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The subsurface production, accumulation, and cycling of hydrogen (H2), and
cogenetic elements such as sulfate (SO4

2-) and the noble gases (e.g., 4He, 40Ar)
remains a critical area of research in the 21st century. Understanding how these
elements generate, migrate, and accumulate is essential in terms of developing
hydrogen as an alternative low-carbon energy source and as a basis for helium
exploration which is urgently needed to meet global demand of this gas used in
medical, industrial, and research fields. Beyond this, understanding the subsurface
cycles of these compounds is key for investigating chemosynthetically-driven
habitability models with relevance to the subsurface biosphere and the search for
life beyond Earth. The challenge is that to evaluate each of these critical element
cycles requires quantification and accurate estimates of production rates. The
natural variability and intersectional nature of the critical parameters controlling
production for different settings (local estimates), and for the planet as a whole
(global estimates) are complex. To address this, we propose for the first time a
Monte Carlo based approach which is capable of simultaneously incorporating
both random and normally distributed ranges for all input parameters. This
approach is capable of combining these through deterministic calculations to
determine both the most probable production rates for these elements for any
given system as well as defining upper and lowermost production rates as a
function of probability and the most critical variables. This approach, which is
applied to the Kidd Creek Observatory to demonstrate its efficacy, represents the
next-generation of models which are needed to effectively incorporate the
variability inherent to natural systems and to accurately model H2,

4He, 40Ar,
SO4

2- production on Earth and beyond.

KEYWORDS

hydrogen, subsurface production, helium exploration, subsurface habitability, Monte
Carlo, radiolysis, chemolithotrophy

1 Introduction

Due to advances in technology, computational-based approaches have now become the
norm in modelling natural systems (e.g., Crutchfield, 1994; Shalizi, and Crutchfield, 2001;
Hopper and Rice, 2008). In particular, increases in computational capabilities allow
refinement of new and existing models and datasets to progressively generate more
sophisticated numerical models in a diverse range of fields, such as physics, geology,
ecology, and epidemiology to provide additional insight into a wide range of natural
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systems globally (e.g., Wilensky and Rand, 2015; Gillman and
Gillman, 2019). Such predictive models are essential to evaluate
complex datasets involving multiple inputs. They are essential in
particular for integrating data generated in disparate locations/
geologic settings and to extrapolate to regional-global processes
occurring on Earth and beyond (e.g., other planets and moons). One
way to do this integrates large global datasets is to implement a
Monte Carlo based approach (Gallagher et al., 2009). Broadly
speaking, this technique allows for a value to be taken from a
defined range based on a defined probability. This number can
then be used within a deterministic calculation to generate a single
model outcome. This process is then repeated until the rolling
averages of key outputs of the model stabilize and do not change
significantly with additional output data (i.e., the model converges)
(Benedetti et al., 2011). At this point, analysis of the output data
provides a way to statistically evaluate the most probable outcome(s)
of the model based on each of the input parameters, as well as to
demonstrate the sensitivity of input parameters (i.e., how a range in
each input can impact variables derived from each calculation).

Due to the benefits of this approach, the earth sciences and
geochemistry community has been incorporating this technique in a
variety of applications (e.g., Sambridge and Mosegaard, 2002;
Gallagher et al., 2009; Warr et al., 2015; Liu and Liang, 2017;
Sakan et al., 2019; Wang et al., 2020; Karolytė et al., 2022). One
powerful application which remains underexplored is the in situ
production of key elements and compounds of biogeochemical and/
or economic interest generated through the natural decay of U, Th,
and K within a wide range of crustal settings. For example, recent
papers re-evaluated the mechanisms generating crustal noble gases
in the deep crust (Lippmann-Pipke et al., 2011; Holland et al., 2013;
Warr et al., 2018; Warr et al., 2022), and proposed novel habitability
models in the deep Earth and marine sediments based on hydrogen
generation via radiolytic decomposition of water (e.g., D’Hondt
et al., 2009; Sherwood Lollar et al., 2014; Sherwood Lollar et al., 2021;
Li et al., 2016; Sauvage et al., 2021). Documenting, quantifying, and
refining these radiogenic and radiolytic processes with respect to
their ability to potentially generate H2,

4He, 40Ar, SO4
2-, N2, organic

molecules and others within crustal settings on Earth and beyond
has considerable recent interest with respect to the understanding of
early Earth processes and prebiotic chemistry, constraining
habitability models on Earth and beyond, and the formation of
economic resources (e.g., 4He) over geologic timescales (e.g., Lin
et al., 2005a; Lin et al., 2005b; Onstott et al., 2006; Blair et al., 2007;
Lefticariu et al., 2010; Sherwood Lollar et al., 2014; Dzaugis et al.,
2016; Li et al., 2016; Bouquet et al., 2017; Altair et al., 2018; Dzaugis
et al., 2018; Tarnas et al., 2018; 2021; Yi et al., 2018; National
Academies of Sciences, Engineering, and Medicine, 2019; Warr
et al., 2019; Adam et al., 2021; Boreham et al., 2021; Warr et al.,
2021b; Li et al., 2021; Sauvage et al., 2021; Vandenborre et al., 2021;
Li et al., 2022; Warr et al., 2022; Nisson et al., 2023).

Critical to advancing understanding of these topics to the next
level is quantitative evaluation of the degree to which local
variability/uncertainty in the key variables (e.g., porosity,
radioelement concentration, and sulfide mineral distribution)
control production of these molecules in subsurface settings.
Some of the most common methods which are typically applied
in order to address this include using average values, or less
commonly, ranges covering minimum or maximum values.

Uncertainties are often unaddressed. Identifying, constraining
and combining these estimated co-dependent values and
associated uncertainties to generate more accurate production
rates and ranges remains a challenge.

This study applies a novel Monte Carlo approach, building on
previous methodology, to address this critical issue and to introduce
a quantifiable measure of most probable production estimate for the
types of investigations outlined above. Previous approaches have
taken single values for input parameters such as averages (e.g., mean
or median values) often without considering uncertainty, or a range
of probable input parameters by site/region (i.e., the extreme upper
and lower estimates) (to incorporate the key variables into radiolytic
models (Lin et al., 2005a; Lin et al., 2005b; Onstott et al., 2006;
Dzaugis et al., 2016; Dzaugis et al., 2018; Warr et al., 2019; Sauvage
et al., 2021; Li et al., 2022). Taking this approach has the benefit of
placing absolute constraints on magnitudes of processes (Holland
and Gilfillan, 2013; Li et al., 2016; Tarnas et al., 2021). However, as a
consequence, values generated represent the extreme outputs
(i.e., the maximum and minimum estimates) with no insight into
the most probable estimate. Likewise, it does not consider the
relative and cumulative effects of inherent natural variation
present for each input parameter. As a consequence, while this
method provides essential constraints on the absolute magnitude,
this approach fails to provide either an accurate assessment of the
most reasonable in situ production rate or a probabilistic production
range for any system.

