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Collapsing cylindrically
symmetric filamentary stellar
object

Sana Saleem1*, Andleeb Ibrar1*, Musawa Yahya Almusawa2*,
Sayed M. Eldin3* and Muhammad Imran Asjad1*
1Department of Mathematics, University of Management and Technology, Lahore, Pakistan,
2Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia, 3Center of
Research, Faculty of Engineering and Technology, Future University in Egypt, New Cairo, Egypt

This work investigates the collapsing behavior of filamentary objects under the
influence of dark matter. For this purpose, we use f(R,T) gravity as a candidate
for dark matter. The collapse equation is obtained by imposing the Darmois
junction condition at the collapsing boundary. At the collapsing boundary, it is
observed that the radial pressure is non-zero and is proportional to the field time-
dependent component. Finally, we check the relationship between gravitational
waves and dark source terms. It is concluded that the dark source terms disrupt
the propagation of gravitational waves.
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gravitational collapse, gravitational waves, dark matter, compact stellar filament, f(R,T)
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1 Introduction

Cosmological discoveries such as cosmic-accelerated expansion and the galaxy rotation
curves reveal the existence of mysterious terms such as dark energy (DE) and dark matter
(DM).The DE is the mysterious kind of energy that causes the cosmic expansion.The DM is
a kind of non-baryonic matter that is neither an emitter nor an absorber of electromagnetic
radiation. Its gravitational effects on baryonic matter indicate its existence. Observational
studies concerning galaxy rotational curve issues and mass differences in galactic clusters
provided evidence for the presence and significance of DM in the formation of stars (Oort,
1932; Zwicky, 1933). Planck statistics show that 68% of the universe is in the form of
DE, 27% is in the form of DM, and the remaining 5% is in the form of baryonic matter
(Planck collaboration and P.A.R. Ade, 2014).

The number of researchers provides a variety of models to explore the properties
of DM and DE. The ΛCDM model based on the cosmological constant (Λ) is used to
describe vacuum energy in the context of general relativity (GR). Unfortunately, this attempt
fails due to “fine-tuning” (Sirivastava, 2008) and “cosmic coincidence” (Steinhardt et al.,
1997) issues. In this context, the modified theory attains much attention. The f(R) gravity
(Capozziello, 2002) is one of the simplest extensions of GR constructed by placing the
generic function f(R) instead of R in the Einstein–Hilbert action. Numerous cosmological
phenomena, including the inflationary phase (Barrow and Hervik, 2006), late-time cosmic
evolution (Brookfield et al., 2006), validity with solar-system testing (Zhang, 2007), and
astrophysical problems (R Manzoor, 2021), have been examined for various f(R) models.
In the same context, Sharif and Saleem (2020a) discussed the stability of the universe
against anisotropic homogeneous perturbation for different models of the f(R) theory.

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2023.1161517
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2023.1161517&domain=pdf&date_stamp=2023-03-14
mailto:sanasaleem@umt.edu.pk
mailto:andleebibrar78@gmail.com
mailto:malmusawi@jazanu.edu.sa
mailto:sayed.eldin22@fue.edu.eg
mailto:imran.asjad@umt.edu.pk
https://doi.org/10.3389/fspas.2023.1161517
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2023.1161517/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1161517/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1161517/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Saleem et al. 10.3389/fspas.2023.1161517

Harko et al. (2011) presented themodified version of f(R) gravity
by inserting the generic function T (trace of the energy–momentum
tensor), which is known as f(R,T) gravity. This theory has attracted
much attention as a viable gravity to discuss the mysteries of the
universe. Harko et al. (2011) also discussed the stability analysis in
the framework of the f(R,T) theory. In the same context,Horvat et al.
(2011) determined the stability of a matter structure in the presence
of anisotropy pressure with radial perturbations. Sharif and Zubair
(2012a), Sharif andZubair (2012b), Sharif andZubair (2013a), Sharif
and Zubair (2013b), and Sharif and Zubair (2014) also investigated
energy conditions and thermodynamical laws and presented the
anisotropic universe models in the background of f(R,T) gravity. In
the case of the expansion-free cylindrically symmetric anisotropic
fluid, Sharif and Yousaf (2012) found that certain solutions fulfill
the Darmois junction conditions (DJCs) and certain solutions
demonstrate the presence of a thin shell on the surface boundary.
Sharif and Saleem (2020b) also discussed the stability of the universe
by using homogenous anisotropic perturbations in the same context.
Mumtaz at el. (2022) discussed the dissipative collapse of a cluster of
stellar objects in f(R,T) gravity.

