether homophily plays a role in the hazard of treaty ratifi-

cation – regarding political rights (Freedom House, 2020), climate vulnerability (Chen et al., 2015),

similar population size, and shared borders.2 For each homophily variable I examine whether coun-

tries with similar levels on these variables either ratify (or abstain from) the same treaties indepen-

dently (similarity) or whether they influence each other’s ratification behavior (social influence).

This is a much-reduced toy dataset and serves only the purpose of illustration.

1Basel Convention; Convention on Biodiversity; Cartagena Protocol; CITES; Kyoto Protocol; Paris Agreement;
Ramsar Convention; Stockholm Convention; UNCCD; UNFCCC; Vienna Convention.

2Downloaded from https://github.com/geodatasource/country-borders (accessed 28 February 2021).
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Across the 189 countries and eleven treaties, there are 1,971 ratifications and 670,741 null

events (i. e., country–treaty–day combinations without ratifications), spread over 1,456 strata in

the counting process dataset, with a start date of 14 January 1974 and an end date of 21 August

2020 (the day the data analysis concluded). The first 74 events were discarded as burn-in for

the formation of model terms, leading to an actual start date in 1980. The political rights, climate

vulnerability, and population observations are time-varying covariates; geographical neighborhood

is time-constant. Political rights and civil liberties are collinear, hence only political rights were

used. The results are very similar if civil liberties are modeled instead of political rights.

Figure 4-10 shows the expected increase in the log hazard ratio – the log odds that a ratifi-

cation event occurs between a sender country and a receiver treaty given that it has not occurred

yet – when the independent variable on the y axis is increased by one unit, all else being equal.

95 percent confidence intervals are drawn around the point estimates. The first four rows show the

homophily terms. The next three rows show monadic main effects for the same variables (except

the neighborhood term because it is intrinsically relational). The final three rows show monadic

control variables: GDP per capita in constant 2010 U.S. dollars (using World Bank data); the

sender country’s recent number of ratifications (with each past event geometrically weighted with

a half-life parameter of 50 days as per Equation 2.20 like all other model terms); and the recent

number of ratifications of the receiver treaty.

The homophily terms show positive, significant results. Interpretation of effect magnitudes is

being complicated by the geometric weighting with the half-life parameter and the standardization

in the homophily statistic, but one could generate predicted probabilities conditional on different

timing of past events if the effect size were of interest.

Figure 4-11 shows the shuffle test for the four homophily terms. In all four cases timing matters,

and the null hypothesis that there is no social influence at work can be rejected. States make

ratification decisions not merely independently at similar times as other states with similar political

rights, climate vulnerability, population size, and geographical location, but display a higher risk
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Figure 4-10: REM results on treaty ratification.

of ratification when politically, geographically, and demographically compatible countries ratified

the treaties in question in the recent past.

However, this toy example serves to illustrate not only the viability of this approach, but also to

discuss potential limitations: First, three of the four variables used for homophily and the shuffle

test were time-varying, with only geography being time-constant. In the simulations I only con-

sidered time-constant attributes for reasons of simplicity. The results theoretically hold for time-

varying attributes as well. In Section 4.4.3 I showed using directed acyclic graphs under which

situations identification problems can be expected with time-varying sender attributes. In theory,

the null distribution maintains the temporal distribution of ratifications, which means exogenous

shocks on both the attribute and the ratification behavior are already factored into the shuffle test.

There is a residual risk that the test is less effective if all probability mass is concentrated on very

narrow time periods. But then the homophily terms would not display a significant result in the

first place, hence this should not diminish the efficacy of the test. Future research should evaluate

the connection between identifiability and exogenous shocks on the system more carefully when

the attribute variables vary over time, but I do not see any immediate cause for concern.
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Figure 4-11: Empirical distributions and original homophily coefficients on all four homophily
terms considered: political rights, climate vulnerability, population and neighbouring state.

Second, just like in other regression models, we need to be wary of omitted confounders. Here,

I did not control for trade as a possible homophily term3 or other variables that may explain both

ratification behavior and incentives for social influence through similar political rights. I did control

for the main effects as possible sources of temporal structure in the homophily effects, and they

were conditionally uncorrelated with the hazard rate. The usual assumptions of likelihood-based

inference apply. Theoretically, I do not expect a country’s treaty ratification to exhibit short-term

impacts on vulnerability and political rights because possible changes in these variables would

likely have longer time horizons and would only be affected by environmental treaties if the treaties

enabled significant environmental change or preservation. Hence reverse causality can be ruled out

on theoretical grounds as per the conditions formulated in the previous section.

Third, the example was in good keeping with the scope conditions of the simulation results:

m = 189 senders, n = 11 receivers, an assumed half-life parameter of T1/2 = 50 (though the

true parameter in the population process is unknown), and sufficient statistical power with several

thousand time steps and 1, 971 events. The simulations in Section 4.6.1 showed how the test

would break down with fewer receivers – the most critical scope condition for the efficacy of

the test. Indeed, if I arbitrarily pick four out of the eleven treaties and drop the remaining ones

3Strictly speaking 1−|q(s)−q(r)| would need to be replaced by the trade volume in Equations 2.21 and 4.5 because
a network relation is used instead of an attribute.
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from the analysis, the shuffle test no longer indicates significant social influence; for example the

population homophily term drops out of significance in the shuffle test but retains its significance

in the original model (not visualized here for brevity).

4.8 Conclusion

This chapter made the case for re-interpreting a wide range of categorical behavior across sub-

fields as bipartite relational event cascades. Political science in particular will benefit from the

application of corresponding methods by improving the scope of theories that can be developed

and tested. We should start collecting observations on the behavior of states in the international

system, legislators in parliaments, interest groups in policy processes or lobbying coalitions, and

other actors operating in group contexts at a higher temporal granularity than the current practice

of collecting annual observations. Doing so will permit better causal identification of endogenous

theory because it is often the order of events that matters for explaining the choices actors make.

I developed a conceptual framework for reasoning about similarity and social influence in bi-

partite relational event models of actors and categorical behaviors. This includes an approach for

simulating artificial event sequences with given relative levels of similarity and influence. Using

these simulations, this chapter demonstrated how similarity and influence are confounded in em-

pirical applications of the relational event model with a homophily statistic. As such, I introduced

a shuffle test with the potential to rectify the identification issue and to test for the prevalence of

influence as opposed to prior similarity. Simulations evaluated the sensitivity of this shuffle test to

different theoretical conditions which may be found in plausible empirical settings. An empirical

toy example further illustrated the method and its limitations.

The simulation results show interesting variation: The shuffle test can robustly identify influ-

ence when the data-generating process is overwhelmingly dominated by influence. It can identify

a preponderance of influence over similarity, and its efficacy gradually declines, subject to different

conditions, with increasing importance of similarity in the data-generating process. The implica-
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tion is that a non-significant test result cannot be interpreted as an absence of influence. In line

with the general thrust of statistical testing, only a significant result can lead to a rejection of the

null hypothesis of the absence of social influence. A non-significant result, in contrast, may indi-

cate either a preponderance of similarity or a lack of statistical power of the test through one of

the ancillary conditions. These can be, among others, a small number of time points, a low density

of events in the sequence (which is equivalent to a short sequence), a long time horizon of the

influence, a large number of senders, or a low number of receivers/behaviors. The extent to which

the test is affected by these conditions varies by empirical context. As these conditions all affect

statistical power, each condition may be compensated for to some degree by improving another

condition.

