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Optical neuroimaging and
neurostimulation in surgical
training and assessment: A
state-of-the-art review

Mary Goble*, Virginia Caddick, Ronak Patel, Hemel Modi,

Ara Darzi, Felipe Orihuela-Espina and Daniel R. Le�

Department of Surgery and Cancer, Imperial College London, London, United Kingdom

Introduction: Functional near-infrared spectroscopy (fNIRS) is a non-invasive

optical neuroimaging technique used to assess surgeons’ brain function. The

aim of this narrative review is to outline the e�ect of expertise, stress, surgical

technology, and neurostimulation on surgeons’ neural activation patterns, and

highlight key progress areas required in surgical neuroergonomics to modulate

training and performance.

Methods: A literature search of PubMed and Embase was conducted to identify

neuroimaging studies using fNIRS and neurostimulation in surgeons performing

simulated tasks.

Results: Novice surgeons exhibit greater haemodynamic responses across the

pre-frontal cortex than experts during simple surgical tasks, whilst expert surgical

performance is characterized by relative prefrontal attenuation and upregulation

of activation foci across other regions such as the supplementary motor area. The

association between PFC activation and mental workload follows an inverted-U

shaped curve, activation increasing then attenuating past a critical inflection point

at which demands outstrip cognitive capacity Neuroimages are sensitive to the

impact of laparoscopic and robotic tools on cognitive workload, helping inform

the development of training programs which target neural learning curves. FNIRS

di�ers in comparison to current tools to assess proficiency by depicting a cognitive

state during surgery, enabling the development of cognitive benchmarks of

expertise. Finally, neurostimulation using transcranial direct-current-stimulation

may accelerate skill acquisition and enhance technical performance.

Conclusion: FNIRS can inform the development of surgical training programs

which modulate stress responses, cognitive learning curves, and motor

skill performance. Improved data processing with machine learning o�ers

the possibility of live feedback regarding surgeons’ cognitive states during

operative procedures.
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1. Introduction

Neuroergonomics is concerned with the study of brain behavior

under naturalist conditions. It encompasses the application of

neuroscience, and the biological substrates that underlie brain

function, to ergonomics. “Surgical neuroergonomics”, the

convergence of two disciplines in the surgical setting, seeks

to understand the cognitive processes that underpin operative

performance, and inform the design of safer operating systems

and more robust training paradigms. Various neuromonitoring

techniques have been used to increase the understanding of

neural processes that underpin task acquisition in surgery.

Examples of such modalities include functional magnetic

resonance imaging (fMRI), positron emission topography (PET),

electroencephalography (EEG), and functional near-infrared

spectrometry (fNIRS).

Of these, the optical neuroimaging modality fNIRS is the

most frequently used technique for surgical neuroergonomic

applications (Patel et al., 2020; Hannah et al., 2022) as it is safe,

radiation free, comparatively inexpensive and enables surgeons to

operate freely in naturalistic settings (Modi et al., 2017a; Chen et al.,

2020). In fNIRS, near-infrared light is radiated to the brain via light

sources and absorbed by oxygenated (HbO2) and deoxygenated

(HHb) hemoglobin in the cerebral vasculature (Figure 1). The

Modified Beer-Lambert Law estimates the optical parameters

(absorption coefficient) from which the brain oxygenation is later

derived. Areas of increased cerebral activity correlate with an

increase in oxygen requirement, however there are regional (e.g.,

extracerebral) confounders (Erdogan et al., 2014; Scholkmann et al.,

2022) which should be recorded to increase the accuracy of fNIRS

signals (Scholkmann et al., 2022). Conventionally, fNIRS uses “long

channels”, where light emitters are placed 3 cm away from detectors

on the scalp. “Short channels” placed 8–10mm away from the

light source demonstrate strong bias toward extracerebral signals

(scalp, skull and meninges); the addition of these channels enables

regression of confounding haemodynamic activity (Strangman

et al., 2013; Brigadoi and Cooper, 2015; Caldwell et al., 2016;

Reddy et al., 2021). Systemic factors (e.g., heart rate, arterial

CO2) likewise act as confounders in multiple ways, illustrated

by the vasodilatory effect of CO2 which modulates neurovascular

coupling, or noise generated from heart rate variations (Lindauer

et al., 2010; Kirilina et al., 2012; Caldwell et al., 2016; Scholkmann

et al., 2022). Recording systemic responses using instruments such

as capnographs or plethysmographs allows for regression of these

effects out of fNIRS signals.

