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Shuicheng District is a karst mountain area, located in Guizhou Province, China. Its
fragile stratum and frequent underground mining activities makes it prone to
landslides. Owning to its wide coverage and frequent revisit, the InSAR technology
has advantages in potential landslide identification and deformation monitor.
However, affected by dense vegetation and atmospheric delay, it is much
difficult to get sufficient effective targets to derive the deformation in this area.
Besides, deformation derived from single orbit SAR data can result in the missing
identification of some potential landslides and the misinterpreting of the real
kinematics process of landslides. In this study, the multi-source SAR data,
atmospheric error correction by quadratic tree image segmentation method,
and phase-stacking method were selected to derive the surface deformation
of this area. Besides, DS-InSAR and MSBAS method were combined to derive the
deformation of Pingdi landslide. First, the potential landslides in this area were
identified, surface deformation result, optical remote sensing images and
geomorphological features were jointly considered. Then, the landslide
distribution characteristics was analyzed in terms of slope, elevation and
stratum. After that, the deformation along the LOS direction was acquired
using the DS-InSAR method. The MSBAS method was used to retrieve the
two-dimensional deformation of Pingdi landslide. Finally, the comprehensive
analysis of triggering factors and failure process were conducted according to
the spatial-temporal deformation characteristics and field investigation. The
results indicated that landslides in Shuicheng district were mostly located in
the junction of T1 and P3 stratum and mining related. Mining activity was the
main cause of the Pingdi landslide deformation, the precipitation was the driving
factor of the landslide instability. The research provides an insight into the explore
the unstable slope distribution characteristic and the failure process of the
landslides.
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1 Introduction

China has the largest karst area in the world, accounting for
nearly 1/3 of the total area of karst in China (Wu, 1998). Because of
the complex geomorphologic environment, fragile stratum
environment and frequent underground mining activities, large-
scale landslides and severe casualties occurred frequently in karst
mountain areas (Huang et al., 2011; Zhao et al., 2022; Zhong et al.,
2022). For example, on 3 December 2004, a catastrophic landslide
caused by mining activity occurred at the front edge of the mountain
in Zongling town, China, causing 39 deaths, thirteen people injured,
and five people missing (Wu et al., 2006; Wang et al., 2020); on
2 August 2017, a combination of rainfall and mining activity led to a
catastrophic landslide in the Pusa Village, Nayong Town, China,
resulting in nine missing and 26 deaths (Chen et al., 2020a; Chen
et al., 2020b); on 8 May 2022 the Baiyan landslide triggered by
underground-mining in Zhijin Town, China, causing 3 deaths
(CCTV news, 2022). These landslides were all located in high-
altitude areas with steep slopes, caused by mining activities, difficult
to detect and forecast in advance and mostly failed suddenly with
complicated formation mechanisms (Wu et al., 2006; Wang et al.,
2020; Chen et al., 2020a; Chen et al., 2020b; CCTV news, 2022).
Although several landslides have been managed, those undetected
potential landslides are always a threat. Therefore, it is of great
significance to accurately identify potential landslides and analyze
the deformation characteristics induced by underground mining
activities and reveal the formation mechanism of landslides for the
prevention and management of geological disasters.

Previous research of karst landslides mainly focused on the
occurred landslide (Zheng et al., 2016; Lin et al., 2018; Kong et al.,
2020), and the research methodology was mainly field investigation,
geological exploration, and physical modeling (Wu et al., 2006; Gao
et al., 2008). Few focused on the large-scale potential landslide
identification, distribution characteristics and deformation
process of landslide, so the distribution characteristics and
kinematic process of potentially unstable slopes is still unknown.
Since the slope deformation occur before the landslides (McKean
and Josh, 2004), surface deformation monitor can be used for
potential landslide identification and provides continuous view of
deformation process. To this end, the distribution characteristics,
spatial extension and temporal evolution of potential landslides can
be explored through the deformation of the slopes.

Interferometric synthetic aperture radar (InSAR) technology has
widely used in quick identify (Xu et al., 2014; Fobert et al., 2021) and
monitor landslide deformation (Achache et al., 1996; Zhao et al.,
2012; Kang et al., 2017; Liu et al., 2021), because of its wide coverage,
high precision and frequent revisit. In last 2 decades, lots of
advanced InSAR technologies have been proposed to increase the
precision and accuracy of surface deformation results. The methods
used in karst landslide deformation monitor can be divided into two
categories according to the type of coherent targets, persistent
scatterers (PS) (Ferretti et al., 2000; Ferretti et al., 2000) and
distributed scatterers (DS). The PS can be identified from long
temporal series of interferometric SAR images even with baselines
larger than the so-called critical baseline (Ferretti et al., 2000). The
commonly used advanced PS-InSAR technologies include the
Interferometric point target analysis (IPTA) (Werner et al., 2003)
and the Stanford method for PS (Hooper et al., 2004). The earliest

