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The target formation in the study area of the Pearl River Mouth Basin is characterized
by complex lithology and thin interbedded layers, with a large pore-permeability
distribution range and strongly heterogeneous characteristics, which makes the
reservoir pore structure and production capacity significantly different and brings
research difficulties for reservoir logging evaluation and desert identification. The
conventional reservoir classification method is mainly based on physical research,
which requires developing extremely accurate formulas for calculating porosity and
permeability; the calculation accuracy of pore permeability of low-porosity and low-
permeability reservoirs is difficult to guarantee; and the conventional logging data
cannot be comprehensively applied in reservoir classification. In this paper, taking
Zhujiang and Zhuhai Formation reservoirs in the HuizhouMoilfield as an example, we
integrated core analysis data such as core cast thin section, pore permeability data,
rock electrical parameters, grain size, and relative permeability curves and combined
with petrophysical parameters and pore structure characteristics to classify the
reservoirs. The artificial neural network is used to predict the resistivity of saturated
pure water (R0) to remove the influence of oil and gas on reservoir resistivity. The
natural gamma ray (GR) “fluctuation” is used to calculate the variance root of variation
(GS) to reflect the lithological variability and sedimentary heterogeneity of the
reservoir, and then the conventional logging preferences, R0 and Gs (based on
GR), are classified based on the automatic clustering MRGC algorithm to classify
the logging facies. To classify the petrophysical phase reservoirs under the constraint
of pore structure classification, we proposed a petrophysical classification logging
model based on the natural gamma curve “fluctuation” intensity for strongly
heterogeneous reservoirs. The learning model is extended to the whole area for
training and prediction of desert identification, and the prediction results of themodel
are in good agreement with the actual results, which is important for determining
favorable reservoirs in the area and the adjustment of oilfield development measures.
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Introduction

With the deepening of exploration and development, the object
of logging interpretation gradually shifts to complex reservoirs such
as heterogeneity, and the pore structure and production capacity of
such reservoirs are influenced by many factors and the production
capacity varies significantly, so the identification of strongly
heterogeneous reservoir deserts is crucial. The production
capacity of oil and gas reservoirs is mainly influenced by many
factors such as lithology, physical properties, oil content, mud
content, and pore structure. However, production capacity is a
comprehensive reflection of various influencing factors. The
logging method is the main means of desert identification due to
its advantages of high wellbore resolution and comparability of
multiple wells. The logging response can visually reflect the
lithology, physical properties, seepage characteristics, and
production capacity of oil and gas reservoirs to a certain extent,
and the petrophysical classification of reservoirs is essential.

Reservoirs have experienced the combined effects of
sedimentation, diagenesis, and late tectonic action during their
long geological history, resulting in heterogeneous variations in
the spatial distribution and various internal properties of the
reservoirs, manifesting as reservoir heterogeneity. The integrated
characterization method of reservoir heterogeneity is a research
method based on core, logging, seismic, and production dynamic
data, which is a multi-method and multi-disciplinary synthesis to
characterize reservoir non-homogeneity. It is based on traditional
heterogeneous characterization parameters; integrated geological
understanding; and geological, geophysical, and geochemical
means to carry out systematic and comprehensive heterogeneous
characterization (Wang et al., 2022; Yue et al., 2022). Cheng et al.
(2022) studied the distribution of reservoir inhomogeneity strengths
and weaknesses in the Ordos Basin and quantitatively characterized
the reservoir heterogeneity in the study area based on core data,
reservoir physical properties, and logging data to guide oil and gas
exploration work in the area. Hydrocarbon-bearing basins in China
are rich in hydrocarbon resources and contain more heterogeneous
reservoirs. The petrophysical characterization and reservoir
classification of strongly heterogeneous reservoirs is a hot topic
in the current hydrocarbon research.

Petrophysical research is the link between reservoir and
reservoir parameters and geophysical properties and is an
effective means of integrating core, logging, and seismic data for
comprehensive quantitative characterization of hydrocarbon-
bearing reservoirs. Overseas, the Rock Physics Laboratory at the
University of Houston, the Rock Physics and Borehole Geophysics
Project at Stanford University, and CoreLab (United States) are
some of the research institutions dedicated to the Rock Physics and
Borehole Geophysics Project at Stanford University and CoreLab,
Inc. Lai et al. (2013a; 2013b) proposed that the petrophysical phase is
mainly controlled by the sedimentary phase, diagenetic phase, and
rock formation phase. Soete et al. (2014) took eight wells in the
Paleozoic study area of the Irish Sea as an example and calculated
and compared the porosity, permeability, clay volume, and other
parameters of each well and classified the different petrophysical
facies types to find the better dominant formation in the reservoir.
Huang et al. (2017) proposed a comprehensive logging evaluation
and interpretation method based on petrophysical studies, which

combines macroscopic sedimentary, diagenetic, and tectonic factors
with microscopic rock characteristics, physical characteristics, and
pore throat structural characteristics, making the logging
interpretation more comprehensive and free from the limitation
of “one-hole view.”Liu et al. (2021) classified four types of
petrophysical facies based on the classification of petrophysical
facies, extracted sensitive curves based on the logging response
characteristics of different petrophysical facies, and established
logging identification criteria for different types of petrophysical
facies by discriminant analysis. Fan et al. (2022a); Fan et al. (2022b)
proposed a semi-supervised learning model of petrophysical facies
division for the low porosity and permeability reservoir of the third
member of the Shahejie Formation in the M oilfield of the Paleogene
in the Bohai Sea. Using data such as mercury injection, core casting
thin sections, and logging facies division, the semi-supervised
learning model combined with the “unsupervised and supervised”
models was extended to the training and prediction of the whole area
for sweet spot identification and showed good application effect.

