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Cancer cells within tumor masses are chronically exposed to stress caused by
nutrient deprivation, oxygen limitation, and high metabolic demand. They also
accumulate hundreds of mutations, potentially generating aberrant proteins that
can induce proteotoxic stress. Finally, cancer cells are exposed to various
damages during chemotherapy. In a growing tumor, transformed cells
eventually adapt to these conditions, eluding the death-inducing outcomes of
signaling cascades triggered by chronic stress. One such extreme outcome is
ferroptosis, a form of iron-dependent non-apoptotic cell death mediated by lipid
peroxidation. Not surprisingly, the tumor suppressor p53 is involved in this
process, with evidence suggesting that it acts as a pro-ferroptotic factor and
that its ferroptosis-inducing activity may be relevant for tumor suppression.
Missense alterations of the TP53 gene are extremely frequent in human
cancers and give rise to mutant p53 proteins (mutp53) that lose tumor
suppressive function and can acquire powerful oncogenic activities. This
suggests that p53 mutation provides a selective advantage during tumor
progression, raising interesting questions on the impact of p53 mutant proteins
in modulating the ferroptotic process. Here, we explore the role of p53 and its
cancer-related mutants in ferroptosis, using a perspective centered on the
resistance/sensitivity of cancer cells to exogenous and endogenous stress
conditions that can trigger ferroptotic cell death. We speculate that an
accurate molecular understanding of this particular axis may improve cancer
treatment options.
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Introduction

TP53 is possibly the most frequently altered gene in human cancers (Kandoth et al.,
2013). The encoded p53 protein is a powerful tumor suppressor, and its loss-of-function is
associated with cancer development and progression (Levine, 2020). Intriguingly, the
majority of TP53 mutations are missense, encoding full-length proteins (mutp53) that
are stably expressed in tumor cells. The pervasive retention of mutp53 in cancer suggests a
selective advantage; indeed, missense p53 mutants have been reported to foster cancer cell
proliferation, invasion, metastasis, and chemoresistance (Pilley et al., 2021; Dolma and
Muller, 2022). Various oncogenic phenotypes andmechanisms of action, transcriptional and
non-transcriptional, have been described for mutant p53 (Bellazzo et al., 2018; Kim and
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Lozano, 2018); nonetheless, our understanding of the real impact of
mutp53 in cancer formation and progression remains incomplete.

An interesting hypothesis is that mutp53, similarly to its wild-
type counterpart, may sense transformation-related cellular stresses
and coordinate adaptive responses that help tumor progression
(D’Orazi and Cirone, 2019; Mantovani et al., 2019). Such indirect
action, dependent on multiple unpredictable circumstances, could
explain why missense TP53 mutations are pervasively selected in
tumors, but depletion of mutp53 in cancer cell lines and preclinical
models gives variable and often contradictory results (Kennedy and
Lowe, 2022; Wang et al., 2022).

Cancer cells within tumors experience multiple adverse
conditions: nutrient and oxygen shortage, high metabolic
demand, increased mutation rate, and chemotherapy-induced
DNA damage. They eventually adapt to chronic stress, often
hijacking stress-response pathways to favor homeostasis and
survival. For instance, aberrant activation of the unfolded protein
response can facilitate cancer progression by inducing epithelial
mesenchymal transition, stimulating angiogenesis, and supporting
tumor cell dormancy (Senft and Ronai, 2016; Limia et al., 2019).
Some mechanisms by which mutp53 can help cancer cells adapt to
cancer-related stress are beginning to emerge from tissue culture and
animal models; characterizing such mechanisms may open new
opportunities for targeted therapy.

Cancer-related stress conditions can directly or indirectly cause
ferroptosis, a cell death process resulting from intracellular
accumulation of lipid peroxides. Ferroptosis is under intense
study due to its potential anti-cancer activity, especially in
apoptosis-resistant tumors (Friedmann Angeli et al., 2019; Lei
et al., 2022; Rodriguez et al., 2022). In fact, due to their altered
metabolism, cancer cells are susceptible to ferroptosis and highly
dependent on protective systems for survival; genes and pathways
involved in such processes, therefore, could be targeted to improve
chemotherapy. Not surprisingly, wild-type p53 has been reported to
modulate ferroptosis in tumor models, possibly affecting response to
treatment. The emerging relevance of the p53-ferroptosis axis
inevitably raises important questions about the impact of cancer-
associated mutant p53 in this phenomenon.