and simplest use of DS point targets for surface deformation
monitoring was the small baseline subset method (Berardino
et al., 2002), which weakens the effects of decorrelation by
selecting the interferograms with short spatial and temporal
baseline. After that, many advanced SBAS-InSAR technologies
have been proposed, such as new small baseline subset (NSBAS)
(López-Quiroz et al., 2009) and Multidimensional small baseline
subsets (MSBAS) (Samsonov and d’Oreye, 2017). To address the
issue of high accuracy monitoring of surface deformation in areas
with heavy vegetation, the SqueeSAR technology was proposed in
2011 (Ferretti et al., 2011). The basic principle of SqueeSAR
technology is that to increase the density of observation targets,
PS targets and DS targets are combined to derive surface
deformation. In recent years, many scholars have extended and
improved the selection of homogeneous points and phase
enhancement of DS targets based on SqueeSAR technology. They
proposed some improved algorithms, such as the Eigenvalue
decomposition based Maximum-likelihood-estimator of
Interferometric phase (EMI) (Ansari et al., 2018) and the Fast
statistically homogeneous pixel selection (FaSHPS) (Jiang et al.,
2015). These advanced DS-InSAR technologies can significantly
increase the density of monitoring targets in landslide
deformation monitor, especially in lush mountain areas (Chen
et al., 2022a).

Atmospheric error is the most important source of InSAR
deformation monitoring (Doin et al., 2009; Wang et al., 2022).
The phase-stacking InSAR (Sandwell and Price, 1998) can weaken
the atmospheric delay phase with random variation characteristics.
And for the complex topography of the Karst mountains, the vertical
stratification of atmospheric delay is very severe, which usually
spatially linear or power-law related to topography (Cavalié et al.,
2007; Bekaert et al., 2015) and can be expressed as a function of
elevation differences. In the existing methods, a single linear model
cannot provide an accurate estimate of the atmosphere in the
complex topography area, but quadratic tree image segmentation
method can effectively correct it very well (Kang et al., 2021; Jiang
et al., 2022).

Shuicheng District, Guizhou, China, a typical karst mountain
area and one of the largest coal mining areas in southwest China
(Yang and Tang, 2014), was taken as an experimental area. In this
study, we designed a technologic route to identify the potential
unstable slopes based on Multi-source SAR datasets, which can
better overcome the shadow and layover problems intrinsic in single
track SAR data, and improve the reliability and accuracy of the
unstable slope (Grebby et al., 2021). According to the observation
conditions and InSAR error characteristics, we corrected the
atmospheric error by quadratic tree image segmentation method,
and the phase-stacking method to derive the surface deformation.
Then, ground surface deformation information and optical remote
sensing imagery were combined to map active landslides. The
surface cracks, debris and slopes, and mine locations can be
extracted from high resolution optical remote sensing. Whilst
deformation derived with InSAR technique can quickly identify
the active landslides (Fan et al., 2019; Li et al., 2019).

In addition, an improved DS InSAR and MSBAS methods were
conducted to derive the two-dimensional deformation time series of
the Pingdi landslide, a typical “upper-hard-and-lower-soft” stratum
landslide (Chen et al., 2022b). Furthermore, the effects of trigger
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FIGURE 1
The geographic location of the study area and the coverage of Sentinel-1A and ALOS/PALSAR-2 SAR images. The background is the shaded relief of
the shuttle radar topography mission (SRTM) digital elevation model. The inset indicates the landslide location in China.

FIGURE 2
(A)Geological settings of the study area, with a scale of 1:250,000, where detected landslides are shown in blue circles. (B) Shaded relief map of the
Pingdi landslide, labeled as No.39 in Figure 4D, where two profiles are shown as AA’ and BB’, respectively, and four feature points are labelled. (C)
Geological map of the Pingdi landslide with scale of 1:200,000.
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factors of slope instability were explored. Finally, the failure process
of Pingdi landslide was analyzed by combining the lithology,
geomorphological features and the landslide deformation.

2 Study area

The exposed karst mountain area (He et al., 2021) in Shuicheng
District is located in Yunnan-Guizhou Plateau, Liupanshui City,
Guizhou Province, with a total area of 3,054.92 km2 (Figure 1). The
topography is high in the northwest and low in the southeast, with
an elevation range of 500–2,900 m. This area belongs to humid
subtropical monsoon climate, and is characterized by abundant
precipitation and lush vegetation. The annual precipitation is from
1,100 to 1,300 mm, with concentration from May to October,
accounting for more than 80% of the annual precipitation.

The study area has rich mineral resources, with shallow coal
deposits and frequent mining activities (Zhu et al., 2022). Figure 2 is
the geological structure of the study area. The Permian, Triassic and
Carboniferous strata are well developed and widely distributed,
while the Devonian and Jurassic strata are sporadically
distributed in blocks. The Permian strata are composed of
medium-thick limestone, argillaceous siltstone and coals. Among
them the Upper Permian Longtan Formation (P3l) is the primary
coal-bearing strata in southwest China (Xiong et al., 2007). The
Triassic strata are composed of calcareous dolomite, medium-thick
limestone, purplish-red sandstone, and mudstone.

Folded deformation and fault structures widespread in this area,
and the majority of the rock formations are hard and soft rock layers
overlap each other. Weathering on the rocks is severe. Under
different weathering conditions, the upper part of the strata
forms high steep slopes or cliffs, and the lower part forms gentle
slopes. As a result, the area has many high steep slopes and cliffs of
hard rocks with soft bases, which constitutes the upper-hard-and-
lower-soft stratigraphic structure (Chen et al., 2016). According to

such geological factors, coal fields are typically found at the bottom
of slopes and coal seams are extracted from within the slopes (Yao,
2020), resulting in thousands of mining-induced landslides in
China’s karst mountain areas (Zhu et al., 2022).