With the rise of intelligent emerging technologies, artificial
intelligence logging evaluation techniques have also emerged, and
intelligent algorithms such as neural networks, machine learning,
and automatic clustering have been applied in the field of logging,
which have improved the efficiency of reservoir classification and
the accuracy of desert identification by leaps and bounds. Tian et al.
(2016) used the multi-resolution clustering analysis based on graph
theory for the carbonate Tainai Tan gas field in the right bank area of
the Amu Darya Basin to carry out a study on logging facies
clustering and quantitative petrographic prediction based on
conventional logging data. Rahsepar et al. (2016) used multi-
resolution graph-based clustering (MRGC), agglomerative
hierarchical clustering (AHC), self-organizing map neural
network method (SOM), and dynamic clustering (DYN) for the
Arabian section reservoir in Salman oilfield, using natural gamma
ray log (GR), acoustic log (AC), density log (DEN), and
compensated neutron log (CNL) curves, and the results show
that the best clustering algorithm is MRGC clustering, which has
the best classification effect. Shi et al. (2018) combined geological,
logging, and core cast thin section data and successfully classified the
logging facies using graph-theoretic multi-resolution clustering
algorithm, which significantly improved the calculation accuracy
compared with the traditional method, and determined the logging
phase and rock phase correspondence in the study area, and a
permeability evaluation model based on the logging facies constraint
was established. Zhang. (2018) used the nuclear attraction theory in
the MRGCmethod to initially obtain the coarse classification results
of lithology and then used the SOM algorithm and dynamic neuron
splitting technique to realize the classification of lithology from
coarse to fine according to the multi-level classification scheme
provided by the MRGC method. Liu et al. (2020) addressed the
problems of logging facies identification and petrophysical
characteristic classification by analyzing the petrophysical
characteristics of various mud shale petrographic phases and
using the MRGC method for logging identification of
petrographic facies, and the main logging parameter patterns of
terrestrial mud shale petrographic facies were obtained. Wu et al.
(2020) proposed an adaptive multi-resolution graph clustering
analysis method to analyze multi-dimensional logging curves and
then perform clustering and prediction on the basis of previous
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research, which is an improved MRGC clustering algorithm, and the
results show that multi-resolution graph clustering analysis has
higher operational efficiency and stability, and the effect is
significantly better than that of other common clustering
methods, such as self-organizing neural network (SOM), dynamic
clustering (DYN), and hierarchical clustering (AHC), without prior
data knowledge. In order to solve the limitations of conventional
lithology identification methods for more fine lithology
identification and complex lithology identification difficulties, a
logging facies analysis and lithology identification method based
on the MRGC clustering method and its process are proposed by
discussing the basic principles of the MRGC clustering method and
the KNN algorithm propagator (Yu, 2022).

In this paper, taking Zhujiang and Zhuhai Formation reservoirs
in the Huizhou M oilfield as an example to address the problem of
the difficult identification of strongly heterogeneous reservoir
deserts, on the basis of comprehensive core experimental data
analysis of scaled reservoir pore structure classification, analysis
of conventional logging response characteristics, and selecting
sensitive logging parameters, a neural network model is
constructed to predict the resistivity of saturated pure water R0

in the reservoir to eliminate the influence of oil and gas on the
resistivity value of the reservoir, and using natural gamma, we
calculated the variance root of variation (Gs) reflecting the
sediment hydrodynamic stability to characterize the reservoir
heterogeneity and to realize the pre-processing of log phase
analysis of logging data. The MRGC algorithm is used to classify
the log facies with the constraints of pore structure, and a
petrophysical facies classification model based on the natural
gamma curve “fluctuation” intensity is innovatively established to
realize the evaluation of petrophysical classification of strongly
heterogeneous reservoirs.

Regional overview

The Pearl River Mouth Basin is located in the northern part of
the South China Sea (Figure 1), with an area of about 26.6 × 104 km2

and overall NE–SW spreading, and is one of the important
hydrocarbon-bearing basins offshore China, mainly including five
secondary tectonic units from south to north: the Southern Uplift

FIGURE 1
Map of tectonic unit delineation in the Pearl River Mouth Basin and location of Huizhou depression (According to Shi et al., 2014; Cao T., 2020,
modified).

FIGURE 2
Crossplot of porosity and permeability of the main oil reservoirs
in the Huizhou M oil field.
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TABLE 1 Criteria for the classification of petrophysical parameters of the reservoir in the target layer in the study area.

Petrophysical classification I II III Ⅳ

Core cast thin section characteristics (32X)

Core cast thin section characteristics (128X)

Sand (%) 97.9 88.5 79.1 51.8

Silt (%) 1.8 9.4 13.6 28.6

Clay (%) 0.3 2.1 7.3 19.6

Q pole (%) 75.1 75.3 72.4 63.5

F pole (%) 14.8 15 16.4 19.9

R pole (%) 10.1 9.7 11.2 16.6

Core column photograph

Grain size curve

Median grain size (mm) 0.545 0.423 0.275 0.125

Steady-state method-relative permeability curve

Sw (%) 21.2–80.8 28.4–77.7 30.3–75.1 35.5–73.4

Krwmax (mD) 0.3045 0.0841 0.0667 0.0588

Petroelectric curve (resistance increase coefficient)

(Continued on following page)

Frontiers in Earth Science frontiersin.org04

Zhao et al. 10.3389/feart.2023.1169258

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1169258


Belt, the Southern Depression Belt, the Central Uplift Belt, the
Northern Depression Belt, and the Northern Uplift Belt
(Huizinga and Lomando, 1990; Leyla et al., 2018; Tian et al.,
2020; Jiang et al., 2022; Shi et al., 2018).