Here we demonstrate a novel way to consider and incorporate
the effects of natural variability on subsurface radiolytic models for
the first time by integrating a Monte Carlo technique to recent
radiolytic/radiogenic models (Lin et al., 2005b; Li et al., 2016; Tarnas
et al., 2018; 2021; Li et al., 2022). Specifically, we apply aMonte Carlo
approach to data from the suite of papers published on the Kidd
Creek Observatory in Canada where production of H2,

4He, 40Ar,
SO4

2- has been estimated using the methods outlined previously
(Sherwood Lollar et al., 2014; Li et al., 2016; Warr et al., 2019).
Focusing on this well-studied site allows direct comparison between
the Monte Carlo models outlined here and previous production
estimates to highlight the key advances represented by this
approach. Specifically, the novel Monte Carlo-based modelling
technique demonstrates how the natural variability associated
with each parameter can be simultaneously considered to
generate next-generation models capable of evaluating the range
and probability of in situ production in a natural setting and, by
extension, providing a foundation for extrapolating production rates
based on locally generated data to regional/global estimates.

2 Geologic setting

Kidd Creek Observatory established in 2008, is located
approximately 24 km north of the town of Timmins, Ontario,
(Canada). The saline fracture fluids continuously discharging
have been monitored for geochemical, isotopic and
microbiological parameters for almost 15 years to date, and
represent, to our knowledge, the longest time series investigation
of subsurface fluids available for the scientific community at such a
profound depth (2.4 km below surface). The observatory itself is
situated within an active mine extracting copper, zinc and silver
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from a 2.7 Ga age stratiform Volcanogenic Massive Sulfide (VMS)
deposit located within the Kidd-Munro assemblage of the Southern
Volcanic Zone of the Abitibi greenstone belt of the Superior
Province of the Canadian Shield (Bleeker and Parrish, 1996;
Thurston et al., 2008).

The Kidd-Munro assemblage where the observatory is located
consists of a series of steeply dipping interlayered ultramafic, mafic,
felsic, and metasedimentary deposits and is an Archean aged
hydrothermal vent system. The stringer ore, which represents
one of the primary economic resources being extracted in the
mine, formed as a result of silica and metal-rich hydrothermal
fluid circulation below the seafloor and is chiefly associated with the
upper felsic region. Overlying the stringer ore region are banded and
massive sulfide ores which are commonly considered to have been
initially deposited as inorganic precipitates which were generated
when hydrothermal solutions rich in metals interacted with the
seawater. Within the Kidd-Munro assemblage are intermittent
argillite to chert carbonaceous horizons where are considered to
represent the accumulation of proximal seafloor sediments during
periods of volcanic quiescence. During this stage this Precambrian
hydrothermal seafloor setting underwent extensive carbonization
associated with CO2-rich hydrothermal fluids resulting in carbonate
formation in less reduced zones and graphitic deposits in more
reducing zones (Ventura et al., 2007). Subsequent to deposition, the
last major regional metamorphic event at 2.67–2.69 Ga
metamorphosed the Kidd-Munro assemblage to greenschist facies
with the last identified metasomatic episode occurring at 2.64 Ga
after which the region is considered tectonically quiescent (Davis
et al., 1994; Bleeker and Parrish, 1996; Thurston et al., 2008; Berger
et al., 2011; Li et al., 2016). During this ongoing period of quiescence,
the study of Flowers et al. (2006) estimated that this craton has been
highly stable with low erosion rates of ≤2.5 m/million years.

3 Materials and methods

3.1 Existing model overview

The model presented here is a Monte Carlo adaptation of
previous quantitative numerical approaches which are outlined in
this section for modelling radiolytically-derived products in the
subsurface (Lin et al., 2005a; Lin et al., 2005b; Li et al., 2016;
Tarnas et al., 2018; Warr et al., 2019; Tarnas et al., 2021).
Annual 4He and 40Ar production rates (moles/m3 per year) were
calculated by incorporating U, Th, and K concentrations into the
equations of Ballentine and Burnard (2002):

4He � 3.115 × 106 + 1.272 × 105( )U + 7.710 × 105( )Th[ ]
NA

× ρbulk × 106

(1)
40Ar � 102.2 × K

NA
× ρbulk × 106 (2)

where U, Th, and K represent concentrations of uranium, thorium
and potassium (ppm), ρbulk represents density of the system in g/cm3

andNA is Avogadro’s number. ρbulk is a function of the density of the
rock, density of the fluid, and their relative proportions. This term
ensures production is scaled and standardized to 1 m3 of system
volume incorporating the effects of porosity (as opposed to previous

studies which only applied the density of the rock itself (ρr)), here to
specifically consider elemental production per m3 of rock (e.g.,
Tarnas et al., 2018; Warr et al., 2019; Tarnas et al., 2021). This
adaptation is relatively minor as applying ρbulk as opposed to ρr
typically results in a relatively small difference (≤5%) in the density
term when porosity is low (≤8%). All systems considered in this
study are of very low porosity (typically < 1–2%). ρbulk is calculated
via Eq. 3:

ρbulk � Φ × ρw + 1 − Φ( ) × ρr (3)
where Φ represents porosity (0-1) and ρw and ρr represents the
density of fluid and host rock respectively in g/cm3.

To calculate the theoretical H2 production rates attributed to
radioactive decay alone at each location, the same approach as
Sherwood Lollar et al. (2014), and Tarnas et al. (2018) was used.
Briefly, this approach calculates the total H2 yield (YH2) in moles/m3

rock per year using the following equations:

YH2 � ∑ Enet,i × GH2i/100( )
NA

( )[ ]× ρbulk × 103 (4)

where i designates the radiation type (α, β, or γ)GH2 is the number of
H2 molecules produced per 100 eV of radiation and Enet is the net
dosage absorbed by the water from the specified radiation type
(eV/kg per year). Values of 1.32, and 0.25 were used for GH2α and
GH2γ from Sauvage et al. (2021) and a value of 0.6 forGH2βwas taken
from Lin et al. (2005a) and references therein. To calculate Enet the
following calculation is used:

Enet,i � ∑ EXi × 6.241509 × 1015 × W × Si
1 +W × Si( )[ ] (5)

where X represents the radioelement (U, Th, K), E is the apparent
dosage from radioactive element decay (Gy/Ka), 6.241509 ×1015 is
the conversion factor from Gy (j/kg) per ka to eV/kg per year, W is
the unitless weight ratio of pore water to rock, and S is the stopping
power of minerals with respect to the radiation type (i). The Sα, Sβ, Sγ
values used here are 1.5, 1.25 and 1.14 respectively and E values of 0
(EKα), 0.782 (EKβ), 0.243 (EKγ), 0.061 (EThα), 0.027 (ETHβ), 0.048
(ETHγ), 0.218 (EUα), 0.146 (EUβ), 0.113 (EUγ) which correspond to
1ppm U, 1 ppm Th, and 1 wt% K, the latter values following Lin
et al. (2005b), Lin et al. (2005a), Tarnas et al. (2018), Tarnas et al.
(2021), and Warr et al. (2019). W is calculated via the following
equation:

W � Φ × ρw
1 − Φ( ) × ρr

(6)

Using Eqs 4, 5, the H2 yield is calculated and, by combining with
the calculated 4He and 40Ar production rates, the theoretical H2/

4He
and H2/

40Ar unitless production ratios from radioelement decay can
be calculated for a given porosity (Lin et al., 2005a; Sherwood Lollar
et al., 2014; Warr et al., 2019).