The shuffle test is easy to implement for any bipartite relational event model. It just requires

randomization of the time stamps in the event sequence and re-estimation of the REM many times.

The added benefit is that under many plausible real-world conditions the shuffle test permits iden-

tification of social influence. This is an important step as many theories posit social influence but

lack empirical identification strategies. In some instances, this lack of identification techniques has

led to an overselling of findings as social influence when they may well have been caused by prior

similarity (termed the “spread of evidence-poor medicine via flawed social network analysis” in

one such instance by Lyons, 2011).

The technique is applicable in situations with the following characteristics: (i) availability

of fine-grained temporal observations about actors (Mode I) without much simultaneity in the

observations; (ii) one or more kinds of binary behavior the actors can adopt once or repeatedly

(Mode II); (iii) at least partial observability of each other’s behavior by actors (and this may be

restricted by attribute variables); (iv) observability of one or more time-invariant (or potentially

time-varying) attributes (or network relations) that presumably structure the behavior in a relational

way (“channels” or “sources of influence”); (v) no omitted variables (including exogeneity of

the attributes) and no correlation of the attribute with the timing of behavior (other than through

similarity or influence); (vi) sufficient statistical power.
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As per condition (iv), the procedure is applicable in cases where there are multiple homophily

terms with different influence channels. However, future research will need to evaluate the robust-

ness of the test to such increases in model complexity; they may need to be offset by other sources

of statistical power. In particular, future research should evaluate possible consequences of corre-

lations larger than zero between multiple influence channels. Relatedly, a strength of the technique

is that it can use network relations in lieu of attribute values. Malang et al. (2019) demonstrated in

an empirical application on inter-parliamentary diffusion of subsidiarity concerns about legislative

proposals by the European Commission how the shuffle test can be applied to network relations

like geographical contiguity, in addition to attribute-based homophily, for example based on shared

ideology.

The shuffle test assumes that there is no omitted confounding variable that explains both the

attribute (or the resulting similarity) and the adoption of behavior (Xu, 2020), as is standard in

regression modeling (condition v). It furthermore assumes that there is no contagion occurring

within time points (hence the word “fine-grained” in the first condition) and, by virtue of the event

history roots of the relational event model, that there is no simultaneity in decision events, as per

Equation 2.19, Section 2.4 (Xu, 2020; Butts, 2008). While this may seem like a restrictive assump-

tion, several methods (e. g., Efron, 1977) have been tried and tested to break tied events (“interval

censoring”). The default method used in R’s survival package is an exact test that considers

all possible combinations of temporal orders in the likelihood function. Bipartite relational event

modeling with a shuffle test is somewhat computationally involved; while the randomization in the

shuffle test can be parallelized, the computation of the homophily statistic in Equation 2.21 requires

nested iterations over the past event sequence and thus leads to increased computation time. So

far, we have applied the procedure to sequences with several thousand events and several hundred

nodes without problems on a contemporary multicore CPU. Lerner and Lomi (2020) have recently

suggested a sampling approach that may solve the computational burden, but its consequences for

the shuffle test have not been evaluated yet.
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In this exposition, I chose a simple REM specification for discrete time points using a stratified

Cox model. I expect the results to hold with continuous-time REM specifications, but this should

be evaluated in future research. An open question is also how to select the optimal half-life pa-

rameter. Empirical applications like the one reported by Malang et al. (2019) seem to be relatively

robust to different parameter choices, but there is no conclusive evidence yet. The evidence shown

here suggests that different half-life parameters in the data-generating process, rather than the em-

pirical estimation, are consequential for the identifiability of influence, but this is different from

the half-life parameter chosen for estimation.

I also expect that the approach is applicable no matter whether each behavior/receiver can be

adopted multiple times per sender or only up to once. Such different scenarios can be accommo-

dated in the model by specifying the risk set appropriately. Future research needs to verify the

efficacy of the shuffle test in these different situations. It also needs to account for instances where

the difference in the values of the attributes between senders is very large, and how this might play

a significant role in the determination of presence of influence in the event sequence. In relation to

the number of senders acting in an event sequence, and the total number of events, more research

should be done to determine whether a large pool of possible actions by the senders might affect

the way in which the shuffle test captures the presence of influence. With more options, influence

might be harder to detect; alternatively, with fewer options the test might be over-sensitive to the

presence of influence.

Furthermore, the present setup of the REM and shuffle test assume that the attribute variables

do not change over time. While constant attributes should correspond to a range of plausible

scenarios (e. g., geography, party family, or actor type), it is easy to imagine empirical applications

where they are unrealistic. For example, policy diffusion may be affected by changing majorities

in states over time, as per one of the examples mentioned above. In the absence of omitted variable

confounding, I do not see any reason to expect time-varying attributes to invalidate the shuffle test,

but future research should investigate more carefully.
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Political science is currently moving towards better causal identification. Where experiments

are not feasible, it is observational methods like the one presented here that can support causal

identification. This is most difficult in endogenous settings. Analogously, experimental design in

such settings is plagued by interference. Both with observational and experimental designs I there-

fore need to find ways to pinpoint, and isolate, social influence. This echoes Flache and colleagues’

call that “more empirical work is needed testing and underpinning micro-level assumptions about

social influence as well as macro-level predictions” (Flache et al., 2017).
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Chapter 5

Bayesian co-estimation of network

characteristics and node attributes with the

exponential family of distributions
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5.1 Exponential random network models

Estimation of parameters for network data using the exponential family of distributions, as de-

scribed in Subsection 2.2.2, is based on comparing the observed network with all the possible

configurations its nodes can make. An approximation has to be used for the cases in which the

number of nodes in the network is more than 20, because the total number of configurations ex-

ceeds what is computationally feasible (Hunter and Handcock, 2006). Traditionally, ERG models

are estimated using the methodology developed by Barndorff-Nielsen (1978). One of the most

common software implementations of this estimation strategy in R is the statnet suite of pack-

ages. The estimates produced by this implementation are made with the different configurations of

the network that only contemplate networks with different sets of edges, but have the same values

for the node covariates.

For a network defined as G = (Y, X) (as in Section 2.2.1), this means that all the possible edge

configurations, 𝒴, assume the set of node attributes X to be the same. Those configurations where

both the edges and some or all of the node covariates change are not considered under this tradi-

tional approach. The ERGM (Hunter and Handcock, 2006; Hunter et al., 2008) implementation

makes the assumption that all the feasible edge configurations in 𝒴 are variations of the observed

network, where only the connections between the existing nodes change. This is equivalent to say-

ing that the data generating process where the observed and sampled networks come from, takes

the values of the node covariates as a given.

Fellows and Handcock (2012) proposed a new estimation routine that considers a data generat-

ing process where viable samples are produced by toggling both the edges and the node attributes.

This change expands the possible number of networks to be considered for inference to not just

those in 𝒴, but rather (𝒴,𝒳). Details on this toggling procedure will be presented in Section 5.3.

This change increases the possible number of configurations from a large but countable number,

to a very large one and possibly uncountable, depending on the kind of attribute to be toggled. For

the purpose of this dissertation, we are only going to deal with binary attributes.
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The estimation methodology developed by Fellows and Handcock (2012), however, suffers

from the same chances of sampling degenerate networks in the approximation to the normalis-

ing constant as other methodologies that rely on maximum likelihood to estimate a network. As

demonstrated by Handcock (2003), degeneracy in estimation occurs when the starting parameters

are close to what is referred to as the boundary of the convex hull of the sufficient statistics. For

the case of the exponential random graph model, Caimo and Friel (2011) developed a Bayesian

estimation that uses an exchange algorithm to propose new values of the parameter, reducing the

number of steps required to reach a stationary distribution, even when starting close to the degen-

erate region.