Whilst neural patterns of activation in surgeons related to

stress and expertise have previously been reviewed systematically

Abbreviations: CO2, Carbon dioxide; EEG, Electroencephalogram; fMRI,

Functional magnetic resonance imaging; fNIRS, Functional near infrared

spectroscopy; GEL, Gaze-enhanced learning; GLM, Generalized Linear

Model; HbO2, Oxygenated hemoglobin; HD-tDCS, High definition

transcranial direct-current stimulation; HHb, Deoxygenated hemoglobin;

M1, Motor area; PET, Positron emission tomography; PFC, Prefrontal

cortex; PMA, Premotor area; SMA, Supplementary motor area; SPA-fNIRS,

Systemic-physiology-augmented functional near-infrared spectroscopy;

tDCS, Transcranial direct-current stimulation.

FIGURE 1

(A) Optical neuroimaging cap (B) long and short fNIRS detector

channels. Short detector channels measure confounding

extracerebral signal whilst long channels measure extracerebral and

cerebral signals.

(Arora et al., 2010; Modi et al., 2017b; Hannah et al., 2022),

studies conducted since (Crewther et al., 2016; Singh et al.,

2018; Modi et al., 2020) merit inclusion for an up-to-date

understanding of the progress made in the field of surgical

neuroergonomics. In particular, prior reviews narrowed their

scope, omitting recent developments in neuroimages of stress

and performance enhancement such as robotic assistance or

neuroaugmentation (e.g., neurostimulation). To address these gaps,

we conducted a narrative review of literature across key areas

including surgical skill assessment and proficiency, workload and

stress and performance enhancement either through external or

robotic assistance or neurostimulation. Across these domains

we specifically aimed to determine whether neuroimages can

reliably classify surgical skill; whether there are neural signatures

of high mental workload; and aimed to characterize the impact

of performance enhancing interventions on neural responses in

surgeons. Finally, we aimed to highlight key progress areas required

in neuroergonomics to implement live cognitive feedback in the

theater environment, including trends in data collection and

processing. Findings are summarized in Table 1.

2. Surgical skills assessment and
proficiency

The versatility and accessibility of fNIRS has enabled the study

of cognitive activation patterns with surgical tasks and training,

exploring the effects of task complexity and expertise. Areas
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TABLE 1 Summary of current understanding, research gaps and future applications of neuromonitoring and neurostimulation to surgical training.

Current understanding Knowledge gaps: Research priorities Future applications to surgical
training

fNIRS data accuracy is improved by

measurement of regional and systemic blood

flow

How can data processing be optimized - AI/machine learning?

How can data be collected from complex, real operating theatre

environments?

Live fNIRS in theater—instant training

feedback and modulation of behavior

Experts exhibit less activation in PFC and

SMA/M1/PMA than novices during motor

skill

What is the neural benchmark of expertise in motor skill and task

planning?

Neural signature patterns to demonstrate

proficiency

Decline in performance due to stress is linked

to decreased activation in PFC

How do different types of stressors affect cognitive activation and

brain networks? Does expertise effect performance under stress?

Understanding of stress response in order to

prevent performance deterioration

Evaluating stress-reducing interventions

Robotic training tools lead to increased PFC

activation compared to laparoscopic

How does robotic surgery vs. laparoscopic surgery impact rate of

skill acquisition and mastery?

Training tools developed to enhance

cognitive response

Direct stimulation enhances motor

performance in surgical trainees

What are the long term benefits and risks of tDCS? What is the

effect of tDCS on patient outcomes?

Use of tDCS to improve rate of learning

implicated in motor tasks include the prefrontal cortex (PFC),

supplementary motor area (SMA), primary motor cortex (M1), and

cerebellum (Modi et al., 2017b; Hannah et al., 2022). The PFC can

be further subdivided into the dorsolateral (DLPFC), ventrolateral

(VLPFC) and medial-frontopolar subregions. fNIRS array design

and channel sensitivity distribution can optimize spatial resolution

of the underlying macroanatomy, to better understand specific

functional localization (Walia et al., 2021). In simple bimanual

tasks such as knot-tying, novices exhibit greater DLPFC activation

than experts, this effect diminishes with practice and improved

performance (Shetty et al., 2016; Modi et al., 2017b; Izzetoglu et al.,

2021; Hannah et al., 2022). Izzetoglu et al. (2021) note deactivation

specifically in the left DLPFC. The DLPFC is understood to

subserve executive functions: working memory and attention, task-

planning and cognitive flexibility (Carlén, 2017). For more complex

tasks, such as laparoscopic or robotic suturing, the training period

required to first observe PFC excitation and indeed subsequent

reduction in PFC activation is substantially longer (Walia et al.,

2022). Ohuchida et al. (2009) observed minimal PFC activation

in those naïve to laparoscopic suturing with subsequent practice-

related PFC attenuation occurring over a protracted time interval.