Ferroptosis

The term ‘ferroptosis’ describes a form of non-apoptotic cell
death characterized by iron-dependent production of Lipid-ROS
responsible for cell killing (Dixon et al., 2012). Since its first
description, the number of papers studying ferroptosis has
increased exponentially (Stockwell, 2022) confirming its
involvement in both physiological and pathological events
ranging from development, immune functions and tumor
suppression, to neurodegeneration, autoimmunity and
tumorigenesis (Jiang et al., 2021).

Lipid-ROS are the main executioners of ferroptosis, produced by
intracellular iron accumulation, promoting peroxidation of PL-
PUFA through Fenton reactions (Shah et al., 2018). The cellular
labile iron pool required to stimulate ferroptosis can be the result of
either increased iron import from the extracellular compartment, or
released by autophagy-mediated degradation of ferritin
(ferritinophagy) (Hou et al., 2016). Also iron-containing

enzymes, such as ALOXs and POR, can promote lipid
peroxidation, driving ferroptosis (Yang and Stockwell, 2016;
Gagliardi et al., 2020; Zou et al., 2020).

On the other hand, biological processes protecting cells from
Lipid-ROS must be concomitantly inhibited. GPX4 is the main
intracellular factor responsible for Lipid-ROS reduction, using GSH
as cofactor (Seiler et al., 2008). Thus, inhibition of GPX4 activity
(e.g., through RSL3 administration), or impairment of GSH
production through inhibition of the transmembrane glutamate/
cystine antiporter “System Xc−”, will result in Lipid-ROS
accumulation and ferroptosis (Dixon et al., 2012).

A key component of “System Xc−” is the solute transporter
SLC7A11, frequently overexpressed in human malignancies,
representing a potential target for ferroptosis-based therapies. In
addition, Lipid-ROS can be detoxified by GPX4-independent factors
such as FSP1 (Bersuker et al., 2019; Doll et al., 2019), DHODH (Mao
et al., 2021), GCHI/BH4 (Kraft et al., 2020), and AKRs (Gagliardi
et al., 2019; Gagliardi et al., 2020). The precise molecular
mechanism(s) by which membrane-bound Lipid-ROS execute the
death process remains unclear; one hypothesis is that they
destabilize the plasma membrane structure, dysregulating its
permeability (Figure 1).

P53 behaves primarily as a pro-ferroptotic factor, since it
negatively regulates SLC7A11, increasing sensitivity to ferroptosis
(Jiang et al., 2015b). P53 also controls the expression of enzymes
involved in polyamine, glutamine, and iron metabolism, facilitating
cell death by ferroptosis inducers. Importantly, using mouse models,
the pro-ferroptotic activity of p53 was elegantly demonstrated to be
sufficient for tumor suppression in vivo (Wang et al., 2016). Under
certain conditions, however, p53 can also inhibit ferroptosis
facilitating ROS detoxification and lipid homeostasis, limiting
their pro-oncogenic action (Liu et al., 2020; Liu and Gu, 2022b).

Less is known on the impact of mutant p53 in the ferroptotic
process. The consensus is that it increases sensitivity to ferroptosis,
since mutp53 efficiently represses SLC7A11 (Gnanapradeepan et al.,
2018; Magri et al., 2021). However, there is contradictory evidence.
For instance, the drug APR-246 can induce ferroptosis more
efficiently in blood cancer cells with mutp53 (Birsen et al., 2021;
Fujihara et al., 2022; Hong et al., 2022). Although the pro-ferroptotic
action of APR-246 is independent of p53 (Liu et al., 2017; Magri
et al., 2021; Fujihara et al., 2022), the drug is a powerful inhibitor of
mutant p53 (Hassin and Oren, 2022; Levine, 2022), and this may
contribute to its efficacy. Similarly, the quinolinol MMRi62 was
shown to induce ferroptosis in pancreatic cancer cells by inducing
ferritinophagy (see below), but also by mutp53 destabilization (Li
et al., 2022). Thus, we speculate that mutant p53 can modulate the
sensitivity of cancer cells to ferroptosis not only directly, e.g.,
controlling ferroptotic genes, but also indirectly, by facilitating
cellular adaptation to cancer-related stress.