The Huizhou M oil field is located on the northwest slope of the
Dongsha Uplift in the central uplift belt of the Pearl River Mouth
Basin, south of the Huizhou depression, with reservoir depths of
2,284–2,620 m, which belongs to the middle depth. The field is
mainly developed by the Neoproterozoic Zhujiang Formation and
the Paleoproterozoic Zhuhai Formation, which are a set of clastic
sediments in the deltaic-shallow shelf system, with several sets of
reservoirs developed. Longitudinally, the sandy mudstone is
interbedded, including six oil layers with good separation
between layers; horizontally, each oil layer has good
comparability. Drilling confirms that this well area is one of the
most favorable hydrocarbon enrichment areas in the South China
Sea and has superior geological conditions for hydrocarbon
accumulation and reservoir formation. The reservoirs of Zhujiang
and Zhuhai formations have obvious lithological inhomogeneity
and a wide distribution of rock grain size, mainly rock chip
subfeldspathic sandstone and locally feldspathic sandstone. It has
medium roundness, mainly subangular to subrounded, with

relatively average sorting. The pore type is mainly primary
intergranular pores, followed by secondary dissolution pores (Cao
T., 2020; Cao X., 2020). The pore permeability spans a wide range,
and the physical heterogeneity is obvious, with porosity (PORE)
distribution ranging from 6.2–23.8% and permeability (PERM)
distribution ranging from 0.1–1246.0 mD, and medium-to-high
pore permeability to low-pore permeability reservoirs are
developed (Figure 2). Although the overall physical properties of
these reservoirs are good, the complex lithology and thin
interbedded features make the reservoir pore structure and
production capacity significantly different, with strong
heterogeneous characteristics, making the reservoir logging
evaluation and desert identification difficult.

Study on pore structure classification

The lithology of the reservoir in the study area is relatively
complex, with a wide range of physical distribution, from low
porosity and low permeability to high porosity and high
permeability, and the difference in permeability corresponding to
the same porosity can be up to two orders of magnitude, which

FIGURE 3
Architecture figure of R0 predicted by the artificial neural network.

TABLE 1 (Continued) Criteria for the classification of petrophysical parameters of the reservoir in the target layer in the study area.

Petrophysical classification I II III Ⅳ

n-value 2.206 1.978 1.91 1.696

Porosity (%) >20 (26.2) 15-20 (17.8) 10-15 (12.5) <10 (6.1)

Permeability (mD) >800 (1,217.1) 300-800 (648.5) 100-300 (217.9) <100 (67.6)
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indicates that although the percolation characteristics of the rock are
closely related to porosity, they cannot be characterized by a single
pore–permeability relationship. The reservoir types in this area are
diverse and the pore structure is complex, and a pore structure
classification study is needed to provide a reliable basis for accurate
description of the reservoir characteristics and subsequent
exploration and development.

Tulsa (1992) proposed the classification of petrophysical types
on single-well profiles in 1992, and Dai et al. (2004) pointed out that
petrophysical facies is a reservoir genesis unit with certain
petrophysical characteristics, which is the combined effect of
sedimentation, diagenesis, and late tectonic activity, and finally
manifests itself in present-day pore geometry. The classification
and evaluation of reservoirs from the perspective of petrophysics can
achieve good application results. According to the geological
characteristics of the reservoir in the study area, porosity,
permeability, cast thin section, particle size curve, relative

permeability curve, and petrophysical parameters are selected for
the study of pore structure classification.

The physical characterization parameters of rocks are ultimately
the characteristics of the reservoir pore structure, which refers to the
geometry, size, distribution, and interconnection of pores and
throats that rocks have, and is a general term for the variation of
pore structure within the reservoir unit. In the process of reservoir
formation, different diagenetic effects have a certain influence on the
destruction and preservation of primary pore space and the
generation of secondary pore space. Through the observation of
core cast thin section and regional lithology statistics, the feldspar
and rock chip dissolution phenomenon is observed in the Zhujiang
and Zhuhai formations of Huizhou depression, mainly developing
compaction, cementation, and dissolution. The average content of
quartz (Q pole) is 71.6%, mainly single-crystal quartz, and the
interference color is grayish white under orthogonal polarization;
the average content of feldspar (F pole) is 16.5%, including

FIGURE 4
Result figure of R0 predicted by the artificial neural network.
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potassium feldspar and a small amount of plagioclase and streak
feldspar, and the karst bicrystal, polysheet bicrystal, and streak
bicrystal can be observed under orthogonal polarization; the
average content of rock debris (R pole) is high, up to 11.9%
(Table 1), consisting mainly of magmatic rocks and metamorphic
rock debris and sedimentary rocks. The rock chip content is high,
with an average content of 11.9% (Table 1), comprising mainly
magmatic and metamorphic rock chips and sedimentary rock chips.
According to the particle size analysis data of the samples in the
study area and the statistical results of the particle size of the debris
in the thin section, the particle size of the sandstone particles of the
Zhujiang and Zhuhai formations was studied by using the
commonly used grain size classification standards. The particle
size distribution of the sandstone grains of the Zhujiang and
Zhuhai formations in the Huizhou Depression is significant, and
the grain size ranges from chalk to gravel, with mainly medium–fine
sand. It can be observed in the cast thin section that the sandstone in
this area is poorly sorted as a whole, with medium rounding, and the
clastic particles are mostly subangular to subrounded, with relatively
low structural maturity.

Based on the characteristics of the diagenetic stage, diagenetic
type, and type of diagenetic minerals under the mirror, formation
sequence, and the strength of dissolution, it can be divided into four
types of diagenetic types: secondary dissolution pore, transitional
type combined with weak dissolution–weak compaction,
deformation by compaction, and carbonate cementation. The
core data such as different formation types, grain size, relative
permeability experiments, and petrophysical parameters of core
cast thin sections are integrated, and the pore structure types of
the target reservoirs in the study area are studied according to
different petrophysical parameters and divided into Ⅰ, Ⅱ, Ⅲ, and
Ⅳ(classes) (Table 1).