Shetty et al. (2016) describe persistent PFC activation in trainees

despite a week of practice and technical performance improvement;

similarly, Walia et al. (2022) describe right DLPFC activation in an

expert group. Only after years of practice and regular task execution

was PFC attenuation observed in expert consultants (Shetty et al.,

2016).

Expertise is also characterized by re-organization and

redistribution of activation across other motor regions of the

cortex; bi-manually skilled experts recruit regions involved in

action observation (ventral premotor cortex), motor planning

(posterior parietal cortex) and action execution (M1) in order to

improve task efficiency (Yang, 2015). Increased supplementary

motor area (SMA) and primary motor cortex (M1) activation

having been demonstrated to be positively correlated with

expertise (Nemani et al., 2018; Hannah et al., 2022). During

surgical task planning, motor and parietal regions demonstrate

greater activation in experienced surgeons compared to novice

students, the latter who exhibit greater bilateral DL, VL and medial

PFC activation when making decisions compared to experts, who

gain in economy of movement and precision (Bann et al., 2003).

Ventromedial activation is also prominent in novices and has been

shown to be absent in experts (Leff et al., 2017). The cerebellum’s

function inmotor coordination is reflected in optical neuroimaging

surgical data: in laparoscopic tasks, experts demonstrate increased

cerebellar activation, whilst novices display attenuated cerebellar

activation (Duty et al., 2012).

Correlation between haemodynamic responses across different

brain regions demonstrates disparate ‘functional connectivity’

between novice and expert surgeons (Nemani et al., 2021; Kamat

et al., 2022). For example, Andreu-Perez et al. (2016) demonstrated

that during complex bimanual surgical co-ordination tasks,

functional connectivity data predicted operator skill level with

good accuracy, experts displaying greater motor connectivity

whilst novices demonstrated stronger connectivity in prefrontal

and premotor regions. In assessing connectivity, the application

of fuzzy cognitive maps, capable of describing non-linear

relationships and changing connectivity by delivering a graphical

representation of a given system, is a complementary technique

based on Kosko’s causal definition to add to other current methods

based on Granger’s causal definition, including dynamic causal

modeling (Kiani et al., 2022).

Understanding cognitive patterns associated with expertise

allows trainers to define neural proficiency, for example via a

defined threshold of changes that accompany skill proficiency,

which could be spatial distribution of activations, or magnitude

of activation in certain regions of interest. Trainees engage in

a substantial amount of simulated and virtual learning due to

reduced training opportunities and a concern for patient safety,

hence a need to ensure simulated and virtual training bestow

the same level of skill than physical training (Seymour et al.,

2002; Aggarwal et al., 2007; Hogle et al., 2009). Currently, surgical

proficiency is assessed against benchmarks such as time taken

to perform a skill, numbers of errors made, or subjective rater

assessment (Seymour et al., 2002; Aggarwal et al., 2007; Munz

et al., 2007). Time-based metrics have been shown to poorly classify

trainee expertise (Nemani et al., 2019), whereas fNIRS has been

shown to at least match, if not surpass, current metrics in being

able to reliably distinguish levels of expertise between trainees,

in turn confirming the value of simulated and virtual training

(Nemani et al., 2018, 2019; Gao et al., 2021b; Hannah et al.,

2022). As highlighted by Nemani et al. (2019) current measures of
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performance of laparoscopic tasks (such as time to complete task)

more frequently misclassify level of motor skill compared to fNIRS.

The singularity of fNIRS may however lie its potential

to set a benchmark of neural proficiency for complex, time-

consuming tasks, which cannot be assessed with simple time-based

measures and are difficult to evaluate beyond patient outcomes

and complication rates. To enable this application of optical

neuroimaging, it must develop the capacity to integrate and process

large amounts of data in real time during prolonged periods,

mapping evolving cognitive function throughout an operation to

create a benchmark of expert patterns of activation.