The development of stellar objects (such as stars, planets, and
galaxy clusters), gravitational waves (GWs), and radiations is the
result of the gravitational collapse. As a result of this collapsing
process, a stable cosmic stellar structure becomes unstable under the
influence of its own gravity. Many scientists have investigated how
gravitational collapse influences evolutionary stellar distributions.
Ostriker (1964) examined the behavior of compressible cylindrically
symmetric filamentary objects. Breysse (2014) examined the
stability of filamentary objects with cylindrically symmetric
structures of the self-gravitating fluid. Many researchers (Milgrom,
1997; Kneb, 2003; Bessho and Tsuribe, 2012; Freundlich, 2014) used
cylindrical symmetry to explore filamentary objects analytically and
numerically. Sharif and Manzoor (2016) examined the stability of
filamentary objects in the context of the Brans–Dicke theory. Zubair
et al. (2017) examined the stability of a cylindrically symmetric
collapsing object under the influence of an anisotropic fluid in
f(R,T) gravity. In the same framework, Sharif and Waseem (2019)
studied the stability of the Einstein universe under the influence of
inhomogeneous perturbations and found the sable solutions. Guhaa
and Ghosh (2021) discussed the dynamics of gravitational collapse
instability in the context of f(R,T) gravity. Hoemann et al. (2022)
studied the collapse of filamentary objects in a two-phase process
and found the collapse timescale.

The study of stellar objects influenced by mysterious
components (DE and DM) may expose the mysterious change
hidden in the universe’s structure formation (Sharif and Manzoor,
2014). Herrera et al. (2005) studied the matching conditions for an
anisotropic cylindrical fluid that is collapsing and demonstrated that
the pressure at the surface of the cylinder is non-zero. Sharif and
Fatima (2017) examined the dynamics of stellar filamentary objects
in the context of the f(G) theory and concluded that the existence
of dark source terms influences both the universe’s collapse and its
rate of expansion. Manzoor et al. (2020) discussed the collapse of
stellar filamentary objects in the background of f(R) and Palatini f(R)
(Manzoor et al., 2019) gravity under the influence of exotic matter.
Motivated by the previous work, we studied the dynamics of stellar
filaments under the influence of exotic terms in the background of
the f(R,T) theory. This work is organized in the following pattern:

Section 2 examines the f(R,T) theory. Section 3 describes the use
of DJCs to demonstrate the collapse of filamentary objects. The
conclusions of the junction conditions are covered in Section 4
to discuss the dynamics of the collapse. In order to evaluate the
relationship between DM, and GWs, Section 5 adds the specific
model of the f(R,T) theory to the collapsing mechanism. Section 6
concludes the results.

2 The formalism of the f(R,T) theory

Harko et al. (2011) introduced the f(R,T) gravity, which has
resulted in a number of exciting discoveries in the areas of
cosmology and astrophysics. This theory is generated by inserting
the generic trace term into the Einstein–Hilbert action. The action
of f(R,T) gravity is manifested as follows:

I = ∫√−g[Sm +
f (R,T)
2κ
]d4x, (1)

where Sm stands for the matter Lagrangian, g exhibits the metric
tensor’s determinant, κ denotes the coupling parameter,R represents
the Ricci scalar, and Tmanifests the trace of the stress energy tensor.
The energy–momentum tensor for matter configuration is given by

Tζη = −(
2
√−g
)
δSm
δgζη
. (2)

The modified field equations corresponding to Eq. 1 are
determined as follows:

−(Θζη +Tζη) fT (R,T) + κ
2Tζη = −

1
2
f (R)gζη + fR (R)Rζη

− (∇ζ∇η − gζη□). (3)

Here, the terms fR(R,T) and fT(R,T) are

fR (R,T) =
∂ f (R,T)

∂R
; fT (R,T) =

∂ f (R,T)
∂T
,

where □ = gζη∇ζ∇η and ∇ζ exhibit the covariant derivative, and Θζη
is given as follows:

Θζη = −2gαβ
∂2Sm

∂gαβ∂gζη
+ gζηSm − 2Tζη. (4)

Formatter configuration,we consider Sm = ρ (Planck collaboration
and P.A.R. Ade, 2014), which reduces Eq. 4 as follows:

Θζη = ρgζη − 2Tζη.