I now present the methodological foundations for Exponential Random Network Models

(ERNM). As a motivating example, consider, three nodes, A, B, and C in an undirected network. A

and B are assigned the red denomination, and C is assigned the green denomination. The number

of possible connections with these three nodes is limited to A−B, A−C, B−C, A−B−C, A−C−B,

C − A − B, the full network and the empty network. When we look into the assigned colours for

the selected nodes, we lose information since the graphs A −C and B −C are considered to be the

same graph. The Exponential Random Network Model (ERNM), as it was coined by Fellows and

Handcock (2012), allows these two to be different graphs because A −C and B −C can emerge as

two different graphs in the sampling process and in the approximation to the normalising constant,

c(θ) (see Equation 2.3).

Another more illustrative example could be the analysis of a network of students and their

smoking behaviour over time. In this scenario we are interested in determining whether the uptake

of smoking by some individuals, i.e. the change of a binary attribute for one individual from A to

B, happened before or after this individual developed ties to other individuals with attribute value

B. When considering the attributes to be exogenous, as it happens in the temporal exponential

random graph model, the possibility that there was a change of attribute that coevolved with the

development of the network is lost. The coestimation routine introduced in this chapter is a first
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step in the development of Bayesian coestimating of parameters for network statistics and nodal

attributes that uses the exponential random family of distributions.

Consider a network G = (Y, X) as introduced in Subsection 2.2.1. Exponential Random Graph

Models (ERGMs) look to calculate the probability of observing a particular configuration of nodes

conditional on the node attributes:

p(Y = y|X = x, θ) =
eT (y,x)θ∑︁

y′∈𝒴

eT (y′,x)θ
, (5.1)

where T (y, x) represents the vector of sufficient statistics that characterises G. The ERNM pre-

sented by Fellows and Handcock (2012) extends this model to

p(Y = y, X = x|θ) =
eT (y,x)θ∑︁

(y′,x′)∈(𝒴,𝒳)

eT (y′,x′)θ
, (5.2)

suggesting that the space of possible networks accommodates ones with the same set of connec-

tions, y, but different node attribute values, x and x′. Alternatively,

p(X = x|Y = y, θ) =
eT (y,x)θ∑︁

x′∈𝒳

eT (y,x′)θ
, (5.3)

represents a Gibbs/Markov field when the process satisfies the pairwise Markov property (that is,

that when nodes i and j are not connected, then Xi and X j are conditionally independent given all

other node attributes).

The contribution of this chapter is a version of the sampler originally developed by Fellows

and Handcock (2012) that allows for more control in the way networks are proposed, in the form

of a user-defined probability of selecting to toggle from the existing edges in the network or all the

possible dyads. I also modify the probability of selecting whether to toggle an element in Y and an

element in X to a proportional probability based on the number of elements to toggle in X and the
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number of elements to toggle in Y . Additionally, I apply the estimation strategy from Caimo and

Friel (2011) to produce a posterior distribution of parameters based on the observed network.

My motivation for developing this methodology is twofold: first, the move from a routine that

produces estimates for p(Y = y|X = x, θ) to one that produces estimates for p(Y = y, X = x|θ) is

needed to capture the nature of networks where node attributes and network connections occur at

the same time. In particular, in the context of causal inference in the presence of interference, a

more robust estimation routine like this one is needed to accommodate for the complex interdepen-

dencies present interventions where the treatment can spill over between individuals through their

social connections. Second, the model developed in this dissertation is based on the endogenous

relationship between network characteristics and node attributes in cross-sectional data. I pursue

the development of a model for the co-evolution of dyad and nodal covariates, which can only be

achieved when observing a network through time - the model presented here is the first step in that

process. The Bayesian implementation ensures a more stable way to navigate the parameter space,

as shown by Caimo and Friel (2011).

The rest of the paper is organised as follows. Section 5.2 explains the background and recent

developments that deal with network estimation that considers nodal attributes in the estimation.

Section 5.3 shows the methodology for sampling networks that consider nodal attributes, as well

as the way parameters are estimated. Section 5.4 shows the estimation of an example on Samp-

son’s monk data. Section 5.4.1 presents the results from a simple simulation study that shows the

estimation methodology recovers the true values of a parameter used to generate random networks,

and Section 5.5 concludes.

5.2 Recent developments stemming from the work of Fellows

and Handcock (2012)

Since the publication of Fellows and Handcock (2012), there have been other approaches to

consider the variability of node attributes in network sampling. Thiemichen et al. (2015) and
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Thiemichen et al. (2016), use Caimo and Friel‘s methodology for parameter estimation to in-

clude nodal random effects. The traditional ERGM approach models all possible heterogeneity

in the nodal attributes as included in the covariates, influencing the global structure of the net-

work. However, this leaves possible heterogeneities in the nodal covariates unaccounted for. The

proposed approach of Thiemichen et al. includes random, node specific statistics in a traditional

ERGM to account for said heterogeneity. Krivitsky et al. (2009) presented a similar approach using

a latent cluster random effects model to represent heterogeneity in the observed node covariates.

Fosdick and Hoff (2015) propose a methodology to test whether dependencies between nodal

attributes and the network itself exist, and a joint attribute and network modelling approach for

when it does. The joint model allows for estimation and inference on the dependence between and

within the network and attributes. Additionally, it provides a way of handling and predicting miss-

ing network and attribute data. Li (2015) proposed a sampling algorithm similar to Fellows and

Handcock (2012) for temporal ERG models, and extended it to estimate longitudinally observed

networks. Most recently, Yan et al. (2019) develop a model that allows for node heterogeneity via

node-specific parametrisation, and quantifies the extent of heterogeneity in terms of outgoingness

and incomingness of each node by different parameters. To the best of my knowledge, this is

the first time a model that considers the joint distribution of network connections and individual

attributes using the Bayesian paradigm to estimate the vector of unknown parameters.

Stochastic Actor-Oriented Models The exponential random graph model, as it was presented

in Section 2.2.2, is only one of the tools researchers can use to make inferential statements about

the structure of a network. A methodology that has been developed in parallel is the Stochastic

Actor-Oriented Model, or SAOM. Developed by Snijders (2001), this considers networks observed

at different times, and regards them as snapshots of a continuously evolving process. The proba-

bility of change between the node connections are determined by the current state as in a Markov

process. In between observations, the process evolves as follows: each actor individually deter-

mines whether to send a new dyad or remove an existing one, following an objective function that
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incorporates local and global information. Each one of these decisions are steps that occur one

after another in the modelling of the observed network. At every one of these steps, there is one

single change to evaluate. For every one, the model evaluate whether it increases the likelihood of

observing the actual network and decide whether to keep that change or not accordingly.

The range of outcomes considered in the objective function can be extended to include multiple

networks, or actor-level attributes. This last inclusion allows for an estimation procedure that

considers co-evolving networks, where node attributes network characteristics are both considered

as endogenous, in order to produce the observed network. This model provides a rich statistical

structure for the analysis of social networks, and has seen many methodological developments

since its inception (see Snijders et al., 2006, 2010; Snijders and Pickup, 2017, and Snijders et al.,

2021 for the software implementation called RSiena), but it is not the focus of this work.