The formation type of the Class I reservoir is dominated by
secondary dissolution pores, mainly developing intragrain
dissolution pores of feldspar. Typical core cast thin sections can
be observed in which individual feldspar dissolution is more
complete, forming cast pores and precipitating kaolinite crystals
near the pores. The grains are mainly coarse–medium sands, with a
median size of 0.545 mm, moderate sorting and rounding, and a low
clay content of 0.3%. The porosity is greater than 20%, of which the
representative core porosity is 26.2%; the permeability is greater
than 800 mD, of which the representative core permeability is
1,217.1 mD, which belongs to the medium–high porosity
permeability layer; the saturation range of the relative
permeability curve by the steady-state method (Sw) is from
21.2 to 80.8%; the maximum water-relative permeability (Krw) is
0.3045 mD; and the n-value of rock resistivity curve regression is
2.206, which proves it to be an exceptionally good reservoir (Class I).

The rock formation type of the Class II reservoir is mainly the
transitional type combined with weak dissolution–weak
compaction, containing part of the feldspar intra-grain solution
pores; the clastic particles are in point contact and line contact
relationship; the particles are loosely arranged; and the plastic
mineral deformation is not obvious. The particles are mainly
coarse–medium sand, with a median size of 0.423 mm, average
sorting and rounding, and low clay content of 2.1%. The range of
porosity is from 15 to 20 %, of which the representative core porosity
is 17.8%; the range of permeability is from 300 to 800 mD, of which

the representative core permeability is 648.5 mD, which belongs to
the medium pore medium permeability layer; the saturation range of
the relative permeability curve by the steady-state method (Sw) is
from 28.4 to 77.7%; the maximumwater-relative permeability (Krw)
is 0.0841 mD; and the regression of the rock resistivity curve of
n-value is 1.978, which make it a good reservoir (Class II).

The rock formation type of the Class III reservoir is mainly
deformed by compaction, and it can be observed in the cast thin
section that the rock particles of this reservoir are in close contact,
mostly in line contact to the concave–convex contact relationship;
the plastic rock chips are seriously deformed by compaction; and the
mica is also seen to be significantly deformed by strong compaction.
The particles are mainly medium–fine sand, with a median size of
0.275 mm and serious size differentiation; they are mostly angular to
subangular, with poor sorting and rounding; and the clay content is
7.3%. The range of porosity is from 10 to 15%, of which the
representative core porosity is 12.5%; the range of permeability is
from 100 to 300 mD, of which the representative core permeability is
217.9 mD, which belongs to the medium–low porosity layer; the
saturation range of the relative permeability curve by the steady-
state method (Sw) is from 30.3% to 75.1%; the maximum water-
relative permeability (Krw) is 0.0667 mD; and the regression of the
rock resistivity curve of n-value is 1.910, which makes it a medium-
quality reservoir (Class III).

The rock formation type of the Class IV reservoir is dominated
by carbonate cementation with high calcareous content and the
development of silica, kaolinite, illite, chlorite, and carbonate
cementation. The grains are mainly fine sand, with a median size
of 0.125 mm, with poor sorting and rounding, and a relatively high
clay content of 19.6%. The pore permeability span is large; the
porosity is less than 10%, among which the representative core
porosity is 6.1%; the permeability is less than 100 mD, among which
the representative core permeability is 67.6 mD, mostly belonging to
the low pore and low permeability reservoir; the saturation range of
the relative permeability curve by the steady-state method (Sw) is
from 35.5% to 73.4%; the maximum water-relative permeability
(Krw) is 0.0588 mD; the regression of the rock resistivity curve of
n-value is 1.696; and the throat channel is fine, which makes it a
poor-quality reservoir (Class IV).

Logging sensitive parameters
optimization

In general, the formation of a certain type of lithology in the
same depositional environment has a specific set of logging
parameter values. Logging data can be used to divide the
entire drilling section of the formation into a number of
geologically significant logging facies, and similar logging
facies reservoirs generally have similar lithology, physical
properties, pore structure, and logging response
characteristics. It is extremely important to use the log data to
divide the logging facies and then identify the petrophysical
phases and optimize the sensitive parameters. The
optimization of sensitive parameters based on petrophysical
characterization is achieved by optimizing conventional log
data, constructing saturated water-bearing resistivity values
(R0) curves to eliminate the influence of multiple factors on
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reservoir resistivity, and using natural gamma ray log (GR)
curves to calculate the variance root of variation (GS) to
observe the variability of sedimentary heterogeneity and then
introducing the input curves for log phase delineation.

Conventional logging data optimization
about petrophysical facies

The logging method is the main means of desert identification
due to its advantages of high wellbore resolution and comparability
of multiple wells. Logging can obtain the information of
petrophysical formation, including various physicochemical
properties of rocks, such as rock density, resistivity, hydrogen
content index, natural gamma, spontaneous potential, and
longitudinal wave propagation velocity. Moreover, different
reservoirs have their own petrophysical characteristics. Logging
response can directly reflect the lithology, physical properties,
seepage characteristics, and production capacity of oil and gas
reservoirs to a certain extent, so it is essential to classify the
petrophysics of the reservoir.

The natural gamma ray log (GR) curve and the spontaneous
potential log (SP) curve are logging curves that mainly reflect
lithology in the formation (Figure 4). The GR curve reflects the
lithological changes of the formation by measuring the radioactivity
of the formation and has outstanding advantages in distinguishing
muddy and non-muddy formations,; it can also be used to
comprehensively judge the mud content of a formation and has
obvious advantages in judging the characteristics of lithological
changes of the marker layer. The SP curve measures the
lithological changes of the formation. The SP curve measures the
potential difference of the stratum under electrochemical
conditions, and its shape can well-reflect the cyclonic
development of the sediment. At the same time, it can reflect the
physical properties to a certain extent, which helps judge the
sediment fluctuation of the microphase section. However, the
spontaneous potential curve values in the target section are
relatively flat and cannot evaluate lithological changes, so it is
not involved in reservoir classification.