To calculate the theoretical SO4
2- production rates, the equations

of Li et al. (2016) and Tarnas et al. (2021) were used. This approach
calculates the production rate of dissolved SO4

2- in moles per liter
per year (CSO4) using the following equations:

CSO4 �
YSO4 × Csulfide/100( ) × SSulfide × ρw

W
(7)
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YSO4 � ∑Enet,i × GSO4i (8)

where YSO4 is the yield of sulfate (moles per m2 of sulfide surface
area), Csulfide is the concentration of sulfides in the rock matrix (in
%), Ssulfide is the average surface area of sulfides in the rock matrix
(m2 sulfide per kg), and GSO4 represents the moles of SO4 which is
produced per m2 of sulfide as a function of dose. To convert CSO4 to
production in moles per bulk m3 of rock per year (PSO4) Eq. 9 is
applied:

PSO4 � CSO4 × 1000 × Φ (9)
where 1000 represents the number of liters in 1 m3 which is scaled
here to the porosity.

3.2 Incorporating a Monte Carlo approach

As demonstrated in Section 3.1, all production rates depend
on a minimum of three intersecting variables (40Ar) up to a
maximum of eight (SO4

2-) with some variables being factored in
multiple times (e.g., porosity and fluid and rock density). As a
consequence, incorporating a Monte Carlo method allows this
non-linear complexity to be readily incorporated. This is
implemented here using Kidd Creek where a Monte Carlo
based approach can be readily applied and evaluated against
previous production estimates that all used similar input
parameters (Holland et al., 2013; Sherwood Lollar et al.,
2014; Li et al., 2016; 2021; Warr et al., 2018; Lollar et al.,
2019; Warr et al., 2019; Warr et al., 2021a; Sherwood Lollar
et al., 2021). From Eqs 1–9 the following eight key
parameterized variables were identified and are summarized
in Table 1: 1. Porosity, 2. Density of fluid, 3. Density of rock, 4-6.
Concentrations of radioelements (U, Th, K), 7. Sulfide
concentration, and 8. Sulfide surface area. Prior to this study
most studies have either used a single value from the literature
(typically a reported average), or maxima and minima values to
generate upper and lower production rates of H2,

4He, 40Ar,
SO4

2- (Lin et al., 2005a; Lin et al., 2005b; Li et al., 2016; Tarnas
et al., 2018; 2021; Warr et al., 2019). See references in these
papers for specific sources of the values used.

In the case of Kidd Creek Observatory, previous ranges used for
each parameter are presented in Table 1. For porosity, a range of
0.55%–1.45% was selected, based on the 1% ±0.45 range used
previously in noble gas studies at the site (Holland et al., 2013;
Warr et al., 2018). This range is consistent with measured and
modelled porosity estimates in fractured rock settings which range
from 0.1% to 2.3%, and have an average porosity of 1.0% ±0.45%
(Stober, 1997; Guillot et al., 2000; Aquilina et al., 2004; Stober and
Bucher, 2007; Bucher and Stober, 2010; Stober, 2011; Holland et al.,
2013). This range is also consistent with the range used by Sherwood
Lollar et al. (2014) to factor in a porosity as a function of depth in
crystalline rock settings adapted from the depth-porosity model of
Bethke (1985) and outlined in Eq. 10:

Φ � 1.6 −z/4.8( )

100
(10)

where ϕ is bulk porosity (%) and z is depth (km). For the upper
10 km, this approach similarly predicts an average bulk porosity of
0.96% with a relative uncertainty of 0.45%. To date all of these
approaches are consistent and provide a relatively well constrained
range for porosity for the Precambrian Shield fractured rocks of
0.55%–1.45%. It is worth noting however that as explained in the
previous studies, this parameter typically introduces the largest
uncertainty in the calculated outputs (e.g., Warr et al., 2018).

A range of 1–1.22 g/cm3 was used for fluid density to reflect the
maximum potential spectrum of fluids ranging from freshwater to
the highly saline fracture fluids measured at the site containing up to
220 g/L based on the geochemical data presented in Lollar et al.
(2019) and Warr et al. (2021a). Meanwhile, a range of 2.7–3.3 g/cm3

was applied for rock density which incorporates the range of
densities associated with crustal settings containing mafic-
ultramafic, felsic and meta-sedimentary lithologies as is the case
for Kidd Creek (e.g., Sherwood Lollar et al., 1993; Bleeker and
Parrish, 1996; Thurston et al., 2008) and for comparable crystalline
settings globally (Lippmann et al., 2003; Holland et al., 2013;
Sherwood Lollar et al., 2014; Heard et al., 2018). For U, Th, and
K concentrations, ranges of 0.91–2.00, 4.31–9.00, and
14,800–20000 ppm (1.48%–2%), respectively, were chosen
following Li et al. (2016) which selected this as a representative
range for these elements for the Abitibi Sub province based on
Ketchum et al. (2008); Moulton et al. (2011). Values from within this
range were those used previously in noble gas and hydrogen
production-based studies (Holland et al., 2013; Warr et al., 2018;
Warr et al., 2019) which allows direct comparison between the
model presented here and these previous studies.

With respect to sulfide (pyrite) concentrations, these were based
on the study of Li et al. (2016) which estimated pyrite concentrations
of 3.5% in the non-ore zone and 38% pyrite in themassive sulfide ore
zone based on mass balance calculations from published elemental
inventory data (Hannington et al., 1999). In this study, as with the
previous study by Li et al. (2016), pyrite was the only sulfide
considered here as the production of sulfate as a function of
indirect radiolysis has previously been experimentally investigated
(Lefticariu et al., 2010) and in at Kidd Creek it represents the
dominant sulfide mineral present (~70% of total sulfide) based
on the study by Hannington et al. (1999). Lastly, with respect to
sulfide surface area, a range of 0.283–47.1 m2/kg was considered
here. This range incorporates the surface area as modelled by Li et al.

TABLE 1 Range of values for Kidd Creek Observatory used in this Monte Carlo-
based approach based on published values, as described in full in the main
text.

