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Introduction: Digitization is a crucial step towards achieving automation in
production quality control for mechanical products. Engineering drawings are
essential carriers of information for production, but their complexity poses a
challenge for computer vision. To enable automated quality control, seamless
data transfer between analog drawings and CAD/CAM software is necessary.

Methods: This paper focuses on autonomous text detection and recognition in
engineering drawings. The methodology is divided into five stages. First, image
processing techniques are used to classify and identify key elements in the
drawing. The output is divided into three elements: information blocks and
tables, feature control frames, and the rest of the image. For each element, an
OCR pipeline is proposed. The last stage is output generation of the information in
table format.

Results: The proposed tool, called eDOCr, achieved a precision and recall of 90%
in detection, an F1-score of 94% in recognition, and a character error rate of 8%.
The tool enables seamless integration between engineering drawings and quality
control.

Discussion: Most OCR algorithms have limitations when applied to mechanical
drawings due to their inherent complexity, including measurements, orientation,
tolerances, and special symbols such as geometric dimensioning and tolerancing
(GD&T). The eDOCr tool overcomes these limitations and provides a solution for
automated quality control.

Conclusion: The eDOCr tool provides an effective solution for automated text
detection and recognition in engineering drawings. The tool's success
demonstrates that automated quality control for mechanical products can be
achieved through digitization. The tool is shared with the research community
through Github.
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1 Introduction

Quality control is the process of verifying that a product or
service meets certain quality standards. The purpose of quality
control is to identify and prevent defects, non-conformities, or
other problems in the product or service before it is delivered to
the customer. Automating quality control can help to make the
process more efficient and less error-prone. There are several
reasons why automating quality control can be beneficial:

• Consistency: Automated quality control systems can ensure
that the same standards are applied consistently to every
product or service, reducing the risk of human error.

• Speed: Automated systems can process and analyze large
amounts of data quickly and accurately, reducing the time
needed for manual inspection and testing.

• Scalability: Automated systems can handle an increasing
volume of products or services as production levels
increase, without requiring additional human resources.

• Cost-effective: Automated systems can reduce labor costs,
minimize downtime, and increase overall efficiency, leading
to cost savings.

• Error detection: Automated systems can detect errors that
might be difficult for human operators to spot, such as subtle
defects or variations in patterns.

Overall, automation of quality control can help companies to
improve the quality of their products or services, increase
production efficiency, and reduce costs. Engineering drawings
(EDs) play a crucial role in the quality control process of
mechanical parts as they provide the contractual foundation for
the design. Therefore, automating the reading of these EDs is the
initial step towards fully automating the quality control process
(Scheibel et al., 2021). EDs are 2D representations of complex
systems and contain all relevant information about the systems
(Moreno-García et al., 2018). These drawings come in different
forms, including schematic and realistic representations. Examples
of schematic EDs include piping and instrumentation diagrams
(P&IDs) or electrical circuit diagrams which use symbols to model
the system. Realistic representations include architectural and
mechanical drawings, which are true physical representations of
the system.

This paper examines the use of optical character recognition
(OCR) for information retrieval in mechanical drawings. However,
the methodology presented can also be applied to other types of EDs.
OCR is a technique for identifying and extracting text from image
inputs for further machine processing.

Computer-aided design (CAD) software is commonly used by
engineers to generate and evaluate designs. Many commercial CAD
software include production manufacturing information (PMI)
workbenches to include manufacturing information as metadata.
However, in many cases, companies have not yet implemented PMI
in their CAD models, or there are incompatibilities between CAD
and computer-aided manufacturing (CAM) software that slow
down the flow of information. Currently, traditional EDs are the
main channel for sharing geometric dimensioning and tolerancing
(GD&T) and other textual data. This information is extracted
manually and logged into other programs (Schlagenhauf et al.,

2022). This task is time-consuming and error-prone, and even in
cases of vertical integration within a company, the same activity may
occur multiple times, such as from design-to-manufacturing and
from manufacturing-to-quality control.

Despite the increasing use of CAD/CAM integration in the
production process, given the fact that 250million EDs are produced
every year (Henderson, 2014), it is probable that billions of older
EDs are in use and many of them are the only reminiscence of
designs from the past. Three situations need to be confronted
depending on the ED condition, increasing in complexity:

1. Vectorized EDs. CAD software can export drawings in
multiple formats, such as “.pdf,” “.dxf,” or “.svg.” These
vectorized formats contain text and line information that
can be extracted without the need for OCR. If the CAD
model is available, the geometrical information in the ED
can be related to the CAD model using heuristics. They can
easily be converted to the next category.

2. High-quality raster EDs. The ED only contains pixel information,
with no readable geometrical or text information. However, the
file has high quality and was obtained through a digital tool. The
geometrical information is complete, but not accessible, requiring
computer vision tools to link the information to a CAD model, if
available.

3. Low-quality raster EDs. These typically include older, paper-
based EDs that have been digitized through a scanner or camera.
The files only contain pixel information and are susceptible to
loss of content.

In order to achieve generalization, the developed OCR system
has been tested on high-quality raster images. OCR systems typically
consist of three or more steps: 1) image acquisition, 2) text detection,
and 3) text recognition. Intermediate or additional steps may include
image pre-processing, data augmentation, segmentation, and post-
processing (Moreno-García et al., 2018). The methodology used to
build this particular OCR system consists of five key components:

• Image segmentation: Divide, extract and suppress the ED
information into two categories: information block and
tables, GD&T information.

• Information block pipeline: Text detection and recognition for
each individual box in the information block, aided by a
developed ordering text algorithm.

• GD&T pipeline: Dual recognition model to predict on special
symbols and regular characters.

• Dimension pipeline: Prediction and recognition on patches of
the processed image, with post-processing techniques on
recognition and a tolerance checker algorithm.

• Output generation: Storage of all information from the three
pipelines in table format, supported by a colorful mask of the
original ED to aid in reading and verifying predictions.

The paper begins with a literature review on general OCR, data
extraction in EDs, and OCR in mechanical EDs. It then proceeds to
present an analysis of the methodology, which comprises five key
components and five supporting algorithms. The results are then
compared with the latest contributions in the field, discussed in
terms of their applications and limitations. The paper concludes
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with a discussion and summary of the findings in the Discussion and
Conclusion sections.

2 Background and literature review

2.1 The mechanical engineering drawing,
elements and standards

Within the mechanical engineering industry, there are several
types of EDs that can be used to represent a product, depending on
the type of information and the country of origin. The most
common types are assembly drawings and production drawings.
Assembly drawings contain partial or complete information about
the assembly instructions for various parts, while production
drawings, also known as machine drawings, typically contain
information specific to a single part, such as information about
its manufacture, surface finishing, tolerances, and grading.

In regards to the quality control process, the production ED is
the principal document. The elements of a professional production
ED are standardized by the International Organization for
Standardization (ISO) and the American Society of Mechanical
Engineers (ASME), among others, to ensure general
understanding of the product’s geometrical requirements.

The first element to consider is the information block or data
field. Relevant data such as general tolerancing of the part,
acceptable tolerances if not indicated otherwise, general
roughness, material, weight, and ED metadata are comprised
within the information block. ISO 7200:2004 is the current
international standard for the layout and content in the
information block, but companies may choose and modify any
other layout or standard of their convenience. Other relevant
information regarding surface finishing, welding requirements,
etc. can be either inside or outside of the information block.
Refer to Figure 1 for an illustrated example.