3. Cognitive workload and stress

Optical neuroimaging can provide an objective measure of

cognitive workload. Cognitive workload theory describes intrinsic

(inherent to the task), extraneous (the context in which the

task is situated), and germane (the processing ability of the

subject) cognitive load (Sweller, 2011). Stress adds to extraneous

workload and has independently been found to impair surgical

performance, affecting both technical and non-technical skills such

as communication skills and decision-making (Arora et al., 2010;

Crewther et al., 2016; Modi et al., 2018; Singh et al., 2018). Current

understanding suggests an inverted-U shape association between

PFC activation and mental workload, with activation increasing

in-line with workload demands, before attenuating once it passes

a critical inflection point at which demands outstrip cognitive

capacity (Ossewaarde et al., 2011; Modi et al., 2018; Singh et al.,

2018). Modi et al. (2018) demonstrated performance degradation

during timed conditions, or temporal stress, associated with relative

PFC attenuation. In a subsequent study, they integrated a cognitive

stress component (e.g., decision-making) and demonstrated a

cumulative effect with temporal stress, PFC deactivation being

greatest in temporally and cognitively stressed scenarios (Modi

et al., 2020). Furthermore, between-subject variation in behavioral

responses to stress may have a basis in the quantitative difference

in PFC deactivation: trainees who maintain technical performance

under stressful conditions demonstrate increased haemodynamic

responses (change in HbO2) in the bilateral ventrolateral PFC and

left dorsomedial PFC as compared to trainees whose performance

degrades (Modi et al., 2019).

The effect of expertise on stress responses detected by fNIRS is

unclear. An improvement in performance under stress conditions

has been correlated with increased expertise in certain studies

(Modi et al., 2018), whereas others found no association between

performance deterioration under stress conditions and expertise

(Modi et al., 2019). Research is required to further clarify the

relationship between expertise, stress and cortical neuroimage data,

which ultimately may indicate a need for a measure of stress

resilience independent from expertise. There may be a role for

fNIRS not only as a measure for technical proficiency, but also a

measure of the neural stress response, which can be targeted by way

of individualized surgical training.

The value of measuring neural stress responses may be

debated: if neural stress patterns are confined to the cerebral

response and do not translate into a deterioration in practice, then

what relevance does detecting changes in neural responses have

clinically? Conversely, if we are able to correlate increasing stress

with decline in performance, thenmeasure the performance decline

instead of the neural response. Importantly, neural responses may

provide a more accurate measure of stress than physiological

measures such as heart rate variability or subjective measures

of workload (Modi et al., 2019). Optical neuroimaging may

also have a role in assessing the effectiveness of stress reducing

interventions such as noise reduction (Engelmann et al., 2014).

In addition, establishing a clear mechanism between the onset of

stress and neural responses leading to deterioration in performance

potentially facilitates interception of stress before progression to

performance deterioration, targeting the process before it leads to

deleterious effects or clinical harm.

4. Optimizing training tools

Modern operating tools such as robotic or laparoscopic systems

promise to ease the operative burden for trainees and experts.

fNIRS has a role in evaluating these systems, by measuring the

effect they have on surgeons’ brain activation. The superiority

of robotic-assisted vs. laparoscopic training is argued for in the

literature, citing improved ergonomics, intuitiveness, instrument

manipulation and learning curve attenuation (Chandra et al.,

2010; Stefanidis et al., 2010; Singh et al., 2018). Indeed, when

compared to laparoscopic surgery, surgeons perform better on

robotic platforms, despite being less experienced in using them, and

exhibit greater PFC activation (Singh et al., 2018).

The advent of robotic systems is also associated with integrated

technological aids such as gaze-enhanced or gaze-assisted learning

(GEL), a technique proposed to improve motor skills during

robotic surgery by constraining the movements of the robot to limit

its actions to areas being “gazed” at by the surgeon (Mylonas et al.,

2012). This is based on the postulate that as expertise develops,

the surgeon’s eye movements focus on the target area. An eye

tracking device establishes the target area and incorporates this

into movement restrictions placed on the robot, which means

the surgeon encounters mild resistance if deviating away from

the target area. The resistance can easily be overridden by the

surgeon who maintains full control. Compared to trainees using

robotic systems with no learning aids, GEL leads to greater PFC

activation in novice trainees (Mylonas et al., 2012), followed by

rapid attenuation of PFC after few practice sessions (James et al.,

2013).