The location of the Pingdi landslide is shown in Figure 2A,
which is the typical high steep slope landform. The geological map of
the Pingdi landslide is shown in Figure 2C. And the geological
setting along profile AA’ in Figure 2B is shown in Figure 3, where we
can see that the exposed strata from top to bottom are the Lower
Triassic Yongning Formation (T1yn), the Lower Triassic
Feixianguan Formation (T1f), and the Upper Permian Longtan
Formation (P3l). The T1yn and T1f are exposed strata of unstable
slope, composed of hard limestone and medium hardness siltstone.
The lower layer P3l is the coal-bearing strata, composed of soft
argillaceous siltstone, which forms atypical upper-hard-and-lower-
soft stratigraphic structure.

With the continuous underground-mining in recent years, the
hazardous areas are further expanded. It is necessary to investigate
the unstable slopes and to derive its failure process with the influence
of underground mining.

3 Datasets and methods

3.1 Datasets

In order to detect the distribution of potential landslides in
Shuicheng District and to monitor the deformation time series of the
Pingdi landslide, a total of 299 SAR images were collected in this
study, including three SAR datasets from Sentinel-1A and ALOS/
PALSAR-2 satellites. The spatial coverage of the SAR datasets is
shown in Figure 1, and the basic parameters of the SAR images are
summarized in Table 1.

To mitigate the effects of temporal and spatial decorrelation, the
Small Baseline Subset (SBAS) strategy (Berardino et al., 2002) was

FIGURE 3
Geological settings along profile AA’ of the Pingdi landslide, the location of AA’ is marked in Figure 2B.
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used to generate interferometric pairs. After interferogram filtering
(Goldstein and Werner. 1998), phase unwrapping (Costantini,
1997), atmospheric error correction by quadratic tree image
segmentation (Kang et al., 2021), and DEM error correction (Liu
et al., 2018), we selected high-quality interferograms for large-area
unstable slope identification and small-scale monitoring of the
Pingdi landslide.

For the large-area unstable slope identification, the SRTM DEM
with a resolution of 30 m was employed to remove the topographic
phase. Then to implement the precise monitoring of the Pingdi
landslide, the ALOS digital surface model (DSM) with a resolution
of 12.5 m was applied. The interferograms were multi-looked using
factors of 2 × 2 (range × azimuth) for ALOS/PALSAR-2 images and
4 × 1 (range × azimuth) for Sentinel-1A images. And Google earth
images were employed to cross-validate the suspected landslides
identified by the InSAR deformationmap. To explore the correlation
between surface deformation and precipitation, the daily

precipitation data were collected from the website of global
precipitation measurement (GPM).

3.2 Methods

The technical route to investigate the potential instable slopes
within the study area and to derive the spatiotemporal evolution of
the Pingdi landslide is shown in Figure 4.

As the atmospheric errors have significant impact on
deformation results in the study area, the atmospheric error
correction by quadratic tree image segmentation (Kang et al.,
2021; Jiang et al., 2022) was used to weakening the effect of the
atmosphere. The technical route to identify the unstable slopes is
organized as the following steps: calculation of annual deformation
rate by phase-stacking InSAR method, quick identification of
landslide and type by optical remote sensing and

TABLE 1 Basic parameters of the SAR datasets used in this study.

Sensor Track Orbit Heading Incidence angle Start date End date No. of images

Sentinel-1A 128 Ascending −10.21° 43.96° 13 January 2016 03 February 2021 130

Sentinel-1A 128 Ascending −10.21° 43.96° 13 January 2016 03 February 2021 130

Sentinel-1A 164 Descending −169.55° 39.3° 27 January 2016 25 March 2021 129

ALOS-2 146 Ascending −10.46° 36.17° 16 April 2017 10 May 2020 19

ALOS-2 146 Ascending −10.47° 36.17° 26 May 2019 19 January 2020 5

ALOS-2 146 Ascending −10.23° 39.67° 14 May 2017 01 September 2019 11

ALOS-2 146 Ascending −10.21° 39.66° 28 April 2019 24 November 2019 5

FIGURE 4
Flowchart for the active landslide identification and deformation analysis.
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geomorphological information, summary of the distribution
characteristics of landslides.

The DS-InSAR method was used to suppress the decorrelation
effects caused by dense vegetation and increase the density of point
targets, and MSBAS was used to calculate the two-dimensional
deformation results. The technical route to derive the
spatiotemporal evolution of Pingdi landslides is organized as the
following steps: calculation of deformation results by DS-InSAR and
MSBAS methods, analysis of the triggering factors of slope
instability and simulation the failure process.

3.2.1 The atmospheric error correction by
quadratic tree image segmentation

Interferograms are strongly influenced by the topography-
related tropospheric delay in greatly undulate terrain mountain
areas, where landslides occur frequently. Segmenting the
interferograms based on the height difference of DEM, and
estimating the vertically stratified atmosphere can suppress the
influence of tropospheric atmosphere on the deformation results
(Kang et al., 2021). The quadratic polynomial fit model is as follow:

μs x, y( ) � a0 + a1x + a2y + a3xy + a4x
2 + a5y

2 + a6hs x, y( ) (1)
where, μs is the vertical stratified component of the tropospheric
delay and the long wavelength of the atmospheric delay, hs is the
elevation, ai is the fitting parameters. The tropospheric delay is
separated from the interferogram according to Eq. 1. In the phase-
based estimation of the tropospheric delay, the low coherence pixels
are masked to weaken the decorrelation noise. Then, reciprocate the
initial deformation rate (Stacking-InSAR), to mask the points with
large deformation rates. Finally, the atmospheric error is refitted
using Eq. 1 and separated from the interference phase.

