A\

Ulster
University

Improving probability selection based weights for satisfiability problems

Fu, H., Liu, J., Wu, G., Xu, Y., & Sutcliffe, G. (2022). Improving probability selection based weights for
satisfiability problems. Knowledge-Based Systems, 245, 1-17. [108572].
https://doi.org/10.1016/j.knosys.2022.108572

Link to publication record in Ulster University Research Portal

Published in:
Knowledge-Based Systems

Publication Status:
Published (in print/issue): 07/06/2022

DOI:
10.1016/j.knosys.2022.108572

Document Version
Author Accepted version

General rights

Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy

The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 25/03/2023

https://doi.org/10.1016/j.knosys.2022.108572
https://pure.ulster.ac.uk/en/publications/f999cf95-6967-4048-9c3b-e7996351fc02
https://doi.org/10.1016/j.knosys.2022.108572

Improving Probability Selection Based Weights for Satisfiability Problems

Huimin Fu'’, Jun Liu?, Guanfeng Wu**, Yang Xu?, and Geoff Sutcliffe*

'Southwest University of Finance and Economics, Chengdu, China
2School of Computing, Ulster University, Northern Ireland, UK
3School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China
“Department of Computer Science, University of Miami, USA.

* The corresponding author.
E-mail: fuhuimin@swufe.edu.cn (H. Fu) and wgf1024@swijtu.edu.cn (G. Wu);

Abstract

Boolean Satisfiability problem (SAT) plays a prominent role in many domains of computer science and artificial
intelligence due to its significant importance in both theory and applications. Algorithms for solving SAT problems
can be categorized into two main classes: complete algorithms and incomplete algorithms (typically stochastic local
search (SLS) algorithms). SLS algorithms are among the most effective for solving uniform random SAT problems,
while hybrid algorithms achieved great breakthroughs for solving hard random SAT (HRS) problem recently.
However, there is a lack of algorithms that can effectively solve both uniform random SAT and HRS problems. In
this paper, a new SLS algorithm named SelectNTS is proposed aiming at solving both uniform random SAT and HRS
problem effectively. SelectNTS is essentially an improved probability selection based local search algorithm, the core
of which includes new clause and variable selection heuristics: a new clause weighting scheme and a biased random
walk strategy are utilized to select a clause, while a new probability selection strategy with the variation of
configuration checking strategy is used to select a variable. Extensive experimental results show that SelectNTS
outperforms the state-of-the-art random SAT algorithms and hybrid algorithms in solving both uniform random SAT

and HRS problems effectively.

Introduction

Given a formula in clause normal form (CNF), the
Boolean satisfiability (SAT) problem requires finding a
Boolean assignment for the decision’s variables that
satisfies the formula. SAT has been widely studied as a
canonical NP-complete problem. It has been
extensively investigated in many domains of computer
science and artificial intelligence due to its significance
in both theory and applications [1]. Many practical
problems in combinatorial optimization, statistical
physics, circuit verification, and computing theory [44]
can be converted into SAT problems, and thus SAT
solvers have been widely used to solve real-world
applications, such as computer algebra systems [9],
scheduling [16], gene regulatory networks [17], core
graphs [26], automated verification [38], machine
induction [42], model-based diagnosis (MBD) [46], and
scheduling [56]

Algorithms for solving SAT problems mainly
include complete algorithms [25, 30, 36, 37, 39, 45] and
incomplete algorithms [19, 24, 53]. Stochastic local
search (SLS) algorithms among the incomplete
algorithms are the most actively developing approaches
[13,21, 33].

In this work, we focus on the SLS algorithm.
Although SLS algorithms are typically incomplete,
they are often surprisingly effective in finding solutions
to satisfiable random SAT problems. SLS algorithms
are often evaluated on random SAT instances,
including uniform random k-SAT problems [1] and
hard random SAT (HRS) problems [3, 4]. Moreover,

the class of random SAT instances is one of the three
main tracks in the well-known SAT competitions [47].
The heuristics used by SLS solvers to solve random
SAT problems are also potentially useful for solving
real-world SAT problems [48].

In the beginning, an SLS algorithm generally
generates an initial assignment of the variables of a
SAT problem F in CNF. Then it explores the search
space to minimize the number of unsatisfied clauses. To
do this, it iteratively flips the truth value of a variable
selected according to some heuristic at each step until it
seeks out a solution or timeout [27-29]. Heuristics in
SLS algorithms mainly differ from each other on the
variable selection heuristics at each iteration.

The representative state-of-the-art SLS algorithms
include the two-mode solvers containing the
configuration checking (CC) algorithms (e.g., CCASat
[14], Swqcc [50]), clause weighting algorithms (e.g.,
Pure Additive Weighting Scheme (PAWS) [41],
Scaling and Probabilistic Smoothing (SAPS) [23] and
Discrete Lagrangian Method (DLM) [43]),
comprehensive score function algorithms (e.g.,
CScoreSAT [13] and DCCASat [31]) and focused
random walk (FRW) solvers containing the
tie-breaking algorithms (e.g., WalkSATIm [12], and
FrwCBIm [33]), the algorithms based on the probability
selection (e.g., ProbSAT [6,7] and YalSAT [8]), and
hybrid algorithms (e.g., CCAnr [15], CSCCSat [34]
Score>xSAT [10]) and other SAT solvers include in the
literature [5, 28, 45].

No single SLS heuristic can be effective on all types
of random SAT instances including HRS and uniform

random k-SAT instances with long clauses, which
remain very difficult since different types of instances
present different characteristics. Especially, as can be
seen from the results of the random track of SAT
Competition 2017 [54] and 2018 [55], all the
participating solvers lost their power and effectiveness
on several random SAT instances, especially for all
HRS instances. One approach to designing an effective
algorithm is to balance the search between
intensification and diversification to guide the
algorithm. Furthermore, it is also essential to solve
different types of instances by developing new
heuristics.

Following this spirit, we develop a new algorithm
based on the basic framework of probability selection
[6]. The general SLS algorithms based on probability
selection for solving SAT include clause selection and
variable selection which are two main factors affecting
SLS algorithms. According to the features of the
probability selection based algorithms, there are two
important limitations: firstly, like general SLS solvers,
it selects a clause from unsatisfied clauses randomly;
secondly, using only probability selection may result in
the same variable being selected in consecutive steps.
These two observations constitute the main motivations
of this work. We aim to improve the probability
selection method based on the weights for random SAT
by reinforcing the original algorithm ProbSAT [6],
which remains an innovative and appealing approach
due to its selecting feature and simplicity.

The main contribution of the present work is
proposing the enhanced probability selection based
SLS algorithm by using new weight concepts
considering the feature of the random SAT problem and
developing two weighting schemes, which can be
summarized as follows:

1) Firstly, to distinguish the unsatisfied clauses and
balance the number of times each clause is selected in
the clause selection, we propose a new and global
clause weighting scheme to guide the clause selection.
The new clause weighting scheme, called c¢NTS
(clauses Number of Times Selected), counts the
number of times a clause has been selected (in Section
4.1.1). ¢NTS is different from the existing clause
weighting schemes which are wusually updated
according to a clause is satisfied or unsatisfied by

flipping the value of a variable and only when the
algorithms fall into local optimal [13, 14]. Based on
c¢NTS, we define hard satisfiable clauses (HSCs) (in
Section 4.1.2) to distinguish unsatisfied clauses. A
biased random walk guided by ¢NTS and HSCs is
adopted as a new clause selection heuristic (in Section
4.1.3).

2) Secondly, to avoid the same variable being
selected in consecutive steps and balance the number of
times each variable is selected in the variable selection,
we adopt a variation of CC strategy based on a new and
global variable weighting scheme called vNTS
(variables Number of Times Selected), that counts the
number of times a variable has been selected (in Section
4.2.1). Then we define a function called S,, which is a
linear combination of the commonly used score
property and VvNTS. Variable selection uses a
probability selection method [7] with the variation of
CC strategy based on S, (in Section 4.2.2).

¢NTS and vNTS play the key roles in the two new
heuristics, and thus lead to a new SLS algorithm, called
SelectNTS (Selection based on the Number of Times
clauses and variables are Selected) (in Section 4.3).

3) We assess the performance of the proposed
SelectNTS algorithm on the instances of the
well-known random track of SAT Competitions in
2017 and 2018 and generated by generators [1, 3].
Experimental results show that SelectNTS performs
remarkably compared to the state-of-the-art SLS
algorithms like ProbSAT [7], YalSAT [8], Sparrow [2],
CscoreSAT [13] as well as ScorexSAT [10] and even a
sophisticated hybrid algorithm called SparrowToRiss
[5] on HRS instances. SelectNTS proves to be
competitive even when it is compared to state-of-the-art
SLS algorithms like ProbSAT, YalSAT, CscoreSAT,
and Score;SAT on uniform random A-SAT instances
with long clauses.

4) Finally, we perform more empirical evaluations to
analyze the effectiveness of the heuristics in SelectNTS
algorithm and demonstrate its contribution to the
performance of SelectNTS on HRS benchmarks, as well
as the main difference between SelectNTS and EPEFV
[59].

This paper is structured as follows: Section 2
provides some definitions, notations, and briefly

reviews some related heuristics. In Section 3, we
review the general framework of the ProbSAT
algorithm based on probability selection for solving
random SAT. Section 4 presents our improved
SelectNTS algorithm for random SAT. In Section 5, we
illustrate some case studies. Section 6 presents the
comparative experimental results and provides
commentary. In Section 7, we summarize the main
contributions of this work and suggest directions for
future work.

2 Preliminaries

In this section, we introduce some of the definitions
and related work to the SAT problem.

Definitions

A SAT problem F in CNF is constructed from a pair (V,
(), where V={vi, v2, ..., va} is a set of n Boolean
variables, and C={ci, ¢z, ..., cm} is a set of m clauses.
Each clause ¢; € C is a disjunction of literals, and a
literal is a variable v; or its negation. » = m/n is the
clause-to-variable ratio. F' is the conjunction of the
clauses. An assignment for F is an assignment of truth
values to its variables, and a satisfying assignment is an
assignment that makes all the clauses true.

In SLS algorithms for SAT problems, for a variable v
and assignment o, score(v,) is the number of increase
in satisfied clauses by flipping the assigned value of v.
and break(v, &) is the number of satisfied clauses that
become unsatisfied by flipping the assigned value of v.

SLS algorithms explore the search space aiming to
minimize the number of unsatisfied clauses. To do this,
it is natural to select a variable in an unsatisfied clause
to flip. The heuristic factors are thus the clause and
variable selection.

Related heuristics

Although our algorithm is different from the existing
SLS SAT solver, SelectNTS inherits some excellent
features of the previous algorithms. In this subsection,
we review briefly the existing related heuristic
algorithms and the variation approach of adopting these
features into our SelectNTS.

Heuristics in SLS algorithms for SAT can be divided
into two categories: two-mode SLS algorithms and
focused random walk (FRW) algorithms.

Two-mode SLS algorithms include the greedy mode
and the random mode. In the greedy mode, to increase
the number of satisfied clauses, the algorithms prefer to
select the greedy variables to be flipped. In random
mode, to avoid local optimization, the algorithms
randomly pick a variable to be flipped. For the
two-mode SLS algorithms during the last ten years, the
most significant development was perhaps the
“configuration checking” strategy (CC) and “weights”
strategy [13,18], leading to the effective CCASat [14],
Swqcc [50], and DCCASat [31]. The CC idea takes the
circumstance of the variable into account and prevents a
variable from being flipped if its circumstance has not
been changed since its last flip [14] (like the simple
Tabu search strategy [49]). In SLS algorithms, the main
idea of the weighting schemes is that greedily select the
best variable to be flipped among the candidate
variables (like the well-known GSAT [51]- the score
function in GSAT actually is the weight of variables).
Moreover, the weighting schemes have become the
mainstream of optimizing SLS algorithms. Our
SelectNTS algorithm attempts to incorporate the ideas
of both the inhibition of CC to avoid selecting the same
variable in consecutive steps and intensification of
variable weighting strategy to select the best variable
to be flipped among the candidate variables.