5.3 Algorithms

Two algorithms comprise the bulk of the presented methodology. As introduced in Section 2.3.2,

following the methodology developed by Caimo and Friel (2011), I observe a network and look to

find a vector of parameters θ that is compatible with the network observed. The first algorithm I am

going to present in detail describes how to get the network samples, and the second one describes

how to move through the parameter space to reach a valid sample of vectors of θ.

5.3.1 Sampling algorithm

The sampling algorithm follows the methodology presented by Fellows and Handcock (2012). The

evolution of this algorithm started with Strauss and Ikeda (1990), and is in use in the current im-

plementation of the ergm package (Krivitsky et al., 2020). Fellows and Handcock (2012) designed

a version of this algorithm allowing for a key innovation: the toggling of certain attributes as well

as dyads in the network. The algorithm presented here is a modified version of that algorithm to
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allow for a way to propose innovations to dyads or attributes proportionally to the total number of

items to change. This innovation will be presented in detail in Algorithm 1.

I present a brief description of the steps for this algorithm. Consider G = (Y, X), a network and

TG a vector of sufficient statistics based on our understanding of G; from G we know the number

of nodes and the types of covariates in X. The choice of sufficient statistics is a key part of models

for network inference. These represent how the analyst summarises the observed network. Some

examples include the number of edges in the network or the sum of one of the attributes for all

nodes i and j where (i, j) ∈ Y . For a more detailed explanation on the broad range of statistics see

Morris et al. (2008). θ is a vector of parameters connected to these sufficient statistics. The goal of

this algorithm is to produce a network that is conditional on the value of θ:

Y = y, X = x|θ.

To begin, generate a random starting network G0 = (Y0, X0), composed of a random set of

edges, Y0, and a random vector of covariates for the nodes present in the network, X0. Set l1, the

number of iterations, to be a sufficiently large to ensure convergence. For step i = 1, Gi = G0, the

initial random network. For every i ≥ 1 the algorithm chooses, based on a specific rule (described

in detail below), to toggle an element in the current network and create a proposed network. It then

evaluates whether this proposal is a better fit to θ than the current one. The sampler developed by

Hunter et al. (2008) produces a new network by choosing whether to toggle an edge that already

exists in the network, or a random empty dyad, with a probability of 50% (Morris et al., 2008).

After the ł1 iterations, the algorithm will produce a network conditional on the selected value of θ*.

The justification from Morris et al. (2008) is that if the chance of toggling an empty dyad and

not an existing edge is proportional to the amount of dyads vs edges in the current network of

the sampler, there would not be enough mixing of the McMC chain, making convergence slower.

Only choosing from the set of dyads for the next toggle results in the sampler remaining in the same

state for multiple steps of the Markov chain. The proposed innovation I present in this chapter is

the ability to select with which probability dyads are selected when sampling the network, to be
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adjusted according to the characteristics of the network. This probability can be smaller than 0.5,

since mixing of the McMC chain also occurs with the toggle of the node attributes. I refer to this

probability pedge, following Fellows and Handcock (2012) and Li (2015).

In addition to toggling dyads, the ERNM sampler implemented here also toggles nodal at-

tributes. One alternative for this probability is to follow a proportional probability of toggling an

element in Y or an element in X. In other words, the sampler chooses to toggle elements in Y with

probability pdyad or to toggle elements in X with probability 1 − pdyad, where

pdyad =
n * (n − 1)

n * (n − 1) + k
,

and k is the number of attributes available for toggling in X. A random number drawn from a

uniform distribution between 0 and 1 will allow a proportional navigation of the possibilities of

toggling a dyad or toggling an attribute. However, if this value is close to 1, i.e. if the number

of attributes to toggle is relatively small in relation to the total number of dyads in the network,

a user-defined probability can be used. Algorithm 1 has the detailed steps necessary to produce

network samples conditional on θ.

In the case that p1 (defined in Algorithm 1) is larger than pdyad, the algorithm moves to toggle an

element in X. The version of the toggle described in Algorithm 1 is designed for binary attributes.

However, if the attribute to be toggled in X was continuous and bounded, the proposal X* would

be created by adding a random innovation within the expected bounds of X. In the next subsection

I give an example of how the designed sampler works and how it compares to the ERGM sampler,

as well as comparing what happens when we allow for toggles of the edges and the attributes, and

when we allow only the edges to be toggled.

5.3.2 Estimation algorithm

This estimation algorithm follows the methodology developed by Caimo and Friel (2011) to arrive

at a posterior distribution of θ based on the observed network, as described in Section 2.3.2. Step
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Algorithm 1: Network sampling algorithm
Input: n, number of nodes; type of X, θ*, TG, pedge, pdyad

Output: Network conditional on θ via TG

Produce random network G0 = (Y0, X0) based on n and type of X;
For a given number of iterations, l1;
while i < l1 do

Draw two random numbers p1 and p2 from a uniform distribution between 0 and 1.
if If p1 < pdyad: Toggle element in Y then

if If p2 < pedge: Toggle existing edge then
Choose one of the existing edges at random and change it from an edge to a non-edge. This

creates a proposed set of edges Y*, and proposed network G* = (Y*, Xi).
We now have two networks, the current network Gi and the proposed one G*. We calculate the

change statistics (as described in Section 2.2.2) between Gi and G*, TG* − TGi and generate
the acceptance ratio

r = exp
(︀
θ* · (TG* − TGi )

)︀
;

else
p2 > pedge: Toggle random dyad:
Choose one of the possible dyads at random and change it from an edge to a non-edge if it is

already in the network, and from a non-edge to an edge if it is not. This creates a proposed set
of edges Y*, and proposed network G* = (Y*, Xi).

We now have two networks, the current network Gi and the proposed one G*. We calculate the
change statistics between Gi and G*, TG* − TGi , and generate the acceptance ratio

r = exp
(︀
θ* · (TG* − TGi )

)︀
;

end
else

p1 > pdyad. We toggle element in X:
Choose one node in the network at random, and then one of the attributes in X to toggle at random.

As mentioned at the beginning of this chapter, we are only interested in binary attributes.
Toggling an binary attribute means changing it’s value from 1 to 0, or vice versa. This creates a
proposed set of attributes X*, and proposed network G* = (Yi, X*).

We now have two networks, the current network Gi and the proposed one G*. We calculate the
change statistics between Gi and G*, TG* − TGi , and generate the acceptance ratio

r = exp
(︀
θ* · (TG* − TGi )

)︀
;

end
Draw a random number from a uniform distribution u, u ∼ U(0, 1);
if u < r then

we assign the proposed network G* to Gi+1 for the next iteration;
else

we assign the current network Gi to Gi+1 for the next iteration;
end

end
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1 inside of Algorithm 2 refers to a symmetric proposal h(θi), based on the value of θ at step i.

Following Caimo and Friel (2011), h(·) is an arbitrary distribution to generate a proposal for θi+1

based on the current value θi. In this, I use a random walk distribution centred at θi. In step 2,

the algorithm creates a θ-ratio from the probability of the proposal for θ, θ*, and the probability of

current value of θi. This likelihood for which the simulated data are defined, and is sampled via

an McMC using Algorithm 1. The practical implementation suggests using an weakly informative

multivariate normal distribution.