3.2.2 Optimization deformation based on
distributed scatterers

In order to improve the efficiency of calculation and to focus on
the landslide deformation process, after the identification of
landslides, we cropped the SAR images. To reduce vegetation-
induced interference decorrelation, the covariance matrix is
estimated robustly with homogeneous points to enhance the
phase of interferograms. The SAR data satisfy the standard
Gaussian distribution (Jiang et al., 2018), of which the complex
coherence matrix Τ can be expressed as:

T �
1 γ1,2e

jφ1,2 ... γ1,2e
jφ1,N

γ2,1e
jφ2,1 1 ... γ2,Ne

jφ2,N

...
γN,1e

jφN,1 γN,2e
jφN,2 ... 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � T| |+ϕ (2)

where, ej,φi,j is the interference phase of the i image and the j image;
γi,j is the coherence of interferogram.

Since the phase of each distributed target is composed of the
backscattered signals of multiple ground objects, the different
scattered signals can be separated by eigenvalue decomposition of
the covariance matrix to achieve the optimized phase corresponding
to the largest eigenvalue as follow:

T � λ1u1u
H
1 +∑N

i�2
λiuiu

H
i � Tsignal + Tnoise (3)

where, λ1 represents the largest eigenvalue of covariance matrix for
the generic pixel; u1 is the corresponding eigenvector, related to the
dominant scatterer within a given pixel. The correction effect of this
method was shown in Supplementary Appendix B.

3.2.3 MSBAS InSAR
The deformation along the LOS direction is the vector sum of

the deformation in the vertical, east-west and north-south directions
(Fialko et al., 2001; Wright et al., 2004) as follows:

VLOS � cos θ · VV − sin θ cos α · VE − sin θ sin α · VN (4)
Due to the limitation of the near-polar orbit of SAR satellites, the

projection coefficient in the north-south direction is much smaller
than those in the east-west and vertical directions. Therefore,
MSBAS (Samsonov and d’Oreye, 2017) is used to calculate the
east-west and vertical surface deformation as follow:

−cos θ sinφA cosφA
λL 0

( ) VE

VU
( ) � ϕ̂

0
( ) (5)

where, θ and φ are the azimuth and incidence angle, respectively; A
is the time interval of acquired SAR images; λ is the regularization
factor and L is the Tikhonov regularization matrix; VE and VU are
east-west and vertical surface deformation rates; ϕ̂ is the LOS
deformation phase.

4 Results

4.1 Landslides identification in Shuicheng
District

Landslide investigation allows us to quickly understand the
current status of landslide distributions in an area (Hussain et al.,
2021) and guides us to select typical landslides to analyze its
deformation process. A total of 42 landslide clusters were
identified in this area. Comparing the identified results with the
historical landslide sites in the area, we found 15 landslide clusters
which were known as historical landslide hazard sites and the other
27 landslide clusters were unknown before (Figure 5). Most of them
were related to mining activities, which were consistent with those
results by other researchers in this area (Zhu et al., 2022). The basic
information of landslides was shown in Table 2.

The different number of landslides detected from different SAR
datasets are mainly because of these reasons: Since the SAR images
were acquired in the side looking acquisition mode typical of SAR
sensors, the steep topography of karst mountains inevitably results
layover and shadowing geometrical distortions for the InSAR
observation (Hanssen, 2001), and different incidence angles form
different invisible areas. The slope movement perpendicular to the
LOS cannot be monitored, and the descending and ascending
geometries are favorable, respectively, for west and east facing
slopes (Wasowski and Bovenga, 2014), which would result in
large differences in the deformation results obtained from the
two data (Liu et al., 2021). And compared to the C-band
Sentinel-1A, the L-band ALOS/PALSAR-2 has better penetration
of vegetation and can detect more covert landslides (Chen et al.,
2022a). Therefore, both descending and ascending acquisitions are
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available the limitations related to topography (layover, shadowing)
can be significantly reduced (Grebby et al., 2021), and can increase
the number of identifiable landslides.

4.2 Landslides distribution characteristics of
Shuicheng District

The 30 m resolution DEM is employed to calculate the slope and
the elevation of the identified active unstable slopes in this area. The
percentage of landslide number in each section is defined as
Landslide Number Percentage (LNP), while the percentage of the
total natural area of landslide in each section is defined as Natural
Area Percentage (NAP) (Yao et al., 2017).

Landslides with higher slopes have more potential energy and
faster sliding speeds (Guo et al., 2008). According to Figure 6A,
there was no landslide on slope below 10° slope angle, and the
landslides were mainly distributed in the range of 20°–35°. In this

range, the number of landslides increases with the slope. In the
range of 30°–35°, the LNP and NAP are 26.19% and 32.72%,
respectively.