Specific tolerancing and surface finishing is indicated together
with dimensions in the views of the part. The part should have as
many views as required to fully dimension the part, and the
dimensions should be placed as evenly distributed as possible,
and only contain the necessary dimensions to geometrically
define the part. Other best practices should also be considered.
The international standard for dimensioning is ISO 5459-1 and ISO
14405-1, while other standards are also broadly accepted such as
ASME/ANSI Y14.5 in the USA and Canada, BS-8888 in the
United Kingdom, and JIS-B-0401 in Japan.

In addition to tolerances attached to dimensions, other types of
geometric tolerances can also be found in the so-called Feature
Control Frame (FCF). The ASME Y14.5 and ISO 1101 standards
cover the tolerance zone for the form, orientation, location, and run-
out of features, also called GD&T. Refer to Figure 1 for an illustrated
example.

Mastering the production and understanding of mechanical EDs
is a career-long endeavor, and the vast amount of information and
variations in the field cannot be fully covered in a single publication.
This paper, from a research perspective, aims to establish a base tool
that satisfies sufficient requirements to be used for quality control. In
this chapter, we introduce a set of criteria to evaluate the tool’s
performance and compare it to previous studies in the field.

R1. Support raster images and “.pdf” files as input formats. These
are the two most common formats for finding EDs.
R2. Support the recognition of both assembly and production
drawings. This includes the ability of the algorithm to
differentiate tables and information blocks from geometrical
information such as dimensions and other production
drawing-related information.
R3. In line with R2., the algorithm should be also capable of
sorting and grouping relevant information, and neglect
information of reference.
R4. Tolerance recognition is a crucial requirement for the tool to
be used in the quality control process. The tool must be able to
accurately read and understand tolerance information.
R5. The tool should also be able to detect and recognize
additional GD&T symbols and textual information inside
the FCF.

2.2 Optical character recognition

In recent years, advancements in deep learning techniques have
led to the widespread adoption of OCR in various applications, such
as Google Translate or document scanning for identification
documents, such as debit/credit cards or passports. In these
contexts, the technology must be highly reliable and adaptable to
poor image quality or varying lighting conditions.

The development of OCR technology dates back to the 1950s,
when J. Rainbow created the first machine capable of scanning
English uppercase characters at a rate of one per minute. Due to
inaccuracies and slow recognition speed in early systems, OCR
entered a period of relative stagnation that lasted for several

FIGURE 1
To the left, a typical Information block, it includes standard mandatory information and supplementary information. To the right, a typical feature
control frame, FCF, following ISO 1101 GD&T standard.
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decades, during which it was primarily used by government
organizations and large enterprises. In the past 30 years, however,
OCR systems have significantly improved, allowing for image
analysis, support for multiple languages, a wide range of fonts
and Unicode symbols, and handwriting recognition. Despite
these advancements, the reliability of current OCR technology
still lags behind that of human perception. Current research
efforts in the field aim to further enhance OCR accuracy and
speed, as well as support for new languages and handwritten text
(Islam et al., 2016).

The advent of deep learning has greatly advanced OCR research.
In recent literature, scene text detection and recognition algorithms
such as EAST (Zhou et al., 2017), TextBoxes++ (Liao et al., 2018),
ASTER (Shi et al., 2019), and Convolutional Recurrent Neural
Network (CRNN) (Shi et al., 2017) have been introduced, along
with labeled data sets for OCR such as ICDAR2015 (Karatzas et al.,
2015) and COCO-Text (Veit et al., 2016). Popular open-source OCR
frameworks include Tesseract (Smith, 2007), MMocr (Kuang et al.,
2021), and keras-ocr (Morales, 2020).

Keras-ocr is a dual-model algorithm for text detection and
recognition that provides an Application Programming Interface
(API) API for custom training and alphabets. In the first stage, the
detector predicts the areas with text in an image. The built-in
detector is the CRAFT detection model from Baek et al. (2019).
The recognizer then analyzes the cropped image generated by the
detector’s bounding boxes to recognize characters one by one. The
built-in recognizer is an implementation of CRNN in Keras, hence
the name, keras-ocr. Keras is a high-level API built on top of
Tensorflow for fast experimentation (Chollet, 2015).

2.3 Related work

This section provides an overview of current research in the
detection and recognition of textual information, symbols, and other
elements in engineering drawings. Much of the previous research
has focused on P&ID diagrams, but the Section 2.3.1 delves deeper
into the specific area of mechanical engineering drawings.

Previous studies, such as those by Moreno-García et al. (2017)
and Jamieson et al. (2020), have made significant contributions to
the field through the implementation of heuristics for segmentation
in P&ID diagrams and the application of advanced deep learning

techniques in OCR for raster diagrams, respectively. Other research,
such as that by Rahul et al. (2019), Kang et al. (2019), and Mani et al.
(2020), has focused on the complete digitization of P&ID diagrams,
with a strong emphasis on the detection and recognition of symbols,
text, and connections, utilizing a combination of image processing
techniques, heuristics, and deep learning methods. Additionally, in
the field of architectural engineering drawings, Das et al. (2018)
implemented OCR for both hand and typewritten text.

Comprehensive reviews, such as those byMoreno-García et al.
(2018) and Scheibel et al. (2021), provide further insight into the
historical and comprehensive contributions to the field.

2.3.1 OCR in mechanical engineering
Table 1 provides a summary of the literature review on detection

and recognition in mechanical EDs. The table is organized into three
categories to allow the reader to quickly position each publication:
text detection (TD), text recognition (TR), and graphical elements
(GE). An overview of the requirements stated in Section 2.1 is
provided to analyze the publication contributions and strengths
when applied to quality control automation.

Early work on digitizing mechanical EDs was carried out by Das
and Langrana (1997), who used vectorized images to locate text by
identifying arrowheads and perform recognition. Using other image
processing techniques, Lu (1998) cleaned noise and graphical
elements to isolate text in EDs, while Dori and Velkovitch (1998)
used text detection, clustering, and recognition on raster images
using neural networks (NNs). Their algorithm was able to handle
tolerances but the recognition system was not able to handle enough
characters for GD&T. The complexity and low computational power
drastically decrease the research intent until Scheibel et al. (2021)
came with an innovative approach for working with “.pdf”
documents. They converted “.pdf” EDs to “html” and used
scraping to extract the text, that combined with a clustering
algorithm, returned good results efficiently shown in a user interface.

Recently, the methodology applied to raster drawings has
primarily been pure OCR, utilizing the latest technology
available. This approach involves a detector that identifies
features or text, and a recognizer that reads text wherever it is
present. Examples of this approach can be found in the publications
of Schlagenhauf et al. (2022) and Haar et al. (2022), which use
Keras-OCR and the popular algorithm YOLOv5, respectively.
While these latest publications demonstrate promising results,

TABLE 1 Summary of contributions to detection and recognition elements on mechanical EDs.

Publication TD TR GE R1 R2 R3 R4 R5

Das and Langrana (1997) ✓ ✓ ✓

Dori and Velkovitch (1998) ✓ ✓ ✓ ✓ ✓

Lu (1998) ✓ ✓

Scheibel et al. (2021) ✓ ✓ ✓ ✓ ✓

Schlagenhauf et al. (2022) ✓ ✓ ✓

Haar et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓

Present work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TD, text detection; TR, text recognition; GE, graphic elements. R1–R5 are the requirements listed in Section 2.1.
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they still lack sufficient refinement to be used in an industrial setting
for quality control. R2 and R4 are not investigated further in these
approaches.