FRW algorithms always pick a variable to be flipped
from an unsatisfied clause picked randomly in each step
[33]. The WalkSAT [21] is the well-known the FRW
algorithm. Cai et al. [12] introduced the tie-breaking
strategy into the WalkSAT algorithm to prevent
multiple candidate variables for solving uniform
random k-SAT with long clauses. Cai et al. [53]
improved the WalkSAT algorithm [12] by adopting the
CC strategy. Luo et al. [33] adopted the tie-breaking
strategy into FrwCB algorithm [53]. Our SelectNTS
algorithm borrows the idea of selecting an unsatisfied
clause randomly to enhance its diversification
capability and utilize the clause weighting strategy to
distinguish unsatisfied clauses.

The other direct improvement on WalkSAT is to
extend it into a simple probability selecting strategy
[20]. The ProbSAT [6] is obtained from WalkSAT by

associating a probability selecting method of the
variables. YalSAT [8] and polypowerl.0 [52]
implemented several variants of ProbSAT’s algorithm.
The main principle of probability selection strategy for
SAT in the literature [6-8] is that if a variable has the
lowest break in an unsatisfied clause chosen randomly,
then the variable is preferred to be selected. We adapt
this probability selecting strategy into our SelectNTS
algorithm to enhance its robustness and utilize the
variable weighting strategy to select the best variable
to be flipped.

In order to take advantage of both two-mode
heuristics and FRW heuristics during the search process
to guide the algorithm, Cai et al. [34] proposed a hybrid
algorithm called CSCCSat, which is a combination of
DCCASat [31] and FrwCB [53], and the hybrid
algorithm called Score;SAT [10] is a combination of
the DCCASat [31] and WalkSATIm [12]. To enhance
the performance of SLS algorithm, Cai et al. [15]
applied to preprocess technology to the SLS algorithms,
and Balint and Manthey [5] combined the SLS
algorithm and complete algorithm.

3 Probability Selection Method for SAT

The probability selecting method proposed in the
literature [6] is a general framework for solving SAT
problems. In this section, we briefly review the
probability selecting method [6], which is the basis of
our algorithm. The ProbSAT algorithm [6] has a wide
influence among current SLS algorithms and attracted
increasing interest for solving SAT benchmarks in the last
few years.

ProbSAT uses only the break values of a variable v
and assignment ¢ in a probability function v,),
including a polynomial or exponential shape as listed
below:

fv, @))=(0.9+break(v, a)))<"! (1)

f(V, a)):(cbz)—break(v, a) (2)

where cb1 and cb; are decimal parameters.

The ProbSAT algorithm is designed for solving random
SAT instances. The pseudo-code of ProbSAT is described
in the following Algorithm 1 and can be found in the
literature [6, 7].

To apply the probability selection method to SAT
problem, four processes need to be attended. The
algorithm generates a complete assignment ¢ randomly as
the initial assignment (line 3 in Algorithm 1). During the
search process, the algorithm picks an unsatisfied clause
randomly (line 6 in Algorithm 1). During the probability
updating process (lines 7-10 in Algorithm 1), the
probability is updated by the break values of variables,
while the probability is computed by the polynomial
function in Eq. (1) for 3-SAT problems, and the
probability is computed by the exponential function in Eq.
(2) for the remaining problems. During the probability
selecting process (line 11 in Algorithm 1), the algorithm
based on the probability

)
O (3)
tries to select a variable to be flipped.

In order to explore the search space to minimize the
number of unsatisfied clauses, ProbSAT algorithm picks a
variable to be flipped by some heuristics.

Algorithm 1 The ProbSAT Algorithm

Input: CNF-formula F, MaxTries, MaxSteps
Output: An assignment o of F, or Unknown
1: for try: =1 to MaxTries do

2: o = a randomly generated truth assignment;

3: for step:= 1 to MaxSteps do

4. if a satisfies F then return q;

5: C := arandom unsatisfied clause;

6: for v in C do;

7: compute flv, @);

8: end for

9: v:=x € C selected randomly with probability
10: a := o with v flipped;

oy

11: end for
12: end for

13: return Unknown,;
14: end

The variable selection heuristic of ProbSAT mainly
depends on two factors, including clause selection strategy
and variable selection strategy. Thus, the heuristic
focusing on selecting clauses or variables is suggested in
the EHC heuristic [35]. However, EHC may not be
suitable for SAT problems. Since there are no hard clauses
and soft clauses (all clauses in a weighted partial CNF
formula are divided into hard ones and soft ones, and each
soft clause is associated with a positive integer as its
weight) [35] in SAT problems and the selecting strategy
decides the direction of the search, it is reasonable for us to
employ a heuristic focusing on the selecting strategy to
solve SAT problems. In order to further improve SLS
algorithms for SAT, we propose two new selection
heuristics focusing on the selecting clauses or variables,
which are detailed in subsequent Sections 4.

4 Improving Probability Selection Based Weights
for SAT

In this section, we introduce our algorithm called
SelectNTS and select the algorithm [6] based on the
probability selection heuristic as the basic framework.
The SelectNTS includes two important components -
clause selection heuristic-based new clause weighting
scheme and variable heuristic-based new variable
weighting scheme.

4.1 The new clause selection heuristic
In this subsection, we define a new clause selection

heuristic, composed of three components: a clause
weighting scheme called ¢NTS, a notion of hard
satisfiable clauses, and a biased random walk.

The strategy of picking an unsatisfied clause is
known to be successful for general SAT solving [6, 7].
Indeed, the condition that the selected clause is
unsatisfied is necessary, as selecting a satisfied clause
may lead to a local optimum [51]. However, selecting
from the unsatisfied clauses with equal probability does
not provide enough guidance for SLS algorithms,
especially for SAT problems. The number of times an

unsatisfied clause is selected is an indication of how
difficult it is to satisfy the clause. Based on this
observation (in Section 5), we propose a new clause
weighting scheme to distinguish unsatisfied clauses. In
order to fully use the information of each clause in the
SAT problem, we propose a new clause selection
heuristic to balance the number of times each clause is
selected.

4.1.1 New and global clause weighting scheme

Clause weighting schemes such as DLM [43], SAPS
[23], PAWS [41], and SWT [31] have been utilized
successfully in SLS algorithms for general SAT solving.
However, according to the results of the random track
of SAT Competition 2017 [54] and 2018 [55], we can
see that these weighting schemes are not always
effective for solving different types of SAT problems.
This motivated us to design a new clause weighting
scheme called ¢NTS, which counts the number of times

each clause has been selected.

Definition 1 For a clause c, in search step s, cNTS(c, s)
is the number of steps that ¢ has been chosen up to step
s.

Intuitively, clauses with larger ¢cNT'S values are easier
to keep unsatisfied in the search process. Thus, it is
beneficial for SLS algorithms to prefer satisfying these
clauses, and we use c¢NTS to guide clause selection. The
major differences between ¢NTS and existing clause
weighting schemes are that although ¢NTS is clause
weight, the scoring function (in Section 4.2.2) does not
consider the clause weights, and ¢NTS is updated in the
total search process, while previous schemes are
updated only when the algorithms fall into local
optimum [2, 11, 13, 14, 31].

4.1.2 Hard satisfiable clauses

Based on c¢NTS, we define the notion of Hard
Satisfiable Clauses (HSCs).

Definition 2 For a clause c, in search step s, and given
a positive parameter P, c is called an HSC in step s if ¢
is unsatisfied and ¢cNTS(c, s) > .

HSCs(s, B) denotes the set of all HSCs in step s for the
given f. HSCs are regarded as good candidates for
selection, especially when solving HRS problems.

4.1.3 The biased random walk

An important component of most SLS algorithms is
a random walk [40]. However, a standard random walk
[6, 7, 8, 12] might not be suitable for HRS problems.
HSCs are given higher priority in our algorithm by
using a biased random walk [35] as follows: At each
step s, if HSCs (s, f) is not empty, our algorithm picks
an HSC randomly, otherwise, it chooses an unsatisfied
clause randomly.

4.2 The new variable selection heuristic

In this subsection, we define a new variable selection
strategy that is composed of two components: a new
variable weighting scheme called vNTS and a variation
of CC strategy based on a new scoring function.

In many SLS algorithms [11, 32, 35], the strategy for
picking a variable to be flipped in each step is guided by
the score property, which maximizes the number of
satisfied clauses. In contrast, we differentiate between
variables in unsatisfied clauses by probability selection
method and then consider a combination of the score
property and the number of times each variable has
been selected. This is quite intuitive, as the more times
a variable has been selected, the less likely it is that all
clauses containing the variable are satisfied after
subsequent variable flips. We also have used this
observation (in Section 5) as the basis for a new
variable weighting scheme, and in order to fully use the
information of each variable in the SAT problem, we
propose a new variable selection heuristic to balance
the number of times each variable selected.

4.2.1 The new and global variable weighting scheme

The new variable weighting scheme is defined as
follows.

Definition 3 For a variable v, in the search step s,
vNTS(v, s) is the number of steps that v has been chosen
up to step s.

Intuitively, clauses containing variables with larger
vNTS are easier to keep unsatisfied in the search process,
and we use vNTS to guide variable selection.

4.2.2 A variation of CC strategy

The score property tends to increase the number of
satisfied clauses in a greedy search mode, and vNTS can
be regarded as a heuristic for greedy search as its use
tends to reduce HSCs(s,) by flipping the variables of
an HSC. To combine score and vNTS in a greedy search,
we define a scoring function that is a linear combination
of score and vNTS, inspired by the concept of a
comprehensive score [13]. The new scoring function,
named S, for a variable v at step s when the assignment
is o, is defined as follows:

Definition 4 For a variable v, in the search step s, a
complete assignment «, and given a positive integer
parameter y, S\(v, s, &) = score(v,) + vNTS(v, s)/y.

In our algorithm, the variable is picked to be flipped
firstly by the probability selection method [6]. However,
using only the probability selection method may lead to
the same variable to be selected in consecutive steps.
To avoid this, we employ a variation of CC strategy. If
the variable selected by probability at step s is the same
as the variable flipped in step s - 1, a different variable
with the greatest S, value is selected instead. The CC
strategy has proved effective in the SLS algorithm for
random SAT problems, but it is technically
significantly harder to track and utilized to select a
variable from all variables in a SAT problem. Thus, as
the variation of CC strategy, S» can be computed with
little overhead.

This variation of CC strategy is inspired by the idea
in the literature [14] but is essentially different. In our
algorithm, a variable is selected to be flipped from an
unsatisfied clause selected randomly, and there is no
need to select candidate variables from all variables.

4.3 The SelectNTS Algorithm

In this section we present the SelectNTS, whose
pseudo code is shown in Algorithm 2. SelectNTS has an
outer loop that (re)starts with a randomly generated
truth assignment, looping maximally MaxTries times
(lines 1-2). bestVar is utilized to record which variable
was flipped in the last step (line 3). Within that outer
loop, the inner loop searches for a satisfying assignment
with up to MaxSteps variable flips (line 4). If the current
assignment satisfies all clauses of F, then SelectNTS

returns the assignment (line 5). Otherwise SelectNTS
proceeds with the biased random walk: if HSCs(s, f) is
not empty (line 6), an HSC is selected randomly (line 7),
and otherwise, an unsatisfied clause 1is selected
randomly (line 8). ¢NTS is updated for the selected
clause (line 9). Then SelectNTS picks a variable from
the selected clause by the probability selection method
(line10), and if the variable is the same as bestVar (line
11), then SelectNTS selects a variable with the greatest
Sy value (line 12). vNTS is updated for the selected
variable (line 14). Then SelectNTS flips the assignment
value of the chosen variable (line 15) and starts the next
search step. If MaxTries is reached, SelectNTS reports
Unknown (line 16).

5 Case Studies

In Section 4.1 and Section 4.2, we introduce the
definitions of ¢NTS and vNTS and propose the new
clause selection heuristic and variable selection
heuristic respectively.

Different types of SAT problems may provide
different distributions of ¢NTS and vNTS respectively.
We have studied a large number of SAT instances with
the aim of determining the distribution of each of them.
In this section, we present two case studies (at HRS and
uniform random A-SAT from SAT Competition 2017
[54]) about distributions of ¢NTS and vNTS within 10°
steps in both the original algorithm ProbSAT based
probability selection [7] and our SelectNTS algorithm
(parameter settings in Section 6.2) respectively.