In the standard GR format, Eq. 3 can be rewritten as follows:

Gζη = Rζη −
1
2
Rgζη = T

eff
ζη , (5)

where T eff
ζη denotes the effective stress–energy tensor given by

T eff
ζη =

1
fR (R,T)

[(1+ fT (R,T))T
(m)
ζη − ρgζη fT (R,T)

= −1
2
gζη (R fR (R,T) − f (R,T))

+ fR (R,T)(∇ζ∇η − gζη□)] . (6)
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The divergence of Eq. 6 is presented as follows:

∇ ζT eff
ζη = −

fT (R,T)
fT (R,T) − 1

[(Tζη +Θζη)∇ ζ {ln fT (R,T)}

= −1
2
gζη∇

ζT+∇ ζΘζη] . (7)

3 Filament structure

In this study, we consider a collapsing filament which is
enclosed by a cylindrical surface and characterized by spacetime
(Herrera et al., 2005).

ds2 = A2 (t, r)dr2 −A2 (t, r)dt2 +B2 (t, r)dz2 +C2 (t, r)dϕ2. (8)

In order to maintain cylindrical symmetry, the following
limits 0 ≤ ϕ ≤ 2Π,−∞ ≤ t ≤∞,and−∞ < z <∞ are applied.
We assign the coordinates as x1 = r, x0 = t, x2 = z, and x3 = ϕ.
Baryonic matter composed of anisotropic and dissipative fluids
is represented by the energy–momentum tensor given as
follows:

Tζη = Prgζη + (ρ+ Pr)VζVη + (Pz − Pr)SζSη
+ (Pϕ − Pr)KζKη + q(lζVη + lηVζ) . (9)

Here, ρ manifests the energy density, whereas the terms Pr ,
Pϕ, and Pz denote matter stresses, and Vζ ,Kζ ,Sζ , and lζ are four
vectors. The vector Vζ is a four-velocity vector, whereas the vectors
Kζ andSζ represent space-like vectors, and the vector lζ is a null-
like vector perpendicular to Vζ . These vectors satisfy the following
identities:

Vζ = −Aδ
0
ζ , Sζ = Bδ2ζ , Kζ = Cδ

3
ζ , lζ = Aδ1ζ . (10)

By using Eqs. 8–10, field Eq. 5 is reduced to five non-zero
components; however, in this case, we will only focus on the
respective two cases:

−
B,tt
B
+
B,t
B

A,t
A
−
C,tt
C
+
C,t
C

A,t
A
+
B,r
B

A,r
A
+
B,r
B

C,r
C
−
C,t
C

B,t
B
+
C,r
C

A,r
A

= 1
fR (R,T)

[A2pr ( fT (R,T) + 1) −A
2ρ fT (R,T)

+1
2
A2 ( f (R,T) −R fR (R,T)) + fR(R,T),tt

+(
C,t
C
−
A,t
A
+
B,t
B
) fR(R,T),t

+ fR(R,T),r(
B,r
B
+
A,r
A
+
C,r
C
)], (11)

−
B,r
B

A,t
A
+
B,tr
B
−
B,t
B

A,r
A
−
A,t
A

C,r
C
+
C,tr
C
−
C,t
C

A,r
A

= 1
fR (R,T)

[( fT (R,T) + 1)q+ fR(R,T),tr

−
A,r
A

fR(R,T),t −
A,t
A

fR(R,T),r]. (12)

Here, partial derivatives are given as follows:

fR(R,T),t =
∂ fR (R,T)

∂t
, fR(R,T),tt =

∂2 fR (R,T)