The acoustic log (AC) curve, compensated neutron log (CNL)
curve, and density (DEN) curve are triple porosity curves, which are
used to reflect the physical characteristics of the reservoir. Although
the three methods have different physical measurement principles,
they are all related to formation porosity calculation. For example,
CNL measurement is mainly hydrogen cross-section, which mainly
includes information of fluid and clay-bound water in pore space.
Acoustic log is mainly based on the propagation characteristics of
sound waves in downhole formations and media, and its
propagation velocity is related to pore size and fluid in pore
space. Density log is mainly measured by radioactive gamma
source, as an important logging method to determine lithology
and rock density. The combination of three porosity logging
techniques can also be applied to gas reservoir identification and
formation pressure prediction. Therefore, the method of three-
porosity combination can be applied to well logging facies division.

Double lateral resistivity log (RLLD) and (RLLS) are deep and
shallow resistivity log curves, respectively, which mainly reflect the
reservoir fluid characteristics in the “four-property relationship,”

but due to the characteristics of non-homogeneous reservoirs such
as complex lithology and thin interlayer, reservoir resistivity values
are affected by multiple factors. In addition to the influence of oil
and gas, the resistivity is also affected by pore structure, physical
properties, and clay. Poor physical properties and complex pore
structure will cause the resistivity value to increase, and high clay
content will cause the resistivity value to decrease. Therefore, it is
necessary to further treat the resistivity curve before participating in
the division of petrophysical facies.

Resistivity value of saturated pure water R0

As mentioned previously, reservoir resistivity values are
affected by multiple factors, and to eliminate the influence of
these factors on reservoir resistivity values, calculation of the
saturated pure water resistivity R0 is required. R0 is the resistivity
curve when the water content in the reservoir reaches 100%. In
conventional reservoirs, R0 is usually calculated using the
Alchian formula or the conductive model formula for muddy
sandstones, but the pore structure of strongly inhomogeneous
reservoirs is complex, and the R0 values calculated using the
aforementioned methods are not applicable in low-porosity and
low-permeability reservoirs, and the model parameters are
difficult to find the law (Li and Li, 1997). Therefore, an
artificial neural network is used to model and learn the
resistivity values of the well section in the pure water layer to
predict the R0 values of the whole well section by the machine
learning method.

Based on the artificial neural network algorithm to achieve
quantitative prediction of the R0 value, conventional information
is divided into two processes (Graupe, 1997; Aminian and Ameri,
2005; Graupe, 2019): first, the GR, AC, CNL, and DEN curves of the
standard saturated pure water interval are selected from the
standard well as the modeling curve, and the RLLD curve of the
water layer section is taken as the learning curve for modeling. Also,
the prediction model of R0 is established through artificial neural
network training and learning. Then, the GR, AC, CNL, and DEN
curves of the non-saturated pure water interval are used as input
curves for prediction, and the established prediction model is used to
learn and predict. Finally, the R0 value of the whole well section is
predicted (Figure 3).

By using the artificial neural network to model and learn the
resistivity value of the well section of pure water layer, we can predict
the R0 value of the whole well section (Figure 4), and the R0 value
predicted by the neural network is overlaid with the RLLD value of
the formation, according to the magnitude difference and the
direction of curve change can clearly determine the fluid nature
of the well and delineate the oil–water interface. When the R0 curve
of the permeable layer is significantly lesser than the RLLD curve
amplitude, the one with amplitude difference is green filled and
interpreted as oil layer, and when the R0 curve of the permeable layer
and the RLLD curve amplitude basically overlap, the reservoir is
interpreted as water layer, and the oil–water interface delineation is
very obvious. The results demonstrate that the predicted R0, by using
artificial neural network, can well-remove the influence of oil and
gas fluids on resistivity, and the results of identifying fluid properties
by overlaying with deep lateral resistivity are in good agreement with
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the actual results, which provides basic data for identifying strongly
heterogeneous reservoir deserts with complex pore structure.

Variance root of variation GS (based on GR)

The GR curve reflects the lithological and physical information
of the stratum, and its shape can reflect the development of sediment
rotation, help judge the hydrodynamic stability of the microphase
section to characterize the heterogeneity of the reservoir, and can
also be used to judge the mud content of the stratum. It has obvious
advantages in judging the lithological changes of the marker layer.

The variance root of variation (GS) can reflect the degree of
serration and the variation of sediment heterogeneity in the

microphase section. A strong degree of serration in the
logging curve indicates intermittent deposition of sediments.
The greater the fluctuation of the value, the greater the
number of sawtooths, and the greater the value of GS;
conversely, the smaller the value of GS. The variation of GR
curve values can reflect the lithological variation of sandstone
and mudstone, and the sandstone values are lower than the
mudstone values. Within the sandstone layer, the fluctuation
of the GR value is related to whether the sandstone is
hydrodynamically stable during deposition, so this paper uses
the variance root of variation (GS) calculated by the GR curve to
observe the change status of sedimentary heterogeneity (Jin et al.,
2006; Han, 2019; Wood, 2022).

The formula for GS is as follows.

FIGURE 5
Result figure of the GS of the main oil reservoir of well X.
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Gs � 1
2*M

∑
M

i�1
GR i( ) − GR i + 1( )[ ]2. (1)

In Eq. 1: GR (i) is the GR value of the logging curve and M is the
number of data points in the well section.