Algorithm 2 The SelectNTS Algorithm

Input: CNF-formula F, MaxTries, MaxSteps, V,
Output: A compelete assignment a of F, or Unknown
1: for try: =1 to MaxTries do

2: o := arandomly generated truth assignment;

3: bestVar == null;

4: for step:= 1 to MaxSteps do

S: if a satisfies F then return q;

6: if HSCs(step,) # O then

7: C :=a HSC selected randomly;

8: else C := an unsatisfied clause selected randomly;
9: update c¢NTS;

10: v:=x € C selected with probability €. () X
11: if v ;== bestVar then

12: bestVar :=x € C, x # v, with greatest S,(x,s,a);
13: else bestVar = v;

14: update vNTS;

15: a := o with bestVar flipped;

16: return Unknown,

5.1 Case 1: fla-qhid-540-5

In this first case, we study a HRS instance which
distributions correspond to the ¢NTS and vNTS within
105 steps in both ProbSAT and our algorithm SelectNTS
respectively. Table 1 exhibits several important
information of the HRS instance fla-ghid-540-5 from
the random track of SAT Competition 2017.

Table 1 Statistical description of HRS instance fla-ghid-540-5.

Benchmark’s name fla-ghid-540-5
Number of clauses 2970

Number of variables 540

ratio 5.5

Generator seed 5

Fig. 1 and Fig. 2 illustrate the distributions of ¢cNTS
and vNTS for the instance within 10° steps on ProbSAT.
Fig. 1 shows the number of times each clause is selected
is quite different. Within 10° steps, the maximum value
of ¢NTS is close to 2500. From Fig. 2, the distribution
of vNTS is uneven, and the maximum value of vNTS is
close to 2000 within 10° steps.

The intuition is that the larger ¢NTS of a clause is an
indication of how difficult it is to keep the clause
satisfied, and as the larger vNTS of a variable, the less
likely it is that all clauses containing the variable are
satisfied after subsequent variable flips. In order to fully

use the information of each clause and variable, the new
clause selection heuristic and the new variable selection
heuristic are used to balance the number of times each
clause selected and each variable selected respectively.
The distributions of ¢NTS and vNTS for the instance
within 10° steps on SelectNTS are presented in Fig. 3
and Fig. 4 respectively.

Comparing Fig. 3 with Fig. 1, and Fig. 4 with Fig. 2,
the distributions of ¢NTS and vNTS are relatively more
uniform on SelectNTS than of that on ProbSAT
respectively. Specially, the maximum value of ¢NTS on
SelectNTS, which is about 0.4 times as large as on
ProbSAT, is close to 1000. The maximum value of
vNTS on SelectNTS, which is about 0.5 times as large as
on ProbSAT, is close to 1000. It follows that the new
clause selection heuristic and variable selection
heuristic dramatically balances the values of ¢NTS and
vNTS for this HRS instance respectively. Thus, the new
clause selection heuristic and the new variable selection
heuristic play important roles in SelectNTS.

2500 -
2000

1500 |

cNTS

1000 -

500 -

0 500 1000 1500 2000 2500 3000
clauses

Fig. 1. fla-ghid-540-5 Distribution of ¢NTS within 10° steps on
ProbSAT.

2500 -
2000 -

1500 |

VNTS

1000 |

500

0 100 200 300 400 500 600
variables

Fig. 2. fla-qhid-540-5 Distribution of vNTS within 10° steps on
ProbSAT.

2500 -

2000 -

1500 |

cNTS

1000 |

500 |

0 1
0 500 1000 1500 2000 2500 3000

clauses

Fig. 3. fla-qhid-540-5 Distribution of ¢NTS within 10° steps on
SelectNTS.

2500 -
2000

1500 |

VNTS

1000 -

500 1

! ! : 1 1)
0 100 200 300 400 500 600
variables

Fig. 4. fla-qhid-540-5 Distribution of vNTS within 10° steps on
SelectNTS.

5.2 Case 2: unif-k5-r21.117-v540-c11403

In this second case, we study a uniform random
k-SAT instance in which distributions correspond to the
¢NTSand vNTS within 10° steps in both ProbSAT and
SelectNTS respectively.

Table 2 summarizes the most important information
of the unif-k5-r21.117-v540-c11403 instance from the
random track of SAT Competition 2017.

Table 2 Statistical description of the unif-k5-r21.117-v540-c11403.

Benchmark’s name unif-k5-r21.117-v540-¢11403

Number of clauses 11403

Number of variables 540

ratio 21.117

Generator seed 5955214796121725857

250 -

cNTS

0
0 2000 4000 6000

clauses

8000 10000 12000

Fig. 5. unif-k5-r21.117-v540-c11403 Distribution of ¢cNTS within
105 steps on ProbSAT.

500 -

400

VvNTS

0 1 1 ! 1 1 J
0 100 200 300 400 500 600

variables

Fig. 6. unif-k5-r21.117-v540-c11403 Distribution of vNTS within
105 steps on ProbSAT.

250 -

200

150 -

cNTS

100 [~

50

-
12000

0
0 2000 4000 6000

clauses

8000 10000

Fig. 7. unif-k5-r21.117-v540-c11403 Distribution of ¢NTS within
10° steps on SelectNT

10

500 -

400 |

300 -

VNTS

200 |-

100

0 ! 1 1 ! 1 J
0 100 200 300 400 500 600

variables

Fig. 8. unif-k5-r21.117-v540-c11403 Distribution of vNTS within
10° steps on SelectNTS.

Fig. 5 and Fig. 6 illustrate the distributions of ¢NTS
and vNTS for the instance within 10° steps on ProbSAT.
Fig. 7 and Fig. 8 illustrate the distributions of ¢NTS and
vNTS for the instance within 10° steps on SelectNTS.

Comparing Fig. 5 with Fig. 7, and Fig. 6 with Fig. 8
respectively, the distributions of ¢NTS and vNTS are
relatively more uniform on SelectNTS than of that on
ProbSAT respectively. Specially, the maximum value
of ¢NTS is about 200 on ProbSAT from Fig. 5, while
the maximum value of ¢NTS is close to 150 on
SelectNTS from Fig. 7, i.e., the maximum value of
¢NTS on SelectNTS is about 0.6 times as large as on the
one on ProbSAT. The maximum value of vNTS is about
400 on ProbSAT from Fig. 6, while the maximum value
of ¢NTS is close to 350 on SelectNTS from Fig. 8, i.e.,
the maximum value of VNTS on SelectNTS is about 0.8
times as large as on the one on ProbSAT. It follows that
our algorithm SelectNTS can also dramatically balance
the values of ¢NTS and vNTS for this uniform random
SAT instance respectively.

Comparing Fig. 1 with Fig. 3, Fig. 2 with Fig. 4, Fig.
5 with Fig. 7, and Fig. 6 with Fig. 8 respectively, the
distributions of ¢NTS and vNTS on the HRS instances
change more obviously than those on the uniform
random SAT instance respectively. Thus, comparing
Case 1 with Case 2, the new clause selection heuristic
and the new variable selection heuristic on distributions
of ¢NTS and vNTS for the HRS instances have more
influence than those for the uniform random SAT
instances under the same variable size. We conjecture
that the performance of SelectNTS in solving different
random SAT problems may be related to the degree of

influencing distributions of ¢NTS and vNTS on the
SelectNTS compared to the ProbSAT.

6 Experimental Evaluations

We carried out extensive experiments to evaluate
SelectNTS on random SAT problems. For each class,
we compared SelectNTS with the state-of-the-art SLS
solvers and a hybrid solver.

6.1 Benchmarks

All the HRS problems utilized in our experiments
were generated by the HRS tool [3], and all the uniform
random k-SAT problems utilized were generated by a
generator [56]. Specifically, we used the following
problems:

e SAT Competition 2017: SAT problems taken from

the random track of the SAT Competition 2017. All
random HRS instances (120 instances, 40 for each
ratio r, r=4.3, 5.206, 5.5, 15 instances for each
variable n = 400, 420, 440, ..., 540), which vary in
both size and ratio. All uniform random A-SAT
instances with £>3 (120 instances, 60 for each £-SAT,
k=5, 7), which vary in both size and ratio. The
uniform random 5-SAT instances vary from 200
variables at the threshold ratio of phase transition
r=21.117 to 590 variables, from 16.0 ratio at
n=250000 to 19.8 ratio (#<21.117). The uniform
random 7-SAT instances vary from 90 variables at
the threshold ratio of phase transition »=87.79 to 168
variables, from 55.0 ratio at n=50000 to 74.0 ratio
(r<87.79). These HRS and uniform random instances
occupy 80% of the random track in SAT Competition
2017, indicating the importance of these instances.
HRS Random 5.206: HRS problems generated by
the HRS tool. »=5.206, »=600, 700, -, 1000 (1000
instances, 200 instances for each size).

HRS Random 5.5: HRS problems generated by the
HRS tool. » = 5.5, n = 600, 700, , 1000 (1000
instances, 200 instances for each size).

HRS Random 5.699: HRS problems generated by
the HRS tool. » =5.699, n =200, 300, , 1000 (900
instances, 100 instances for each size).

HRS Random 7.821: HRS problems generated by
the HRS tool. »=7.821, n =200, 300, , 1000 (900
instances, 100 instances for each size).

11

e Uniform random 5-SAT: Random 5-SAT problems

generated by the A-SAT generator [56] (250
instances). Medium 5-SAT instances at the threshold
ratio of phase transition (»= 21.115, 100 instances,
n=200, 250, 300, 350, 400, 20 instances for each size).
Huge 5-SAT instances at r<21.117 (n=250000, 150
instances, =18.0, =18.2, r=18.4, 50 instances for
each ratio).

Uniform random 7-SAT: Random 7-SAT problems
generated by the k-SAT generator (250 instances).
Medium 7-SAT instances at the threshold ratio of
phase transition (#=87.79, 100 instances, n=100, 110,
120, 130, 140 20 instances for each size). Huge 7-SAT
instances at r< 87.79 (n=50000, 150 instances,
r=65.0, r=66.0, ¥=67.0, 50 instances for each ratio).
SAT Competition 2018: the benchmark from the
random track of SAT Competition in 2018. The HRS

instances and uniform random k-SAT instances with
k>3 have various sizes and ratios. These instances
occupy 88.2% of the random benchmark in SAT
Competition 2018.

6.2 Experimental preliminaries

According to Section 5.2, we know the influence of
SelectNTS on the distribution of ¢NTS and vNTS when
solving HRS problems are more obvious than that when
solving uniform random problems, so we share the
insight on how the clause selection and variable
selection change when the parameters f and y take
different values for solving fla-qhid-540-5 instance
(described in Section 5).

Fig. 9 and Fig. 10 below illustrate the distributions of
¢NTS and vNTS for the instance within 10° steps on
SelectNTS under different parameter f or y. ‘YES’
indicates a successful run within 10° steps under
parameters settings, and ‘No’ indicates an unsuccessful
run within 10° steps under parameters settings.

=0, NO
—— B=80.YES
—— B=90,YES
——B=100.YES
——B=110.YES
B=120,NO
—— B=130.YES
B=140,NO
—— B=150.NO

14000

12000

10000

8000 |-

cNTS

6000 -

4000

2000

0 500 1000 1500

clauses

2000 2500 3000

Fig. 9. fla-qghid-540-5 Distribution of ¢cNTS within 10° steps on
SelectNTS under y=1200 and different parameter f.

7=1NO
——7=100,NO
——=900,YES
——7=1000,YES
¥=1100,YES
7=1300,YES
¥=1400,YES
1=1500,NO

20000 -

15000

VNTS

10000 [~

5000 H

i)
500 600

. Al
300 400

variables

di
200

Fig. 10. fla-ghid-540-5 Distribution of vNTS within 10° steps on
SelectNTS under =110 and different parameter 7.

According to Fig. 9, if an S setting is marked ‘NO”’,
within 10° steps, the maximum value of ¢NTS is greater
than 4000 for solving fla-qhid-540-5 instance; and if a
setting is marked ‘YES’, within 10° steps, the
maximum value of ¢NTS is less than 4000 for solving
fla-ghid-540-5 instance.