∂t2
,

fR(R,T),r =
∂ fR (R,T)

∂r
, fR(R,T),rr =

∂2 fR (R,T)

∂r2
,

fR(R,T),tr =
∂2 fR (R,T)

∂t∂r
. (13)

3.1 Collapsing stellar filament boundary

Every interior structure that collapses has an exterior vacuum
or non-vacuum distribution enclosing it. In this scenario, we use
the cylindrical hypersurface (Σ̂) related to the exterior vacuum
configuration in Einstein and Rosen (1937). The spacetime that
manifests the exterior case is presented as follows:

ds2 = −e2(ϵ−δ)dT̄2 + e2(ϵ−δ)dR̄2 + e2δdZ2 + e−2δR̄2dϕ2, (14)

where both coefficients ϵ and δ depend on temporal T̄ and radial
R̄ components, respectively. The gravitational wave equation for the
field equations Rζη = 0 is given by

δ,R̄
R̄
+ δ,R̄R̄ − δ,T̄T̄ = 0, (15)

R̄(δ2,T̄ + δ
2
,R̄) = δ,R̄, 2R̄δ,R̄δ,T̄ = ϵ,T̄. (16)

Now, we use the DJCs (Darmois, 1927) to smoothly match the
interior collapsing surface to the exterior surface. We take into
account the DJC, which states that across the boundary Σ̂− = Σ̂+ = Σ̂,
the interior spacetime (10) connected with the interior hypersurface
(Σ̂−) must be similar to the exterior spacetime (8) connected to the
exterior hypersurface (Σ̂+). Accordingly, we examine the continuity
of the second basic form at Σ̂− = Σ̂ = Σ̂+. Using interior and exterior
coordinates, the equation for the collapsed surface boundary (Σ̂) =
Σ̂− = Σ̂+ is expressed as follows:

L− = r− rΣ̂ = 0, (17)

L+ = R̄− R̄Σ̂ (T̄) = 0. (18)

where L+ denotes the exterior spacetime and L− denotes the interior
spacetime.Thehypersurface (Σ̂) represents the co-moving boundary
of collapsing surface, so the quantity rΣ̂ is taken as a constant.
In order to use the junction conditions, we must make sure that
the surface boundary uses the same parametrization whether it is
supposed to be embedded in L+ or L−.

We will define the inner and exterior geometries on Σ̂ in order
to ensure the continuity of the first fundamental form. In order to
achieve this, we use Eq. 17 on Eq. 8, which produces an interior
metric on the boundary surface represented by

ds2
Σ̂−
= −dτ2 +B2dz2 +C2dϕ2. (19)

Here, the time coordinate τ on Σ̂ is specified as

dτ = Adt. (20)
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We will consider Ω0 = τ, Ω2 = z, and Ω3 = ϕ as parameters on
the boundary surface Σ̂. By utilizing (18), the exterior spacetime (14)
reduces Σ̂ to

ds2
Σ̂+
= −e−2(ϵ−δ)[1−(dR̄

dT̄
)
2
]dT̄2 + e2δdz2 + e−2δR̄2dϕ2. (21)

According to the continuity of the first fundamental form,
interior metric (19) is similar to Eq. 21 at Σ̂ if the following
requirements are fulfilled:

dτ = e(ϵ−δ)[1−(dR̄
dT̄
)
2
]

1
2
dT̄, (22)

B = eδ, (23)

C = e−δR̄, (24)

with

1−(dR̄
dT̄
)
2
> 0. (25)

Depending on the extrinsic curvature (Kθψ), the second
fundamental form of the boundary condition is defined as follows:

KθψdΩθdΩψ, θ,ψ = 0,2,3, (26)

where

K±θψ = −n
±
a (

∂2xa

∂Ωθ∂Ωψ
+ Γ(a)ρσ

∂xρ

∂Ωθ
∂xσ

∂Ωψ). (27)