Parameter Minimum value Maximum value

Porosity (%) 0.55 1.45

Density of fluid (g/cm3) 1 1.22

Density of rock (g/cm3) 2.7 3.3

U conc. (ppm) 0.91 2

Th conc. (ppm) 4.31 9

K conc. (ppm) 14,800 20,000

Sulfide concentration (wt%) 3.5 38

Sulfide surface area (m2/kg) 0.283 47.1
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(22.6 m2/kg) and expands this to consider a grain size range of
1 cm–60 μm following the sphere packing model of Altair et al.
(2018) in order to reasonably consider the natural variability of
pyrite grains in both ore-rich and ore-poor regions of Kidd Creek.

To incorporate the Monte Carlo based approach, two types
of Monte Carlo methods were applied. In the Random
Distribution Model (RDM), a value was selected at random
for each variable from within the maximum and minimum
ranges outlined in Table 1 to generate a set of feasible system
parameters. These were then incorporated into Eqs 1–9 and the
resultant in situ production of 4He, 40Ar, H2 and SO4

2- were
calculated. This process was then repeated a total of
1,000,000 times using different randomly selected values to
calculate the resulting spectrum of uniformly distributed
potential production values for 4He, 40Ar, H2, and SO4

2-. In
the second model, the Standard Distribution Model (SDM), a
standard distribution approach was applied. Specifically,
numbers were generated with a normal (standard)
distribution using the mid-point value of each range. Using
this approach, the central values within the range are more
probable and values which approach the upper and lower limits
are progressively less likely to be selected. To assign the
standard deviation, the difference between this midpoint and
the upper value was calculated and divided by three (i.e., the
upper and lower limit represented 3σ from the mean). 3σ was
selected here so 99.7% of all numbers generated through this
approach would lie within the specified ranges and to ensure all
generated values (including outliers) for variables close to zero
(e.g., porosity, U concentration), would remain greater than
zero. The exception to this is pyrite abundance and sulfide
surface area, as highlighted by Table 1, which both vary
considerably as a function of the proximity to the ore body,
with abundances ranging between 3.5% and 38% and surface
areas scaling from 0.283 to 47.1 m2/kg where surface area
rapidly increases as grain size decreases. Here, given the
large difference between the mid-point and the upper and
lower ranges, a 5σ approach was applied to ensure only
positive values were returned using this approach.

4 Results

4.1 Production rates

The maximum, minimum, average, and standard deviation for
the annual production of each element per bulk cubic meter of rock
is provided in Table 2 for each model and plotted in Figure 1.

Table 2 and Figure 1 show that for all four products the same
average (mean) values (within uncertainty) result from both the
RDM and SDM Monte Carlo approaches. Likewise, the absolute
(minimum-maximum) range is comparable between the models.
The most significant difference between the two model approaches
is the consistently larger standard deviation of the mean (Table 2)
for the RDM versus the SDM.

4.2 Model robustness

A convergence-based evaluation was applied to evaluate the
robustness of the Monte Carlo model outputs based on the method
applied by Benedetti et al. (2011). For this, an additional 10 discrete
datasets were generated for each model for the Kidd Creek Observatory
using the same input parameters, but this time each consisting of
100,000 outputs instead of the previous one million. Each of these
datasets therefore are an order of magnitude smaller than the dataset
used to generate the values presented in Table 2 and Figure 1. In this
case, for each of the discrete datasets, theminimum,maximum, average,
and standard deviations were determined as per the overall dataset in
Table 2. These values were then individually collated from the
10 datasets, and from these 10 values, an average and standard
deviation were determined. Lastly, the relative standard deviation
was determined by calculating the variability, here considered the
absolute standard deviation as a percentage of the average values.
This approach allows evaluation of the convergence for each of the
values presented in Table 2 as a function of sample size. This study
considers convergence has been reached for a given parameter when the
calculated variability is within 1% following Benedetti et al. (2011).
Results are given in Table 3.

Table 3 demonstrates that convergence is reached for all
elements for the average production rate and the associated
standard deviation in both models by 100,000 data with less than
0.4% variance at 1 sigma in all cases. Consequently, both Monte
Carlo techniques presented here can produce robust and
reproducible average production rates and an associated standard
deviation from a generated dataset an entire order of magnitude
lower than the sample size which was generated and analyzed in
Table 2. This therefore demonstrates the robustness of the model at
generating a most probable production rate and associated
uncertainty even at relatively small sample sizes (100,000 data).
This not only highlights that this approach is not only capable of
numerically defining the range of possible values but also providing
critical statistical insight into the probability of the production
estimates for a natural setting.

With respect to the generated minimum and maximum values
and the production range this represents, Table 3 demonstrates that
there is more associated relative variability at the 100,000-output
level, particularly with the SDM Monte Carlo approach. This is
expected as these ‘extreme’ values depend on a combination of

TABLE 2 Production rates for 4He, 40Ar, H2, and SO4
2- per bulk m3 of rock per

year determined using Eqs 1–9, coupled with the two Monte Carlo modelling
approaches incorporating the input parameters provided in Table 1 and
described in full in the main text. Each value represents the result of one
million generated values via the two Monte Carlo models RDM and SDM. All
production rates are in moles per bulk m3 per year.

Parameter Minimum Maximum Average 1 std dev

4He (RDM) 2.83E-11 7.27E-11 4.87E-11 7.76E-12

4He (SDM) 2.98E-11 6.96E-11 4.88E-11 4.47E-12

40Ar (RDM) 6.72E-12 1.11E-11 8.80E-12 9.14E-13

40Ar (SDM) 6.36E-12 1.16E-11 8.80E-12 5.27E-13

H2 (RDM) 1.30E-09 6.76E-09 3.45E-09 9.84E-10

H2 (SDM) 9.56E-10 6.67E-09 3.45E-09 5.65E-10

SO4
2- (RDM) 6.18E-13 3.08E-09 4.91E-10 4.28E-10

SO4
2- (SDM) 7.97E-12 1.54E-09 4.91E-10 1.52E-10
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multiple uppermost and/or lowermost inputs which
probabilistically have a lower chance of co-occurring and so are
not as frequent, especially when a normal distribution is applied.
This likewise highlights why the standard deviations are
considerably lower for the SDM Monte Carlo approach as
highlighted in Section 3.1. Continuing to focus on variability
though, the greatest relative variability is present for the lowest
estimated production rates for both H2 and SO4

2-. These two species
(H2 and SO4

2-) depend on the greatest number of input variables and
so, from a probabilistic standpoint, this makes sense, as in order to
generate production rates for these two species requires the greatest
co-occurrence of max/min values to be selected from the input
ranges.

The magnitude of relative uncertainty in Table 3 is also
intrinsically a function of the scale involved. The same absolute
variability around a smaller value will always translate to a higher
relative variability. When the absolute variability (standard
deviation) in Table 3 is considered, this is actually consistently
and considerably lower compared to the upper estimates. To avoid
this skew, the absolute values and the dependent production ranges
can also be evaluated. For this, the absolute minimum and

maximum production values from the input range can be
calculated by putting the upper or lowermost range values into
Eqs 1–9 and comparing these ‘absolute’ values and the range to the
model outputs provided in Table 2 for each Monte Carlo model.
These are given in Table 4 and are plotted in Figure 1 as the black
horizontal arrows for each plotted element.