p53 and stress conditions triggering
ferroptosis

Hypoxia

Hypoxia is chronic in most tumors, and this condition is often
exploited by cancer cells to sustain proliferation, metabolism, tumor
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invasion, and metastasis (Yang et al., 2020). In this context, a key
role is played by HIF1, a transcription factor activated by low oxygen
and frequently overexpressed in cancer (Su et al., 2022).
Interestingly, HIF1 inhibits ferroptosis by: i) upregulating
SCD1 to increase MUFA synthesis; ii) inhibiting the expression
of ACSL4 to reduce Lipid-ROS generation, and iii) inhibiting the
degradation of SLC7A11 (Su et al., 2022). Therefore, the reduced
efficacy of radiation or drug-based therapies in solid tumors has
been, at least in part, associated with HIF1-mediated inhibition of
ferroptosis (Wang et al., 2019; Su et al., 2022).

p53 is activated by hypoxia, driving a cellular response that also
involves modulation of cell metabolism (Liu and Gu, 2022a). In
particular, p53 has a complex relationship with HIF1ɑ. The two
proteins interact, and both wild-type and mutp53 potentiate the
transcriptional activity of HIF1ɑ (Sermeus and Michiels, 2011;
Eriksson et al., 2019). Reciprocally, activated HIF1ɑ stimulates
p53 expression by binding to its promoter (Madan et al., 2019).
Such positive feedback may be relevant for aberrant accumulation of
highly stable mutp53 proteins in hypoxic cancer cells. In turn,
mutp53 interacts with HIF1ɑ, stabilizing it, and promoting its
DNA binding, increasing expression of genes that contribute to
hypoxia-induced cell growth and survival (Madan et al., 2019).
Mutant p53 can enhance angiogenesis by HIF1/VEGF signaling,
and many HIF1-target genes are also targets of NRF2, linking
hypoxic response to redox homeostasis (Eriksson et al., 2019). It
would be interesting to establish to what extent the interaction of
mutp53 with HIF1ɑ contributes to determine the sensitivity to

ferroptosis of hypoxic cancer cells. Of note, mutp53/HIF1ɑ
complexes drive expression of miR-30d, that reshapes the
structure of Golgi apparatus, promoting cancer cells secretory
activity. This impacts on the tumor microenvironment, with
implications for hormonal and mechanical signaling pathways
(Capaci et al., 2020), but also affects ER homeostasis and UPR
signaling that may affect ferroptosis (see below).

Oxidative stress

ROS production is associated with both physiological and
pathological conditions. Proper ROS production contributes to
differentiation, immunity, and cell signaling, but uncontrolled
accumulation leads to damage of proteins, lipids, and nucleic
acids, causing “oxidative stress”, involved in cardiovascular and
neurodegenerative diseases, obesity, aging, and cancer (Pizzino
et al., 2017; Szewczyk-Golec et al., 2018).

Oxidative DNA damage is one of the stimuli driving
tumorigenesis (Pizzino et al., 2017), and was detected in cells
dying through ferroptosis (Erlanson et al., 2019; Liu J. et al.,
2021). Therefore, in addition to being an integral part of the
molecular mechanism of ferroptotic death, oxidative stress might
regulate the process itself (Liu J. et al., 2021).

p53 is activated by oxidative stress, and can reduce ROS to
promote cell survival, or increase ROS to facilitate cell death,
depending on its gene targets or binding partners (Eriksson et al.,