At equal expertise level, greater activation of PFC is understood

to correlate with increased focus and attention on the task at hand,

the cognitive learning curve for motor skills demonstrating first an

increase in activation in PFC, M1, SMA, and premotor area (PMA)

(Ungerleider et al., 2002; Luft and Buitrago, 2005), followed by a

decrease in activation in PFC, SMA and PMA and reorganization

of M1 once the task is mastered allowing trainees to lower the

intensity of attention directed toward skill performance. What

remains to be uncovered is whether short term increase in PFC

activation does indeed accelerate the learning curve, or whether it

represents the need for increased attention throughout the learning

process. Further data collection, including in longitudinal studies

of trainees, is necessary to understand the differences between

laparoscopic and robotic systems on cognitive performance and

the benefits of technological aids. These have the potential to
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“outsource” processing of data to themachine, and reduce cognitive

load, provided it does not impair the neural process of learning.

5. Neurostimulation

Direct visualization of cognitive processes which occur during

training opens the possibility of targeting these processes with

direct cognitive stimulation. Neurostimulation may optimize

cognitive responses to surgical training, improving the quality

and speed of skill acquisition (Dissanayaka et al., 2017; Biabani

et al., 2018; Ciechanski et al., 2018; Patel et al., 2019, 2021; Hung

et al., 2021). Transcranial direct-current stimulation (tDCS) is

a safe, non-invasive neurostimulation technique (Paulus, 2011)

which sustains low-amplitude current (typically <2mA) through

the brain and modulates neuronal excitability and plasticity.

Its intensity is too low to generate neuronal excitability de-

novo (Paulus, 2011; Morya et al., 2019). Improvement in

motor task performance is conferred safely through tDCS

(Bikson et al., 2016; Patel et al., 2019, 2021; Gao et al.,

2021a; Hung et al., 2021) along with the prevention of stress

induced working memory impairment, which suggests new

applications for neuroenhancement (Bogdanov and Schwabe,

2016). Further clarification is still needed regarding the types of skill

neurostimulation interventions may enhance as there may be some

task-dependent effect on the strength of improvement of learning;

in other words, certain tasks may be more improved than others

through the use of tDCS. Similarly, the long-term effects on motor

retention may also be task specific (Buch et al., 2017).

Technical considerations such as the configuration of the tDCS

setup, including the intensity of stimulation delivered and the areas

of the cortex to which the stimulation is applied to, should be

an area of focus for future study (Batsikadze et al., 2013; Morya

et al., 2019). Miniaturization of the neurostimulation technology

will facilitate integration into training settings or the live theater.

This may be realized through the advent of high definition tDCS

which shrinks the large electrode pads conventionally applied to

the cortex to targeted electrodes applied to specific regions of the

brain (Kuo et al., 2013). There is so far limited data regarding the

superiority of HD-tDCS compared to conventional tDCS, outlining

another area for further study.

These knowledge gaps notwithstanding, there are broader

questions which must be answered prior to the advent of

neurostimulation in the training or live theater environment.

Current data indicates that tDCS is safe, however there no studies

investigating the long-term effect of stimulation on surgeons’ motor

skills. In addition, the added benefit of using neurostimulation

must be based on enough evidence to warrant not only the adverse

effects, but also the technical challenges of deploying devices such as

fNIRS or tDCS in real operating theater environments. Currently,

demonstrated effect sizes regarding the advantage of tDCS on

surgical skill may not be large enough to justify this, however

more data is required to reach a reliable conclusion (Ciechanski

et al., 2019). Other factors must also be taken into consideration,

such as the opinions of trainees and patients. Whilst data suggests

they are supportive of neuroenhancement (Patel et al., 2021),

trainees may be reluctant to devote time, money, and effort to new

technologies before there is a strong evidence base to prove that

these interventions improve outcomes.

6. Discussion

6.1. Future challenges: Toward real-time
performance modulation

Currently, the use of optical neuroimaging in the surgical

community is aligned with the historical use of neuroimaging

broadly, which is to describe neural response patterns. This has

enabled the identification of differential PFC, SMA, M1, and PMA

activation, and neural connectivity, in novices and experts in

various contexts, including stress conditions. This knowledge can

serve to define cognitive benchmarks of expertise, ensuring high

standards of objective performance assessment in surgical training

(Nemani et al., 2019).