Table 4, shows that the RDM approach generates production
ranges comparable to the absolute ranges calculated by taking the
extreme values within the range from 1,000,000 generated values.
Specifically, this approach results in 98% (4He), 100% (40Ar), 94%
(H2), and 86% (SO4

2-) agreement in the ‘absolute’ calculated ranges.
For the SDM, the ranges are more variable compared to the absolute
range, and show 88% (4He), 119% (40Ar), 98% (H2), and 43% (SO4

2-)
agreement with the absolute values. With respect to SO4

2-, this
variability in the range is again due to the decreased probability of
extreme values being selected, which is amplified by having the
greatest number of input parameters. At the same time, the SDM
allows for 0.3% of the values to lie outside of the specified range for
all variables (except pyrite abundance and sulfide surface area). As a
consequence, the expectation is that with a sufficiently large sample
size this model should actually generate a slightly larger range

FIGURE 1
Production rates for 4He, 40Ar, H2, and SO4

2- in moles per bulk m3 rock per year determined using Eqs 1–9, via the random distribution Monte Carlo
approach (RDM) (A) and the standard distribution Monte Carlo approach (SDM) (B). The results incorporate the input parameters provided in Table 1 and
are described in full in themain text. Previously calculated production rates by Li et al. (2016) for SO4

2-; Warr et al. (2019) for H2,
4He, and 40Ar are plotted as

light grey horizontal lines for H2 and SO4
2- and in grey vertical hatched lines for 4He and 40Ar. SO4

2- production from Li et al. (2016) is converted from
the reported production (moles per liter per year) to production in moles per m3 bulk rock per year using Eq. 9 and a porosity of 1% as in the Li et al. (2016)
published model. On all figures the black horizontal arrows represent the range (maximum-minimum) for the results from this study, the vertical black
arrows represent the average (mean), and the crosses represent the associated standard deviation (1 σ).
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compared to calculating production using the max or min values
from the ranges. This is observed here in the case of 40Ar, where the
production primarily depends only on the potassium content and
the bulk rock density (Eqs 2, 3), and so requires the least number of
‘outliers’ to produce such an enhanced range. This demonstrates
then how the number of production rates generated via the SDM
Monte Carlo approach must scale as a function of number of input
parameters in order to fully reflect the possible upper and lowermost
production rates. The same is applicable for the RDM, but the lack of
biasing of the values towards a centralized value means fewer
numbers will need to be generated before the maximum range
reflects that of the maximum input parameters. In contrast to SDM,
the RDM approach is more effective at generating a production
range in line with the number of input parameters for 4He, 40Ar, H2,
and SO4

2- over 1,000,000 randomly generated production rates. In
both cases however, simply comparing the Monte Carlo generated
ranges to an absolute range calculated deterministically by taking the
maximum or minimum value from each input parameter as
appropriate provides a straightforward basis for evaluating the
number of model outputs required to accurately reflect the ‘true’
maximum range.

Finally, even in cases where neither model reflects the maximum
and minimum possible production rates from the input parameters,
they provide insight into the likelihood (probability) of the estimated
production rates and ranges. Taking SO4

2- production as an example,
although the absolute production range from the input parameters may

vary by 3.6E-09 mol per bulk m3 per year, the RDM and the SDM both
predict ranges of 3.1E-09 and 1.5E-09 mol per bulk m3 per year
respectively from 1 million generated values. Essentially this gives a
minimum confidence for these ranges of 99.9999% (with less than 1 in a
million values falling outside this calculated range). The best range to
use then depends on whether there is sufficient data on the input
parameters to determine whether they are normally distributed or not,
which is discussed in more detail in section 5.3.

5 Discussion

5.1 Comparison of Monte Carlo approach to
previous state of the literature

5.1.1 4He and 40Ar production rates
The average estimated production and ranges for 4He, 40Ar, H2,

and SO4
2- generated by both Monte Carlo models (Figure 1; Table 2)

are generally consistent with the previous ranges published for Kidd
Creek Observatory by Warr et al. (2019) and Li et al. (2016). There
are several key differences between the previous estimates and those
presented here however. In the case of 4He and 40Ar, the Monte
Carlo generated mean production rates are both slightly lower than
those of Warr et al. (2019), although the two sets of values agree
within the (albeit large) maximum production ranges (horizontal
black arrows). The lower mean values from the Monte Carlo

TABLE 3 Average, standard deviation, and relative percentage of each statistic presented in Table 2 (min, max, average, standard deviation) for each element.
These were determined by generating an additional 10 discrete data sets of 100,000 values using the same approach as outlined in themain text. For each data set
of 100,000 the min, max, average and standard deviation was then calculated as with those presented in Table 2 for the full data set. These were then compiled
from the 10 data sets and an average and standard deviation was calculated for each of these outputs. Additionally, the relative percentage the standard deviation
represents with respect to the mean is presented to show variability. All production rates are in moles per bulk m3 rock per year.