To improve computer vision performance, Zhang et al. (2022)
developed a data augmentation method in which they use labeled
examples and component segmentation to generate a relatively large
dataset of labeled samples.

Slightly different work in mechanical EDs has been published
recently. Kasimov et al. (2015) use a graph matching system on
vectorized EDs to identify previous designs or features in a database
given a query, Villena Toro and Tarkian (2022) describe an
experimental dual neural network algorithm for automatically
completing EDs of similar workparts. Their algorithm is
embedded in the CAD system, and Xie et al. (2022) utilizes
graph neural networks to classify engineering drawings into their
most suitable manufacturing method.

In addition to the scientific literature, there are also commercial
products for feature extraction from EDs, such as the one offered by
Werk24 (2020). However, the API for these products is closed and
there is no access to the data or information about the methodology
used, which limits the ability for the scientific community to
improve upon the technology.

2.3.2 Research gap
When it comes to digitization of EDs, OCR technology provides

a comprehensive solution for scanned documents and raster images.
However, due to the complexity of engineering drawings,
modifications to the OCR pipeline and image pre-processing are
necessary to aid in the identification of relevant text. Additionally,
post-processing is required to ensure accurate predictions and
extraction of relevant information.

To automate the quality control process, it is essential that the
information extracted from the GD&T boxes and tolerances is
accurate and easily accessible through CAM software. Currently,
there is no widely available open-source end-to-end algorithm that
can achieve this. The pipeline presented in this research constitutes a
significant advancement towards closing this automation gap.

3 eDOCr workflow

The eDOCr tool, presented in this paper, is a state-of-the-art
OCR system designed to digitize assembly and production
drawings with precision and efficiency. It is able to recognize
and differentiate between different types of information in the
drawings, and has a high level of tolerance recognition capability.
Additionally, eDOCr can detect and recognize additional GD&T
symbols and textual information, making it a comprehensive
solution for digitizing EDs.

A detailed flowchart of the methodology is presented in Figure 2.
The developed tool is divided into five distinct stages. Image
processing forms the core of the tool, while the subsequent
pipelines are modular and can be utilized independently,
allowing the user to easily select the desired information to be
extracted from the drawing.

The Image Segmentation stage utilizes element suppression
techniques to clean the image as much as possible and maximize
the effectiveness of the Dimension Pipeline. Three consecutive steps
are employed to eliminate the frame, any information blocks in
contact with the outer frame, and any potential GD&T information,
which is assumed to be contained within its FCF in accordance with
standards. This stage not only returns the processed image, but also

FIGURE 2
eDOCr detailed Flowchart. On top, the summarized workflow followed in Section 3. Below, a more complete representation of the whole system.
The number next to the boxes refer to the subsection where they are explained in detail. The algorithms used are explained in Section 4.

Frontiers in Manufacturing Technology frontiersin.org05

Villena Toro et al. 10.3389/fmtec.2023.1154132

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2023.1154132


stores the FCF and information blocks. Supporting both “pdf” and
image formats meets Requirement R1. Refer to Section 3.1 for more
details.

Each box of the Information Block or attached table may contain
multiple lines of text. Text detection is performed for each box, and
each word is recognized independently. As the detection of these
words does not have a pre-established order, a sorting algorithm is
necessary. The algorithm organizes the words based on their
position and relative size to differentiate rows and columns. This
pipeline satisfies requirement R2 and a portion of requirement R3.
Refer to Section 3.2 for additional information.

The process of analyzing Feature Control Frames (FCF) with
GD&T data does not require text detection, as the information is
contained in separate boxes with a single line of text. The recognizer
can be utilized to extract the textual elements. A specialized
recognizer is trained for GD&T symbols in the first box, while
the Dimension Recognizer is used for the remaining boxes. This
pipeline fulfills the requirement R5. Refer to Section 3.3 for further
details.

The final pipeline is the Dimension Pipeline. To improve the
recall of the detector, it is common practice to divide large
images, such as EDs, into smaller patches, detect, and then
merge the image with the predictions. The clustering
algorithm helps to combine close predictions in space into a
single box. The tolerance checker algorithm is then used to
analyze the possibility of tolerance in the box. If the tolerance
checker is positive, the text is split into three to record the
tolerance as well. Finally, a basic post-processing tool classifies
the dimensions based on textual information (e.g., if it contains
“M” as the first character, it is a thread). This pipeline meets
requirements R3 and R4. See also Section 3.4.

The output of the system includes one “.csv” file for each
pipeline and a masked drawing with an ID description of every
predicted and recognized text. Visual inspection is necessary when
the color in the masked ID is red, indicating that the number of
characters does not match the number of contours in the box (e.g., in
the case of a dimension such as: ∅ 44.5 being identified as ∅ 4.5).

3.1 Image segmentation

In the field of computer vision, it is standard practice to pre-
process images in order to improve the performance of algorithms.
These pre-processing techniques typically include denoising,
blurring, setting thresholds, and converting RGB channels to
grayscale. In the case of mechanical EDs, additional techniques
such as segmentation may simplify the algorithm labor and improve
the final output.

In this paper, we propose an Image Segmentation stage
specifically for general mechanical EDs. In this step, the image is
divided into regions of interest for further processing. This stage
involves the detection and controlled suppression of the frame, the
FCF, and the information block, with the relevant information being
recorded and removed from the image.

The Image Segmentation code supports image file extensions
and “.pdf.” The implementation is centered around an object called
rect, which represents any rectangular shape found in the ED. The
attributes of rect include positional information relative to the
image, a cropped image of the shape, and hierarchical
information in a tree structure where child boxes are contained
within parent boxes. For more information on the hierarchy tree
algorithm, see Section 4.1.

FIGURE 3
Image Processing Steps: 1) Top left corner, finding rectangles. 2) Bottom left corner, frame detection. 3) and 4) Right side, information block and FCF
search.
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When developing, it was assumed that the information blocks
and relevant tables are in close proximity to the ED frame and that
the boxes containing text do not contain any other boxes within it.
The process is summarized in Figure 3, which outlines the four steps
involved in the segmentation stage.

3.1.1 Step I: Find rectangles and build hierarchy tree
The first step is the localization of rectangles as contours with

four points and angles of 90°. The algorithm only considers perfect
rectangles; any character or line intersecting the contour will not be
considered. This can be observed in the top right table in Figure 3,
where characters intersect the bottom line of the box. The Hierarchy
tree generation (refer to Section 4.1) follows the detection of
rectangles.

3.1.2 Step II: Frame detection
The second step is the detection of the frame. The frame is

composed of two horizontal and two vertical lines that converge at
four vertexes. The smallest combination that meets this requirement
and exceeds a threshold set to 70% of the image size is considered the
inner frame. This threshold can be adjusted by the user as an
advanced setting.

3.1.3 Step III: Information block detection
The third step is the identification of information tables. As a

general rule, these boxes are always positioned close to the ED
frame to conserve space for figures and annotations. The “fire
propagation” algorithm is used to find every rectangle that can
“propagate the fire.” This algorithm is explained in more detail in
Section 4.2. Additionally, information boxes cannot have any
other boxes within them in the hierarchy tree. In Figure 3, the

logo from Linköping University contains two rectangles in the
letters “l” and “i.”