According to Fig. 10, if a y setting is marked ‘NO”’,
within 10° steps, the maximum value of vNTS is greater
than 5000 for solving fla-ghid-540-5 instance; and if a y
setting is marked ‘YES’, within 10° steps, the
maximum value of vNTS is less than 5000 for solving
fla-ghid-540-5 instance.

The purpose of our method is to distinguish the
unsatisfied clauses and balance the number of times
each clause being selected in the clause selection as
highlighted in Section 1. Some further clarifications
about parameter 5 and y are summarized below:

If § is less than a threshold, there may be many
clauses that belong to HSC, so it will not be able to
effectively distinguish the unsatisfied clauses and

12

balance the number of times each clause being selected
in the clause selection.

If S is greater than a threshold, there may be less
clauses that belong to HSC, so it will also not
effectively distinguish the unsatisfied clauses.

If y is less than a threshold, it can clearly distinguish
the variables, but it will be too greedy and lose
randomness for solving SAT instances, and it is easy to
fall into local optimal.

If y is greater than a threshold, there may be many
variables that have the same function §,, so it will not
effectively distinguish the variables, so it will be too
random for solving SAT instances.

However, different instances with different numbers
of variables or clauses have different threshold, we
performed an extensive number of experiments to find
optimal parameters (i.e., threshold) according to our
experience.

Implementation: SelectNTS is implemented in C.
The the parameters f and y of SelectNTS are showed in
Table 3 and Table 4 according to our experience. For
cb; and cb,, we use the default parameter setting tuned
in the literature [7].

Table 3 Parameter settings of SelectNTS for HRS instances.

=43 1=5206 1=5.5/5.699 r=7.821
<600 =80 p=110
B=10 »=300 y=1200 B =400
#>600 y=1200 f=60 p=110 =300
»=800 =900

Table 4 Parameter settings of SelectNTS for uniform A-SAT.

5-SAT 7-SAT
medium =5000000 S=700000
instances y=500000 y=500000
huge £=700 £=2000
instances y =600 y =4000

Competitors: In the following, we use RSC to denote
the Random track of the SAT Competition. In order to
evaluate the performance of SelectNTS, we compare
SelectNTS with the following solvers including one
hybrid solver and 4 state-of-the-art SLS SAT solvers:
e SparrowToRiss (denoted by STR in the result tables)
[5]: a hybrid algorithm is the 1% place in RSC 2018.
e ProbSAT [7]: The algorithm based on the probability
selection is the 2nd place among the SLS algorithms
in RSC 2018 and 1% place in RSC 2013.

e YalSAT [8]: The algorithm based on the probability
selection is the 1% place in RSC 2017.

e Score;SAT [10]: The algorithm with CC strategy and
clause weighting scheme is the 2" place in RSC
2016.

e CScoreSAT [13]: The algorithm with CC strategy,
clause weighting scheme and complex scoring
functions.

ProbSAT and SparrowToRiss are available from the
web site of the SAT Competition 2018 [55]. YalSAT
and Score;SAT are available from the web site of the
SAT Competition 2017 [54]. CScoreSAT is available
from the web site of SAT Competition 2013 [57].

Evaluation Methodology: The experiments are
carried out on an Intel(R) Core (TM) i7-6700M 3.4
GHz CPU with 16GB RAM, running the 64-bit Ubuntu
Linux operating system. The CPU time limit is 600
seconds for the HRS Random 5.206, 5.5, 5.699, 7.821
problem sets (as in the literature [4]), and 5000 seconds
for remaining benchmarks (as in the recent SAT
competitions).

For all benchmarks, we run each solver 10 times for
each instance. For performance metrics, we report the
number of averages solved instances at ten-run “AverS”
and the penalized average run time “PAR-2” (an
unsuccessful run is penalized two times the time limit)
as in the competitions. Note PAR-2 is the average CPU
time taken for cases of 100% success rate. The best
results for each instance class are highlighted in bold.

Note: we do not compare our solver against the
state-of-the-art complete solvers, such as the top 3
solvers from recent SAT Competitions. We know that
when evaluating on random SAT instances, complete

solvers are not suitable for solving random SAT
problems according to the literature [59].

6.3 Experimental results

In this subsection, we present the experimental
results of SelectNTS and its competitors on each
instance set.

Results for SAT Competition 2017

Table 5 presents the experimental results on random
SAT instances from SAT Competition in 2017. Since
SelectNTS is developed based on ProbSAT, we first
compare these two solvers. From Table 5, although
ProbSAT spends a little less time than SelectNTS for the
HRS instances with 7=4.3 and the uniform 7-SAT
instances with »=87.79, ProbSAT and SelectNTS solve
the same number of instances. For remaining instance
classes, SelectNTS solves more instances than ProbSAT.
Overall, ProbSAT solves 102 instances on average,
while SelectNTS solves 177 instances on average,
which is 1.74 times as many as ProbSAT does.

SelectNTS solves more instances than its competitors.
Overall, SelectNTS solves 177 instances on average,
compared to 158 for SparrowToRiss on average and
102 for ProbSAT on average and 101 for both YalSAT
and ScorexSAT on average, and 100 for CScoreSAT on
average. Further observation shows that for HRS
instances classes, SelectNTS significantly outperforms
SparrowToRiss [55] and for solving uniform random
k-SAT instances with k>3, SelectNTS significantly
outperforms CScoreSAT, YalSAT, Score:SAT and
ProbSAT which are among the most successful solvers
for solving uniform random k-SAT instances in the
literature.

Table 5 Computational results on the SAT Competition 2017 benchmark.

Random Ratio STR CScoreSAT ScorexSAT YalSAT PobSAT SelectNTS

SAT AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2
43 40 0.117 40 0.009 40 0.020 40 0.017 40 0.062 40 0.134

HRS 5.206 40 5.709 0 - 0 - 0 - 0 - 40 0.032
5.5 40 151.0 6 8500 9 7750 9 7750 9 7750 40 0.113
<21.117 4 8083 10 5250 8 6231 12 4147 11 4526 13 3741

Uniform 21.117 9 7760 15 6476 14 6655 13 6880 13 6829 14 6661
<87.79 9 5602 11 4839 11 5756 10 5067 11 4514 12 4045
87.79 16 6035 18 5931 19 5582 17 5957 18 5552 18 5800

Overall/240 158 3466 100 5992 101 5997 101 5866 102 5775 177 2733

Table 6 Computational results on the HRS Random 5.206 benchmark.

n=600

n=700

n=800 n=900 »=1000

13

AverS AverS AverS AverS AverS

PAR-2 PAR-2 PAR-2 PAR-2 PAR-2

200 140 40 80 0

STR 5.812 363.6 960.4 7222 .
40 40 40 40 0

ProbSAT 960.0 960.0 960.0 960.0 .
40 40 40 40 0

YalSAT 960.0 960.0 960.0 960.0 .
40 40 40 0 0

Score;SAT 960.0 960.0 960.0 . .
CScoreSAT (3 (3 (3 (3 (3
200 200 200 200 200

SelectNTS 0.179 0.217 0.258 0339 0.314

In order to investigate the detailed performance
ofSelectNTS on HRS instances with »=5.206, 5.5, 5.699,
and 7.821, we utilize the HRS tool to generate larger
size HRS instances. Then we test SelectNTS and its
competitors on these HRS Random benchmark.

Results for HRS Random 5.206

Table 6 suggests that the difficulty of such HRS
instances with »~5.206 increases significantly with a
relatively large increment of the size. According to
Table 6, the results show SelectNTS dramatically
outperforms its competitors. For example, all
competitors fail in all instance classes, and
SparrowToRiss solves 200, 200, 160, 120, 120
instances for each instance class on average
respectively, while SelectNTS solves all instances for
each instance class on average. Given the good
performance of SelectNTS on HRS Random 5.206

instances with 1000 variables, it is potential to solve
larger size instances with 7=5.206.

Results for HRS Random 5.5

The experimental results are showed in Table 7. It is
clear that SelectNTS presents significantly better
performance than ScorexSAT, CScoreSAT, YalSAT,
ProbSAT, and SparrowToRiss on the whole benchmark.
Also, SelectNTS significantly outperforms its
competitors in terms of par 2, which is more obvious as
the instance size increases. In particular, on the HRS
instance with n=900, Score>SAT and CScoreSAT fail
in all instances, and the other competitors solve less
than 80 instances on average, while SelectNTS solves
all instances (200) on average. Finally, SelectNTS is the
only solver which solves the total HRS Random 5.5
benchmark on average, which illustrates its robustness.

Table 7 Computational results on the HRS Random 5.5 benchmark.

n=600 n=700 n=800 n=900 n=1000

AverS AverS AverS AverS AverS

PAR-2 PAR-2 PAR-2 PAR-2 PAR-2
STR 200 200 160 120 120
11.25 11.81 273.0 505.2 504.5
ProbSAT (3 (3 (3 (3 (3
YalSAT 0 0o 0 0
Score:SAT (3 (3 (3 (3 (3
CScoreSAT (3 (3 (3 (3 (3
200 200 200 200 200
SelectNTS 0.038 0.073 0.088 0.065 0.145

Table 8 Computational results on the HRS Random 5.699 benchmark.

14

Variables STR CScoreSAT Score,SAT YalSAT PobSAT SelectNTS
AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2

n=200 100 42.01 0 0 - 0 - 0 - 100 0.023
n=300 100 94.28 0 0 - 0 - 0 - 100 0.037
n=400 100 213.5 0 0 - 0 - 0 - 100 0.067
n=500 100 228.2 0 0 - 0 - 0 - 100 0.080
n=600 80 444.1 0 0 - 0 - 0 - 100 0.102
n=700 40 855.9 0 0 - 0 - 0 - 100 0.128
n=800 0 - 0 0 - 0 - 0 - 100 0.157
n=900 0 - 0 0 - 0 - 0 - 100 0.185
n=1000 0 - 0 0 - 0 - 0 - 100 0.197

Results for HRS Random 5.699

We conduct further evaluations of SelectNTS with its
competitors and a hybrid solver on HRS Random 5.699
benchmark [3].

The comparative results are presented in Table 8. For
HRS instances with n=200, 300, 400, 500 classes,
SelectNTS solves the same number of instances on
average as SparrowToRiss, but SelectNTS spend less
accumulative run time. For HRS instances with #=600,
700, 800, 900, and 1000 classes, SelectNTS succeeds in
the most instances. Especially, SelectNTS shows
dramatically superior performance than its competitors
on HRS instances with #=800, 900, 1000 classes, where
it solves all instances on average for each class, while
its competitors fail to solve an instance for any of these
instance classes.

Results for HRS Random 7.821

Table 9 shows the experimental results of SelectNTS
and its competitors on the HRS Random 7.821
benchmark. It is promising to see the performance of

where its competitors present rather poor performance,
especially for SLS solvers. For the experimental results,
ScorexSAT, CScoreSAT, YalSAT, ProbSAT fail to
solve an instance for the whole benchmark, while
SelectNTS solves all instances on average. Although
SelectNTS solves the same number of instances on
average as SparrowToRiss for the whole benchmark,
SelectNTS is over 138 times faster than SparrowToRiss
on average in the whole HRS Random 7.821 instances
indicating that SelectNTS is the comprehensive best
algorithm on this benchmark, indicating that the
SelectNTS algorithm achieves state-of-the-art
performance on HRS instances with =7.821.

In order to investigate the detailed performance of
SelectNTS on uniform medium and huge random
k-SAT instances with k>3, we utilize the k-SAT
generator to generate some these types of instances,
which size increases more fast than the one on medium
uniform random k-SAT with £>3. Then we additionally
test SelectNTS and its competitors on these uniform

SelectNTS remains surprisingly good on this random benchmarks.
benchmark,
Table 9 Computational results on the HRS Random 7.821 benchmark.
Variables STR CScoreSAT ScoreaSAT YalSAT PobSAT SelectNTS
AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2

n=200 100 202.6 0 - 0 0 0 100 0.224
n=300 100 213.8 0 - 0 0 0 100 0.423
n=400 100 219.1 0 - 0 0 0 100 0.657
n=500 100 236.6 0 - 0 0 0 100 0.874
n=600 100 2529 0 - 0 0 0 100 1.029
n=700 100 253.9 0 - 0 0 0 100 1.468
n=800 100 279.8 0 - 0 0 0 100 1.550
n=900 100 277.3 0 - 0 0 0 100 1.911
n=1000 100 314.9 0 - 0 0 0 100 2.271

15

Table 10 Computational results on the Uniform random 5-SAT benchmark.

