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cells, and prospects for
clinical applications
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Liver fibrosis is a global health problem caused by chronic liver injury resulting from

various factors. Hepatic stellate cells (HSCs) have been found to play amajor role in

liver fibrosis, and pathological stimuli lead to their transdifferentiation into

myofibroblasts. Complex multidirectional interactions between HSCs, immune

cells, and cytokines are also critical for the progression of liver fibrosis. Despite the

advances in treatments for liver fibrosis, they do not meet the current medical

needs. Exosomes are extracellular vesicles of 30-150 nm in diameter and are

capable of intercellular transport of molecules such as lipids, proteins and nucleic

acids. As an essential mediator of intercellular communication, exosomes are

involved in the physiological and pathological processes of many diseases. In liver

fibrosis, exosomes are involved in the pathogenesis mainly by regulating the

activation of HSCs and the interaction between HSCs and immune cells. Serum-

derived exosomes are promising biomarkers of liver fibrosis. Exosomes also have

promising therapeutic potential in liver fibrosis. Exosomes derived from

mesenchymal stem cells and other cells exhibit anti-liver fibrosis effects.

Moreover, exosomes may serve as potential therapeutic targets for liver fibrosis

and hold promise in becoming drug carriers for liver fibrosis treatment.
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1 Introduction

Liver fibrosis (LF) is caused by chronic liver injury from various causes, such as viral

infections, alcohol consumption, non-alcoholic fatty liver disease (NAFLD), cholestatic

liver disease, and autoimmune hepatitis. It is characteristic of extracellular matrix (ECM)

deposition in the liver (1). The pathogenesis of liver fibrosis is complex, involving the
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activation of hepatic stellate cells, the role of hepatic macrophages,

the role of cytokines (2). It is well known that chronic liver disease is

a worldwide health dilemma (3). Among chronic liver diseases, LF

has a high prevalence and largely affects the quality of life and

disease prognosis, making it a health challenge (4, 5). Continued

progression of LF can lead to cirrhosis, which causes approximately

1 million deaths worldwide each year (3). Moreover, about 80% to

90% of patients with hepatocellular carcinoma have a history of LF

(6). Therefore, early diagnosis and effective treatment of LF are

essential in reducing the global health burden.

Liver biopsy remains the gold standard for the diagnosis and

prognosis of LF but has some limitations, such as invasiveness,

economic cost, complications, and sampling errors (7). Several non-

invasive diagnostic measures of LF are available, such as liver

stiffness measurement (LSM), aspartate aminotransferase to

platelet ratio index (APRI), and fibrosis-4 index (FIB-4) (8).

However, the diagnostic effectiveness of these measures is

influenced by the disease state and in some cases has only

moderate diagnostic performance (9). Therefore, non-invasive

diagnostic measures with high efficacy are still needed to assist

clinicians in the early diagnosis of LF. In recent years, a large

number of researches have been invested in the development of

anti-LF drugs. However, few of them have been able to exert good

anti-LF effects in clinical trials. There is still a lack of effective drugs

to treat or even reverse LF (2, 5).

Exosomes are a type of extracellular vesicles (EVs) secreted by

most cells, capable of carrying various cellular components and

playing an essential role in intercellular communication (10).

Exosomes can participate in the development of multiple diseases,

such as cardiovascular diseases, metabolic diseases, and immune

diseases. An increasing number of studies are devoted to the utility

of exosomes in diagnosing and treating various diseases (10, 11). In

this review, we summarize the role of exosomes in LF pathogenesis,

particularly in regulating hepatic stellate cells (HSCs) and immune
Frontiers in Immunology 02
cells in LF. Furthermore, we discuss the diagnostic and therapeutic

potential of exosomes in LF.
2 Exosome

Exosomes are nanoscale lipid bilayer vesicles secreted by the

majority of cells, ranging from 30-150 nm in diameter (12). In the

1980s, exosomes were first discovered in reticulocytes and were

named “Exosome” by Johnstone et al (13–16). However, for some

time afterwards, exosomes were considered a way that cells excrete

waste products and did not receive much attention (17, 18). In the

late 1990s, exosomes produced by B-lymphocytes and dendritic

cells were found to have antigen-presenting properties, which led to

an interest in exosomes in the field of immunology (19, 20). In

2007, Valadi et al. discovered that exosomes could carry mRNA

and microRNA(miRNA) for intercellular exchange of genetic

material, leading to a new level of research on exosomes (21).

With the extensive research conducted on exosomes, they are

nowadays considered to play an important role in intercellular

communication. Exosomes are involved in the development of

various diseases by transporting the corresponding lipids, proteins

and nucleic acids, as well as having high clinical applications (11).
2.1 Composition of exosome

Exosomes have a lipid bilayer structure and contain a variety of

proteins, lipids and nucleic acids (Figure 1) (22). Some proteins are

commonly found in various exosomes, such as tetraspanins (e.g.

CD9, CD63, CD81), heat shock proteins (e.g. HSP70, HSP90),

endosomal sorting complex required for transport (ESCRT)-

related proteins (e.g. Alix, TSG101) (22, 23). In addition, due to

cellular specificity, different exosomes may have specific proteins,
FIGURE 1

Biogenesis, composition, secretion and uptake of exosomes.
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such as MHC-II (24). The lipids of exosomes contain sphingolipids,

cholesterol, phosphatidylcholine, phosphatidylserine, etc (25).