Whilst fNIRS is undoubtably a powerful and accurate

observational tool, its added value in surgical training and

assessment lies in its potential to not only describe but

modulate stress responses, cognitive learning curves, and motor

skill performance. Identifying the critical inflection point of

the hypothesized inverted “U-curve”, where excess workload

causes PFC attenuation, predicting performance deterioration,

would allow timely intervention in the moment of motor skill

performance, prompting a change in behavior or environment.

Over a more prolonged timeframe, frequent visualization of trainee

cognitive learning curves allows for direct targeting of specific

skills, individualizing the type and quantity of practice necessary

to align with the cognitive benchmarks of proficiency previously

established. Behavior can be modulated via conscious feedback, the

surgeon being made aware of their cognitive state and prompted to

change their mindset or movements; it can also be modulated via

aforementioned neurostimulatory modalities.

The cornerstone of bringing optical neuroimaging into the

operating theater is, however, the successful development of more

accurate, real-time, data processing. Two main components of

data processing are regression of physiological parameters and

motion artifact removal, both which may act as confounders

for true cerebral haemodynamic activity. Recent experience with

short channel regression and increasingly with systemic physiology

measures have enabled the development of models predicting

the impact of extra-cerebral factors on haemodynamic activity.

Machine learning algorithms utilize such models to improve

data quality, bypassing the need for manual correction. In

addition to improving the efficiency of processing, combined

regression of systemic physiology measurements and short

channel fNIRS also provides superior differentiation of the

confounders (Scholkmann et al., 2022). Combined systemic-

physiology-augmented-fNIRS (SPA-fNIRS) data analysis methods

include generalized linear model (GLM) regression and time-

embedded-canonical-correlation analysis (Ortega-Martinez et al.,

2022), or wavelet transformation (von Lühmann et al., 2020). Deep

learning, a type of machine learning, may provide fast, accurate

removal of motion artifact within fNIRS data, with noise features

being learnt by software removing the need for assumptions

regarding the noise characteristics to be described by the research
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team (Gao et al., 2022). Whilst machine learning is helpful adjunct,

it has yet to prove superiority in improving data quality or accurate

detection of artifacts as compared to hand-resolved models.

The limitations of diversifying fNIRS research methodology

must be recognized, as the variety of hardware and acquisition

parameters, lack of standardization of optode array placement

and registration, nomenclature of neuroanatomy and

data-processing/regression of confounders make literature

interpretation and comparison challenging (Hocke et al., 2018;

Nemani et al., 2018; Yücel et al., 2021). Signal quality is subject

to distortion by environmental and device noise, poor optode

coupling, subject motion artifact, and optical interference by

coarse/pigmented hair. Yücel outlines consensus guidelines

for methodological reporting in an effort to circumvent such

challenges, improving interpretation, reliability and reproducibility

of studies (Yücel et al., 2021).

7. Conclusion

FNIRS is a non-invasive optical neuroimaging technique which

has been widely used to assess surgeons’ brain function. It has

described the cognitive activation patterns of novice surgeons,

who exhibit greater haemodynamic responses across the pre-

frontal cortex than experts when performing simple surgical tasks.

Expert surgical performance is characterized by relative prefrontal

attenuation and upregulation of activation foci across other motor

regions such as the supplementary motor area. In addition

to localized changes in activation, greater connectivity between

motor areas is noted in experienced surgeons, whilst novices

demonstrate stronger connectivity in prefrontal and premotor

regions. The neural effect of stress has been hypothesized to

follow an inverted “U-shape”, with critical workload leading

to a decrease in pre-frontal activation and deterioration in

performance; trainees who maintain technical performance under

stress demonstrate less PFC attenuation. Neural correlates of

expertise and optimal performance suggest optical neuroimaging

is a suitable tool to assess proficiency since neuroimages perform

comparably, if not better, than current measures of aptitude,

and could depict a cognitive state during surgery leading to

the development of cognitive benchmarks of expertise. Beyond

the observational abilities of optical neuroimaging, it has the

potential to observe identify performance deterioration and trigger

a reaction, individualizing training programs to optimize the

learning curve, and by direct neurostimulation to accelerate skill

acquisition and enhance performance. These future applications

of optical neuroimaging and neurostimulation in the live

operative environment rely upon the development of improved

data processing.
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