Ratio Variable STR CScoreSAT ScoreaSAT YalSAT PobSAT SelectNTS
AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2
Medium instances
n=200 11 4516 11 4506 11 4523 11 4513 11 4513 11 4501
n=250 9 5582 10 5069 9 5502 10 5247 10 5142 10 5022
=21.117 n=300 3 8525 8 6298 9 6078 10 5283 8 6122 9 5993
n=350 8 6091 12 4166 13 3749 13 3734 13 3734 13 3703
n=400 1 9510 3 8667 3 8728 2 9216 3 8613 3 8703
Huge instances
=18.0 0 - 0 - 50 3768 50 354.2 48 831.0 50 476.5
=182 n=2.5x10° 0 - 0 - 0 - 46 1626 0 - 50 1558
=184 0 - 0 - 0 - 0 - 0 - 50 3900

Results for Uniform Random 5-SAT
We present the experimental results of SelectNTS for

uniform medium and huge 5-SAT instances in Table 10.

Table 10 indicates our SelectNTS algorithm performs
quite well on these uniform random 5-SAT instances.
Especially, for all 8 instance classes, SelectNTS shows
the best performance for 6 instance classes, while
YalSAT and PrboSAT show the best performance only
for one instance class and the remaining three
algorithms SparrowToRiss, = CScoreSAT, and
Score2SAT cannot show the best performance for any
instance classes.

Especially, for medium 5-SAT instances with #=200,
250, 350, SelectNTS, YalSAT, and PrboSAT solve the
same number of instances on average, but SelectNTS
spend less run time. For medium 5-SAT instances with
n=300, SelectNTS has a similar performance as the best
solver YalSAT, solving only one less instance on
average. For medium 5-SAT instances with n=400,
although ProbSAT has less run time, SelectNTS solves

the same number of instances on average as ProbSAT.
The huge 5-SAT instances with a few million clauses
and the ratio from far from the phase-transition ratio to
relatively close, are as large as some of the application
benchmarks. As can be seen from Table 10, SelectNTS
is based on ProbSAT, while SelectNTS solves more
instances than ProbSAT. Overall, ProbSAT solves 48
(out of 150) instances on average, while SelectNTS
solves all instances, which is 3 times as many as
ProbSAT does. SelectNTS solves more instances than
SparrowToRiss, CScoreSAT, YalSAT, and Score;SAT.
Especially, SelectNTS solves 150 instances on average,
and YalSAT solves 96 (out of 150) instances on
average, and Score;SAT solves 50 (out of 150)
instances on average, and while SparrowToRiss and
CScoreSAT have difficulty in solving these huge
random 5-SAT instance classes. In sum, this
experiment further confirms the efficiency of
SelectNTS for solving the general uniform medium and
huge random 5-SAT problems

Table 11 Computational results on the Uniform random 7-SAT benchmark.

Ratio Variable STR CScoreSAT ScoresSAT YalSAT PobSAT SelectNTS
AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2
Medium instances
n=100 12 4013 12 4043 12 4037 12 4044 12 4044 12 4042
n=110 10 5087 10 5141 11 4592 11 4749 11 4559 11 4558
=87.79 n=120 9 5626 9 5780 10 5248 10 5451 9 5969 11 5442
n=130 10 5123 10 5518 13 3981 13 4412 12 4380 12 4324
n=140 10 5087 11 4829 13 4048 10 5397 10 5597 13 4566
Huge instances
7=65.0 0 - 40 4860 41 5234 0 - 47 778.2 50 268.2
7=66.0 n=5x10* 0 - 0 - 0 - 0 - 0 - 50 1444
=67.0 0 - 0 - 0 - 0 - 0 - 18 7484

Results for Uniform Random 7-SAT

In Table 11, we show our experimental results on the
uniform medium and huge 7-SAT instances. Table 11

shows that SelectNTS 1is competitive with its
competitors for these medium 5-SAT instances.
Specifically, SelectNTS obtains the best performance
for 2 medium instance classes. Score;SAT reaches the
best performance for 2 medium instance classes.
SparrowToRiss gives the best performance for only one
medium instance class. However, the three other
algorithms ProbSAT, YalSAT, and CScoreSAT
perform worse than SelectNTS on these uniform
medium random 7-SAT instance classes. These results
demonstrate that our SelectNTS algorithm is quite
competitive for solving this medium random 7-SAT
problems.

According to the experimental results in Table 11, we
can find SelectNTS significantly outperforms its
competitors. Compared to the competitors whose
performance descends sharply as the instance ratio
increases, SelectNTS shows good scalability. For
example, for the huge 7-SAT instances with =66, 67,
all competitors fail in solving all instances, while
SelectNTS solves 50 and 18 huge 7-SAT instances with
=66, 67 on average respectively, which confirms the
good performance of SelectNTS on these huge 7-SAT
instances.

Results for SAT Competition 2018

Table 12 shows the experimental results of our
SelectNTS algorithm and SparrowToRiss, CScoreSAT,
ScorexSAT, YalSAT, and ProbSAT on all HRS
instances and uniform random A-SAT instances with
k>3 from SAT Competition in 2018 [55]. SelectNTS

especially it solves more uniform random A-SAT
instances with £>3 than its competitors. For the HRS
instances with r=4.3, SelectNTS solves the same
number of instances as Score;SAT and YalSAT, but
PAR 2 is a little more than Score;SAT and YalSAT’s.
Overall, SelectNTS solves 209 instances on average,
and SparrowToRiss, ScoreaSAT, ProbSAT, YalSAT,
and CScoreSAT solve 192, 137, 117, 111, and 106
instances on average respectively, indicating that the
SelectNTS algorithm achieves state-of-the-art
performance on random SAT instances.

Summary for HRS and uniform random k-SAT
with k>3

According to Tables 5-12, the experimental results
present that SelectNTS consistently outperforms
CScoreSAT, YalSAT, ProbSAT, Score;SAT, and
SparrowToRiss on solving HRS instances with various
ratios and sizes except for the HRS instances with 7=4.3,
and shows the efficiency and the robustness on solving
all HRS instances with up to 1000 variables. The
reason why the existing state-of-the-art solvers cannot
effectively solve HRS instances is that the HRS
instances are generated based on the purpose of making
incomplete solvers like ProbSAT and complete solvers
like Glucose difficult to solve [3]. Thus, the existing
SLS solvers are hard to solve HRS problems. However,
SelectNTS adds a biased random walk strategy and a
variation of CC strategy based on the original SLS
framework, breaking the original SLS framework. And
this experiment demonstrates that the superiority of

presents the best performance for all random SAT §uo/ectNTS becomes more significant over its
instances except for the HRS instances with 7=4.3,and competitors as the size of HRS instances increases.
Table 12 Computational results on the SAT Competition 2018 benchmark.
Random Ratio STR CScoreSAT Score;SAT YalSAT PobSAT SelectNTS
SAT AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2
43 55 0.052 55 0.009 55 0.001 55 0.001 55 0013 55 0.032
HRS 5.206 55 1.020 8 8591 33 4000 9 8387 12 7858 55 0.017
5.5 55 136.4 11 8000 12 7818 12 7818 12 7818 55 0.060
<2117 5 7614 9 5706 11 4683 11 4540 11 4524 13 3821
. 21.117 7 3111 8 2495 7 3015 8 2326 8 2409 9 1741
Uniform
<87.79 9 5583 10 5129 11 4720 9 5510 11 4522 13 3748
87.79 8 2261 5 5224 8 2453 7 3880 8 2967 9 1696
Overall/225 194 1445 106 5362 137 3968 111 5130 117 4875 209 825.6

17

Table 13 Comparison among SelectNTS and its alternative degenerating versions on the six benchmarks. Each solver is performed 10 times
on each instance with the cutoff time of 600 seconds, and the results in bold indicate the best performance for each class.

Benchmarks SelectNTS SelectNTS _alt] SelectNTS _alt2 SelectNTS_alt3 SelectNTS alt4 SelectNTS_alt5
AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2

SAT Competition 2017 120 0.093 49 710.0 120 0.117 107 130.1 119 10.14 49 710.0
HRS Random 5.206 1000 0.082 0 - 967 39.67 1000 0.067 1000 0.077 0 -

HRS Random 5.5 1000 0.261 80 1104 1000 0.246 1000 864.2 1000 0.348 160 1008
HRS Random 5.699 900 0.108 0 - 900 0.110 900 0.143 900 0.135 0

HRS Random 7.821 900 1.156 0 - 900 1.160 900 1.696 900 1.645 0 -

SAT Competition 2018 165 0.036 71 683.7 164 7.318 150 109.2 165 0.064 79 625.5

Moreover, SelectNTS is quite competitive for solving
uniform random k-SAT with long clauses, i.e., the
performance of SelectNTS in solving HRS instances is
better than of that in solving uniform random A-SAT
with £>3. Based on the case study in Section 5, we
conjecture that for random SAT problems, if the
maximum value of ¢NTS and vNTS on SelectNTS is less
than or equal to 0.5 times as large as on ProbSAT
within 103 steps respectively, SelectNTS is more
effective to solve these problems than other random
SAT instances which the maximum value of ¢cNTS and
vNTS on SelectNTS is more than 0.5 times as large as on
ProbSAT within 10° steps respectively.

7. Discussions

Some further discussions are given below to clarify
some issues and highlight some important cases.

7.1 Effectiveness of the SelectNTS
components

In this section, we present a detailed discussion on
each underlying component of the SelectNTS algorithm,
namely biased random walk strategy, cNTS, vNTS, the
variation of CC strategy, and the score property.
According to the experimental results of Section 6.3,
we can conclude that the performance of SelectNTS in
solving HRS instances obviously exceeds that in
solving uniform random k-SAT with £>3. Thus, we
conducted extensive experiments for five alternative
versions on all HRS benchmarks respectively. The
computing environments in this section are the same as
those utilized for experiments in Section 6.2.

Effectiveness of the clause weighting scheme cNTS

In order to demonstrate the effectiveness of the
clause weighting scheme c¢NTS in the SelectNTS

18

algorithm, we did experiments to compare SelectNTS
with its an alternative version called SelectNTS altl,
which does not utilize the ¢NTS, i.e., removing biased
random walk based on the c¢NTS of lines 6-7 and
removing update ¢cNTS of line 9 in Algorithm 2. For the
parameter setting of », we utilize the default value of
SelectNTS. Table 13 shows the comparative results on
the six benchmarks.

The experimental results show that SelectNTS
obviously outperforms SelectNTS altl. Specifically,
SelectNTS alt]l fails to solve any instances with
r=5.206, r=5.699, and »=7.821, which indicates the
importance of the clause weighting scheme ¢NTS.

Effectiveness of the variable weighting scheme
vNTS

By removing the variable weighting scheme vNTS in
the SelectNTS algorithm, i.e., replacing Sv with the only
score in line 12 in Algorithm 2, an alternative version
called SelectNTS alt2 is obtained. For the parameter
settings of £, it adopts the default value of SelectNTS.
The experimental results are showed in Table 13.

The performance of SelectNTS significantly
outperforms that of SelectNTS alt6 on all HRS
benchmarks terms of metrics. Especially,
SelectNTS alt? succeeds in solving 33 instances on
average for HRS Random 5.206 benchmark, whereas
SelectNTS alt2 and SelectNTS succeed in solving 967
instances and 1000 instances on average for HRS
Random 5.206 benchmark respectively, which
indicates that the importance of the variable weighting
scheme vNTS.

Effectiveness of the variation of CC strategy

this subsection, we conducted additional
experiments to analyze the effectiveness of the
variation of CC strategy in the SelectNTS algorithm.
We did not utilize the variation of CC strategy, i.e.,

in

In

removing lines 11-13 in Algorithm 2. An alternative
version named SelectNTS alt3 is obtained and allows
the same variable to be flipped in successive steps. For
the parameter settings of S, it uses the default value of
SelectNTS.