3.1.4 Step IV: GD&T boxes detection
Lastly, the FCF boxes are identified using the “fire propagation”

algorithm once more. If after the propagation, two or more boxes are
in close proximity, these boxes are likely to contain GD&T
information. However, if no text is found within the boxes, they
will be eliminated from the GD&T pipeline.

The ED shown in Figure 3 has been selected to demonstrate the
methodology and limitations of the image segmentation stage. Upon
deletion of the frame, information block, and FCF, the image is
prepared for the subsequent stage, the dimension pipeline.

3.2 Infoblock pipeline

The initial output generated during the image segmentation
stage is a collection of boxes from the information block and any
attached tables. These outputs are presented as cropped images of
the original ED. For each box, a standard OCR pipeline extracts the
textual information, and the text ordering algorithm organizes the
predictions in a left-to-right, top-to-bottom fashion.

The information block pipeline is composed of the pre-trained
text detector CRAFT (Baek et al., 2019), a custom CRNN (Shi et al.,
2017) model trained on an extended alphabet, and the ordering text
algorithm (see Section 4.4).

3.2.1 Text region detection
No fine-tuning is necessary for the CRAFT model, as the

results are already satisfactory. The CRAFT model has been pre-

FIGURE 4
Information block pipeline. In the table: boxes extracted from image processing, prediction of the keras-ocr default recognizer and prediction of
custom recognizer.
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trained on the ICDAR 15 dataset (Karatzas et al., 2015), which
includes real images with text in various orientations and
camera angles. Text in black horizontal text on a white
background is relatively easy for the model to detect.
Figure 4 illustrates the text detection in a real ED from the
Linköping University workshop.

3.2.2 Text recognition and organization
The next step in the pipeline is recognition. The keras-ocr

CRNN pre-trained model only supports digits, upper and
lowercase letters, and does not include any punctuation or
mathematical symbols. Empty character predictions or
mismatches are two main concerns when using this model.

The main advantage of using keras-ocr over other OCR
approaches is its flexibility in modifying the alphabet, i.e., the
number of classes in the output layer of the CRNN. The neural
network topology is automatically modified for training. The
alphabet used for the Information Block pipeline includes digits,
upper and lowercase letters, and the following symbols: , . : −/.

The recognizer with a custom alphabet - and this applies to all
three recognizer models - has been trained on auto-generated data.
A training script is provided for custom alphabet training based on
the keras-ocr documentation. The auto-generated samples consist of
pictures with white background and 5–10 characters of various sizes
and fonts. Free-source fonts that include enough symbols for GD&T
are not very common and only a few have been included in the
training: “osifont,” “SEGUISYM,” “Symbola,” and “unifont” are the
available fonts.

The custom recognizer performs poorly on small text because
the generated samples were relatively larger. This is a clear
indication of overfitting, which can be addressed by increasing
the number of fonts, training on real samples, and optimizing
the model’s hyperparameters.

Once the text inside the boxes has been predicted, the
ordering text algorithm organizes the text so that the text
boxes in the same row are separated by a space, and rows are
separated by a “;.” For demonstration purposes, the “;” has been
removed in Figure 4.

3.3 GD&T pipeline

The GD&T Pipeline is simpler than the Information Block
pipeline as it does not require text detection. Every box in the FCF

contains one or more symbols in a single row, so the only
heuristic necessary is to ensure that the special symbol
recognizer predicts on the first box of the FCF. If the FCF is
horizontal, the first box is always placed at the lowest
x-coordinate, and they are ordered left-to-right, while if the
FCF is vertical, this box has the highest y-coordinate, and they
are ordered bottom-to-top.

A dual recognizer has been found to be more effective than a
single recognizer after several trials, but further training with
more fonts and real samples could challenge this conclusion and
make the pipeline slightly less complex and more time-efficient.

Examples of predictions in FCF are shown in Figure 5. However,
it is not relevant to compare it against general OCR systems such as
keras-ocr or Google Vision API, as they are not trained for the
majority of the symbols present in the GD&T.

The limitations present in the Information Block Pipeline also
apply to this pipeline. The font in Drawing 1 is more favorable to the
algorithm, while in Drawing 2, the number “1” poses a challenge as it
is a vertical line. In Drawing 3, the points can be overlooked or
inserted. In the third sample in Drawing 3, the pipeline is not trained
to detect the Maximum Material Condition, and the symbol is not
recognized.

3.4 Dimension pipeline

If the threshold values have been properly set and the image
segmentation has been effective, the resulting image should be an ED
without the frame, FCFs or information block and tables. Only
geometrical views, annotations and dimension sets should be
present in the new image.

3.4.1 Text detection
Even without the frame, EDs are relatively large documents. To

extract the most information from these large images, some
computer vision algorithms in oriented object detection, such as
those trained on the DOTA dataset (Xia et al., 2017), opt for a
different approach. Split the original image into smaller patches,
perform predictions on each patch, and merge the results later. This
way, the algorithm can handle the large size EDs and extract
information effectively.

This procedure has also been implemented in this pipeline, but
with the additional step of using the clustering algorithm to merge
text predictions and group relatively close predictions to acquire

FIGURE 5
Results from the GD&T pipeline for three different mechanical ED.
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surrounding information of a nominal measurement, such as
tolerances.

3.4.2 Text recognition
Once the textual information has been detected, the tolerance

check algorithm searches for any available tolerance information. If

the algorithm is successful, the box is divided into three boxes, as
presented in Section 4.5. In any case, the text recognition process
runs through all the predicted boxes to retrieve the text. The
recognizer model is trained on the most common characters
present in this type of textual elements, this is: digits, letters
“AaBCDGHhMmnR” and symbols “(), + − ± : /°“∅.”

FIGURE 6
Results from the dimension pipeline. Masked image. Blue predictions are potentially correct predictions, red predictions are potentially missing one
or more characters, orange outlines are predictions discarded.

TABLE 2 Results from the dimension pipeline. Table with results after postprocessing. Red rows are flagged dimensions with potential missing characters. The
table expresses the ID of the prediction, type of measurement, predicted text, nominal value, and lower and upper tolerances.

ID Type Prediction Nominal Upper tolerance Lower tolerance

1 Length 82 82

2 Length ∅ 30 ∅ 30

3 Length (80)

4 Length ∅ 52 ∅ 52

7 Length ∅ 55.4 ∅ 55.4

8 Length 0, 4 × 45o 0, 4 × 45o

9 Length 2. +0.2 –0 2 0.2 0

12 Length -B22 -B22

13 Length 458 458

14 Thread G11/4″ G11/4″

15 Length ∅ 30 ∅ 30

18 Length (∅ 5.4)

19 Length 0, 4 × 45o(×2) 0, 4 × 45o

20 Length R1MAx(2x) R1MAx

34 Length 3.2 +0.3 –0 3.2 0.3 0
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3.4.3 Text post-processing
To cleanse the geometrical information and isolating dimension

information as much as possible, a basic post-processing system
based on heuristics is used. Most of the rules are directed towards
eliminating undesired predictions, such as supplementary textual
information and detection mismatches. Analysis of the number of
characters (n > 15) and digits search help to rule out these
predictions.