RDM Monte Carlo SDM Monte Carlo

Parameter Average 1 std dev Relative % Average 1 std dev %

4He min 2.83E-11 1.90E-13 0.67% 3.06E-11 6.03E-13 1.97%

4He max 7.24E-11 2.63E-13 0.36% 6.93E-11 1.61E-12 2.32%

4He average 4.87E-11 1.60E-14 0.03% 4.87E-11 1.20E-14 0.02%

4He 1 stdev of ave 7.76E-12 1.40E-14 0.18% 4.48E-12 9.62E-15 0.21%

40Ar min 6.74E-12 5.42E-15 0.08% 6.69E-12 1.05E-13 1.56%

40Ar max 1.11E-11 1.20E-14 0.11% 1.13E-11 1.72E-13 1.52%

40Ar average 8.80E-12 1.37E-15 0.02% 8.80E-12 1.33E-15 0.02%

40Ar 1 stdev of ave 9.14E-13 1.04E-15 0.11% 5.27E-13 9.59E-16 0.18%

H2 min 1.33E-09 2.93E-11 2.20% 1.13E-09 1.75E-10 15.46%

H2 max 6.68E-09 5.66E-11 0.85% 6.22E-09 2.42E-10 3.90%

H2 average 3.45E-09 2.36E-12 0.07% 3.45E-09 1.28E-12 0.04%

H2 1 stdev of ave 9.82E-10 2.03E-12 0.21% 5.65E-10 8.53E-13 0.15%

SO4
2- min 8.77E-13 1.16E-13 13.19% 5.60E-11 1.86E-11 33.24%

SO4
2- max 2.93E-09 9.13E-11 3.12% 1.45E-09 6.24E-11 4.29%

SO4
2- average 4.91E-10 1.48E-12 0.30% 4.91E-10 3.72E-13 0.08%

SO4
2–1 stdev of ave 4.27E-10 1.51E-12 0.35% 1.52E-10 4.21E-13 0.28%
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approach arise because the radioelement concentration range used
here spans from 0.91–2.00 ppm (U), 4.31–9.00 ppm (Th), and
(1.48%–2% (K), while in the previous study only the uppermost
values in these ranges were used. As a result, the average
radioelement concentrations and the dependent noble gas
production rates are inevitably somewhat lower here. In contrast,
the very largest (most extreme) estimate of production rates from
the Monte Carlo models are larger than those of Warr et al. (2019),
principally due to the Monte Carlo technique integrating a range of
rock density values (2.7–3.3 g/cm3) rather than the single value of
2.7 g/cm3 used byWarr et al. The net effect of this greater integration
of lithological variation in the Monte Carlo approach means that a
lithology with the same radioelement concentration by weight but a
greater overall density will result in a higher radioelement
abundance per m3 and higher predicted production of radiogenic
noble gases per bulk rock volume. This combinatorial variable effect,
coupled with the inherent variability in radioelement distribution,
are the primary controls on production of these elements and can
only be integrated in a coupled fashion using a methodology which
incorporates Monte Carlo-based approaches—this ability to
simultaneously incorporate lithological and elemental variation is
a major advance of this new approach to these predictions and
calculations.

5.1.2 H2 production rates and ratios
For H2 production by radiolysis (Figure 1), the mean production

rates and ranges are noticeably lower than those from Warr et al.
(2019) although they just overlap within uncertainty at the lower end
of the 2019 estimates (Figure 1). The reasons for this revised lower

estimate here are twofold: Firstly, as demonstrated in Eqs 4, 5,
radioelement concentration is a primary control on H2 production.
As highlighted already for 4He and 40Ar, only the uppermost
radioelement concentrations were applied in Warr et al. (2019),
contributing to the higher H2 production rates previously reported
therein. Secondly, the production of H2, and therefore resultant
ratios of H2 to radiogenic

4He and 40Ar (e.g., H2/
4He), are also highly

dependent on porosity (Sherwood Lollar et al., 2014; Warr et al.,
2019) which was incorporated using a slightly different approach in
Warr et al. (2019). Specifically, inWarr et al. (2019), this dependence
was applied to show that the average crustal production ratios for
H2/

4He and H2/
40Ar scale as a function of porosity from 127 to 107;

to 832-701, respectively as porosity values of 1.04%–0.88% were
considered. Warr et al. (2019) then multiplied these ratios by the
modelled 4He and 40Ar production to estimate radiolytic H2

production. Comparing H2/
4He and H2/

40Ar ratios from the
Monte Carlo approaches to Warr et al. (2019) (Figure 2) shows
agreement between this study and the 2019 results, but, once again,
the 2019 values skew to higher estimated ratios, this time due to
Warr et al. (2019) applying average global crustal production rates
rather than site specific values. The Monte Carlo approach
meanwhile incorporates both a wider range of radioelements, as
well as the site-specific variability in porosity. While that inevitably
produces a wider range of estimates, the power of the approach is
that is also constrains the most probable value (mean) in a way not
previously possible. In doing so, it reveals that the in situH2/

4He and
H2/

40Ar production ratios at Kidd Creek Observatory are
moderately lower than would be predicted based simply on
average crust. This, coupled with the revised-down estimates of
4He and 40Ar (due to the lower radioelement concentrations in the
MC) results in the overall lower, yet more representative, H2

production based on the site-specific parameters modelled using
Monte Carlo models.

5.1.3 SO4
2- production rates

The estimates of SO4
2- production via indirect radiolysis of

pyrite (IROP) presented here are in agreement with those of Li
et al. (2016), but both the RDM and SDM models are capable of
providing the more powerful information of a most probable
mean estimate, while also significantly reducing the estimated
range compared to the previous study, particularly for the SDM
Monte Carlo Approach (Figure 1). The reasons for this, as
discussed in detail in Section 3.2, are due to sulfate
production having the greatest number of input parameters,
and so the range is reduced due to the decreased probability
of multiple extreme values being selected. Instead, the range
presented here more accurately is a function of the confidence
limits with this range here representing the 99.9999% confidence
(or less than 1 in 1,000,000). With respect to sulfate production
then, while the previous study presented a relatively large range,
this model demonstrates the ability to incorporate multiple
parameters to efficiently calculate the most probable
production rate along with an associated standard deviation.
With a sufficiently high number of generated values, it can
additionally provide constraints on the probability of numbers
falling within a maximum and minimum range generated from
the data. Consequently, the Monte Carlo approach applied here
provides a means to generate the most probable production rates

TABLE 4 Comparing theminimum, maximum, and production rates and ranges
for three approaches: A) The absolute upper and lower values calculated using
maximum and/or minimum values from the input ranges given in Table 1. B)
The values generated by the RDM. C) The values generated by the SDM. The
RDM and SDM ranges for each element are plotted on Figure 1. Both model
results represent 1,000,000 values as discussed in the main text and the
maximum and minimum values are also provided in Table 2. These results
demonstrate that the RDM generates ranges which are most consistent with
those calculated by taking the upper/lower values from the ranges. All
production rates are in moles per bulk m3 per year.

Parameter Absolute RDM SDM

4He (min) 2.8E-11 2.8E-11 3.0E-11

4He (max) 7.3E-11 7.3E-11 7.0E-11

4He (range) 4.5E-11 4.4E-11 4.0E-11

40Ar (min) 6.7E-12 6.7E-12 6.4E-12

40Ar (max) 1.1E-11 1.1E-11 1.2E-11

40Ar (range) 4.4E-12 4.4E-12 5.3E-12

H2 (min) 1.2E-09 1.3E-09 9.6E-10

H2 (max) 7.0E-09 6.8E-09 6.7E-09

H2 (range) 5.8E-09 5.5E-09 5.7E-09

SO4
2- (min) 3.7E-13 6.2E-13 8.0E-12

SO4
2- (max) 3.6E-09 3.1E-09 1.5E-09

SO4
2- (range) 3.6E-09 3.1E-09 1.5E-09
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and provide considerably tighter constraints on in situ SO4
2-

production estimates.

5.1.4 Comparison summary
This study demonstrates two critical findings for the Monte

Carlo approach applied to model production of H2,
4He, 40Ar, and

SO4
2-. First, this study demonstrates that both RDM and SDM can

reproducibly estimate the most probable production rates and
associated uncertainties at the 1 σ confidence level for a given
system within 100,000 data being generated. These robust
production rates incorporate the inherent variability in all input
parameters simultaneously for a natural system. Secondly, this
approach provides a basis to reevaluate the absolute production
ranges for each chemical species (based on the uppermost and
lowermost production) as a function of probability.