Here, the term n±a denotes the outward unit normals to the
surface Σ̂ associated with interior and exterior spacetimes, while xϵ

represents the equation of Σ̂ connectedwith L− or L+.TheChristoffel
symbols should be computed using the respective exterior Eq. 8 or
interior Eq. 14 metrics. From Eqs 17, 18, the derived outward unit
normals of Σ̂ corresponding to L− or L+ are as follows:

n−ζ = (0,A,0,0) , (28)

n+ζ = [1−(
dR̄
dT̄
)
2
]
− 1

2
(−dR̄

dT̄
,1,0,0)e(ϵ−δ),

= (− ̇R̄, ̇T̄,0,0)e−2(ϵ−δ), (29)

where dot represents the differential with respect to τ (the time
coordinate discussed in Eq. 22). If Eq. 25 is satisfied, then unit
vectors Eqs 28 and 29 are both space-like. The following are the
non-zero components of the extrinsic curvature K±θψ:

K−00 = −
1
A2A,r, (30)

K+00 = ((
̈R̄2 − ̈T̄

2
)[ ̈R̄(ϵ,T̄ − δ,T̄) + ̈R̄(ϵ,R̄ − δ,R̄)] − ̈R̄ ̈T̄+ e2(δ−ϵ) ̈T̄ ̈R̄) ,

(31)

K−22 = −
B
A
B,r, (32)

K+22 = e
2δ ( ̈R̄δ,T̄ + ̇T̄δ,R̄) , (33)

K−33 = −
C
A
C,r, (34)

K+33 = e
−2δ(
̇T̄

R̄
− ̇T̄δ,R̄ − ̇R̄δ,T̄) R̄

2. (35)

Eqs 20, 22–24 produce the entireDarmois conditions alongwith
the continuity of Kθψ over the surface Σ̂.

4 Results of boundary conditions

This section derives the important results of boundary
conditions in the framework of collapsing galactic filaments. In this
regard, we use the field equations related to interior and exterior
geometries to concise the boundary conditions and formulate
certain helpful formulas (Herrera et al., 2005; Herrera et al., 2007).

Equation 22 provides the following result:

( ̇T̄2 − ̇R̄2)e2(ϵ−δ) = 1, (36)

and by using Eqs 23, 24, we obtain

R̄ = BC. (37)

Using Eq. 30, the previous equation can be differentiated as
follows:

̇R̄ =
(BC),t
A
. (38)

Also, by using Eqs 23, 24, the continuity of curvatures K22 and
K33 lead to the following outcome:

̇T̄ =
(BC),r
A
. (39)

Differentiating (11), (12), and (30) along with Eqs 38, 39 yields

̇R̄ ̈T̄− ̇T̄ ̈R̄ = 1
A4 [(BC),t[C,t(AB),r +B,t(AC),r

−( 1
fR (R,T)

[( fT (R,T) + 1)q− fR(R,T),r
A,t
A

+ fR(R,T),tr −
A,r
A

fR(R,T),t])ABC

+ (BC),r[(
1

fR (R,T)
[A2pr (1+ fT (R,T))

−ρA2 fT (R,T) +
1
2
A2 ( f (R,T) −R fR (R,T))

+ fR(R,T),tt +(
B,t
B
+
C,t
C
−
A,t
A
) fR(R,T),t

+(
C,r
C
+
B,r
B
+
A,r
A
) fR(R,T),r])ABC

− AB,tC,t −AB,rC,r −A,r(BC),r]]. (40)

The curvatures K00 and K22 and Eqs 16, 23, 24, 36, 37, 39, and
40 give the following expression:

1
A4 [(C,rB,t −B,rC,t)

2 +( 1
fR (R,T)

[A2pr ( fT (R,T) + 1)

−A2ρ fT (R,T) +
1
2
A2 ( f (R,T) −R fR (R,T))

+ fR(R,T),tt +(
C,t
C
+
B,t
B
−
A,t
A
) fR(R,T),t

+(
B,r
B
+
A,r
A
+
C,r
C
) fR(R,T),r])(BC)

2
,r

−( 1
fR (R,T)

[(1+ fT (R,T))q+ fR(R,T),tr

−
A,t
A

fR(R,T),r −
A,r
A

fR(R,T),t])]

= ( ̇T̄2 − ̇R̄2)
2
δ2,T̄. (41)
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Differentiating Eqs 23, 24 with Eqs 20, 22 results in