FIGURE 1
Schematic representation of the ferroptotic process. Lipid peroxidation resulting in the generation of Lipid-ROS is considered the point of no return
in the execution of ferroptosis. However, the precise mechanism(s) by which these highly reactive molecules execute the cell death process is still not
completely clear. The current hypothesis is that peroxidized PL-PUFAs destabilize the membrane thus compromising its barrier functions. PUFA are
introduced into cell membranes, as PL-PUFA, through the combined activity of ACSL4 and LPCAT3, while lipid peroxidation is catalyzed by increased
available iron (LIP) through Fenton reactions, or by lipoxygenases (ALOX), which use iron as a cofactor. In turn, LIP can be generated by both
ferritinophagy, which degrades intracellular and ferritin-based iron stores, or increased uptake of extracellular iron, through the iron/TF interaction with
membrane TFRs, endosomal release of iron, and DMT1-mediated relocation in the cytosol. On the other hand, Lipid-ROS can be actively degraded by the
GSH-dependent activity of GPX4, by increased expression/activity of AKRs, or can be reduced by the FSP1- or GCH1/BH4- dependent cycles.
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2019). The cellular response to oxidative stress is mainly regulated
by NRF2, a transcription factor that controls expression of several
antioxidant proteins (Rojo de la Vega et al., 2018). Notably,
depending on cellular context, p53 can increase NRF2 levels by
preventing its degradation, or reduce NRF2 levels by repressing its
transcription (Eriksson et al., 2019; Liu and Gu, 2022a). Oncogenic
mutp53 apparently has opposite effects. For instance, in lung and
breast epithelial cells wt p53 suppressed NOX4 reducing ROS levels
and cell migration, while mutp53 was shown to stimulate ROS
production and metastasis (Boudreau et al., 2014). Mutp53 binds
NRF2 on the SLC7A11 promoter, repressing transcription; this
renders mutant p53 cells more sensitive to oxidative assaults and
prone to ferroptosis (Liu et al., 2017). However, in breast cancer
models, mutant p53 cooperates with NRF2 to transcribe proteasome
components, alleviating proteotoxic stress and enhancing cell
survival and cancer aggressiveness (Walerych et al., 2016; Lisek
et al., 2018). Intriguingly, expression of transactivation-defective
p53(3K), or ROS generation alone, could not induce ferroptosis, but
their combination induced massive ferroptotic cell death (Jiang
et al., 2015a; Jiang et al., 2015b); this indicates that p53-
dependent ferroptosis may be a crucial tumor-suppressive
response to oxidative stress. Similarly, the deacetylase
SIRT3 represses p53-mediated ferroptosis in various cancer cells
(Jin et al., 2021). SIRT3 expression is altered in several tumors (Chen
et al., 2014; Ansari et al., 2017), and may cooperate with
p53 mutation to increase cancer cell resistance to ferroptosis
upon oxidative stress.

Oxidative stress can also trigger ferroptosis by enhancing
peroxidation of membrane lipids. Interestingly, p53 can
upregulate iPLA2β, a Ca-independent phospholipase that cleaves
oxidized fatty acids, promoting their cytosolic detoxification, and
thus limiting ferroptosis. Notably, p53 upregulates iPLA2β only
under conditions of moderate lipid damage, facilitating adaptation
to oxidative stress (Chen et al., 2021; Liu and Gu, 2022b). Loss of
p53 function would cut this modulatory feedback, sensitizing p53-
null cancer cells to ROS-induced lipid damage. Cells with oncogenic
p53 mutations also lack this adaptive circuit, but may compensate
with enhanced activity of NRF2 (see above).

Endoplasmic reticulum stress

Nutrient deprivation, proteasome dysfunction, sustained secretory
activity, and somatic mutations in ER client proteins cause dysregulated
proteostasis in proliferating tumor cells, thus triggering activation of the
unfolded protein response (UPR) (Corazzari et al., 2017; Chen and
Cubillos-Ruiz, 2021). Accumulation of unfolded/misfolded proteins in
the ER is sensed by the receptors PERK, IRE1, and ATF6, that trigger
activation/upregulation of transcription factors: ATF4, induced by PERK
activation, XBP1s, produced by IRE1-dependent cytoplasmic splicing of
XBP1 mRNA, and ATF6f, generated by proteolytic cleavage of activated
ATF6. These factors orchestrate a transcriptional response aimed to: i)
increase ER folding capacity; ii) inhibit cap-dependent translation; iii)
degrade misfolded/unfolded ER client proteins (ERAD). Overall these
activities sustain cell survival (“adaptation phase” of UPR), but acute or
unresolved ER stress stimulates apoptosis (“cell death phase”) (Pagliarini
et al., 2015; Corazzari et al., 2017). A potential link between ER stress and
ferroptosis has been proposed due to the identification of CHAC1 as a

ferroptotic marker (Dixon et al., 2014); indeed CHAC1 is upregulated
upon ER stress and contributes to GSH degradation (Galluzzi et al.,
2012), thus connecting the two pathways (Dixon et al., 2014). However,
we observed that UPR is not required for ferroptosis in metastatic
melanoma cells, despite a clear and early upregulation of CHAC1, that
could be be abrogated by inhibiting NRF2, suggesting that CHAC1 is
under control of both UPR and NRF2 (Gagliardi et al., 2019; Gagliardi
et al., 2020). Clearly, further studies are required to unveil the real
involvement of ER stress in ferroptosis.