5.2 The importance of each parameter range
via statistical experiments

An additional benefit of the Monte Carlo modelling approaches
is that the relative importance and model sensitivity of each defined
input range on the output can be quantitatively evaluated. This can
be demonstrated by a series of statistical experiments that
sequentially replace each input parameter range with a single,

mid-point value and record the net decrease in the standard
deviation of the mean production values. Applying this approach
results in the greatest reduction in the standard deviations for the
input ranges which have the most significant impact, and vice versa.
The results of this are presented in Table 5 where the percentages
represent the decrease in the original standard deviation caused by
replacing the range with a single value.

The major insights from this experimental approach are shown
in Table 5. The biggest source of variability in the current model
outputs from the input parameters for both 4He and 40Ar production
are the concentrations of the dependent radioelement concentration
(U, Th for 4He, K for 40Ar); followed by the density of the rock.
Meanwhile, for H2 production, the porosity range used here
represents the dominant source of variability in production, with
the specified density of fluids and radioelement concentration
ranges in Table 1 having a relatively small effect in comparison.
Lastly, for SO4

2-, the approach provides the important insight that
production the biggest variability is derived from sulfide
concentration, sulfide surface area and porosity, with fluid
density and radioelement concentration ranges having a minor
effect. This additional ability to identify and quantify the
dependence, sensitivity, and relative importance of each
parameter range in the model allows additional evaluation and
potentially fine tuning of the model input parameters which have
the greatest impact on the production rates. This insight can define

FIGURE 2
H2/

4He and H2/
40Ar production ratios determined via the RDM Monte Carlo approach (A,B) and the SDM Monte Carlo approach (C,D) respectively.

Each ratio was derived per cycle based on production of H2,
4He, and 40Ar generated via the Monte Carlo approach to calculate the probabilistic

distribution of H2/
4He and H2/

40Ar production ratios. As with Figure 1 the black horizontal arrows represent the range (maximum-minimum), the vertical
arrows represent the average (mean), and the crosses represent the associated standard deviation (1 σ). The range of previous ratios used in Warr
et al. (2019) are plotted as grey horizontal arrows for context.

Frontiers in Earth Science frontiersin.org09

Warr et al. 10.3389/feart.2023.1150740

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1150740


sampling or analytical strategies needed to refine estimates; or
highlight why different geologic settings might return different
estimates regarding habitability and radiogenic noble gas
concentrations and related radiotracers (which are vital input for
defining, for instance, groundwater residence times; Holland et al.,
2013; Warr et al., 2018; Warr et al., 2022; Warr et al., 2023). Overall,
this new approach to estimating these parameters provide a more
sensitive, and hence powerful model for examining real world
variability and more accurately extrapolating to global estimates.

5.3 Random distribution vs. standard
distribution

This study demonstrates how ranges of input parameters can be
applied to both a random (RDM) and a standard (SDM) distribution
Monte Carlo approach to explore the probabilistic in situ subsurface
production of key molecules (H2,

4He, 40Ar, SO4
2-). Although both

models demonstrate the ability to generate statistical probable mean
estimates, associated uncertainties (standard deviation), and
production rates (with an associated confidence), two key
differences exist between the two approaches. Firstly, while the
RDM considers all values within the input to have equal
probability, the SDM considers a normally distributed input
function, with mid-range values to be more likely than those
approaching the upper and lower limits. Secondly, although both
models essentially consider the input ranges to be upper and lower
limits, in the case of the SDM these limits are ‘soft’ and values may be
selected beyond this range, here at either the 3 or 5 σ level. The net
effects of these differences are that the SDM generates a reduced
uncertainty (standard deviation) around the mean production rate
(Table 2) and generates production ranges which are considerably
more sensitive to the number of input parameters needed and
number of generated production values used (Section 3.2). When
it comes to applying this approach to a natural system then, the
question to address is how well-constrained the ranges are, and what
the anticipated distribution of the data is for each variable?

Where the variable ranges are based on a very limited dataset,
and are therefore relatively poorly defined, although both
approaches will generate comparable mean production rates, the
random distribution approach is more liable to underpredict
production ranges when the numbers of model outputs are
sufficiently high. This is because this approach cannot exceed the
upper and lower values the way the normal distribution model can.
However, the implicit assumption of a normally distributed dataset
requires more careful consideration as, although many natural
systems produce normally distributed populations, this is
dependent on a function of scale and scope. This can be
specifically highlighted here in the Kidd Creek example where
both an ore zone and a non-ore zone are present in the host
rock at the site. The scale of this model is such that it
incorporates both of these. As a consequence, if we consider that
the sulfide concentrations and surface areas are perhaps normally
distributed in both zones, then combination of these then would
necessarily be, at its most simple, bimodal. Alternatively, there may
be a continuous distribution with a low probability of high-grade ore
better represented by a log-normal distribution function. As a
consequence, applying a normal distribution in this scenario may
not adequately consider the natural variability in this parameter,
even at this site location, resulting in standard deviations in
production rates which are lower than they realistically might be.
On the other hand, where a variable can be considered reasonably
homogeneous at the temporal and spatial resolution being
considered (a hydrogeologic term referred to as “Representative
Elemental Volume, e.g., Freeze and Cherry, 1979; Bear, 1988;
Adeleye and Akanji, 2018; Gilevska et al., 2021) then a normal
distribution could reasonably apply which would be more reflective
of the in situ variability associated with this (and comparable) input
parameters.

Though the two model approaches evaluated here were either
fully randomly distributed, or fully normally distributed, that there
is no a priori need for all input parameters to be treated identically.
While some parameters (such as the example of sulfide
concentrations previously) may be more heterogeneous even at a

TABLE 5 The relative effect of each variable on the associated standard deviation associated with the production rates of each element. Here the relative
importance of each input range on the standard deviation was evaluated for bothmodels. The values given here represent the percentage decrease in the original
standard deviations that result from changing the input parameter range to a fixed, mid-point value. Due to the combinatorial effect in multiparameter space the
percentages do not add up to 100%. For example, replacing the K concentration or rock density with a single value reduces the 1 σ associated with 40Ar by 45% and
17% respectively. However, replacing them both at the same time results in a 98% reduction in the reported 40Ar 1 σ.