Different elevation ranges have different vegetation types and
vegetation cover. The higher the elevation is, the more severe the
weathering will become, resulting in a high correlation between
landslides and elevation (Wang et al., 2017). Landslides in this area
were mainly developed at the elevation of 1,600–1800m and the LNP
and the NAP in this range were 26.19% and 30.88%, respectively.
There was no landslide below 1000 m and above 2200 m (Figure 6B).

The lithology of the strata is the material basis for the formation
of landslides. Different lithology has different mechanical properties,
and different combinations of lithology and slope structure have
different stability (Dai and Deng, 2020). Landslides in this area were
well developed in the Lower Triassic Formation (T1) and Upper
Permian (P3). They were mostly distributed at the junction of T1 and
P3. The LNP and NAP were 83.34% and 83.22%, respectively
(Figure 6C).

FIGURE 5
(A) InSAR deformation rate map with ascending Sentinel-1A images from January 2016 to February 2021; (B) InSAR deformation rate map with
descending Sentinel-1A images from January 2016 to March 2021; (C) InSAR deformation rate map with ascending ALOS/PALSAR-2 images; (D)
Landslides identification map.
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TABLE 2 Basic information of the detected landslides.*

No. Location name Longitude Latitude Length/m Width/m Detected from SAR image Historical landslide point

1 Yingpan 105°01′55″ 26°35′25″ 612.28 550.19 ALOS S1A No

2 Jieshang No.1 104°59′55″ 26°33′46″ 1971.26 787.82 ALOS S1A S1D No

3 Jieshang No.2 104°59′37″ 26°34′06″ 373.81 322.35 ALOS S1D No

4 Xinfa 104°47′41″ 26°32′50″ 579.08 361.03 ALOS S1A S1D No

5 Huakou 104°49′40″ 26°32′12″ 701.23 574.67 ALOS No

6 Hejiazhai 104°49′57″ 26°32′03″ 709.31 509.66 ALOS No

7 Shuishang 104°51′24″ 26°31′29″ 1,126.27 407.28 ALOS No

8 Luosiwan 104°53′13″ 26°31′12″ 724.1 639.43 ALOS No

9 Wanfuchang 104°53′04″ 26°30′47″ 666.96 552.66 ALOS No

10 Shuanglong 104°54′03″ 26°30′44″ 713.02 343.65 ALOS S1A S1D No

11 Yintian 104°54′03″ 26°30′19″ 1,153.5 505.29 ALOS No

12 Chushuidong 104°55′17″ 26°30′01″ 654.84 537.01 ALOS No

13 Shatian 104°56′10″ 26°29′27″ 1,347.56 685.78 ALOS S1A Yes

14 Baobaozhai 104°59′46″ 26°28′32″ 2069.41 752.32 ALOS S1A S1D Yes

15 Citangbian 105°01′53″ 26°28′08″ 1,255.98 606.09 ALOS Yes

16 Machang 105°03′34″ 26°25′59″ 1,483.86 949.92 ALOS S1A Yes

17 Yakou 105°02′57″ 26°24′21″ 1,060.38 987.88 ALOS No

18 Baoyaoyankou 104°54′34″ 26°26′45″ 1,423.25 808.62 ALOS Yes

19 Pojiaocun 104°52′37″ 26°27′29″ 789.62 549.35 ALOS S1A S1D No

20 Dashadi 104°52″07′ 26°27′55″ 1,145.09 997.98 ALOS S1D Yes

21 Tudiyakou 104°50′03″ 26°28′25″ 636.4 585.6 ALOS S1A S1D Yes

22 Siyin No.1 104°48′48″ 26°29′00″ 740.72 117.39 ALOS S1A S1D Yes

Siyin No.2 104°49′02″ 26°28′51″ 400.54 250.21 ALOS S1A S1D Yes

Siyin No.3 104°49′09″ 26°28′44″ 170.58 136.56 ALOS S1A S1D Yes

23 Fayingdi 104°47′58″ 26°29′38″ 1,173.14 240.32 ALOS S1A S1D Yes

24 Yingshang 104°46′55″ 26°30′06″ 465.95 148.25 ALOS S1A S1D Yes

25 Gamu No.1 104°46′03″ 26°30′07″ 648.87 208.93 ALOS S1A S1D No

Gamu No.2 104°45′36″ 26°30′17″ 804.46 294.91 ALOS S1A S1D No

Gamu No.3 104°45′09″ 26°30′30″ 282.31 200.91 ALOS S1A S1D No

26 Shuiniudapo 105°09′07″ 26°34′47″ 753.22 121.88 ALOS S1A No

27 Dahuangdi No.1 105°10′04″ 26°332′23″ 644.74 179.33 ALOS S1A S1D No

Dahuangdi No.2 105°09′56″ 26°32′19″ 270.11 233.98 ALOS S1A S1D No

Yutangbian No.1 105°10′03″ 26°32′14″ 174.45 141.45 ALOS S1A S1D No

Yutangbian No.1 105°10′11″ 26°32′25″ 405.57 201.63 ALOS S1A S1D No

28 Kuguadi No.1 105°10′25″ 26°31′50″ 636.41 354.39 ALOS S1A S1D No

Kuguadi No.1 105°10′23″ 26°32′03″ 236.66 138.25 ALOS S1A S1D No

29 Chezhikong 105°11′02″ 26°31′08″ 544.17 334.16 ALOS S1A S1D No

Jinzhulin 105°11′17″ 26°30′58″ 319.22 240.3 ALOS S1D No

(Continued on following page)
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According to the above statistics, many landslides in this area
were related to geological and environmental conditions, such as
topography and geomorphology, stratigraphic lithology, and

geological formations, which are intrinsic to the development of
landslides. They were mainly distributed in the junction of T1 and
P3, with slope 20°–35°, and elevation between 1,600 and 1800 m.