Evidence linking wt p53 to ER stress is scarce, but various
observations implicate mutant p53 in protein homeostasis. First,
mutp53 cooperates with NRF2 to upregulate proteasome
components, thus increasing protein turnover in cancer cells
(Walerych et al., 2016; Lisek et al., 2018). This accelerates
degradation of tumor-suppressors, promoting cell proliferation; at
the same time it can help reduce or resolve ER stress, promoting
cell survival. Second, mutp53 enhances expression of ENTPD5, an ER
enzyme involved in folding of N-glycosylated proteins (Vogiatzi et al.,
2016). This facilitates the maturation and secretion of growth-factor
receptors, promoting cell proliferation; it may also alleviate ER stress by
enhancing protein folding. Third, mutp53 induces Golgi remodeling
and increases protein secretion; this could alter ER protein homeostasis
and favor adaptation to ER stress (Capaci et al., 2020). Finally, we found
that mutp53 protects cancer cells from drug-induced ER stress by
modulating the UPR, in particular by enhancing activation of ATF6
(Sicari et al., 2019). Although the impact of ER stress in ferroptosis
remains to be defined, it is conceivable that alterations in p53 function
may affect sensitivity to ferroptosis at least in part by modulating
protein homeostasis and the UPR.

Nutrient deprivation and autophagy

Autophagy is an evolutionarily-conserved process responsible
for lysosomal degradation of intracellular cargoes, sustaining cell
survival under nutrient shortage conditions (Corazzari et al.,
2013). Autophagy plays a paradoxical role in tumorigenesis,
depending on the stage of tumor development; it is suppressive
in early stages, mainly through degradation of potentially
oncogenic molecules, but becomes oncogenic in advanced
stages, promoting cell survival and ameliorating stress in the
microenvironment (Galluzzi et al., 2015). Evidence of
autophagy has been detected in cancer cells dying by
ferroptosis, suggesting a potential connection between the two
pathways (Liu L. et al., 2021). Indeed, NCOA4 mediates
autophagy-dependent degradation of FTH, thus releasing iron
(ferritinophagy) and triggering lipid peroxidation and
ferroptosis (Mancias et al., 2014). Recently, other factors linking
ferroptosis to specific autophagic processes have been identified, in
particular affecting Lipid-ROS generation: for instance RAB7A
(lipophagy) (Bai et al., 2019), ARNTL (clockophagy) (Yang et al.,
2019), and HSP90/HSC70 (CMA) (Wu et al., 2019). In fact, it has
been suggested that ferroptosis may be considered an autophagy-
based type of cell death (Zhou et al., 2020), although this concept is
still debated.

Wild-type p53 modulates autophagy both directly and indirectly
(Maiuri et al., 2010; D’Orazi and Cirone, 2019; Liu and Gu, 2022a).
When activated by DNA-damage, nuclear p53 upregulates
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autophagy-associated genes, contributing to cancer cell death upon
chemotherapy (Broz and Attardi, 2013). In contrast, cytoplasmic/
mitochondrial p53 can suppress autophagy (Green and Kroemer,
2009). Additionally, p53 controls autophagy via interaction with key
metabolic pathways, for instance positively modulating AMPK
activity and negatively regulating AKT and mTOR (Mrakovcic
and Fröhlich, 2018; Liu and Gu, 2022a).

Tumor-associated p53 mutants cannot transactivate
autophagy genes and may acquire a suppressive role in
autophagy (Cordani et al., 2017; Shi et al., 2021); especially
mutp53 proteins with a pervasive cytoplasmic localization
(Morselli et al., 2008). Mutp53 can also bind and inhibit AMPK
(Zhou et al., 2014), and promote mTOR activation, indirectly
suppressing autophagy (Liu and Gu, 2022a). So, although
autophagy can help cancer cells overcome nutrient stress,
evidence indicates that mutp53 inhibits autophagy to foster
cancer aggressiveness. It is plausible that the p53 status may
determine the sensitivity of cancer cells to ferroptosis also by
modulating stress-induced autophagy.

Conclusion

Although cancer-related stress originates from a relatively small
number of conditions—nutrient imbalance, hypoxia, reactive
oxygen or nitrogen compounds, DNA damage, somatic
mutations—the multiple pathways involved and the variable

conditions that a tumor experiences during its clinical evolution
generate an extremely complex scenario. Within this framework, the
p53 pathway plays a central role in the response to stress, in
particular determining whether cancer cells adapt or succumb to
it via regulated cell death—including ferroptosis (Figure 2).