B,t
A
= e2δ−ϵ[1−(

̇R̄
̇T̄
)
2
]
−1
2

δ,T̄, (42)

C,t
A
= e−ϵ[1−(

̇R̄
̇T̄
)
2
]
−1
2

(
̇R̄
̇T̄
− R̄δ,T̄). (43)

Now, the connection between the extrinsic curvatures
K22 andK33 and Eqs 42, 43 yields the following result:

(C,rB,t −B,rC,r)
1
A2 = −

̇R̄ ̇T̄δ,R̄ − ( ̇R̄
2 − ̇T̄2)δ,T̄. (44)

Finally, by utilizing Eqs 16, 39 and inserting Eqs 44 into 41, we
obtain

1
fR (R,T)

[A2pr ( fT (R,T) + 1) − ρA
2 fT (R,T)

−1
2
A2 (R fR (R,T) − f (R,T)) + fR(R,T),tt

+(
B,t
B
−
A,t
A
+
C,t
C
) fR(R,T),t

+ (
A,r
A
+
C,r
C
+
B,r
B
) fR(R,T),r]

= A2e2(δ−ϵ)δ2R̄(2
δ,T̄
δ,R̄

υ− υ2

1− υ2
)

+( 1
fR (R,T)

[(1+ fT (R,T))q+ fR(R,T),tr

−
A,r
A

fR(R,T),t −
A,t
A

fR(R,T),r])((BC)
−2
r ) . (45)

Here, the radial velocity of the collapsed boundary surface Σ̂
is represented by v = dR̄

dT̄
. Eq. 45 represents a collapse equation for

the stellar filamentary object under the influence of DM. Because of
dissipation and exotic matter, it is clear from the previous equation
that the radial pressure on the boundary surface Σ̂ remains non-
zero.

5 Stellar filaments and
matter–curvature coupling

According to cosmological observations, it is observed that
galaxies across the entire universe are linked by the system of
filaments via DM. For several years, it has been assumed that there
are DM filaments linking galaxies, acting as a sort of superstructure
or web. In the present work, we will discuss the specific viable model
of the f(R,T) theory to examine the effect of DM.

5.1 Minimally coupled model

To examine the role of DM on the stellar collapsing filament, we
take a specific minimally coupled model of the f(R,T) theory, which
is given as follows:

f (R,T) = R− ν(−T)m, (46)

where ν denotes the coupling parameter and the parameter m
represents the matter effects. For m = 0, the aforementioned model

reduces to GR, and for 0 <m < 1, this model serves as a dark matter
candidate at galactic scales (Zaregonbadi et al., 2016). By using
Eq. 46, we obtained the following differentials:

fT (R,T) = −νm(−T)
m, fR (R,T) = 1, fR(R,T),t = 0,

fR(R,T),tt = 0, fR(R,T),r = 0, fR(R,T),rr = 0, fR(R,T),rt = 0.

According to a specificmodel Eq. 46 of f(R,T) gravity, collapsing
Eq. 45 reduces to the following expression:

A2Pr −A
2νm(−T)m−1 (Pr − ρ) +

A2

2
(−ν(−T)m)

= A2e2(δ−ϵ)δ2R̄(2
δ,T
δ,R̄

υ− υ2

1− υ2
)

+ (1− νm(−T)m)q((BC)−2,r ) . (47)

It demonstrates that because of dissipation, the velocity of
the collapsing boundary, components of the dark source, and the
radial fluid pressure are non-zero on the collapsing boundary.
Ordinary matter is believed to condense into galaxies and cosmic
clusters in filament formations under the gravitational influence of
DM. According to our collapsing model, the gravitational pull of
mysterious matter on the collapsed filamentary object is similar to
the effects of exotic terms.

Thebody’s natural tendency to gravitate toward itself throughout
the collapse process causes its gravitational force to dominate its
internal pressure. A GW momentum flux occurs as a result of the
collapsing body dissipating energy. In the collapsing scenario, Eq. 47
may be used to explain the connections between DM and various
phenomena.