TABLE 2 (Continued) Basic information of the detected landslides.*

No. Location name Longitude Latitude Length/m Width/m Detected from SAR image Historical landslide point

30 Moyanpo 105°13′10′ 26°29′21″ 983.97 588.86 ALOS S1A S1D No

31 Hualemiaozu 105°12′53″ 26°27′59″ 551.6 252.17 ALOS S1D No

32 Wujiazhai 104°42′50″ 26°21′52″ 1,095.26 603.74 ALOS S1A S1D Yes

33 Machangyakou 104°40′10″ 26°20′13″ 907.26 418.36 ALOS S1A S1D Yes

34 Sihuotou 104°40′12″ 26°18′37″ 650.55 434.61 ALOS S1D Yes

35 Jianshanying No.1 104°44′02″ 26°18′38″ 1,366.57 371.76 ALOS S1A S1D No

36 Jianshanying No.2 104°43′13″ 26°18′57″ 563.15 355.51 ALOS S1A S1D No

37 Jianshanying No.3 104°43′22″ 26°18′32″ 729.32 449.79 ALOS S1A S1D No

38 Anquan No.1 104°40′44″ 26°16′31″ 800.07 584.86 ALOS S1A S1D Yes

Anquan No.2 104°40′30″ 26°116′33″ 386.79 455.13 ALOS S1A S1D Yes

39 Pingdi No.1 104°42′14″ 26°16′37″ 1,533.65 983.52 ALOS S1A S1D Yes

Pingdi No.2 104°42′39″ 26°17′6″ 412.93 407.01 ALOS S1A S1D Yes

40 Shaba 105°07′23″ 26°26′72″ 528.42 277.79 ALOS No

41 Maantian 105°07′46″ 26°22′35″ 933.08 650.32 ALOS No

42 Wozitou 105°11′45″ 26°15′10″ 834.03 464.55 ALOS No

*Notes: ALOS stands for ALOS/PALSAR-2 images; S1A and S1D stand for ascending and descending Sentinel-1A SAR images, respectively.

FIGURE 6
Statistics of geomorphological elements of mining-induced active landslides in the study area; Distribution ratio of (A) slope; (B) elevation; (C)
stratum.
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4.3 Spatiotemporal deformation of the
pingdi landslide

The Pingdi landslide is located on the west bank of the Beipan
River, marked as Landslide No. 38 in Figure 5D. Figure 7 shows the
historical optical remote sensing images acquired on Dec.21, 2015,
Apr.6, 2017, Nov. 14, 2020 and Nov. 11, 2020, respectively. The
cracks could be seen on the slope surface (Figures 7E,F). The white
circle indicates the location of the coal factory. As shown in
Figure 7D, the slope in the red rectangular area changed
obviously, and a large amount of rock debris accumulated at the
position shown by the purple arc. With the continuous mining
activities, the fragile rock mass will lose its balance, forming rock
debris flow (Cui et al., 2020), causing blockage of rivers.

The LOS deformation of the three orbits were calculated
independently based on the DS-InSAR method. Due to the
difference of ALOS-2 and Sentinel-1A datasets in quantity and
the time of access, instead of calculating the three-dimensional
deformation, we calculated the two-dimensional deformation
using Sentinel-1A datasets based on MSBAS. The deformation
results were sufficient for the subsequent analysis, which could
provide valuable information for exploring the dynamic process,
analyzing the driving factors and the failure modes.

The two-dimensional deformation rate of the Pingdi landslide was
shown in Figures 8C,D, respectively. The red indicated the westward
displacement (Figure 8C) or downward displacement (Figure 8D),
while the blue indicated the opposite displacement, and the green
was corresponding to the stable surface. Figures 8C,D indicated that the

FIGURE 7
Historical optical remote sensing images of the Pingdi landslide. The blue solid polygon in (A–C) and (D) indicates the boundary of the landslide; The
white ellipse in (A–C) and (D) indicates the mine site; The red rectangular in (A–C) and (D) is a small debris flow; The green circle in (D) indicates one big
exposed rock; The green arrow in (D) indicates the suspected sliding direction; The red circles in (E) and (F) indicate surface cracks.
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greatest vertical and horizontal annual deformation rate was at the
lower and part of the slope, near point S3.

To get more two-dimensional time series information about
slope deformation, we have selected four points located in the front
edge of the slope, the upper, middle and lower part of the slope, near
the profile AA’ to reflect the deformation of the slope and cross-
reference with the results of the profile deformation. The location of
four points was shown in Figure 8. The two-dimensional time
serious deformation of Point S1, S2, S3 and S4 were shown in
Figure 10. In vertical direction, the downward deformation of points
S2 and S3 were large, while points S1 and S4 were small. In
horizontal direction, the eastward deformation of S3 and S4 were
large, while point S1 and S4 were small. Of these points, the
cumulative deformation of S3 was the largest, the eastward
deformation was 76 cm and the downward deformation was
124 cm. After January 2021, the deformation of S2 was dramatic,
especially on vertical, the deformation rate from 24 January 2021 to
3 February2,021 was 2.84 mm/d, very unstable.