Algorithm 2: Parameter estimation algorithm
Input: Observed network G=(Y, X), set of sufficient statistics to explain the network, TG

Output: Distribution of parameters θ for observed network G
Consider a starting set for θ, θ0. θ0 can be either all zeros or the value obtained by
estimating the network using the maximum pseudolikelihood (as described in
Section 2.2.1).;

Select a desired number of iterations, l2, and burn-in b. ;
while i < l2 do

1. Draw θ* from a symmetric proposal h(θi);
2. Create θ-ratio, defined as pr =

prior(θ*)
prior(θi)

;
3. Sample a network G* = (Y*, X*) using Algorithm 1, conditional on θ* through TG(·)
;

4. Calculate the change in statistics from the proposed network TG(G*) and the
observed network TG(G), as δ = TG(G*) − TG(G);

5. Using the above, determine the chance of accepting the new proposed θ* as
α = (θ* − θi)δ + log(pr) where θi is the current value of θ;

6. Draw a random number from a uniform distribution u ∼ U(0, 1);
if The logarithm of the random number u, log u is smaller than the proposal α, u < α
then

We assign the proposed value of θ* to the next iteration θi+1;
else

We assign the current value, θi to the next iteration θi+1;
end
if The current iteration of the algorithm is larger than the burn-in b, i > b then

Save θi+1 into a vector as part of the vector of parameters that will become samples
from the posterior distribution;

end
end

Notice how in Algorithm 2 the calculation of α is the log of the probability described in Equa-

tion 2.9, following Caimo and Friel (2014). The choice of the burn-in period is affected by the
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starting point of θ* in the algorithm. Following the assumption that the pseudolikelihood estima-

tion is close to the true value of θ, less burn-in is necessary to reach a stable posterior distribution.

5.3.3 Change statistics in the exponential random network model

In Subsection 2.2.1 I explained the concept of change statistics. In the context of an McMC routine,

change statistics is a technique that reduces the amount of computing time needed to calculate the

acceptance ratio between the vector of sufficient statistics of proposed network TG* and those of

a current one TGi , exp
(︀
θ* · (TG* − TGi)

)︀
. In the sampling methodology that generates networks by

toggling dyads (whether existing or not), calculating the change statistics requires calculating how

each individual statistic changes with the inclusion or exclusion of an edge. For many sufficient

statistics, this is a relatively straightforward calculation. When calculating the change statistics for

the sampling methodology that generates networks by toggling both edges and attributes, we need

to go through a similar process that is specific to each one of the statistics (Li, 2015).

5.4 Estimation

To showcase the estimation strategy that Algorithm 2 produces, I am going to explore a commonly

used ERGM example, the Sampson’s “liking” dataset, which allows us to compare our estimation

procedure with a classical directed network. Let us look initially at the results from using the

traditional ergm assumptions used in the statnet estimation routine, as well as the one available

in the bergm package (Caimo and Friel, 2014). The sampler described in Algorithm 1 can replicate

the statnet sampler by not toggling node attributes but only toggling one dyad at a time. This is

referred to as the “edge/dyad sampler”1, because at every step of the McMC chain, the proposed

network changes in only one connection. The “edge/dyad” name makes reference to the fact that

the sampler will consider toggling existing edges with probability pedge or dyads with a probability

1 − pedge chance2. I use 1 − pdyad = 20% to encourage exploration of all the possible dyads, as

1This sampler is sometimes referred to as the tie/no tie sampler, but for consistency, I call it the dyad/edge sampler.
2See https://rdrr.io/cran/ergm/man/ergm-proposals.html
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described in Subsection 5.3 . The dataset contains nominations of friendships between monks for

three different moments in time (Sampson, 1969). A nomination made by monk A to monk B

implies monk A likes monk B.

We are going to estimate the parameters for a model that considers the number of network

connections (edges) and the number of reciprocated connections (mutual) as the sufficient statistics

that characterise the network. The results generated by four estimation methods can be found in

Table 5.1. The first one is the traditional statnet McMCMLE estimation routine, the second

is the bergm estimation routine. The third one is the estimation using the custom “edge/dyad”

sampler built for this project (“Custom E/D”), and the fourth one is uses “dyad-attribute” sampler

(“Custom D/A”). The results for all four are relatively similar, considering that there are no node

attributes considered in the set of sufficient statistics, so toggling node attributes should not change

the probability of accepting a particular network proposal, and this is exactly what Table 5.1 shows.

Table 5.1: Estimation results for Sampson monk dataset for four different estimation methodolo-
gies for the following network model: network ∼ edges + mutual

Estimation method
Edges Mutual

Estimate (Standard Error) Estimate (Standard Error)
statnet -2.11 (0.21) 2.15 (0.47)

Estimate (Standard Deviation) Estimate (Standard Deviation)
bergm -2.09 (0.22) 2.09 (0.51)
Custom E/D -2.29 (0.21) 2.46 (0.38)
Custom D/A -2.04 (0.17) 1.86 (0.36)

From Table 5.1, and basically all estimation procedures, we can see that there is a significant

mutuality effect at play in the monk network. The fact that the edges term and the mutual term have

similar but opposing values, means that the conditional log-odds of a new connection between two

monks is 0, which translates into a probability of around 50%. Connections that are not mutual

(represented by the edges term alone), indicate that the conditional log-odds of one monk to create

a non-mutual connection with another monk is of around -2.11, or around 10%s.

We are now going to explore how these four estimation methodologies recover a set of param-

eters selected to produce non-degenerate networks. Table 5.1 shows that both custom estimation
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strategies developed for this dissertation produce results that are similar to the statnet and bergm

estimations.

We can expand this example to include a node attribute belonging to the original dataset to

compare the result from the four estimation described strategies. The data collected by Samp-

son includes whether the monks attended the minor seminary “Cloisterville” before joining the

monastery where the data was collected. The statistic we are adding to the estimation is often

referred to as nodematch, and it measures the extent to which two individuals who are connected

in the network share the same attribute value. The estimates are presented in Table 5.2. The results

show that including a statistic that considers the connections between the monks that probably

knew each other from before decreases the level of mutuality in the network.

Table 5.2: Estimation results for Sampson monk dataset for four different estimation methodologies for the following
network model: network ∼ edges + mutual + nodematch(Cloisterville)

Estimation method
Edges Mutual Nodematch(“Cloisterville”)

Estimate (Standard Error) Estimate (Standard Error) Estimate (Standard Error)
statnet -1.96 (0.23) 2.08 (0.47) -0.27 (0.24)

Estimate (Standard Deviation) Estimate (Standard Deviation) Estimate (Standard Deviation)
bergm -1.98 (0.26) 2.11 (0.51) -0.25 (0.26)
Custom E/D -1.97 (0.24) 1.92 (0.43) -0.23 (0.25)
Custom D/A -2.04 (0.25) 2.03 (0.50) -0.18 (0.24)

Table 5.1 and 5.2 show that the estimation procedure developed for this chapter produces results

comparable to the existing software implementations. I am now going to show using simulations

that this procedure can recover a vector of parameters θ* that is used to generate random networks

Y = y, X = x|θ*.

5.4.1 Simulation

In Section 5.3 I showed how the sampling algorithm works to produce network samples conditional

on a parameter of θ’s, depending on the desired data generating process. Section 5.4 showed that

the coupling of the network sampling methodology with the estimation procedure based on Caimo

and Friel (2011) produces results comparable to the ERGM estimation procedure. I will now show
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that the estimation procedure developed for this chapter recovers the true values for networks

generated using the custom sampler.