We suggest that mutant p53 can provide a selective advantage to
tumors by facilitating adaptation to stress. This effect may not be
evident under all conditions, but may become relevant under specific
circumstances; for instance, at a given stage during cancer evolution,
in response to a certain therapy, or in selected subpopulations of the
tumor mass. Currently, there is a lack of experimental studies aimed
to test this hypothesis, and we encourage research in this direction.
Similarly, it may be important to define the specific stress conditions
associated with a given tumor and/or chemotherapeutic drug; a
better comprehension of this complexity may help predict the
efficacy of treatments, in particular those inducing ferroptosis, in
cancers with or without p53 mutation.

Research in the past decades led to development of several drugs that
specifically target mutant p53, either by destabilizing the protein to
reduce its levels, or bymodulating its conformation to restore p53 tumor-
suppressive functions (Dolma andMuller, 2022; Hassin and Oren, 2022;
Levine, 2022). Such molecules are being tested for clinical use in
combination with chemotherapy in p53 mutated cancers, with
variable results. Many chemotherapeutic drugs can induce ferroptosis
in addition to their primary action (e.g., cisplatin, gemcitabine, sorafenib);
in preclinical cancer models their action is increased by co-treatment
with ferroptosis inducers, such as drugs that inhibit System Xc−, reduce

FIGURE 2
Relationship between stress-related signaling pathways, ferroptosis, and tumor growth, from a p53 status-centered (wt or mut) perspective. In the
early stages of solid tumor development, cancer cells are subjected to oxygen and nutrient shortage, oxidative stress, and dysfunctional proteostasis. The
molecular pathways activated in response to those stimuli will define the fate of the early tumor: survival (red arrows) or death. Beyond apoptosis, very
recently, the new form of cell death named ferroptosis has been described to have a role in preventing/limiting the early tumor formation and
growth, although the precise molecular mechanisms are still elusive. Emerging data show that stress-related signaling pathways have a non-negligible
impact on ferroptosis induction/execution, with some of them stimulating (green arrows) while other preventing or inhibiting (gray lines) the process, thus
enhancing or weakening the impact of ferroptotic cell death on tumor growth and progression. The complexity of this scenario is further amplified by the
cellular response to stress-induced activation of the p53 tumor suppressor, and by the fact that a large fraction of tumors express gain-of-function
p53 mutants. Accumulating data suggest that the p53 status (wt vs. mut) might have a significant impact on ferroptosis and tumor growth through a
positive (+) or negative (−) effect on cancer-associated stress-related signaling pathways.
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GSH, inhibit GPX4, or alter intracellular iron levels (Su et al., 2020; Wu
et al., 2020; Lei et al., 2022). In this scenario, we hypothesize that targeting
mutant p53 may increase the efficacy of pro-ferroptotic drugs under
specific stress conditions, thus improving the clinical response of
p53 mutated tumors.
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Glossary

ACSL4 acyl-CoA synthetase long-chain family member 4

AKRs aldo-keto reductases

ALOXs arachidonate lipoxygenases

ARNTL aryl hydrocarbon receptor nuclear translocator-like

ATF6 Activating Transcription Factor 6

ATF4 Activating Transcription Factor 4

CHAC1 ChaC Glutathione Specific Gamma-
Glutamylcyclotransferase 1

CMA chaperone-mediated autophagy

DHODH dihydroorotate dehydrogenase

ER endoplasmic reticulum

ERAD endoplasmic-reticulum-associated protein degradation

FTH ferritin heavy chain

FSP1 Ferroptosis suppressor protein 1, or AIFM2 or AMID

GCHI/BH4 GTP cyclohydrolase 1/tetrahydrobiopterin

GPX4 Glutathione peroxidase 4

GSH Glutathione

HIF1 Hypoxia Inducible Factor 1

Hsp90 heat shock protein 90

IRE1 Inositol-Requiring Enzyme 1

Lipid-ROS lipid peroxides

MUFA monounsaturated fatty acids

NCOA4 nuclear receptor coactivator 4

NOX4 NADPH oxidase 4

NRF2 nuclear factor erythroid 2-related factor 2

PERK PKR-Like ER Kinase

PUFA Polyunsaturated fatty acids

PL-PUFA PUFA-containing membrane-bound phospholipids

POR cytochrome P450 oxidoreductase

RAB7A member RAS oncogene family

RSL3 RAS-selective-lethal-3

ROS reactive oxygen species

System Xc- cystine/glutamate antiporter system

SLC7A11 solute carrier family 7 member 11

SCD1 stearoyl-CoA desaturase 1

SIRT3 Sirtuin 3

TFR Transferrin Receptor

UPR unfolded protein response

XBP1 X-Box Binding Protein 1
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