As shown in Figure 9, 19 ALOS/PALSAR-2 images were employed
to derive the deformation time series in the LOS direction, where
negative value (red) indicated the deformation away from the satellite
and the positive value (blue) indicated the deformation towards the
satellite. To the southeast part of the landslide, the deformation initially
occurred at themiddle and lower part of the slope, then the front edge of
the slope started to deform, the most intensive deformation was at the
middle and lower part of the slope, around Point S3, the cumulative
maximum deformation of the slope was over 130 cm. From 16 April
2019 to 29 September 2019, the northeast part of the slope did not show

significant deformation, but during 29 September 2019 to 10May 2020,
the northeast part of the landslide shown slow deformation and the
deformation gradually expanded, connecting to the previous main
deformation area. The detail of LOS cumulative deformation of the
Pingdi landslide was shown in Figure 8B, and had obvious circle-like
deformation on the slope. The similar circle-like deformation also
reflects in the two-dimensional annual deformation rate, which will
explain subsequently.

5 Discussion

5.1 Distribution characteristics of landslides
in shuicheng district

According to statistics above, most unstable slopes wew mainly
distributed in the junction of T1 and P3. The reasons are as follows:
First, P3 is the important coal bearing strata in South China, with
shallow coal seams, which has the most coal mining activities;
Second, as shown in Figure 2A, the T1 stratum in the study area
is superimposed on the P3 stratum. And at the junction of T1 and P3,
the compose of T1 in this area is mainly T1yn superimposed on the
T1l, and the P3 is mainly composed of P3l; Third, rocks in this area
are heavily weathered. Under different weathering conditions, the
upper part of the strata forms high steep slopes or cliffs, and the
lower part forms gentle slopes. The T1yn and T1f are exposed strata
of slope, composed of hard limestone and medium hardness
siltstone. The lower layer P3l is the coal-bearing strata, composed

FIGURE 8
Perspective view of optical image and InSAR deformation maps. (A) Google-earth image acquired on 11 November 2020; (B) ALOS/PALSAR-2 LOS
cumulative deformation map, where the profiles AA’ and BB’ is show in Figure 11, and the deformation time series at points S1, S2, S3 and S4 are displayed
in Figure 10; (C) and (D) are the east-west and vertical annual deformation rate maps derived from ascending and descending Sentinel-1A images,
respectively.
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of soft argillaceous siltstone, which forms an upper-hard-and-lower-
soft stratigraphic structure. With frequent mining activity under the
slope, mining goat is formed at the lower part of the slope, and the
soft rock cannot support the upper slope, resulting in the failure of
stress balance, then the slope will become unstable (Chen et al.,
2022b). Therefore, these unstable slopes are mainly distributed at the
junction of T1 and P3 in this area.

5.2 The driving factors of karst slope
instability

The driving factors of karst slope instability usually can be
attributed to natural factors and human activities (Bonacci and
Juračić, 2010; Ford andWilliams, 2013; Gutierrez et al., 2014). Some
studies have shown from a geological point of view that in karst
mountain area, precipitation and mining activity are the two
important driving factors of slope instability (Xiao et al., 2019;
Cui et al., 2022; Emami Meybodi et al., 2022; Zhong et al., 2022). In
this section, we have analyzed these two important driving factors in
terms of surface deformation.

First, we added the daily precipitation data to determine if there
is a correlation between precipitation and the Pingdi landslide
deformation. As shown in Figure 10, the vertical deformation
rate of these four points was constant or accelerated at the
beginning and middle of the rainy season. And there was a
sudden increase in deformation rate after heavy precipitation. In
times of low precipitation, the rate of deformation became slower.
The east-west deformation rate of these four points showed similar
phenomenon with vertical deformation rate. In general, changes in
slope deformation rate do not occur simultaneously with
precipitation, but lag behind it. And there is a significant positive
correlation between the magnitude of deformation rate and the
magnitude of precipitation (Lin and Guo, 2001).

Then the time series deformation calculated from ALOS-2
dataset along the profile AA’ and BB’ in Figure 8A was extracted.
The profile AA’ was plotted along the landslide movement direction
approximately. The deformation in sectionⅢ (Figure 11A) was like
a “subsidence funnel”, and the circle-like deformation mentioned
above usually relates to mining activities (Modeste et al., 2021).
Figure 11A showed that the deformation initially occurred in the
position of caving area (section Ⅲ), which also was the position of

FIGURE 9
The cumulative deformation time series of the Pingdi landslide in the LOS direction from 16 April 2017, to 10 May 2020, where the solid polygons
indicate the boundaries of Pingdi landslide.
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FIGURE 10
Comparison between deformation time series and daily precipitation acquired from GPM. The locations of S1, S2, S3 and S4 are shown in Figure 8.
(A, B, C) and (D) are comparison between two-dimensional deformation time series, two-dimensional deformation rate and daily precipitation for S1, S2,
S3 and S4, respectively.