The GR was used to calculate the variance root of variation (GS)
to observe the lithological variation and sedimentary heterogeneity
variation characteristics of the formation section (Figures 5, 6). Well
X has four main perforation oil formation groups, namely, ZJ3, ZJ4,
ZH1, and ZH2, of which ZJ3 shot three small layers, namely, ZJ3-1,
ZJ3-2, and ZJ3-3. Among them, the mean values of GS for ZJ3 (ZJ3-
1, ZJ3-2, and ZJ3-3); ZJ4; ZH1; and ZH2 were 1.44 (2.78, 1.15, and
1.15), respectively. ZJ3 (ZJ3-1, ZJ3-2, and ZJ3-3); ZJ4; ZH1; and
ZH2mean values of GS are 1.44 (2.78, 1.15, and 1.28), 0.64, 0.97, and
0.88, respectively. Combined with the curve fluctuations of GS of the
main oil layers (Figure 5), it can be qualitatively seen that the curve
fluctuations of layer ZJ4 are weak and the reservoir is relatively good;
ZH1 and ZH2 layers are on the same level with obvious fluctuations.

The curve fluctuation of ZJ3 is larger, it is hydrodynamically
unstable, and sedimentation heterogeneity is stronger. Therefore,
the GS can well-reflect the heterogeneous variation characteristics of
the reservoir, which has obvious advantages in assisting the
judgment of favorable reservoirs and provides data support for
classification of petrophysical facies of strongly heterogeneous
reservoirs.

Reservoir classification of logging
facies based on pore structure
constraints

The study of reservoir logging facies is carried out to transform
the non-homogeneous and non-linear problems of complex
reservoirs into homogeneous and linear problems, which can
better identify the petrophysical facies. MRGC is used as an
unsupervised clustering algorithm to classify log phases, which
provides an experimental basis and theoretical basis for
identifying petrophysical facies in the heterogeneous reservoirs in
the area. Combined with the pore structure classification table of the
core scale, the log facies are classified under the pore structure
classification constraint to identify petrophysical phases.

MRGC algorithm to divide the logging facies

The MRGC algorithm is based on characterizing each depth
logging sample point with two indices describing the relationship
between adjacencies: the neighborhood index (NI) and the Kernel
representation index (KRI). Based on the relationship between the
two indices, NI and KRI, small natural data groups are formed that
may differ significantly in size, shape, separation, and number.
These groups are then gradually fused into a higher proportion
of groups. Mutations in the KRI correspond to the optimal number
of clusters at different resolutions, and the optimal number of splits

FIGURE 6
Box plot of GS of the main oil reservoirs in well X.

FIGURE 7
Flow chart of the MRGC algorithm logging facies division.
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is determined using mutations on decreasingly ordered KRI curves
for automated cluster analysis (Gan, 1994; Ye and Rabiller, 2000).

The formula for the proximity index NI is as follows.

NI x( ) � S x( ) − S min

S max − S min
. (2)

In Eq. 2: S (x) is the minimum neighborhood value relative to
each of x, Smax is the maximum neighborhood value, and Smin is the
minimum neighborhood value.

The number of optimal classes is actually a function of
“resolution,” the clustering result with more classification results
(high resolution) is obtained by subdividing one of the classes from
the clustering result with fewer classification results (low resolution),

and then the optimal class selection can be made according to the
actual demand.

The KRI is a combined function of the NI(x), the number of
neighbors M(x, y), and the distance function D (x, y).

KRI x( ) � NI x( )M x, y( )D x, y( ). (3)
In Eq. 3: M (x,y)=n; y is the nth neighboring value of x; and D

(x,y) is the distance between point x and point y.
The MRGC algorithm is carried out as follows (Figure 7): first, a

representative key well is selected as the standard well for modeling;
then, different parameter combination curves are input as learning
curves, and data normalization and anomaly removal are performed
to equalize the weights of different input curves; second, the MRGC

FIGURE 8
Figure of logging facies delineation results of well X.
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algorithm is used to calculate the (NI) and (KRI). The optimal
number of log facies is determined by using the KRI to cluster the
sample data and output the optimal clustering results; finally, the
optimal combination of parameters to classify the log facies is
determined by comparing the results of different combinations of
parameters.

The preferred conventional logging curve, the constructed
saturated pure water resistivity value (R0), and the GR curve to
calculate the variance root of variation (GS) were used as the
petrophysical sensitivity parameters of the target area by the
previous section. Based on the analysis of the logging curve
mechanism, the optimal combination of GR, AC, CNL, DEN, R0,
and GS was determined to classify the logging facies, and then
the MRGC algorithm was used to classify the logging facies. The
layer interface between the delineated reservoir and non-
reservoir by this combination of logging parameters using
MRGC clustering is basically consistent with the manually
delineated layer interface, and the different logging facies
types within the delineated reservoir are clearly defined,
which can subdivide different non-homogeneous layer types
within the reservoir, and the same logging phase types have
similar logging response characteristics, which well-reflect the
reservoir heterogeneity characteristics of the target formation
(Figure 8).

Reservoir classification of logging facies by
pore structure constraint

Based on the pore structure classification of the core scale
(Table 1), the phases with very similar characteristics among the
log facies classified by the MRGC algorithm were optimized and
merged after automatic clustering using log data, and finally five
types of petrophysical facies were identified and combined with
petrophysical nomenclature to ensure that the corresponding
log phases have consistent petrophysical facies characteristics in
the geological sense. After the five types of petrophysical facies
are named, There are four types of sandstone petrophysical
facies, namely, coarse–medium sandstone corrosion facies,
coarse–medium sandstone transition facies, medium–fine

sandstone compaction facies, and fine sandstone calcareous
cementation facies, plus mudstone (Figure 8 and Table 2).