The second part of the post-processing is a dimension type
classifier, where depending on the recognized characters, they are
classified as angle (contains the symbol “°” and numbers), thread
(contain “M” for bolts or “G” for pipes as first character), roughness
(contains “Ra,” which is the most common, but more roughness
types exist), or length (the rest). If the prediction is a length
dimension, tolerance information is studied and separated from
the nominal value. However, all these rules are far from being
complete, and much more rule definitions, or alternatively and more
appropriate, text processing algorithms, are required.

3.4.4 Dimension pipeline Paradigm
The figure Figure 6, complemented with Table 2, illustrates a

representative example of the inner workings and limitations of the
pipeline, from clustering to post-processing. The algorithm flagged
five measurements as the number of contours and characters did not
match. Of these, measurement 14 and 20 were recognized correctly.
Measurements 9 and 18 were missing one character, while
measurement 12 was incorrect, likely due to the horizontal
support line confusing the algorithm.

On the other hand, the tolerance check functioned as intended,
correctly identifying the tolerances in measurements 9 and 34 and
displaying them in the table. Information in brackets is not considered
as it refers to annotations. Measurements 3 and 18 are for reference only.

Two measurements, placed on the left of the ED, were not
included on the table, as they were clustered together, recognized
incorrectly, and removed for not containing any digits.

All measurements except measurement 14 were recognized as
length measurements. However, measurement 13 is an angle that
had a recognition error, with the symbol “°” being recognized as “8”
instead.

For this particular sample, a summary of the detection and
recognition could be:

• 17/17 measurements detected, 15/17 measurements
recognized.

• 5/15 measurements flagged, 2/5 flagged measurements are
correct, 2/5 missing one character.

• 11/15 measurements recognized correctly, 2/15 missing one
character, 2/15 wrong, 1/15 wrong and not flagged.

3.5 Output generation

The output generation includes three “.csv” files for the
information block, GD&T, and measurements, as well as a
masked image. The masked image is crucial for the end-user as it
allows them to match every prediction with the ID provided in the
“.csv” files.

The masked images use colors for different objects in the drawing.
The red color on measurements can be particularly useful. If this color is
shown, it indicates that the number of contours and the number of
characters predicted do not match. It helps the user to identify where a
possible charactermay have been overlooked. However, it is important to
note that this rule does not mean that the prediction is incorrect, for
instance, the character “i” is composed of two contours.

4 eDOCr algorithms

4.1 Boxes hierarchy tree algorithm

The use of a hierarchical tree of rectangles is important for
understanding the containment or coverage relationships between
different rectangles. In order to maintain an organized structure for
the prediction of text, it is essential to ensure that each box is the
ultimate child in the tree. By only detecting text on boxes that do not
have any children, it is possible to guarantee that there will not be
any duplication of text.

Algorithm 1: Hierarchy Tree Algorithm
With this goal in mind, a hierarchical tree algorithm was

developed. The algorithm works by selecting the largest rectangle
as the parent on every iteration. Then, the children rectangles are
determined by identifying those that are fully covered by the parent
rectangle. This process is repeated, selecting a new parent rectangle
until there are no more rectangles in the list. Once a level is
completed, the parent rectangles are removed from the list and
the process starts again at the next level, choosing the largest
rectangles as new parents. The parent-child relationships for each
rectangle are updated as the algorithm progresses. The pseudo-code
for this algorithm is shown in Algorithm 1.

As shown in Figure 7, the use of a hierarchical tree structure
allows for the identification of specific rectangles (children 4, 6, and
8 in this example) that are likely to contain text. Without this
hierarchical structure, all rectangles would be considered potential
text locations and this would result in repeated predictions and
inefficiencies.

4.2 “Fire propagation” algorithm

The “Fire Propagation” Algorithm is a propagation algorithm.
Given an array of classes with certain state (green), and a trigger (on
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fire), the function will run episodes until the array of classes “on fire”
is empty. After every episode, all “green classes” adjacent to a class
“on fire” acquires the status “on fire,” while every class “on fire”
evolves to the final “burnt” state, that cannot no longer propagate the
fire. This algorithm is depicted in Algorithm 2 and illustrated in
Figure 8.

Algorithm 2: “Fire Propagation” Algorithm
The concept of “boxes touching each other” is implemented in the

code using a threshold. Two boxes that are next to each other are
separated by a black line (see Figure 7). They meet the requirement if,
when the first box is scaled to 110% of its size, it intersects the second box.

4.3 Clustering algorithm

TheClusteringAlgorithm (see Algorithm3) groups togetherwords or
any type of character expressions that are in proximity to each other. It

FIGURE 7
Tree Hierarchy for a general image. Inner rectangles are highlighted in orange and outer rectangles in green.

FIGURE 8
“Fire propagation” algorithm illustration per episode. The function’s output is the burnt cells.

FIGURE 9
Consecutive episodes of the clustering algorithm to group three
boxes of text that belong together. t is the threshold.
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takes as input the boxes predicted by the text detector (CRAFT) and
returns a reduced list of boxes. One of themost significant contributions of
this algorithm to the system is the ability to gather tolerance information
related to the nominalmeasurement, as shown in Figure 9. The concept of
proximity is introduced in the algorithm as a threshold value. The
algorithm scales up the box under analysis so that its size includes a
space in the major axis equal to the threshold, as depicted in Figure 9.

Algorithm 3: Clustering Algorithm
The effectiveness of the algorithm in clustering the objects of

interest accurately is highly dependent on the layout and font of the
text. Thresholds that are suitable for one ED may not group all the
information in others. However, it is important to note that
clustering independent text because they are in close proximity
to each other is worse than leaving some text ungrouped. Therefore,
the threshold value is presented as an advanced setting that the user
can modify to suit the specific ED they are working with.

4.4 Text ordering algorithm

The CRAFT detector by itself does not arrange the words it
detects, which would defeat the purpose of the system as the text

would lose all meaning when separated. To address this issue, the
Text Ordering Algorithm takes all detected words and sorts them
into rows based on their vertical coordinate and size. The
algorithm then arranges the words from left to right within
each row. A row is defined as a consecutive group of words
with the same size, meaning words at the same level with different
size are stored in different rows. The algorithm presented in
Algorithm 4 makes it possible to order the text in a meaningful
manner.

Algorithm 4: Text Ordering Algorithm
The text ordering algorithm is specifically used in the

Information Block pipeline, as it is the only pipeline that can
contain multiple rows of text within each box. In contrast, the
other two pipelines - Dimension Pipeline, GD&T pipeline - typically
only contain single line text and thus the text ordering algorithm is
not necessary.

FIGURE 10
Tolerance check algorithm table for different tolerance layout. The top most example details the process in higher detail. The algorithm in
combination with recognition and post-processing return positive results for three out of the four examples presented, while the forth example is an
“algorithm killer.”
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4.5 Tolerance check algorithm

The tolerance check algorithm is built using image processing
rules to identify whether the dimensions boxes have or not
tolerances attached. The steps to make the algorithm given a
detected box are:

1. Find maximum and minimum y coordinate with black
pixels.

2. Search from right to left the closest black pixel and record the
distance until encounter. The search interval will be from 30% to
70% of image width, to avoid lower or higher characters, as seen
in the third example of Figure 10.

3. If a recorded distance Δx is bigger than 80% of the distance
between ymax and ymin, the box is considered as having tolerance
boxes in it.

4. From the biggest Δx found, the algorithm looks for the first
horizontal coordinate with no black pixels. The encapsulation of
the nominal value of the measurement is now finished.