RDM Monte Carlo SDM Monte Carlo

Parameter 4He 1σ 40Ar 1σ H2 1σ SO4 1σ 4He 1σ 40Ar 1σ H2 1σ SO4 1σ

Porosity (%) 0% 0% 60% 8% 0% 0% 60% 14%

Density of fluid (g/cm3) 0% 0% 2% 0% 0% 0% 3% 1%

Density of rock (g/cm3) 7% 17% 0% 0% 7% 17% 0% 0%

U conc. (ppm) 24% 0% 3% 0% 24% 0% 3% 1%

Th conc. (ppm) 26% 0% 4% 0% 25% 0% 4% 1%

K conc. (ppm) 0% 45% 1% 1% 0% 45% 1% 1%

Sulfide concentration (wt%) 0% 0% 0% 25% 0% 0% 0% 17%

Sulfide surface area (m2/kg) 0% 0% 0% 35% 0% 0% 0% 25%
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single locality, others (such as for instance fluid density, are more
likely to be homogeneous). Applying an advanced ‘hybrid’ model
approach can incorporate both types of variability by treating some
of the input parameters as being normally distributed, and others as
randomly distributed. As a result, a careful review is needed for each
of the input parameters as to whether they have individually reached
the Representative Elemental Volume which reflects the scale and
scope at which the variable can be considered as homogenous (e.g.,
Freeze and Cherry, 1979; Bear, 1988; Adeleye and Akanji, 2018;
Gilevska et al., 2021). This can be evaluated by comparing the
inherent variability of any parameter with the associated
uncertainty. Where variability is smaller than any associated
uncertainty at the system scale of interest these parameters are
considered homogenous (Gilevska et al., 2019; Gilevska et al., 2021)
and consequently can be modelled via the normal distribution
approach. Alternatively, when this approach indicates that the
variable is heterogenous for the system and scale of interest then
a random distribution based on the considered maximum and
minimum values will be more appropriate. In this scenario, the
corresponding increased standard deviation which results from
using random distributions will more reasonably reflect the
increased uncertainty introduced by incorporating a heterogenous
variable. Likewise, where the range for a given variable is likely to be
considerable, as demonstrated in our example by pyrite abundance
and sulfide surface area, alternative distribution functions may be
evaluated and applied, such as inverse normal distribution or log-
normal distributions, as appropriate.

5.4 Applications and implications

This parameterized Monte Carlo approach is essential for
generating models which are capable of factoring in natural
variability at multiple scales to estimate production of critical
elements reflective of in situ conditions, especially where
uncertainty may exist in one or all of the input parameters. This
approach provides means to quantify this uncertainty, and evaluate
its relative significance against other variables, an advance
previously not possible for deterministic approaches
predominantly used to date in the literature. One area of
research which will significantly benefit from this type of next-
generation model includes refining estimates of subsurface fluid
residence times, as this approach allows realistic and site-specific
physico-chemical parameters to be fully incorporated when
estimating radiogenic noble gas and related radiotracer
production rates (e.g., Holland et al., 2013; Heard et al., 2018;
Warr et al., 2018; Warr et al., 2022; Warr et al., 2023).
Improving residence time estimates, coupled with refined models
of production of related bioavailable components are vital for
advancing existing models of subsurface habitability. To date,
significant research has focused on evaluating the role of
radiolytic-driven cycling of hydrogen and sulfur in supporting
chemosynthetic ecosystems (e.g., Lin et al., 2005b; Lin et al.,
2006; Chivian et al., 2008; D’Hondt et al., 2009; Sherwood Lollar
et al., 2014; Dzaugis et al., 2016; Li et al., 2016, 2022; Telling et al.,
2017; Warr et al., 2019; Bomberg et al., 2021; Sauvage et al., 2021;
Nisson et al., 2023). Most recently, research has expanded this aspect
to consider cycling of other associated critical bio-elements, such as

nitrogen, and simple organic molecules (e.g., Silver et al., 2012;
Adam et al., 2021; Li et al., 2021; Sherwood Lollar et al., 2021;
Vandenborre et al., 2021; Karolytė et al., 2022), and to evaluate
alternative habitability models beyond Earth on other worlds such as
Mars, Enceladus, and Europa (Onstott et al., 2006; Bouquet et al.,
2017; Dzaugis et al., 2018; Tarnas et al., 2018; 2021). However,
underpinning this entire research field is the fundamental
requirement of accurately being able to model representative
radiolytic production of elements within the system(s). This has
resulted in a recent shift from deterministic towards a probabilistic
approach, demonstrated both here via Monte Carlo approach and
by incorporating additional statistical-based approaches (e.g.,
Bayesian modelling - Gallagher et al., 2009; Karolytė et al., 2022)
to generate the next-generation of models to incorporate variability
within natural systems. These next-generation models are essential
in order to provide more quantifiable and probabilistic approach to
these estimates, less subject to inherent variability in the input
parameters and hence more representative regional/global
estimates necessary to understand the significance of these
processes for Earth, Mars, or the other moons and planets in the
Solar System.

Lastly, this approach can be applied to the field of economic
resource development, specifically for helium, which is essential for
modern medical, research, and industry application, and hydrogen,
which represents a prospective, low-carbon alternative energy
source (Bartels et al., 2010; Hanley et al., 2018; Danabalan et al.,
2022; Milkov, 2022; Warr et al., 2022). To date, the exploration
techniques to identify the processes surrounding formation,
accumulation, and storage of economic reservoirs remain
preliminary and require development (Warr et al., 2019; 2022;
Cheng et al., 2021; Danabalan et al., 2022; Milkov, 2022; Cheng
et al., 2023). Applying next-generation models, such as the one
presented here, which can be applied to calculate production on
local to regional scales, are therefore essential for implementing
refined and effective strategies to identify and exploit these critical
resources and ensure 21st century needs are met.

6 Conclusion

This study demonstrates a novel approach to incorporate the effects
of natural variability of controlling parameters on subsurface radiolytic
production models by integrating a computationally inexpensive Monte
Carlo technique to recent radiolytic/radiogenic models for the first time.
Specifically, we apply a Monte Carlo-based approach to Kidd Creek
Observatory in Canada and compare estimated production of H2,

4He,
40Ar, SO4

2- with previous models that used straightforward deterministic
approaches (Li et al., 2016; Warr et al., 2019). This novel modelling
technique outlined here effectively demonstrates how the natural
variability associated with each parameter can be simultaneously
considered to generate refined next-generation models which can be
applied and/or scaled for natural systems to produce statistically probable
best estimates (mean values), as well as quantitative range for upper and
lower values for in situ estimates of H2,

4He, 40Ar, SO4
2- (and related

elements). Due to its decadal compilation of an unprecedented multi-
parameter dataset from the deep subsurface, the Kidd Creek Observatory
is useful for this proof in principle of the approach bas theMC results can
be compared in principle to previously calculated estimates. We
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anticipate this MC approach can now be applied generally to the large
number of other subsurface systems around the globe that are less well
characterized, in order to generate estimates of 4He, H2,

40Ar and SO4
2-

production with improved confidence in both the range of estimates
(maxima andminimum) andmost probable values, even at sites thatmay
be much less well-studied than Kidd Creek. Similarly, this approach
allows hypothesis testing and estimation of production of these critical
parameters for resource formation, habitability models in the context of
not only terrestrial-based studies, but also in planetary sciences and
astrobiological studies focusing on Mars, or the moons of Jupiter and
Saturn and beyond.
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