F1 is coarse–medium sandstone corrosion facies (Figure 8 and
Table 2), the reservoir has a medium–high pore permeability, good
physical properties, is a good-quality reservoir, has high production
capacity, and logging response with low DEN, CNL, and GR values
and high AC and RD values of “three low and two high”
characteristics. The distribution range of the AC value is from
82.93 to 87.05 us/ft, the distribution range of the CNL value is
from 0.15 to 0.18 V/V, the distribution range of the GR value is from
53.29 to 65.48 GAPI, the distribution range of the DEN value is from
2.26 to 2.31 g/cm3, the distribution range of the RLLD value is from
23.15 to 43.20Ωm, the distribution range of the R0 value is from
3.15 to 3.56Ωm, the distribution range of the GS value is from
0.38 to 0.82 with a mean value of 0.64, and Gs values were low.

F2 is a coarse–medium sandstone transition facies, the reservoir
is of medium pore medium permeability, shows medium preference
for physical properties, is a good-quality reservoir, has high
production capacity and logging response, and has low DEN and
GR values, medium RLLD value, and high AC and CNL values of
“two low, one medium, and two high” characteristics. The

TABLE 2 | Analysis of different petrophysical facies logging responses of the target reservoir in the study area.

Facies Color AC CNL DEN GR RLLD R0 GS Petrophysical facies

Us/ft V/V g/cm3 GAPI OHMM OHMM —

F1 82.93–87.05 0.15–0.18 2.26–2.31 53.29–65.48 23.15–43.20 3.15–3.56 0.38–0.82 Coarse–middle sandstone corrosion

85.33 0.16 2.29 61.88 32.04 3.35 0.64

F2 85.23–89.03 0.16–0.20 2.25–2.30 55.60–68.59 13.54–19.00 2.01–2.23 0.41–1.22 Coarse–middle sandstone transition

87.12 0.18 2.27 63.28 17.39 2.10 0.88

F3 83.10–86.41 0.15–0.18 2.27–2.33 60.22–73.44 18.16–33.86 2.02–2.08 0.39–1.25 Medium–fine sandstone compaction

84.94 0.16 2.30 66.95 24.36 2.08 0.90

F4 58.43–70.54 0.07–0.17 2.32–2.66 44.19–70.63 15.29–40.66 2.93–3.32 0.50–2.13 Fine sandstone calcareous cementation

63.10 0.10 2.53 58.37 26.31 3.10 1.44

FIGURE 9
Relationship between porosity and permeability of different
petrophysical facies.
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distribution range of the AC value is from 85.23 to 89.03 us/ft, the
distribution range of the CNL value is from 0.16 to 0.20 V/V, the
distribution range of the GR value is from 55.60 to 68.59 GAPI, the
distribution range of the DEN value is from 2.25 to 2.30 g/cm3, the
distribution range of the RLLD value is from 6.54 to 9.00Ωm, the
distribution range of the R0 value is from 2.01 to 2.23Ωm, the
distribution range of GS value is from 0.41 to 1.22 with a mean value
of 0.88, and Gs value is larger than F1.

F3 is a medium–fine sandstone compaction facies, the reservoir
is of low-to-medium pore permeability, has medium physical
properties, is a medium-quality reservoir, has general production
capacity and logging response with low AC and CNL values and
medium RLLD, DEN, and GR values of “two low and three medium”

characteristics. The distribution range of the AC value is from
83.10 to 86.41 us/ft, the distribution range of the CNL value is
from 0.15 to 0.18 V/V, the distribution range of the GR value is from
60.22 to 73.44 GAPI, the distribution range of the DEN value is from
2.27 to 2.33 g/cm3, the distribution range of the RLLD value is from
18.16 to 33.86Ωm, the distribution range of the R0 value is from
2.02 to 2.08Ωm, the distribution range of the GS value is from
0.39 to 1.25 with a mean value of 0.90, and the Gs value is slightly
larger than F2.

F4 is a fine sandstone calcareous cementation facies, this
reservoir has low pore and low permeability, poor physical
properties, is a poor-quality reservoir, has low production
capacity and logging response, and has low AC, CNL, and GR
values and high RLLD and DEN values of “three low and two high”
characteristics. The distribution range of the AC value is from
58.43 to 70.54 us/ft, the distribution range of the CNL value is
from 0.07 to 0.17 V/V, the distribution range of the GR value is from
44.19 to 70.63 GAPI, the distribution range of the DEN value is from
2.32 to 2.66 g/cm3, the distribution range of the RLLD value is from
15.29 to 40.66Ωm, the distribution range of the R0 value is from
2.93 to 3.32Ωm, and the distribution range of the GS value is from
0.50 to 2.13 with a mean value of 1.44 and high Gs values.

Combining the aforementioned results, we can classify the log
facies reservoir under the pore structure classification constraint well
so as to delineate different petrophysical facies. The petrophysical

facies classification results obtained by this process correspond to
the actual geological significance of the petrophysical facies, which is
more comprehensive and practical, and the classification results are
more effective than those of the traditional physical methods that
directly evaluate the theoretical significance of the petrophysical
facies.