5. From the y-coordinate of the biggestΔx found, and increasing the
y-coordinate, the algorithm stops at the first black pixel to divide
the tolerance boxes.

In the second example in Figure 10, the algorithm will find in
Step 3 that the first column without a black pixel is the first pixel
column of the box. As a result, the nominal box is empty and only
the two tolerance boxes are sent to the recognizer. In post-
processing, the minus or plus sign will alert the system,
allowing it to split the information correctly. This is also the
case in the third example, where the symbol ± triggers a rule to
identify the tolerance.

This algorithm is not flawless and may produce incorrect
results in certain situations. For example, tolerances expressed as
shown in the fourth example of Figure 10 will result in a wrong
prediction. Additionally, if the orientation of the detection is
highly deviated from the text baseline, the algorithm may also
produce faulty results.

5 Evaluation

The Evaluation section is composed of three subsections. The
first subsection provides a training summary for the three
recognizers included in eDOCr, which were trained on randomly
generated data samples. The second subsection studies the metrics
chosen to measure eDOCr’s overall key performance. The last
subsection applies these metrics to five different EDs obtained
from various sources.

5.1 Recognizer training

The number of characters present in an ED can be quite
extensive. Ideally, a single recognizer for all characters would
suffice. However, after several training trials, it became clear that
the accuracy of the algorithm did not meet the requirements for
information extraction. As a result, an alternative approach was
adopted, and three different recognizers were trained.

1. Dimension Recognizer: Digits, Letters AaBCDRGHhMmnx and
the symbols (), + − ± :° /”; ∅. Trained on 5,000 auto-generated
samples for 6 epochs ~ 24 min training. Re-trained on
10,000 auto-generated samples for 3 epochs ~ 33 min training.

2. Information Block recognizer: Digits, ASCII letters and the
symbols , . : . − /. Trained on 50,000 auto-generated samples
for 2 epochs ~1 h 40 min h training

3. GD&T Recognizer: GD&T symbols. Trained on 50,000 auto-
generated samples for 2 epochs ~1 h 50 min training.

All models were trained locally on a NVIDIA Geforce RTX
2060 GPU with 2 GB of memory. The results of the loss and
validation loss for each epoch of training are shown in Figure 11.
The models were trained using the pre-trained keras-ocr model with
the top of the network removed. The Dimension Recognizer was
trained first, using 5,000 samples. However, it quickly overfitted after
the second epoch. The training was stopped, increased the number
of samples to 10,000 and re-trained for 3 more epochs. The loss and
validation loss are improving after re-training. For the next two
trainings, 50,000 samples were generated. The GD&T Recognizer
also showed overfitting in the second epoch, while the information
block model could have been run for one more epoch. The selected
model is the one obtained from the epoch with the lowest
validation loss.

The training performance for the three algorithms is poor as
convergence is not reached. However, the three models perform
relatively well in testing on real EDs. Increasing the number of fonts,
fine-tuning and optimization of hyperparameters can improve the
recognizer’s performance. Additionally, fine-tuning by training on
real data will be more beneficial than using automatically generated
samples. The overall performance when testing on real drawings is
analyzed in Subsection 5.3.

5.2 Validation metrics

There are several metrics that are widely accepted for evaluating
the performance of OCR systems. The complexity of eDOCr, which

FIGURE 11
Loss per epoch when training the different recognizer. Loss and
validation loss are displayed with dashed lines and solid lines,
respectively.
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is composed of three pipelines and at least three supporting
algorithms (clustering, tolerance check, and ordering text),
increases the number of metrics that can be used. Common
metrics used for text detection and recognition include recall,
precision, and F1-score. Additionally, character error rate and
word error rate can also be used to evaluate the performance of
the recognizer. While all of these metrics can provide useful
information, using all of them can be impractical and overwhelming.

The performance of eDOCr is evaluated using a combination of
metrics, including recall and precision for the combination of GD&T
and dimension text detection, as well as F1-score and character error
rate for the dimension and GD&T recognizers. These metrics have
been selected as they are considered the most important for quality
control automation and are easier to retrieve due to the large number
of characters involved in the information block. Additionally, word
error rate has been discarded as it is implicit in the character error rate.
In total, four metrics are used to evaluate the performance of eDOCr.
The ED shown in Figure 6 will be utilized to better explain and
exemplify the metrics presented in the following sections. In
Subsection 5.3, these metrics are applied when evaluating eDOCr
on seven relevant EDs.

5.2.1 Text detection recall
In the context of set of dimensions retrieved, Scheibel et al.

(2021) defines the recall as the ratio of extracted relevant dimension
sets over all relevant dimension sets:

Recall � Extracted relevant dimension sets

All relevant dimension sets
(1)

This recall definition needs to be adapted and generalized for the
two pipelines (GD&T and dimensions) in eDOCr, therefore, the
Text Detection Recall (RTD) is the ratio of the sum of true GD&T and
dimension sets over all relevant elements:

RTD � TrueGD&T + Truedim
AllGD&T + Alldim

(2)

In Figure 6, the RTD = (1 + 15)/(1 + 17) = 88.9% since 15 out of
17 dimensions and 1 out of 1 GD&T boxes are detected. It is
important to note that recall does not take into account mismatches,
i.e., even if one extra dimension that does not exist were to be
predicted, the recall would not be affected.

5.2.2 Text detection precision
Similarly to the detection recall, Scheibel et al. (2021) also use the

precision as a metric, defined as the ratio of extracted relevant
dimension sets over all extracted elements:

Precision � Extracted relevant dimension sets

All extracted elements
(3)

This formula, that adapted to eDOCr needs translates to the
precision PTD, which is the ratio of true detections to all detections:

PTD � TrueGD&T + Truedim
PredictedGD&T + Predicteddim

(4)

Using the example in Figure 6, the PTD = (1 + 15)/(1 + 15) =
100%. It is important to note that in this case, if an extra dimension
that does not exist were to be predicted, the precision would be
negatively affected.

5.2.3 Text recognition micro-average F1-score
The F1-score is a measure of a test’s accuracy that balances

precision and recall. It is the harmonic mean of precision and recall,
where the best value is 1.0 and the worst value is 0.0. As mentioned
in the previous metrics, precision is a measure of how many of the
OCR predicted elements are actually correct, while recall is a
measure of how many of the ground truth elements were
predicted correctly. If we consider every character as a single
element, the formula for the F1-score F1 is:

F1 � 2 · Precision · Recall
Precision + Recall

(5)

This metric is particularly useful when the data set is imbalanced
and there are many more false positives than true positives or vice
versa. Given two equal dimension samples of the form ∅ 34.5 and
two predictions:∅ 84.5 and 34.S. In the first case, precision is P = 4/
5 and recall is R = 4/5, so the F1-score F1 � 2 P·R

P+R � 0.8. In the
second case, P = 3/4 and recall is R = 3/5, so that F1 � 2 P·R

P+R � 0.66.
The micro-average F1-score for both dimension sets is
F1 � 2 7/9·8/10

7/9+8/10 � 0.79. Of note, the micro-average is not the only
way to calculate the F1-score, other ways to calculate the F1-score is
weighted average, macro-average and more.