5.2 Gravitational waves and exotic material

A new and exciting area of research into gravitational theories
has begun with the first detection of GWs by the LIGO and
Virgo Collaboration in 2015 (Abbott, 2016a). The GWs are the
result of different phenomena such as the Big Bang event and the
gravitational collapse of star clusters. According to recent research,
DM may have an influence on GW propagation in the same way
that various propagationmediums affect the propagation of the light
wave. However, this influence is so slight that it would be much
below the sensitivity of the present detector.

The study of GWs has become more important. Gravitational
waves generated by different phenomena can be observed and
examined to discover more about the kinematics of the cosmos and
how cosmic structures develop. While investigating these waves,
polarization modes will indicate their geometrical direction. A GW
has two polarized modes in GR; however, it can have additional
modes in modified theories. For instance, it has been demonstrated
that a GW has two more modes than GR in the f(R) and f(R,T)
theories (Alves, 2016).

The collapse in Eq. 47may be used to examine the relationships
between GWs and dark source terms of filamentary collapse.
Assume a cylindrical source that is static for a while before it begins
to contract and produces a strong radiation pulse emitting from the
axis. In this regard, the corresponding function may be expressed as
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follows (Ostriker, 1964):

δ = 1
2π
∫
T̄−R̄

−∞
δst +

g(T̄′)

((T̄− T̄′) − R̄2)1/2
dT̄′, (48)

where the time-dependent function is g(T̄) = g0δ(T̄) that depicts the
intensity of the wave path and δst represents the static Levi–Civita
solution. Here, in this context, g0 stands for a constant and δ(T̄)
represents the delta function. Eq. 48 and wave Eq. 15 provide

δ = δst, R̄ > T̄,

δ =
g0

2π(v2 − R̄2)1/2
+ δst, R̄ < T̄.

Eqs 15, 48demonstrate the relationship betweenGWandDM in
the presence of pressure and visible matter dissipation at the surface.
Assuming that the pressure and dissipation of baryonic matter are
insignificant at Σ̂ (q ≈ 0,pr ≈ 0), we can derive a relationship between
DM and GW from Eq. 46, which is as follows:

A2νm(−T)m−1ρ+ A
2

2
(−ν(−T)m) = A2e2(δ−ϵ)δ2R̄(2

δ,T
δ,R̄

υ− υ2

1− υ2
).

(49)

Eqs. 47 – 49 indicate the presence of exotic matter can interrupt
the propagation medium of GWs in the collapsed mechanism.

6 Conclusion

The significance of DM at cosmic levels is predicted by
observational investigations. On galactic and supergalactic levels, it
is regarded as an essential component of the filamentary structure.
The structure of the cosmos is characterized by stellar filaments.
At various scales, these formations can be found everywhere in the
cosmos. In this work, we explored the collapsing behavior of stellar
filamentary objects under the consideration of exotic materials. In
this regard, we used the higher-order minimally coupled gravity
(f(R,T) theory) to include the dark source terms in consideration.
To define the collapsing structure, the DJC has been used on the
collapsed surface boundary. By constructing a collapsing equation
at the collapsing surface Σ̂, it is discovered that the existence of dark
components together with dissipation causes the radial pressure on
the collapsing boundary to remain non-zero.

Observations demonstrated that a significant amount of DM
is required to form galaxies and massive clusters. For collapsing
context, we used the specific term of the f(R,T) theory as the
dark source. The existence of exotic material as a source of GW
transmission can expose the mysteries of dark terms (Flauger and

Weinberg, 2018; Tamfal et al., 2018). The main concluding remarks
are as follows:

• It is discovered that the relationship between radial pressure
(associated with baryonic contribution) and dark terms
determines the stability scenario for collapsing structures.
• We have examined the connection of GWs emitting from
collapsed filamentary objects in exotic terms. From the
collapsing equation, a relation between dark terms andGWshas
been obtained, which indicates that the presence of dark source
terms can alter the medium of GWs.
• In GR, all collapsing variables are directly dependent on
matter contribution, but in our case, exotic terms also play
an essential role. It is worthwhile to mention that this work
reduces to f(R) gravity (Manzoor et al., 2020) when T = 0 and
GR (Herrera et al., 2005) by substituting f(R) = R.
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