According to the results of Table 13, SelectNTS
presents significantly better performance than
SelectNTS alt3 on all HRS benchmarks except for HRS
Random 5.206. Particularly, on the HRS from SAT
Competition 2017, HRS Random 5.5, and HRS from
SAT Competition 2018 benchmarks, the runtime of
SelectNTS is about 1399 times, 3311 times, and 3033
times less than of SelectNTS alt3 respectively, which
confirm the effectiveness of the variation of CC
strategy as does in SelectNTS on solving HRS
instances.

Effectiveness of the scoring function score

This alternative version of SelectNTS utilizes the
variation of CC strategy, but the Sv function only uses
the vNTS (i.e., removing the scoring function score, i.e.,
replacing the Sv function of line 12 in Algorithm 2, with
the vNTS). Thus, this alternative version called
SelectNTS alt4 is obtained. For the parameter setting, it
uses the default value of SelectNTS.

From Table 13, it is clear that SelectNTS significantly
performs better than SelectNTS alt4 on all HRS
benchmarks except for HRS Random 5.206, which
indicates that if the score property is not utilized in
SelectNTS, the algorithm performs much worse than
SelectNTS.

Effectiveness of the weighting schemes and the
scoring function

This alternative version of SelectNTS does not use the
cNTS, vNTS, and the variation of CC strategy, i.e.,
removing the biased random walk strategy and the Sv
(i.e., removing lines 6-7, 9, and 11-14 in Algorithm 2,
i.e., only using the probability and standard random
walk). This alternative version named SelectNTS alt5
is obtained and has no need of parameter setting. Table
13 presents that SelectNTS alt5 fails to solve any
instances with »=5.206, r=5.699, and =7.821 even on
the HRS Random 5.699 and HRS Random 7.821
benchmarks including instances with #=200. The

SelectNTS obviously perform better than
SelectNTS alt5, which conform significance of ¢cNTS
and the variation of CC strategy.

7.2 Main differences between SelectNTS and
EPEFV

EPEFV [59] is the first solver that can effectively
solve both uniform random A-SAT and HRS. EPEFV
also includes clause selection and variable selection. In
this subsection, we discuss the main differences between
EPEFV and SelectNTS for solving SAT instances. Before
getting into the details of discussion, we first introduce
two weighting schemes and a scoring function U, in the
EPEFYV algorithm:

® UnsatT weighting scheme [59]: The weight of
each clause is a positive integer, and under initial
assignment «, if a clause c¢ is unsatisfied, then the
weight of ¢ is initiated as 1; otherwise, the weight of ¢
is initiated as 0. The clause weights are updated as
follows. If a clause c is unsatisfied and contains the
flipping variable under the current assignment, then
c’weight is large than one; otherwise, c’weight
remains unchanged.

® yUnsatT weighting scheme [59]: The weight of
each variable is a positive integer, and under initial
assignment a, if a variable v is in ¢ unsatisfied clauses,
then the weight of v is initiated as ¢; otherwise, the
weight of v is initiated as 0. The variable weights are
updated as follows: If a variable v is in m, unsatisfied
clause while containing the flipped variable under the
current assignment, then v’weight is large than m,;
otherwise, ¢’weight remains unchanged.

e U, Scoring function [59]:
U,(v,s)=score(v,s) + (v,)/ (y is a
positive integer parameter and s is the number of
step).

In the following, we summarize these major
differences between EPEFV and SelectNTS as
follows:

o Clause weighting scheme: SelectNTS employs a
new clause weighting scheme that only works on the
clauses selected, while EPEFV works on the
unsatisfied clauses containing the flipping variable.

e Table 14 Comparison results of different solvers on HRS benchmark

19

Benchmark Ratio EPEFV EPEFV S SelectNTS SelectNTS E
AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2

SAT 43 40 0.023 40 0.068 40 0.134 40 0.566
Competition 5.206 40 0.039 34 1500 40 0.032 40 0.071
2017 55 40 0.662 17 5750 40 0.113 40 1.594
SAT 43 55 0.007 55 0.005 55 0.032 55 0.022
Competition 5.206 55 0.019 50 909.1 55 0.017 55 0.035
2018 55 55 0.156 23 5818 55 0.060 55 0.810
HRS Random 5.206 1000 0.079 720 2800 1000 0.082 1000 0.135
HRS Random 5.5 1000 1.298 280 9001 1000 0.261 1000 3.843
HRS Random 5.699 900 0.768 560 3778 900 0.098 900 1.193
HRS Random 7.821 260 7111 260 7111 900 1.041 900 1.257

e Clause selection component: The SelectNTS
algorithm applies a biased random walk strategy
based on the ¢NTS, while the EPEFV algorithm uses
the biased random walk strategy depending on the
UnsatT for selecting a clause.

e Variable selection mechanism: If the current
variable selected based on probability is the same as
the last flipped variable, the SelectNTS algorithm
prefers to select a variable to be flipped depending on
the U,,, while the EPEFV relies on the vUnsatT.

e Empirical performance on random SAT
benchmarks: Overall, as can be seen clearly from
the extensive experiments illustrated in Table 14 and
Table 15, the SelectNTS algorithm generally
performs much better than the EPEFV algorithm on
a wide range of HRS benchmarks, and SelectNTS
and EPEFV have their own advantages on the
uniform random benchmarks, indicating that the
significant performance improvements of SelectNTS
over EPEFV are due to the above major differences
between these two SLS algorithms.

In order to test the sensitivity of the algorithm under
different parameter settings and make the comparison
results more convincing, this subsection compares two
alternative versions of the solvers with the EPEFV
algorithm and the SelectNTS algorithm for solving all
HRS benchmarks reported in Section 6.1. The two
alternative versions are named FEPEFV S and
SelectNTS E respectively. EPEFV S is still EPEFV
algorithm, but the parameter settings of EPEFV S and
SelectNTS are exactly the same. Similarly, SelectNTS E is

20

still the SelectNTS algorithm, but the parameter settings of
SelectNTS E and EPEFV are exactly the same.

For all benchmarks, we run each solver 10 times for
each instance. For performance metrics, we report the
number of averages solved instances at ten-run “AverS”
and “PAR-2”. The best results for an instance class are
highlighted in bold. If the performance of EPEFV S is
better than EPEFV in a certain benchmark, the result will
be marked in red; if the performance of SelectNTS E is
better than SelectNTS, the result will be marked with
underline.

It can be seen from Table 14 that the performance of
SelectNTS outperforms than EPEFV in almost all HRS
benchmarks. In the HRS instances with »=4.3 from the
random track of SAT Competition in 2018, the
performance of EPEFV_S slightly exceeds EPEFV, and
the performance of SelectNTS E is slightly better than that
of SelectNTS. For the rest of HRS benchmarks, the
performance of EPEFV S is worse than that of EPEFV,
but SelectNTS E and SelectNTS have the similar
performance. It indicates that under different parameter
settings, the sensitivity of the SelectNTS algorithm is
weaker than that of the EPEFV algorithm in the HRS
benchmarks.

e SAT Competition 2016: the uniform random
benchmark with >3 from the random track of SAT
Competition in 2016.

It can be seen from Table 15 that there are different
algorithms with the best performance on different uniform
random instances. Thus, each algorithm has its own
advantages.

Table 15 Comparison results of different solvers on uniform random benchmark from the random track of SAT
competitions in 2016, 2017 and 2018

Benchmark Ratio EPEFV EPEFV S SelectNTS SelectNTS E

AverS PAR-2 AverS PAR-2 AverS PAR-2 AverS PAR-2

<21.117 13 3675 13 3623 13 3688 13 3691

SAT Competition 21.117 15 6445 12 7073 13 6801 16 6174
2016 <87.79 12 4025 12 4035 12 4084 12 4030

87.79 18 5759 15 6405 15 6427 14 6743

<21.117 13 3667 13 3646 13 3761 13 3684

SAT Competition 21.117 17 6074 12 7011 15 6389 15 6389
2017 <87.79 12 4015 12 4067 12 4030 12 4045
87.79 20 5415 15 6443 18 5817 18 5819

<21.117 13 3673 12 4122 13 3821 13 3701

SAT Competition 21.117 8 2462 8 2427 9 1741 9 1571
2018 <87.79 12 4021 12 4055 13 3748 12 4031

87.79 7 3092 8 2619 9 1696 8 2362

Although EPEFV_S performs better than EPEFV on
four classes of instances, and SelectNTS E show rather
better performance than SelectNTS on five classes of
instances, SelectNTS and SelectNTS E solve the same
number of instances on average, while EPEFV solves 15
more instances than EPEFV S. Thus, it indicates that
under different parameter settings, the sensitivity of the
SelectNTS algorithm is also weaker than that of the
EPEFYV algorithm in the uniform benchmarks.

For a SAT formula F, for the relationship between

UnsatT and c¢NTS, we have the following conclusions.

Theorem 1. For a CNF formula F, when algorithm
runs to step s, for a clause c, if the weight of ¢ is
cNTS(c, s) and the UnsatT weight of ¢ is Unsat1{(c,s) ,
then UnsatT(c, s)=cNTS(c, s).

Proof. We will prove it by induction. Suppose that in
a CNF formula F, suppose £ includes m clauses.

When 5=0, the UnsatT values of all unsatisfied
clauses are set to 1, and the UnsatT values of all satisfied
clauses are set to 0. However, the values of all
clauses are set to 0. Thus,

UnsatT(c, 0)=cNTS(c, 0) (D).

When s=1, we have to considee the following cases:

21

(1) suppose the first clause selected by the algorithm
from F'is ¢;. Then
cNTS(ct, 1= cNTS(ct, 0)+1).
Before the clause selection, ¢ must be unsatisfied, and
after the clause selection, ¢ must be satisfied. Obviously,
Unsat1{(c, 0)= UnsatT(c:,1)=1 3),
and thus
cNTS(ct,1)= UnsatT(ct,1) 4).
(2) Suppose the unsatisfied clause containing the

flipped variable is ¢;, whose value of UnsatT is large than

one, i.e.,
UnsatT(cj,1)= UnsatT(cj, 0)+1 (5),
while cNTS(cj, 1)= cNTS(c;,0)=0, and thus
UnsatT(cj, 1)> cNTS(cj, 1) (6).

(3) For the rest of the clausesc; (i#¢, j and =0, 1, ...,
m-1), the values of UnsatT and cNTS do not change, and
obviously, UnsatT(ci,1)>cNTS(ci,1). Based on the
conditions (1), (2) and (3), we can get that

Unsat1{(c,1) = cNTS(c,1) .
When s=k. Suppose
Unsat1{(ci, k)> cNTS(ci,k)(i=0,1,,m-1) (8),
holds. Then we can obtain
UnsatT{(c, k) = cNTS(c, k) 9).