5.2.4 Micro-average character error rate
The Character Error Rate (CER) calculates the number of

character-level errors divided by the total number of characters
in the ground truth. Therefore, CER always falls in the interval 0 to 1,
and the closer to 0, the better the model is. In a multi-class
recognition problem such as OCR, the CER is more
representative than the general accuracy or micro-average
accuracy. The CER is calculated as:

CER � S + I +D

TC
(6)

where S, I, D and TC are Substitutions, Insertions, Deletions and
ground True Characters, respectively. Applied to eDOCr:

CER � SGD&T + IGD&T +DGD&T + Sdim + Idim +Ddim

TCGD&T + TCdim
(7)

Given two equal dimension samples of the form∅ 34.5 and two
predictions:∅ 84.5 and 34.S, in the first case, the CER = (1 + 0 + 0)/

TABLE 3 Validation results based on the seven examples EDs in terms of the
metrics presented, with default settings and tuned settings.

Drawing name RTD PTD F1 CER

Partner ED 0.93 0.93 0.98 0.034

Halter 0.92 0.92 0.91 0.141

Gripper 0.73 0.8 0.89 0.130

Adapterplatte 0.82 0.93 0.97 0.051

BM plate 0.83 0.94 0.91 0.111

LIU0010 1 1 0.96 0.057

Candle Holder 1 0.92 0.96 0.038

Average 0.89 0.92 0.94 0.080
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5 = 20% while in the second case CER = (1 + 0 + 1)/5 = 40%. The
micro-average CER is CER � (2 + 0 + 1)/10 � 30%.

5.3 Analysis of results

The four metrics presented in the previous subsection measure
the performance of eDOCr. The detection algorithm is analyzed on
dimension sets and FCFs by studying the recall RTD and precision
RTD. The performance of eDOCr in character recognition for
dimension sets and FCFs is studied with the macro-average
character error rate CER and the macro-average F1-score F1.
These metrics are evaluated manually for the testing ED
presented in Table 3. Seven EDs are presented, of which one
belongs to a company partner and is not publicly available, and
the other can be found following the Data Availability Statement
hyperlinks.

All EDs have been tested using default eDOCr parameters. The
metrics for the seven EDs analyzed indicate high performance in text
detection and recognition, with an average recall and precision in
detection of around 90%. However, additional analysis is needed to
fully understand the results on a per-drawing basis.

• Partner ED is the most complex of those analyzed, featuring
38 dimension sets and four FCFs. Interestingly, the majority of
recognition errors are deletions, which occur when the same
character appears consecutively, such as when a dimension of
the type 100 is recognized as 10.

• Halter, Gripper, and Adapterplatte are EDs uploaded by
Scheibel et al. (2021). These EDs have been particularly
challenging for the OCR system. Despite image pre-
processing being performed to convert gray to black, the
frame was not detected, resulting in only partial
consideration of the information block. For a fair
comparison, dimension sets and GD&T detections on the
information block and frame were not included in the metrics
shown in Tables 3, 4. Even with this assumption, these three
EDs still have the lowest recall and precision in detection and
the highest Character Error Rate (CER). Halter has higher
detection metrics due to the high ratio of FCF over
dimension sets.

• In the ED BM plate, 3 out of 18 dimension sets were not
considered. The main concern in this ED is the substitution of

all “1” characters with a “(.” In this ED, the character “1” is
presented as a vertical bar, which is not a representation that
the OCR system’s recognizer has been trained on.

• Finally, LIU0010 and Candle Holder are EDs generated for a
university workshop, and their detection metrics are the best
among all the samples.

Table 4 compares DigiEDraw Scheibel et al. (2021) results
against eDOCr. This comparison is only possible when
comparing dimension sets detection, since they do not use a
recognizer.

In addition to the recall and precision, a general comparison
between the two software can help the reader understand their
strengths and potential against each other. The two algorithms,
DigiEDraw and eDOCr, have different strengths and weaknesses
when it comes to digitizing EDs.

DigiEDraw has a good recall and precision when retrieving
measurements, which makes it a useful tool for analyzing and
extracting information from vectorized PDF drawings. It does
not require a recognizer, which can simplify the process of
digitization. Additionally, it has the potential to incorporate
information blocks analysis with minimal effort. However, it is
limited to only support vectorized PDFs, which can make it
difficult to use with other types of drawings. It also has problems
with dimensions at angles and can be susceptible to content loss
during the conversion from PDF to HTML. It is also font-
sensitive and does not have the capability to detect GD&T
symbols.

On the other hand, eDOCr is a versatile OCR system that
supports both PDF and raster image formats, making it more
adaptable than DigiEDraw. One of its key features is the ability
to detect GD&T symbols, which is essential for quality control in
EDs. Additionally, eDOCr is able to accurately retrieve dimension
sets regardless of their orientation within the drawing. However, it
should be noted that the algorithm’s performance is based on auto-
generated samples, which can result in inaccuracies in recognition.
The algorithm’s performance can be significantly improved with a
labeled training dataset of EDs. While eDOCr can acquire general
information through its Information Block pipeline, it is important
to note that relevant material may be missed if not included in the
information block. As DigiEDraw, the algorithm is also threshold-
sensitive, while character recognition is limited to the alphabet used
in the training process, which means that it is language-sensitive.

6 Discussion: Application in quality
control and technical limitations

This section gives an overview of the applicability of the
developed tool in the industry as it is. To do that, the utility
scope is introduced, and the requirements expressed in Section
2.1 are discussed and accompanied of current limitations and
potential solutions to these limitations.

The research presented in this paper aims to develop a reliable
tool for the first step towards automating the quality control process
for manufactured parts. The tool, eDOCr, is intended for small to
medium-sized manufacturers who rely on production drawings and
manual work for quality control. The goal is to alleviate the manual

TABLE 4 Comparison between the DigiEDraw and eDOCr tools. A comparison
between html scrapping and clustering technique against production
drawings supported OCR system.

Drawing name DigiEDraw eDOCr

Recall Precision RTD PTD

Halter 0.85 0.73 0.92 0.92

Gripper 0.82 0.6 0.73 0.8

Adapterplatte 0.93 0.88 0.82 0.93

Average 0.87 0.74 0.82 0.88
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and intensive labor of extracting part requirements from EDs, and to
move towards the next step in automation: understanding how to
check specific requirements on a part. The future research question
is whether an algorithm can understand which device to use, where
on the part to use it, and how to check a specific requirement, given a
command from the quality engineer.

The requirements are discussed following a requirement R*,
limitation L* and potential solution structure.

R1 Support raster images and “.pdf” files as input formats. These
are the two most common formats for finding EDs.

The first requirement for the tool is the ability to support a wide
range of input formats, specifically raster images and PDF files, as
these are the two most common formats for EDs. The tool eDOCr
addresses this requirement by being able to accept both image and
PDF formats as input.

L1 However, there is a limitation with this implementation, as
eDOCr is not currently able to support vectorized EDs. While it is
possible to update eDOCr to also support vectorized images, the
process of converting these documents to raster image format can
result in loss of valuable information such as metadata and exact size
and position of geometrical elements. To address this limitation, a
potential solution could be to incorporate an opposing algorithm
that is able to retrieve this lost information and validate the textual
information extracted by eDOCr. Geometrical verification has been
implemented by Das and Langrana (1997) and the commercial
software Werk24 (2020) according to some of their documentation.

R2 Support the recognition of both assembly and production
drawings. This includes the ability of the algorithm to differentiate
tables and information blocks from geometrical information such as
dimensions and other production drawing-related information.