Let us start with a known value of θ* which we will consider the truth and will try to recover.

This vector needs to generate admissible networks - networks that we are likely to observe in real

life, or those that at least, are not degenerate. For this we are going to consider a visual inspection

enough. The simulation procedure works as follows. For a fixed set of simulations:

1. Given the vector of true θ*, sample a network using the “dyad and attribute toggle”.

2. Estimate the observed network using both the ERGM and BERGM estimation routines de-

veloped as a benchmark for the standard dyad-only toggle sampler. Additionally, estimate

the observed network using the “dyad and attribute” toggle sampler, and save the coeffi-

cients. In the case of the ERGM, save the point estimate and standard errors produced by

the estimation. In the case of the BERGM and the custom sampler, save the mean of the

distribution, as well as the standard deviation.

3. Aggregate the estimation results for all simulations, and calculate the difference to the vector

of true parameters, θ*.

We are going to generate networks, with nodes that have one binary attribute, according to the

following network model:

G = (Y, X) edges + mutual + nodematch,

and the following vector of covariates: θ* = {−1,−0.2, 0.5}. This parameter vector was considered

because of how the conditional log-odds translate into network features. One sample network

generated using this set of sufficient statistics looks like the network in Figure 5-1. The results

from the simulation are presented in Table 5.3. All three estimation procedures come close to

recovering the true values of θ*. This simulation can be extended to explore a larger area of

the parameter space, and determine whether there are networks generated with a specific vector
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of parameters where the estimates differ. This is, that the estimation using a sampler that toggles

dyads and attributes is closer to the true values than a sampler that toggles both dyads and attributes.

Figure 5-1: Example of sample generated network

Table 5.3: Average estimate results for 100 simulations using three different estimation methodologies using the
following network model: network ∼ edges + mutual + nodematch

Statistic θ*
statnet bergm Custom D/A

Estimate (Standard Error) Estimate (Standard Deviation) Estimate (Standard Deviation)
Edges -1 -0.99 (0.50) -1.03 (0.51) -0.98 (0.42)
Mutual -0.2 -0.35 (0.73) -0.44 (0.51) -0.38 (0.74)
Nodematch 0.5 0.56 (0.57) 0.62 (0.58) 0.40 (0.30)

5.5 Conclusion

In this chapter I presented a parameter estimation methodology that relies on a more general net-

work sampling procedure than the one considered by traditional parameter estimation routines for

the exponential random graph model. This sampler originally appeared in Fellows and Handcock

(2012), who used it with a maximum likelihood estimation methodology to characterise observed

networks. The possibility of toggling node attributes increases the range of cases to be considered

for analysis, since it incorporates a large amount of networks in the calculation of the normalising

constant. In relation to the Bayesian approach, it means that the sampler navigates a portion of

the parameter space that generates viable (non-degenerate) candidates in each step of the McMC
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chain. Assuming the node attributes of an observed network as static and exogenous, reduces the

space of networks to be explored in estimation.

The procedure follows the blueprint from the estimation strategy developed by Caimo and

Friel (2011): a Bayesian framework that uses Markov chain Monte Carlo (McMC) algorithms

to estimate the vector of parameters corresponding to the vector of sufficient statistics selected to

explain the observed network. Caimo and Friel mention that their methodology (back in 2011) was

an initial step in understanding the interplay between Bayesian estimation and exponential random

graph models. This chapter aimed to increase the number of networks that can be analysed with

their approach.

From Section 5.3.2 we can see that the proposed estimation methodology generates results that

are equivalent to those by the maximum likelihood estimation from the statnet suite (Krivitsky

et al., 2020), and the bergm package (Caimo and Friel, 2014). This means that, for the scenario

explored, the dyad/attribute sampler replicates the vector of parameters when including and ex-

cluding network related variables. In addition to that, Section 5.4.1 showed that the estimation

procedure also recovers true parameters in a simulation setting.

This is a first step in a more general Bayesian estimation routine that will allow researchers

to determine whether attributes coevolved with the formation of networks when the network and

the attributes were observed through time. In the example presented in the introduction to this

chapter, it would be possible to determine whether the uptake of smoking by some individuals

happened after they made connections with individuals that also smoked. In addition to this future

development, more research is needed to understand where the estimation produced by these two

samplers diverges. This is, when considering networks whose data generating process involves

attributes that might change in the process of network formation, potentially resulting in biased

estimates from failing to consider the correct data-generating process behind the networks that are

being analysed.
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Chapter 6

Discussion and conclusions
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I set out this dissertation with the aim of answering the question: "how to determine the causal

relationship between different variables with interdependent observations?". As explained in the

Introduction (Chapter 1), the interdependence mentioned in that question makes reference to the

fact that the considered units of observation are not independent from each other as it is usually

assumed with more traditional statistical methodologies. I explored this question in three different

chapters which consider three different kinds of interdependence between the observations.

In Chapter 3, I presented a methodology that aims to estimate the causal direct effect of an

intervention, as well as the causal spillover effect of the intervention in the case where the treated

units exposed the control units that were not originally assigned to treatment. Traditional causal

inference methodologies look to estimate the causal relationship (and not just the correlation) be-

tween two variables, usually a treatment and an outcome variable, properly discounting the effect

other variables might have on the outcome. In this case we are looking at a treatment applied to a

group of individuals selected to be treated and an observed outcome by those individuals. Assum-

ing that some of the treated units expose those not originally intended to receive treatment further

complicates the challenge of getting unbiased causal estimates for the effect of the intervention

since it is now crucial to consider the exposure to treatment from neighbouring units.

Forastiere et al. (2020) proposed a methodology that allows researchers to separate the effect of

the intervention into causal direct and spillover effects, conditional on a set of strict but plausible

assumptions. Their method uses generalised propensity scores to calculate the average potential

outcomes of being assigned to a particular kind of treatment, and being exposed to a different one.

I explore this methodology in detail and find that without perfect information about the outcome

model, their estimation routine produces biased results. As an alternative, I propose using a flexible

regression based on cubic splines that does not require full knowledge of the outcome model and

produces relatively less biased results. In addition, I use the methodology developed by Forastiere

et al. (2020) as well as our own methodology to estimate the causal direct and spillover effects

of the Sexually Transmitted infections And Sexual Health (STASH) intervention and find that
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although there was a positive impact on the treated individuals, the outcome of the individuals

exposed to the intervention did not behave in the same way.

In Chapter 4 I explored the limits of randomisation inference as a tool to causally determine the

effect order had in the sequence of events organised as a two-mode network. In particular for this

dissertation, I focus on exploring two-mode networks where the nodes in the first mode sequen-

tially interact with the nodes in the second mode, and refer to them as bipartite event cascades. To

characterise the nature of this sequence of connections I use the relational event model framework

developed by Butts (2008), and with it, estimate a homophily statistic that captures to what extent

senders (nodes in the first mode) behave similarly to other senders that have interacted with the

same receivers (actors in the second mode) in the past.

Randomisation inference is used to determine how important the order is in determining the

way senders connect to receivers. Rejection of the null hypothesis that order does not matter

indicates that the succession of events was important (not at random). Careful consideration of

the different causal pathways that might lead to this outcome suggests the presence of influence

between the senders of the two-mode network. The idea of using randomisation inference for this

purpose has been explored in a practical application before (see Malang et al. 2019), however, it

is unclear under what conditions the methodology correctly estimates the extreme nature of the

original coefficient. To corroborate our theoretical results, I use a set of simulations that produce

event sequences compatible with bipartite event cascades. The results suggest that there is an

optimal area in the space of parameters (number of senders, number of receivers, number of events

in the sequence, among others) where randomisation inference correctly determines the presence

of influence in the event sequence, and that deviations from that area suggest more or less influence

than is actually present in the sequence.