Productivity analysis and “sweet spot”
evaluation of different petrophysical
facies

Based on reservoir pore structure characterization for log facies
reservoir classification, evaluation of petrophysical facies and full
exploitation of the pore permeability characteristics and capacity
differences of different petrophysical facies have high practical
production significance. Using the pore permeability model in
reservoir classification, the accuracy is often not high in the
calculation of low-pore and low-permeability reservoirs.
However, the classification method in this paper directly adopts
conventional logging data and pretreatment data, avoiding the
calculation of pore permeability data, which has the advantage of
the method. The coarse–medium sandstone corrosion facies F1 is
the dominant facies zone, and the reservoir with the best physical
properties and strong pore throat connectivity of this type of
petrophysical facies is developed, and its pore permeability value
is relatively high (Figure 9), with the porosity generally greater than
20%, permeability greater than 800 mD, and low pore permeability
slope, KF1 = 0.2894. The fine sand calcareous cementation facies
F4 is mainly affected by carbonate cementation in the diagenetic
stage, with poor physical property and weak dissolution
transformation, resulting in poor reservoir physical property and
lowest porosity and permeability. Affected by heterogeneity, it has a
large porosity and permeability span, with the porosity between
5 and 20% and permeability between 0.1 and 100 mD, and the
highest porosity and permeability slope. KF4=0.6215. The
medium–fine sandstone compaction facies F3 is mainly
influenced by compaction and has average physical properties, its

FIGURE 10
Analysis comparison of productivity capacity of different petrophysical facies.
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pore permeability is lower than F1 and F2 as a whole, the pore
permeability slope is between F2 and F4, KF3 =0.4967, the porosity is
between 10% and 17%, and the permeability is between 50 and
700 mD. The coarse–medium sandstone transition facies F2 has
reservoir properties between coarse–medium sandstone corrosion
facies F1 and medium–fine sandstone compaction facies F3, with a
lower slope relationship of pore permeability, slightly higher than F1
(overall slope KF1 <KF2 <KF3 <KF4), KF2 =0.3563. The pore
permeability is relatively good, with porosity generally greater
than 15% and permeability greater than 300 mD.

It is found that the heterogeneous reservoir sweet spot is mostly
gathered in the secondary pore space with large primary porosity or
developed by local dissolution, represented by the coarse–middle
sandstone corrosion facies with a better pore structure and higher
production capacity (Figure 10) (Pan et al., 2018; Feng et al., 2020).
The effective thickness of the F1 representative layer is 12 m, the
daily output production can reach 807.4 m3/d, and the ratio oil
productivity index is 41.53 m3/(MPa.d.m). The effective thickness of
the F3 representative layer is 15.5 m, the daily output production is
667.8 m3/d, and the ratio oil productivity index is 23.54 m3/
(MPa.d.m). The coarse–medium sandstone transition facies has
complex components, and the physical properties are between
coarse–medium sandstone corrosion facies and coarse–medium
sandstone compaction facie. The representative layer of F2 with
effective thickness is 11 m, daily output production is 620.1 m3/d,
and the ratio oil productivity index is 33.56 m3/(MPa.d.m). Due to
the “calcium content,” the resistivity of fine sandstone calcareous
cementation facies is high, but due to the influence of carbonate
cement, the physical property is very poor and the productivity is
low. The effective thickness of the F4 representative layer is 7 m, the
daily output production is 369.5 m3/d, and the ratio oil productivity
index is 18.72 m3/(MPa.d.m), which is only one-third of the
productivity of coarse–medium sandstone corrosion facies. By
comparing the difference of production capacity of different
petrophysical facies, it is important to predict the reservoir sweet
spot of strongly heterogeneous reservoirs and the adjustment of oil
field development measures.

Conclusion

This paper starts from conventional logging data; integrates core
analysis data such as core cast thin section, pore permeability data,
rock electrical parameters, grain size, and relative permeability
curves to classify the pore structure of reservoirs; classifies
logging facies based on the automatic clustering MRGC
algorithm for conventional logging preference curves, R0 and Gs
(based on GR); and innovatively proposes a natural gamma curve
based on “fluctuation” intensity for strongly non-homogeneous
reservoirs. The wave intensity petrophysical classification logging
model for strongly heterogeneous reservoirs improves the efficiency
and accuracy of petrophysical facies classification for heterogeneous
reservoirs, thus solving the problem of predicting the dominant
section of heterogeneous reservoirs.

(1) Comprehensive core analysis information is used to carry out
core-scale pore structure characterization and establish

petrophysical facies classification criteria, thus realizing the
systematic and comprehensive research on heterogeneous
reservoirs. Petrophysical phases can comprehensively
characterize the pore structure and diagenesis of rocks, and it
is more practical to classify reservoirs and identify deserts by
classifying different petrophysical phases.

(2) Based on the artificial neural network algorithm, we can
quantitatively predict the resistivity of saturated pure water
R0 based on conventional data, remove the influence of oil
and gas fluids on resistivity, and superimpose the resistivity of
saturated pure water (R0) with deep lateral resistivity to assist in
identifying fluid properties, which is in good agreement with the
actual results and provides basic data for the identification of
strongly heterogeneous reservoir deserts with complex pore
structure.

(3) The GR “fluctuation” is used to calculate the variance root of
variation (GS), which can well-reflect the lithological variation
characteristics of the reservoir and the sedimentary
heterogeneity variation status; has obvious advantages in
assisting the judgment of favorable reservoirs; and provides
data support for the classification of petrophysical facies of
strongly heterogeneous reservoirs.

(4) The MRGC clustering algorithm divides log facies by
clustering analysis of sample data, which operates quickly
and significantly improves the accuracy of clustering results,
and is currently an ideal method for reservoir log facies
delineation. Based on the classification of pore structure,
the log facies classification and evaluation of petrophysical
facies can fully exploit the pore permeability characteristics
and capacity differences of different petrophysical facies,
which is of high practical production significance. Under
the constraint of “phase control”, the pore permeability
model is established to analyze the pore permeability
relationship of different petrophysical facies, which can
improve the accuracy of reservoir interpretation by
transforming the non-homogeneous and non-linear
problems of complex reservoirs into homogeneous and
linear problems. By analyzing the pore permeability
relationship and production capacity of different
petrophysical facies, it is important to predict the desert of
strongly heterogeneous reservoirs and adjust oil field
development measures.
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