When s=k+1. Suppose the clause selected by the
algorithm from F'is ¢,. Then

UnsatT(cp,k+1)= cNTS(cp,k+1)<UnsatT(cp,k)+1 (10).
We have to consider the following two cases:
(1) If eNTS(cp, k)< UnsatT (cp, k), since UnsatT and
¢NTS is a nonnegative integer, then
cNTS(cp, k+1)= cNTS(cy, k)+1<UnsatT (cp, k)
<UnsatT (¢p, k+1) (11).
(2) If eNTS(cp, k)= UnsatT (cp, k), suppose that the
algorithm runs from step ¢ to step k, cNTS (cp, ¢)=cNTS(cp,
g+1)=...= cNTS (c,, k), and suppose that algorithm runs
from step w to step k, UnsatT (c,, w)= UnsatT (cp
w+1)...= UnsatT (cp, k). Since UnsatT (c;, k) = cNTS(c;, k)
@=0,1, ..

from step g+1 to Step £, clause ¢, is not selected once, and

., m-1), thus w<gq. Obviously, the algorithm runs

in Step g, ¢, must be satisfied after the variable is flipped.
Since clause ¢, is selected in Step A+1, there is at least
some step between Step ¢ and Step £+1, and in some step,
the state of ¢, changes from satisfied to unsatisfied after
the variable is flipped. Suppose that in step 4, the state of
¢» changes from satisfied to unsatisfied after the variable is
flipped, then ¢, includes the flipped variable. Obviously,

Unsat1{(cp, h)= UnsatT(cp, h-1)+1 (12),
and w=g< g+1< h=<k, and we can get
UnsatT (cp, h) =cNTS (cp, h-1)+1
=cNTS (¢, h)+1 (13),
and thus we can obtain the result
UnsatT (cp, h)> cNTS (cp, h)+1 (14),

but the result and ¢NTS (cpq)= UnsatT (cp,q)= cNTS
(cpg+1)= UnsatT (cpg+1)=...= cNTS (cpk)= UnsatT
(cp k) are contradictory, and obviously, assuming cNTS
(cn, k)= UnsatT (cp,k) does not hold. If the clause selected is
¢y in Step k+1, then ¢NTS (cpk)<UnsatT (cpk), and
otherwise, for the rest of clauses ¢, (g=0.1, ..., m-1 and
g7#p), we can obtain cNTS (cq,k+1)=cNTS (cg k) <UnsatT
(ce.k) < UnsatT (cg,k+1). Based on the cases (1) and (2),
we can get that

UnsatT(c, k+1)= cNTS(c, k) (15).
In summary, for any step s and clause c,
UnsatT(c, s)= cNTS(c, s) (16).

22

Suppose under the same parameter /3, a clause c is called
HSC-UT if the c’weight is larger than £ in EPEFV
algorithm [59], and a clause c is called HSC if the c’weight
is larger than £ in SelectNTS algorithm.

For the relationship between HSC-UT and HSC in F,

we have the following conclusions.

Lemma 1. For a CNF formula F, given a clause c,
when algorithm runs to step s, if ¢ is HSC, then c is an
HSC-UT.

Proof. For a clause ¢, if ¢ is HSC, then ¢cNTS(c, s)> f.
Based on the Theorem 1, we can obtain UnsatT{(c, s)=
c¢NTS(c, s). Obviously, UnsatT{(c, s)> f, and thus ¢ is
HSC-UT.

Note 1. The inverse of Lemma 1 does not
necessarily hold. For example, if a clause ¢ is HSC-UT,
then UnsatT{(c, s)> 5. Based on Theorem 1, we can obtain
UnsatT{(c, s)= cNTS(c, s). If UnsatT(c, s)=cNTS(c, s),
then ¢NTS(c, s)> f, and thus ¢ is HSC. If UnsatT{(c,
5)=cNTS(c, s)> p, then c is HSC. However, if UnsatT{(c,
s)=> >cNTS(c, s), then ¢ is not HSC.

We summarize that based on the Theorem 1,
Lemma 1 and Note 1, under the same parameter setting
the set of HSC is also a subset of HSC-UT, indicating
that if a clause ¢ is taboo by the biased random walk
strategy based on the UnsatT, then ¢ must be taboo by
the biased random walk strategy based on cNTS.
However, the inverse is not necessarily correct. Thus,
the biased random walk strategy based on cNTS is
stronger than the clause selection of the biased random
walk strategy based on UnsatT.

According to Table 13 and the results of EPEFV
algorithm in the literature [59], the main role in the
SelectNTS algorithm and the EPEFV algorithm is clause
selection strategy based on the biased random walk. From
the Table 14, we can see the performance of SelectNTS is
better than that of EPEFV algorithm for solving HRS
benchmarks. We conjecture that the stronger the taboo of
clause selection is, the more refined the candidate clauses

are, and the better the algorithm is for solving HRS
problem.
For a HRS formula F, for the relationship between

vUnsatT and vNTS, we have the following conclusions.

Theorem 2. For a CNF formula F, when algorithm
runs to step s, for a variable v, if the vNTS weight of v is
vNTS(v, s) and the vUnsatT weight of v is vUnsatT(v, s),
then vUnsatT(v, s)= vNTS(v, s).

Proof. According to the update methods of vUnsatT
and vNTS, on the one hand, the vNTS values of all
variables are initialized as 0, while if there is a variable v
which appears in the unsatisfied clauses, then the vUnsatT
value of v is initialized as greater than 0, thus

vUnsatT(v,0)= vNTS(v, 0) 7.
On the other hand, each variable appears at least once in £,
and suppose the variable v appears in ¢ clauses denoted as
g1, g2, ..., & Since when a clause with v is selected in step
s, v is not necessarily selected, and thus
vNTS(v, s) <cNTS(g1, s)+ cNTS(g2, s)+...
+cNTS(gy, 5) (18).
Based on Theorem 1 above and Theorem 1 in the
literature [59], we can obtain
cNTS(g1, s)+ cNTS(g2, s)+...+ cNTS(g, s) <UnsatT (g,
s)+ UnsatT (g, s)+...+ UnsatT (g,)
=vUnsatT (v, s) (19).
Thus,

vUnsatT (v, s) =vNTS(v, s) (20).

If the variable selected based on probability in step s is
the same as the flipped variable in step s-1, the EPEFV
algorithm and SelectNTS algorithm prefer to select a
variable to be flipped by preferring the variable with the
greatest scoring function. When the algorithm runs to Step
s, the scoring function U, is score (v, s) + vUnsatT (v, 5)/y
in EPEFV, and the scoring function S, is score (v, s) +
vNTS (v, s)/y in SelectNTS.

Suppose under the same parameter p, for the

relationship between U, and S,, we have the following

23

conclusion.

Lemma 2. For a CNF formula F, given a variable v
in a clause c, when algorithm runs to step s, if the variable
with the greatest value of U, is v among all variables in c,
then the variable with the greatest value of S, is not

necessarily v in c.

Proof. In the clause ¢, suppose there are n variables
., Va. Without loss of generality, if the
variable with the greatest value of U, is v; and v» is the

denoted as v, vy, ..

same as the last flipped variable, then we can get that
vUnsatT (vi, s) ={ vUnsatT (v3, s), vUnsatT (v4, 3), ...,
vUnsatT (v, s)}. Based on Theorem 2, we can obtain that
vUnsatT (vi,) =vNTS (vi, s), vUnsatT (v3, s) =vNTS (v3,
s), ..., vUnsatT (vs, s) =VNTS (vs,, 5). However, the
relationship of vNTS (v, 5), vNTS (v3, 8), ..., VNTS (i,)
is uncertain. Thus, the variable with the greatest value of

Sy is not necessarily v in c.

Lemma 3. For a CNF formula F, given a variable v
in a clause c, when algorithm runs to step s, if the variable
with the greatest value of Sy is v among all variables in c,
then the variable with the greatest value of U, is not

necessarily v in c.

Proof. In the clause ¢, suppose there are n variables
., Va. Without loss of generality, if the

variable with the greatest value of S, is v; and v; is the

denoted as vy, vy, ..

same as the last flipped variable, then we can get that
vNTS(v;, s) ={ vNTS (v3,), vWNTS(v4, $), ..., VNTS(v,,
s)}. Based on Theorem 2, we can obtain that vUnsatT (vy,
s) =vNTS (vi, s), vUnsatT (v3, s) =vNTS (v3, 8), ...,
vUnsatT (vn, §) =vNTS (v, 5). However, the relationship
of vUnsatT (vi, s), vUnsatT (v, 5), ..., vUnsatT (v, §) is
uncertain. Thus, the variable with the greatest value of U,
is not necessarily v in c.

Based on Lemma 2 and Lemma 3, we can summarize
that in a clause ¢, although the U, value of each variable
is greater than or equal to its S, value, if a variable is the
greatest variable based on U,, it is not necessarily the
greatest variable based on S,, and if a variable is the

Table 16 The main differences between SelectNTS and the FRW algorithms

Clause
Solvers selection Variable selection strategy Whether to use weighting scheme
strategy
Biased - . .
SelectNTS Probability selection strategy and the variation of CC strategy Yes
random walk
FRW Standard
. andar Probability selection strategy like ProbSAT or variable property like WalkSAT No
algorithms random walk

greatest variable based on S,, it is not necessarily the
greatest variable based on U,. Thus, the scoring
functions based on U, and S, belong to two different

strategies without any inclusion relationship.

7.3 Approximate implementation of SelectNTS

Before introducing the approximate implementation
of SelectNTS, we describe the main differences between
SelectNTS and the FRW algorithms. The SelectNTS
belongs to the FRW algorithm. Although the SelectNTS
is conceptually related to the ProbSAT based on the
probability selection strategy, there exist major
differences between SelectNTS and FRW algorithms.
We summarize these major differences in Table 16.

Compared with ProbSAT, the biased random walk
strategy, the cNTS updating procedure, the variation of
CC strategy, and the vNTS updating procedure are the
only steps in SelectNTS.

In this discussion, we assume that a random A-SAT
instance F includes n variables and m clauses (r=m/n).
Thus, each clause ¢ contains k variables, i.e., E(|c|) =k.
We use F(s) to denote the number of unsatisfied clauses
in step s, thus E(|F(s)|) < m.

(1) The biased random walk strategy is the clause
selection heuristic. The maintenance of accurate
implementation of the biased random walk strategy is
described as follows. If there exists HSC, a clause is
randomly picked from HSC; and otherwise, a clause is
randomly selected from the unsatisfied clauses. HSC is
updated by the unsatisfied clauses at each step.
Therefore, the complexity of ProbSAT adding the HSC
updating procedure in each step is equal to that on
ProbSAT. For the accurate implementation of the
biased random walk strategy, the worst-case time
complexity of picking an unsatisfied clause at step s is
O(E(|F(s)])). Therefore, the complexity of ProbSAT

24

using the biased random strategy to replace the standard
random walk in each step is less than and equal to that
on ProbSAT.

(2) Whenever a clause is selected in each step, the
¢NTS is updated. The complexity of the ¢NTS updating
procedure in each step is O(1). Therefore, the
complexity of ProbSAT adding the ¢NTS updating
procedure in each step is equal to that on ProbSAT.

(3) The variation of CC strategy is the variable
selection heuristic, but it is not executed at each step.
When the variable selected by the probability selection
method at Step s is equal to the flipping variable at Step
s-1, the variation of CC strategy is executed. The
complexity of the variation of CC strategy in each step
is O(k). Therefore, the complexity of ProbSAT adding
the variation of CC strategy in each step is equal to that
on ProbSAT.

(4) Whenever a variable is selected in each step, the
vNTS is updated. The complexity of the vANTS updating
procedure in each step is O(1). Therefore, the
complexity of ProbSAT adding the vNTS updating
procedure in each step is equal to that on ProbSAT.

The literature [58] has shown that all the time
complexities of ProbSAT in each step are about O(k*r).
According to the above (1)~(4), the worst-case time
complexity of SelectNTS is equal to that of ProbSAT.
Thus, all the time complexities of the approximate
implementation of SelectNTS in each step are about
O(k*r).

The existing probability selection strategy is
ineffective for solving HRS problems, while the ¢cNTS
property and the variation of CC strategy based on the
vNTS property show effectiveness when applying to
probability selection strategy, and the related empirical
analyzes have been shown in Sections 7.1. The possible
reason is that the cNTS property and the variation of CC
strategy help the algorithms based on the probability

selection strategy to deal with local search and thus lead
algorithms to the appropriate search space.

8. Conclusions and Future Works

In this work, we presented an enhanced probability
selection based SLS algorithm which could work
effectively for both the well-known HRS problem and
uniform random £-SAT problem with £>3. This work
has opened up a new direction for effective SLS
algorithms. The first enhancement improved the
probability selection strategy of the original ProbSAT
[6] by using a new and global clause weighting scheme
called ¢NTS to distinguish unsatisfied clauses and
adopting the biased random walk to prefer satisfying
several unsatisfied clauses hard to keep satisfied. The
second enhancement concerns the variation of CC
strategy, which is more powerful than the algorithm
based on the probability selection method, and utilized
a new and global variable weighting scheme called
vNTS to distinguish variables and then proposes a linear
function named S, which combined vNTS and Score, to
avoid selecting the same variable in consecutive steps.
As the variation of CC strategy, S, is simple compared
to the CC strategy.