FIGURE 11
Line-of-sight deformation time series obtained from ALOS/PALSAR-2 data along profiles AA’ and BB’. (A) LOS deformation time series along profile
AA’; (B) LOS deformation time series along profile BB’. The grey area is the topography profile from ALOS DSM. The location of profiles is shown in
Figure 8A.
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the maximum downward deformation mainly occurred. As the
deformation intensified in section Ⅲ, the upper part of the slope
section Ⅱ and the front edge of the slope section Ⅰ began to deform.
This deformation conforms to the general performance of slope
deformation caused by mining activities (Zheng et al., 2015). Similar
deformation characteristic also occurred in Jianshanying landslide
(Chen et al., 2021), Zongling landslide (Chen et al., 2022a) and
Kaiyang landslide (Chen et al., 2022b), which were all mining
related. The reasons for the deformation above are as follows:
The downward deformation mainly occurs above the exposed
strata T1yn and T1f, which is mainly composed of hard limestone
and medium hardness siltstone, as the coal seams stored in stratum
P3l which is mainly composed of soft argillaceous siltstone were
mined out, the remaining coal pillar cannot bear the pressure of the
roof gradually. Since the strength of the upper strata is stronger than
that in the lower layer, repeated mining activities can induce the
plastic extrusion from the upper strata, resulting in the tension
fracture at the back edge of the slope (Chen et al., 2022b).

Through the analysis above, precipitation and mining activity
are two important factors of slope instability. Mining activity is the
main cause of the slope deformation, and precipitation is the driving
factor of the slope instability. The precipitation can intense mining-
induced slope deformation.

5.3 The failure process of the pingdi
landslide

The spatiotemporal evolution feature of the Pingdi landslide was
explored above, and the driving factors such as the precipitation and

mining activities were also discussed according to the deformation
characteristics. This section will reveal the failure process of the
Pingdi landslide and analyze the role of these factors in the process.

As shown in Figure 11B, the maximum deformation was at
the middle of the profile BB’, where the initial deformation
occurred, then the deformation decreases from the middle to
both ends of it. And the maximum deformation was at the lower
and middle of the profile AA’ (Figure 11A), where the initial
deformation occurred. Combined the deformation characteristic
of the Pingdi landslide, we could affirm that the deformation
initial occurred at the middle and lower part of the slope, near the
point S3, where the maximum deformation occurred, and then
the deformation decreased to periphery. This phenomenon is
much consistent with the characteristics of retrogressive
landslide, which shows that the deformation occurs at lower
part of the slope first, causing the change of stressed structure of
the upper part of the slope and later the deformation (Pascal
et al., 2019).

The coal seams in the Longtan Formation (P3l) were gradually
mined out, the roof gradually subsidence, and cracks were
subsequently formed. With the exploration of coal mining,
ground fissures develop and expand continuously, and the roof
subsidence has increased. In addition, the deformation of the mined-
out areas could lead to uneven forces across the slope, which would
cause the formation of the cracks near the top of the slope (Zheng
et al., 2015), even cause the tension fracture at the back edge of the
slope. Under the continuous action of gravity and precipitation, the
cracks near the top of the slope accelerated cracking, and the
dangerous rock mass gradually separated with the mountain. The
ground fissures or faults induced by repeated mining activities

FIGURE 12
The failure process of the Pingdi landslide.
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would enhance the water conductivity of the cracks and stratum,
which could further erode the unstable stratum and weaken the rock
strength. The rock finally disconnects from the mountain and forms
rock fall or avalanche.

Through the analysis above, the failure process of Pingdi
landslide can be summarized as Figure 12: (A) Due to
precipitation and weathering, there were some cracks at the top
of the slope prior to the mining activity. (B) As mining began,
deformation and new cracks began to appear on the slope, and heavy
precipitation would make cracks expand (Matsuura et al., 2008). (C)
With the further expansion of the mining progress, the deformation
area of the slope is further expanded and the force balance is broken
up. The progressive failures, such as rupture, creeping, rockfall and
sliding, was generated. (D) The slope is currently at a relatively stable
deformation, continual mining activities and heavy precipitation
may break the force equilibrium of the slope, causing a catastrophic
landslide.

6 Conclusion

In this study, the distribution characteristic of landslides in
Shuicheng district and the failure process of a typical landslide,
Pingdi landslide, were explored. On the one hand, the
atmospheric error correction by quadratic tree image
segmentation methods was conducted to retrieve the surface
deformation of Shuicheng district. On the other hand, the DS-
InSAR and MSBAS methods were conducted to retrieve the
surface deformation of Pingdi landslide. Atmospheric effect on
karst mountains was sever, the quadratic tree image
segmentation methods can effectively weaken atmospheric
effects. The DS-InSAR method can improve the precision and
the density of the deformation time series results, which can
guarantee the InSAR application in karst mountain areas. The
MSBAS method can be successfully applied to retrieve the
vertical and east-west deformation time series.

The relationship between landslides distribution and stratum in
Shuicheng district was revealed, that landslides were mostly located
in the junction of T1 and P3 stratum. And the spatiotemporal
characteristics of the surface deformation in Pingd landslide
prove that mining activity was the main cause of the slope
deformation, and the precipitation was the driving factor of the
slope instability. The research provides an insight into the explore
the unstable slope distribution characteristic and the failure process
of the landslides.
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