The developed information block pipeline is responsible for
retrieving and isolating this information from the rest of the
dimension sets. With minimal effort, it can also separate tables
from the information block, as they have been clustered separately
and merge them together in the output file. eDOCr filters the words
into rows and orders the text. Most publications in the field
disregard this information, however, it specifies general tolerances
and surface roughness requirements.

L2 Despite these capabilities, the pipeline is limited to content
inside boxes that are in contact with the outer frame. Even though
the standard dictates that the information block should follow this
layout, general information can also be expressed outside the main
information block. Furthermore, there are limitations in detection
and recognition performance. As previously mentioned, higher
quality data in training can potentially alleviate inaccuracies in
the recognition phase.

R3 In line with R2., the algorithm should also be capable of
sorting and grouping relevant information, and neglect information
of reference.

The eDOCr tool includes a clustering algorithm that is able to
group related information together, which contributes to its overall
performance in the dimensions pipeline. This feature is shared with
other publications such as (Dori and Velkovitch, 1998; Scheibel
et al., 2021). The inclusion of this algorithm sets eDOCr apart from
other publications, such as Schlagenhauf et al. (2022), which argue
that keras-ocr is not suitable for EDs. eDOCr has proven that with
adequate preprocessing and postprocessing, keras-ocr can be
effectively utilized for ED information retrieval.

L3 The clustering algorithm in eDOCr plays a crucial role,
however, it can also negatively impact detection recall by grouping
independent measurements together or failing to group information
that belongs together. The threshold for this algorithm should be set
by the user, and properly optimizing it can be a complex task that
varies depending on individual EDs.

R4 Tolerance recognition is a crucial requirement for the tool to
be used in the quality control process. The tool must be able to
accurately read and understand tolerance information.

The metrics presented in Section 5.3 provide insight into the
overall performance of eDOCr. Although eDOCr has achieved low
values of CER ≈ 0.08, it is currently unable to attain higher levels of
reliability with its current training setup.

L4 This limitation is primarily due to the poor quality of the
auto-generated measurements used to train the recognizers. Possible
solutions include improving the data generation process, increasing
the number of fonts used, fine-tuning and optimizing the RCNN
model. Using intelligent data augmentation techniques proposed by
Zhang et al. (2022) can also help address this issue. However, the
most effective solution would be to manually label a high-quality
training dataset, as this would enable eDOCr to achieve the same
level of accuracy as other state-of-the-art OCR systems such as
Google Vision API.

R5 The tool should also be able to detect and recognize additional
GD&T symbols and textual information inside the FCF.

One of the most significant achievements of eDOCr is its ability to
detect and recognize FCF boxes. The detection and recognition of
GD&T symbols was an issue that had not been addressed in previous
publications until Haar et al. (2022) used the popular CNN YOLOv5 to
classify the symbols. However, their approach did not connect the
symbols to the actual content of the FCF. The versatility of keras-ocr in
training on any Unicode character has been impressive in this regard.

L5 As previously mentioned, the main limitation of eDOCr is
the performance of the recognizer, particularly when it comes to
recognizing symbols such as Maximum/Least Material Condition.
Despite efforts to train the model to recognize these symbols, the
performance was greatly impacted during testing. Potential
solutions have been outlined above.

In summary, the eDOCr tool is presented as a state-of-the-art
solution for information retrieval in mechanical EDs. Its key
contributions include the ability to fully recognize FCFs,
accurately segment information blocks, support for raster EDs,
and good performance in detecting and recognizing dimension
sets. In addition, it is shared publicly as a python package for
experimentation and future community development.

In the future, research efforts will be directed towards improving
eDOCr by supporting vectorized images and developing an
opposing algorithm as discussed in L1. Additionally, efforts will
also be focused on enhancing recognition performance. One
effective approach could be the release of a dataset of complex
and labeled EDs, similar to how the ICDAR 2015 (Karatzas et al.,
2015) dataset was released for natural image processing.

In the long term, future work will center on addressing the main
research question: Can an algorithm understand which measurement
device to use, where on the part it should be used, and how to check for
specific requirements? This will require further advancements in
computer vision and machine learning techniques to enable the
algorithm to understand the context and intent of the EDs.
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7 Conclusion

This paper has presented eDOCr, a powerful and innovative
optical character recognition system for mechanical engineering
drawings. The system has been designed with the goal of automating
the quality control process for mechanical products where
engineering drawings constitute the main information channel.

eDOCr is composed of a segmentation stage that sends the
information to three different pipelines: the Information block and
tables pipeline, the feature control frame pipeline, and the dimension set
pipeline. Each pipeline is supported by pre-processing and post-
processing algorithms. The final output consists of three tables, one
for each pipeline, as well as a colorful mask to aid the reader’s
understanding. On average, the algorithm demonstrates a recall and
precision of approximately 90% in detecting dimension sets and feature
control frames, and an F1-Score of around 94% with a character error
rate lower than 8% in recognition.

The key contributions of eDOCr are its ability to separate general
requirements found in the information block, high performance in
detection and recognition of Geometric dimensioning and tolerancing
information, and its ability to process complex text structures such as
tolerances. The eDOCr tool is shared with the research community
through Github, and the authors hope it will make a significant
contribution towards engineering drawing digitization, and the goal
of achieving quality control automation in the production of
mechanical products.

In the future, research will be directed towards further
improving the eDOCr system, including supporting vectorized
images, enhancing recognition performance, and creating a
dataset of complex and labeled engineering drawings.

8 Algorithm syntax

8.1 Hierarchy tree algorithm

rect—An object representing a rectangular portion of the ED.
Attributes of the class are reference name, position relative to the
image, size, the portion of the image itself and state. The state
attribute is used in the “Fire Propagation” algorithm. Inherited
attributes are parent and children.

rect-list—A pythonic list of rect objects.
NodeMixin—A class built in anytree python package to enable

hierarchies using objects.
parent—A rect object that have one or more children.
children—A rect object completely covered by another rect object.

8.2 “Fire propagation” algorithm

object-on-fire—A rect object with attribute state equal to fire
on-fire, green, burnt—A pythonic list of rect objects with

different state attribute.

8.3 Clustering algorithm

box—A numpy array expressing position and size (x, y, w, h).

boxes-list, remove-list, new-boxes-list—Pythonic lists of box
objects.

8.4 Text ordering algorithm

predictions—A numpy array expressing characters value,
position and size of each predicted word.

words—Structured pythonic dictionary expressing word
information.

rows—A numpy array formed by words.
text—A numpy array formed by rows.
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Glossary

API application programming interface

ASCII American standard code for information interchange

ASME American society of mechanical engineers

AUC area under the ROC curve

CAD computer-aided design

CAM computer-aided manufacturing

CER character error rate

CRNN convolutional recurrent neural network

D deletions

ED(s) engineering drawing(s)

F1 F1-score

FCF feature control frame

GD&T geometric dimensioning and tolerancing

GE graphical elements

I insertions

ISO International organization for standardization

NN(s) neural network(s)

OCR optical character recognition

P precision

P&ID(s) piping and instrumentation diagram(s)

PMI production manufacturing information

PTD text detection precision

R recall

ROC (curve) receiver operating characteristic (curve)

RTD text detection recall

S substitutions

TC true characters

TD text detection

TR text recognition

CER micro-average character error rate

F1 micro-average F1-score
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