The enhanced probability selection based local
search method is called SelectNTS, whose effectiveness
has been demonstrated on random SAT problems from
the SAT Competitions in 2017 and 2018, and on
randomly generated HRS and uniform A-SAT with £>3
problems. The results have shown that SelectNTS
outperformed the state-of-the-art SLS solvers and the
best hybrid solver in most cases. Moreover, SelectNTS
can effectively be applied to solve both uniform
random A-SAT problems and HRS problems. The SAT
instances encoded from real-world applications may be
of large size. As our SelectNTS algorithm is able to
solve large HRS instances quickly with up to 1000
variables within five seconds, therefor it may be
beneficial to solve cryptography instances, and thus we
believe the experimental results of SelectNTS on HRS
instances and URS instances may provide support for
solving problems from the application domain.

As future work, based on the ¢NTS property and
vNTS property, we strive to develop more properties,
which are to improve SLS algorithms for structured

25

problems, constrained satisfaction problems, and graph
search problems, by using the new heuristics.

Acknowledgments

This work is partially supported by National Natural
Science Foundation of China (Grant No: 62106206),
and Sichuan Science and Technology Program (Grant
No. 2020YJ0270), and the Fundamental Research

Funds for the Central Universities (Grant No.
2682017ZT12, 2682016CX119, 2682019ZT16,
2682020CX59).

References

[1] Achlioptas, D. Random satisfiability. In Handbook of
Satisfiability, 2009, pp. 245-270.

[2] Balint, A., and Frohlich, A. Improving stochastic local
search for SAT with a new probability distribution. In
Proc. of SAT 2010, pp,10-15.

[3] Balyo, T. Using algorithm configuration tools to generate
hard random satisfiable benchmarks. In Proc. of SAT
2016: Solver and Benchmark Descriptions, pp, 60—62,
https://helda.helsinki.fi/bitstream/handle/10138/164630/s
c2016_ proceedings.pdf?sequence=1&isAllowed=y

[4] Balyo, T., & Chrpa, L. Using Algorithm Configuration
Tools to Generate Hard SAT Benchmarks. In Proc. of
SoCS 2018, pp.133-137.

[5] Balint, A. and Manthey, N. SparrowToRiss. In Proc. of
SAT 2018: Solver and Benchmark Descriptions, pp.
38-39, 2018.

[6] Balint, A. and Schoning, U. (2012). Choosing probability
distributions for stochastic local search and the role of
make versus break. In Pro. of SAT-2012, pp. 16-29.

[7] Balint, A. and Schéning, U. 2018. ProbSAT. In Proc. of
SAT 2018: Solver and Benchmark Descriptions, pp, 35.

[8] Biere A. Cadical, Lingeling, Llingeling, Treengeling and
Yalsat entering the SAT Competition 2017. In Proc. of
SAT 2017: Solver and Benchmark Descriptions, pp,
14-15.

[9] Bright, C., Ilias, K. and G. Vijay. Applying computer
algebra systems with SAT solvers to the Williamson
conjecture. Journal of Symbolic Computation, 100(2020)
187-209.

[10] Cai, S. and Luo, C. Score2SAT. In Proc. of SAT 2017:
Solver and Benchmark Descriptions, pp, 34.

[11] Cai, S., Luo, C., Lin, J., & Su, K. New local search
methods for partial MaxSAT. Artificial Intelligence, 240
(2016)1-18.

[12] Cai, S., Luo, C., & Su, K. Improving walksat by
effective tie-breaking and efficient implementation.
Computer Journal, 2014, 58(11)2864-2875.

[13] Cai, S., & Su, K. Comprehensive score: Towards
efficient local search for SAT with long clauses. In Proc.
of IICAI 2013, pp, 489-495, 2013.

[14] Cai, S., and Su, K. Local search for Boolean
satisfiability with configuration checking and subscore.
Artificial Intelligence, 204(2013)75-98.

[15] Cai, S., & Su, K. (2013¢). CCAnr. In Pro. of SAT-2013:
Solver and Benchmark Descriptions, pp. 16-17,
https://helda.helsinki.fi/bitstream/handle/10138/40026/sc
2013 proceedings.pdf?sequence=2&isAllowed=y

[16] Coelho, J. & Vanhoucke, M.. Multi-mode
resource-constrained project scheduling using RCPSP
and SAT solvers. European Journal of Operational
Research, 2011, 213(1), 73-82.

[17] Deshpande, A. and Layek, R. K.. Fault detection and
therapeutic intervention in gene regulatory networks
using SAT solvers. BioSystems, 179(2019)55-62.

[18] Duong, T. T. N., Pham, D. N., Sattar, A., & Newton, M.
H. (2013). Weight-enhanced diversification in stochastic
local search for satisfiability. In Proc. of IJCAI 2013,
pp-524-530.

[19] Braunstein, A., Mézard, M. & Zecchina, R.. Survey
propagation: an algorithm for satisfiability. Random
Struct. Algorithms, 2005, 27(2) 201-226.

[20] S. Liu and A. Papakonstantinou. Local search for hard
sat formulas: the strength of the polynomial law. In Proc.
of AAAI 2016, pp. 732-738

[21] Hoos, H.H. An adaptive noise mechanism for WalkSAT.

In Proc. of AAAT 2002, pp, 655-660.

[22] Hutter, F., Hoos, H.H. and Leyton-Brown, K. Sequential
model based optimization for general algorithm
configuration. In Proc. of the LION 2011, pp, 507-523.

[23] Hutter, F., Tompkins, D. A., & Hoos, H. H. Scaling and
probabilistic smoothing: Efficient dynamic local search
for SAT. In Proc. of CP 2002, pp, 233-248.

[24] KhudaBukhsh, A.R., Xu, L., Hoos, H.H., and
Leyton-Brown, K. SATenstein: Automatically building
local search SAT solvers from components. Artificial
Intelligence, 232(2016)20-42.

[25] Kochemazov, S., Zaikin, O., Kondratiev, V. and
Semenov, A. MapleLCMDistChronoBT-DL, duplicate
learnts heuristic -aided solvers at the SAT Race 2019. In
Proc. of SAT 2019: Solver and Benchmark Descriptions,

pp, 24, https://helda.helsinki.fi/bitstream/handle/10138/3
06988/sr2019 proceedings.pdf?sequence=1&isAllowed=
y

[26] Konig, B., Maxime, N. and N. Dennis. CoReS: A Tool
for Computing Core Graphs via SAT/SMT Solvers. In:
Proc. of Graph Transformation,2018, 37-42.

[27] Kroc, L., Sabharwal, A., & Selman, B.. An empirical
study of optimal noise and runtime distributions in local
search. In Proc. of SAT-2010, pp. 346-351.

[28] Li, C. & Li Y.. Satisfying versus falsifying in local
search for satisfiability - (poster presentation). In Proc. of
SAT-2012, pp. 477-478.

[29] Li, C. & Huang, W.. Diversification and determinism in
local search for satisfiability. In Pro. of SAT-2005, pp.
158-172.

[30] Liang, J.H., Ganesh, V., Poupart, P. and Czarnecki, K.
An empirical study of branching heuristics through the

26

lens of global learning rate. In Proc. of SAT 2010, pp,
119-135,.

[31] Luo, C., Cai, S., Wu, W., and Su, K. Double
configuration checking in stochastic local search for
satisfiability. In Pro. of AAAI 2014, pp 2703-2709.

[32] Luo, C., Su, K., and Cai, S. More efficient two-mode
stochastic local search for random 3-satisfiability.
Applied intelligence, 2014, 41(3) 665-680.

[33] Luo, C., Cai, S., Su, K. and Wu, W. Clause states based
configuration checking in local search for satisfiability.
IEEE transactions on Cybernetics, 2015, 45 (5)
1028-1041.

[34] Luo, C., Cai, S., Wu, W, and Su, K. CSCCSat. In Proc.
of SAT 2016: Solver and Benchmark Descriptions, pp, 10,
https://helda.helsinki.fi/bitstream/handle/10138/164630/s
c2016_ proceedings.pdf?sequence=1&isAllowed=y

[35] Luo, C., Cai, S., Su, K. and Huang, W. CCEHC: An
Efficient Local Search Algorithm for Weighted Partial
Maximum Satisfiability (Extended Abstract). In Proc. of
1JCAI 2017, pp, 5030 — 5034.

[36] Marques-Silva, JP. & Sakallah KA. (1999). Grasp: A
search algorithm for propositional satisfiability. IEEE
Trans. Comput. 48(5), pp. 506-521.

[37] Moskewicz, M., Madigan, C., et al. (2001). Chaff:
Engineering an Efficient SAT Solver, In Proc. of Design
Automation Conference, pp. 530-535.

[38] Ouimet, M., and Lundqvist, K.. Automated verification
of completeness and consistency of abstract state machine
specifications using a sat solver. Electronic Notes in
Theoretical Computer Science, 2007, 190(2), 85-97.

[39] Ryvchin, V. and Nadel, A. Ma-ple LCM Dist
ChronoBT. In Proc. of SAT 2018: Solver and Benchmark
Descriptions, pp, 29.

[40] Selman, B., Kautz, H. A., and Cohen, B. Noise strategies

for improving local search. In Proc. of AAAI 1994, pp,
337-343.

[41] Thornton, J. Clause weighting local search for SAT.
Journal of Automated Reasoning, 2015, 35(1-3)97-142.

[42] Ulyantsev, V. andTsarev, F.. Extended finite-state
machine induction using SAT-solver. IFAC Proceedings
Volumes, 2012, 45(6), 236-241.

[43] Wu, Z., & Wah, B. W. An efficient global-search
strategy in discrete Lagrangian methods for solving hard
satisfiability problems. In Proc. of AAAI/IAAL 2000, pp,
310-315.

[44] Yin L, He F, Hung WNN, Song X, Gu M (2012)
Maxterm covering for satisfiability. IEEE Trans Comput
61(3):420-426.

[45] Zha, A. GluHack. In Proc. of SAT 2018: Solver and
Benchmark Descriptions, pp, 26.

[46] Zhao, X., Zhang, L., Ouyang, D. and Jiao, Y.. Deriving
all minimal consistency-based diagnosis sets using SAT

solvers. Progress in Natural Science, 2009, 19(4),
489-494.
[47] Heule, M. J., Generating the uniform random

benchmarks," in Proc. SAT competition 2018, pp. 80.
[48] Mavrovouniotis, M., Miiller, F. M. and Yang, S.. Ant
colony optimization with local search for dynamic

traveling salesman problems, IEEE Trans. Cybern, 2017,
47 (7)1743-1756.

[49] Mazure, B., Sais, L. and Grégoire, E.. Tabu search for
SAT, In Proc. of the AAAI- 97, 1997, pp. 281-285.

[50] Luo, C., Su, K. and Cai, S., Improving local search for
random 3-SAT using quantitative configuration checking,
in Proc. of ECAI 2012, 2012, pp. 570-575

[51] Selman, B., Mitchell, D. and Levesque, H.. A new
method for solving hard satisfiability problems, In Proc.
of the AAAI-92, 1992, pp. 440—446.

[52] Liu, S. and Papakonstantinou, A.. Local search for hard
sat formulas: the strength of the polynomial law, In Proc.
of the AAAI-2016, 2016, pp. 732-738.

[53] Luo, C,, Cai, S., Wu, W., & Su, K.. Focused random
walk with configuration checking and break minimum for
satisfiability. In Proc. of CP-2013, pp. 481-496.

[54] SAT Competition 2017.
https://baldur.iti.kit.edu/sat-competition-2017/.

[55] SAT Competition 2018. http://sat2018.forsyte. tuwien.
ac.at

[56] k-SAT generator. https://sourceforge.net/projects /ksat
generator/

[57] SAT Competition 2013. http://satcompetition.org/edacc
/SATCompetition2013/experiment/23/solver-configurati
ons/854.

[58] Fu, H., Liu J., Xu, Y.. Focused Random Walk with
Probability Distribution for SAT with Long Clauses.
Applied Intelligence, 2020, 50(12): 4732-4753.

[59] Fu, H. Xu, Y., Wu, G., Liu J., Chen, S., He, X..
Emphasis on the Flipping Variable: Towards Effective

Local Search for Hard Random Satisfiability, Information
Sciences, 2021, 566 (2021) : 118-139.

27