In Chapter 5 I introduced a new estimation procedure for the exponential random network

model (ERNM) originally developed by Fellows and Handcock (2012). Traditional exponential

random graph models (ERGM) estimate a set of parameters that, with a set of selected sufficient

statistics, represent the likelihood of observing a particular configuration of nodes and their connec-
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tions. The most traditional estimation methodology uses maximum likelihood estimation, where

the normalising function is approximated from a collection of sampled networks. These samples

are generated by toggling the connections between the nodes, but assuming that the node attributes

remain static. Caimo and Friel (2011) developed an estimating methodology that uses Bayesian

analysis to produces a set of parameters that explain the observed network, however, it relies on

the same sampler that only toggles edges between the nodes to produce new candidate networks.

Fellows and Handcock (2012) introduced a new sampling methodology where both the edges

and the node attributes are toggled to produce new networks, and their estimation methodology was

based on maximum likelihood estimation. I constructed a sampling methodology that incorporates

the node covariates as endogenous parts of the model and toggles them as well as the network

edges. Instead of using MLE, which as suggested by the authors, is a methodology prone to pro-

ducing degenerate networks, I implemented the Bayesian approach developed by Caimo and Friel

(2011), in order to produce estimates with a more nuanced degree of uncertainty, but also because

the algorithm tends to avail more the areas of the parameter space that produce degenerate re-

sults. The resulting estimation procedure matches the results produced by the statnet and bergm

methodologies, but increases the range of networks considered to generate the estimation. This

means that it could potentially be used to flesh out biases in estimation when the data generating

process underlying a network has endogenous nodal attributes.

In all three chapters I aimed to present a contribution to existing methodologies that con-

sider units of observation with a certain degree of interdependence. In Chapter 3 I expanded

on a methodology that estimates the causal effect of an intervention in the presence of treatment

interference. In Chapter 4 I explored the limits of a tool used to determine the extent of interde-

pendence in bipartite event cascades. In Chapter 5 I introduced a new estimation methodology

that considers a more general data generating process by sampling networks where both edges and

node attributes vary, and uses recent developments in Bayesian analysis to reduce the number of

degenerate samples considered for the estimation.
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Interdependent data in statistical research poses a challenge to the probabilistic underpinning

of the field in that it violates the commonly used assumption that units of observation are random

draws independent from each other. One of the implications of relaxing this hypothesis is that

it requires the analyst to have, at least, an idea of how the units of observation are connected

to each other. In the case of bipartite event cascades, it means knowing the order in which the

cascade occurred, to then pry it apart to test whether the originally observed statistic is extreme

or not. When using randomisation inference and bipartite event sequences, I assume that the

event sequences are not directly modified by the starting attributes of the senders or the receivers

(see Figure 4-2). This assumption could be relaxed and an additional step could be added to

the simulations to reflect this. There are currently no theoretical explanations as to what would

happen, other than the fact that such a causal mechanism probably violates the no-confoundedness

assumptions necessary for causal identification. Future research should focus on understanding

how causally confounded estimates behave when analysed using the shuffle test.

For public health interventions, understanding this interdependence means that we can consider

trial designs different than the more traditional ones where everyone selected to be treated, actually

gets treated, and reduce bias estimating the effect of the intervention as shown in Chapter 3. One

of the first questions that come up in relation to future work asks about the equivalence in terms of

average treatment effect between treating all units in a sample and treating some of these units and

expecting the treatment to spill over to the units that were not treated. If that equivalence exists,

to what extent does it depend on the kinds of connections between the individuals (friendship,

mentorship, admiration), and the way in which those connections were formed (at random, with a

strong homophily pattern, considering triadic closure).

One of the motivating questions of this research, mentioned in Chapter 1, is whether selec-

tion (the fact that individuals create connections with others similar to them) can be disentangled

from influence (the fact that individuals adapt their behaviour based on their connections) in social

network studies. Without proper information and strong assumptions, this is, actually, impossible

(Shalizi and Thomas, 2011). In the context of causal inference in the presence of interference,
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this question is relevant because we assume that the connections between the students are a given

and static. Aside from the estimation of the neighbourhood propensity score that determines how

likely it is that units get exposed to treatment, there are no additional considerations on the ac-

tual structure of the network. This is by design, since the logistic regressions used to generate

this propensity score cannot account for complex network interdependencies in the same way the

exponential random graph/network models do.

In contrast, the exponential random network model developed by Fellows and Handcock

(2012), and by extension, the one developed for this dissertation, allows for these kinds of com-

plex interdependencies. ERNMs allow the researcher to explore the probability of observing a

specific configuration of connections and a set of attributes, P(Y = y, X = x|θ). Fellows and

Handcock show evidence of how there is bias in estimating the correlation between a node at-

tribute and a specific outcome when entirely ignoring network structure. Being able to include the

structural information on the connections between individuals, in conjunction with ideas behind

causal inference, is the natural methodological extension to the developments presented in this

dissertation.

In addition to this, being able to generate networks to understand a specific matrix of node

attributes given the way they are connected to each other, P(X = x|θ,Y = y), means that the ERNM

model can be considered as an alternative estimating strategy to the network autocorrelated model

(NAM) (see Dittrich et al. (2017) for more on Bayesian estimation of temporal NAMs).
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Appendix A

Appendix for Causal estimation of spillover

effects in a social network setting:

increasing confidence in positive sexual

health attitudes

A.1 Summary statistics for simulated networks

Figure A-1: In-degree distribution for simulation results.
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Table A.1: Summary statistics for 100 simulated schools

Variable: xind
1 i Average value across all schools Median value across all schools

0 2 2
1 2 2
Variable: xind

2 i Average value across all schools Median value across all schools
0 2.02 2
1 2.00 2
2 1.97 2
3 2.02 2
4 2.03 2
5 1.89 2
6 2.06 2
7 1.69 2
8 1.89 1
Variable: In-degree Average share of treated peers Average number of treated peers
1 0.15 0.152
2 0.14 0.339
3 0.18 0.496
4 0.13 0.628
5 0.17 0.851

A.2 No-interference Scenario

Table A.2: Bias and standard error (SE) in estimation of direct effect comparing 100 vs 5 schools
across 100 simulation replicates. True value of direct effect: 100 schools = 10.49; 5 schools =

10.49

Estimation method Bias
Standard Deviation

Bootstrap SE Empirical SD
Simulation setting Simulation setting Simulation setting

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted -4.97 -5.21 0.24 1.03 0.26 1.01
Adjusted -4.57 -4.88 0.18 0.80 0.23 0.94
Splines (correct) -0.54 -1.05 0.42 1.86 0.40 1.85
Splines (incorrect PS) 1.28 0.95 0.40 1.72 0.34 1.86
FAM (correct) -0.50 -0.51 0.20 0.78 0.09 0.34
FAM (incorrect outcome) 0.75 0.65 0.30 1.34 0.16 0.71
FAM (incorrect PS) -2.20 -2.25 0.15 0.83 0.20 0.89
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Table A.3: Bias and standard error (SE) in estimation of spillover effect when (Z = 0) comparing
100 vs 5 schools across 100 simulation replicates. True value of direct effect: 100 schools = 1.70;
5 schools = 1.71

Estimation method Bias
SE

Average Bootstrap SE Monte Carlo SE
Simulation setting Simulation setting Simulation setting

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted 1.93 1.94 0.07 0.33 0.12 0.44
Adjusted -0.99 -1.01 0.03 0.15 0.03 0.14
Splines (correct) 0.15 0.22 0.10 0.40 0.13 0.48
Splines (incorrect PS) 0.15 0.21 0.10 0.40 0.13 0.48
FAM (correct) -0.06 -0.04 0.04 0.30 0.03 0.12
FAM (incorrect outcome) 3.18 3.30 0.11 0.59 0.15 0.69
FAM (incorrect PS) -0.11 0.01 0.06 0.28 0.03 0.33

Table A.4: Bias and standard error (SE) in estimation of spillover effect when (Z = 1) comparing
100 vs 5 schools across 100 simulation replicates. True value of direct effect: 100 schools = 1.70;
5 schools = 1.70

Estimation method Bias
SE

Average Bootstrap SE Monte Carlo SE
Simulation setting Simulation setting Simulation setting

100 schools 5 schools 100 schools 5 schools 100 schools 5 schools
Unadjusted 1.45 1.60 0.11 0.48 0.10 0.57
Adjusted -1.53 -1.53 0.06 0.30 0.06 0.30
Splines (correct) 0.52 0.59 0.13 0.60 0.14 0.66
Splines (incorrect PS) 0.01 0.10 0.12 0.55 0.13 0.58
FAM (correct) -0.06 -0.08 0.09 0.39 0.06 0.28
FAM (incorrect outcome) 3.35 3.31 0.21 0.95 0.22 0.96
FAM (incorrect PS) -0.50 -0.52 0.07 0.37 0.09 0.40

Table A.5: Nominal 95% coverage by Wald-type confidence intervals with standard errors based
on 500 bootstrap resamples

Estimation method
Main effect Spillover effect (Z = 0) Spillover effect (Z = 1)

Simulation setting Simulation setting Simulation setting
100 schools 5 schools 100 schools 5 schools 100 schools 5 schools

Unadjusted 0.00 0.00 0.00 0.00 0.00 0.10
Adjusted 0.00 0.00 0.00 0.00 0.00 0.00
Splines (correct) 0.76 0.92 0.64 0.90 0.02 0.88
Splines (incorrect PS) 0.08 0.86 0.68 0.92 0.96 0.94
FAM (correct) 0.22 1.00 0.80 1.00 1.00 1.00
FAM (incorrect outcome) 0.18 1.00 0.00 0.00 0.00 0.06
FAM (incorrect PS) 0.00 0.18 0.48 0.98 0.00 0.76
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A.3 Additional STASH information

Figure A-2 shows the distribution of this outcome measure for all students in the 6 schools. Figure

A-3 shows this distribution for the two relevant statistics that we are considering: in-degree and

out-degree.

Figure A-2: Confidence in Sexual Health (CSH) Index: Sample of 605 students - STASH - 2018
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Table A.6: Summary statistics for STASH feasibility study - 605 students - 2018

Control Exposed to PS PS PS and exposed to PS Overall

(N=360) (N=163) (N=21) (N=61) (N=605)
Gender (assigned at birth)

Female 208 (57.8%) 93 (57.1%) 10 (47.6%) 36 (59.0%) 347 (57.4%)
Male 151 (41.9%) 70 (42.9%) 11 (52.4%) 23 (37.7%) 255 (42.1%)
Missing 1 (0.3%) 0 (0%) 0 (0%) 2 (3.3%) 3 (0.5%)

How many peers from your school do you think have had sexual intercourse?
A third 107 (29.7%) 64 (39.3%) 8 (38.1%) 30 (49.2%) 209 (34.5%)
Few 67 (18.6%) 16 (9.8%) 2 (9.5%) 2 (3.3%) 87 (14.4%)
Half 85 (23.6%) 43 (26.4%) 6 (28.6%) 14 (23.0%) 148 (24.5%)
Most 42 (11.7%) 19 (11.7%) 2 (9.5%) 8 (13.1%) 71 (11.7%)
Two thirds 48 (13.3%) 18 (11.0%) 3 (14.3%) 6 (9.8%) 75 (12.4%)
Missing 11 (3.1%) 3 (1.8%) 0 (0%) 1 (1.6%) 15 (2.5%)

Do you talk to your friends about your body?
No 162 (45.0%) 70 (42.9%) 7 (33.3%) 17 (27.9%) 256 (42.3%)
Yes 183 (50.8%) 91 (55.8%) 14 (66.7%) 42 (68.9%) 330 (54.5%)
Missing 15 (4.2%) 2 (1.2%) 0 (0%) 2 (3.3%) 19 (3.1%)

Do you talk to your friends about STIs?
No 259 (71.9%) 132 (81.0%) 15 (71.4%) 28 (45.9%) 434 (71.7%)
Yes 80 (22.2%) 29 (17.8%) 6 (28.6%) 31 (50.8%) 146 (24.1%)
Missing 21 (5.8%) 2 (1.2%) 0 (0%) 2 (3.3%) 25 (4.1%)

Have you had sexual intercourse?
No 256 (71.1%) 127 (77.9%) 20 (95.2%) 42 (68.9%) 445 (73.6%)
Yes 70 (19.4%) 33 (20.2%) 1 (4.8%) 16 (26.2%) 120 (19.8%)
Missing 34 (9.4%) 3 (1.8%) 0 (0%) 3 (4.9%) 40 (6.6%)

Did you talk to someone about STASH?
No 232 (64.4%) 96 (58.9%) 0 (0%) 0 (0%) 328 (54.2%)
Yes 52 (14.4%) 48 (29.4%) 0 (0%) 0 (0%) 100 (16.5%)
Missing 76 (21.1%) 19 (11.7%) 21 (100%) 61 (100%) 177 (29.3%)

Did you ask a peer supporter a question about sex?
No 256 (71.1%) 123 (75.5%) 0 (0%) 0 (0%) 379 (62.6%)
Yes 21 (5.8%) 18 (11.0%) 0 (0%) 0 (0%) 39 (6.4%)
Missing 83 (23.1%) 22 (13.5%) 21 (100%) 61 (100%) 187 (30.9%)

Level of self-esteem a

Mean (SD) 2.99 (1.19) 2.86 (1.28) 3.05 (1.32) 3.25 (1.17) 2.98 (1.22)
Median [Min, Max] 3.00 [1.00, 5.00] 3.00 [1.00, 5.00] 3.00 [1.00, 5.00] 3.00 [1.00, 5.00] 3.00 [1.00, 5.00]
Missing 17 (4.7%) 3 (1.8%) 0 (0%) 2 (3.3%) 22 (3.6%)

Confidence in Sexual Health index
Mean (SD) 10.8 (2.56) 10.8 (2.68) 11.3 (2.97) 12.3 (1.96) 11.0 (2.59)
Median [Min, Max] 11.0 [3.00, 15.0] 11.0 [3.00, 15.0] 12.0 [3.00, 15.0] 12.0 [7.00, 15.0] 11.0 [3.00, 15.0]
Missing 27 (7.5%) 3 (1.8%) 0 (0%) 4 (6.6%) 34 (5.6%)

a(from 1 to 5), where one is the lowest
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