Various nucleic acids are present in exosomes, including DNA,

mRNA, miRNA and other non-coding RNAs(ncRNA) (26).
2.2 Biogenesis, secretion and
uptake of exosome

The production of exosomes begins with the double

invagination of the plasma membrane, where extracellular

components and cell membrane proteins enter the cell with the

invagination of the plasma membrane to form early-sorting

endosome(ESE) (11). The endoplasmic reticulum (ER) and the

trans-Golgi network (TGN) can also be involved in the formation of

ESE (11, 27, 28). The ESE then matures into late-sorting endosome

(LSE) and eventually into multivesicular body (MVB). The MVB is

enriched with intraluminal vesicles (ILVs), which are produced by

the inward budding of the endosomal membrane (10). MVBs fuse

with the plasma membrane to release the contained ILVs outside

the cell as exosomes. Other MVBs are degraded by direct fusion

with lysosomes or by fusion with autophagosomes and subsequent

degradation in lysosomes (22).

After delivery to the recipient cell, exosomes can be taken up

through different pathways. Exosomes can fuse directly with the

plasma membrane, or enter the recipient cell via endocytosis (29).

Exosomes can also induce downstream signaling cascade responses

in recipient cells via receptor-ligand interactions (22, 30).
3 Exosomes in LF pathogenesis

LF is a response to the multiple etiologies of chronic liver injury

(1). Liver injury leads to hepatocyte damage with immune cell

infiltration. Quiescent HSCs (qHSCs) are thus activated and

transformed into myofibroblasts, which are involved in tissue

repair under normal conditions. In short-term liver injury, the

body’s pro-fibrotic and anti-fibrotic mechanisms are in balance, and

LF is not likely to occur. However, when the chronic liver injury

occurs, hepatocytes become necrotic and apoptotic, and damaged

hepatocytes release damage-associated molecular patterns

(DAMPs). DAMPs directly activate the fibrotic phenotype of

HSCs, producing a large amount of ECM with type I and type III

collagen and fibronectin as the main components. Activated HSCs

secrete cytokines such as transforming growth factor b1 (TGF-b1),
platelet-derived growth factor (PDGF) and connective tissue

growth factor (CTGF). Autocrine secretion of activated HSC

(aHSC) further constantly activates qHSC (2). DAMPs also

induce the recruitment and activation of immune cells such as

macrophages. These immune cells promote HSC activation and

myofibroblast production by secreting pro-inflammatory and pro-

fibrotic factors (5, 31).

Complex multidirectional interactions exist between HSCs,

immune cells, and cytokines. HSCs are continuously activated

and proliferated by paracrine and autocrine. And the secretion of

abundant pro-fibrotic cytokines and excessive ECM production
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lead to the disruption of the balance of pro-fibrotic/anti-fibrotic

mechanisms, eventually leading to the formation of LF (2, 5). As the

study of exosomes and LF has gradually advanced, exosomes have

been found to play a non-negligible role in the biological processes

of HSC activation and HSC-immune cell interaction in

LF (Figure 2).
3.1 Exosomes are involved in the
activation of HSCs in LF

In the normal liver, HSCs are quiescent and function in vitamin

A metabol i sm and storage , fa t s torage , and matr ix

metalloproteinase synthesis. After the liver injury, HSCs are

activated and transdifferentiated from a quiescent phenotype to a

proliferative and contractile myofibroblast phenotype. As the major

source of myofibroblasts, HSC activation is critical for the

progression of LF (32). HSC activation consists of two main

phases, initiation and perpetuation. The initiation phase is an

early change in gene expression in HSC caused by multiple

extracellular signals, mainly paracrine stimuli. It is mainly

triggered by products of damaged hepatocytes, signals from

Kupffer cells, reactive oxygen species and lipid peroxide exposure,

and extracellular matrix changes (33). Perpetuation encompasses

the maintenance of the HSC activation phenotype and the

development of fibrosis. Perpetuation involves paracrine and

autocrine, and these constant stimuli lead to LF by enhancing

HSC proliferation, contractility, fibrosis, matrix degradation, and

pro-inflammatory signaling (33, 34).

Damage to hepatocytes, resulting in the activation of HSC, is the

initial step of LF formation (2). Exosomes derived from hepatocytes

can transfer biological messages to promote HSC activation, thus

contributing to the progression of LF. Fatty liver disease is a

significant contributor to the development of LF (1). Under the

stress conditions of fatty liver disease, hepatocyte-derived exosomes

can induce the activation of quiescent HSCs (qHSCs) to a

myofibroblast phenotype (35). Lipotoxic hepatocyte-derived

exosomal miR-1297 could target the PTEN/PI3K/AKT signaling

pathway, which in turn promotes the activation and proliferation of

HSC and accelerates the progression of LF (36). Activated HSCs are

also the recipient cells of lipotoxic hepatocyte-derived exosomes

(37). Xin Luo et al. found that lipotoxic hepatocyte-derived

exosomal miR-27a could target protein kinase 1 in aHSC and

thereby inhibit mitochondrial autophagy. They demonstrated that

lipotoxic hepatocyte-derived exosomal miR-27a advances the

progression of LF in metabolism-associated fatty liver disease

(MAFLD) by inhibiting autophagy in aHSC and enhancing HSC

proliferation and activation (37). Viral infection is one of the

leading causes of LF, and exosomes play an important role in this

process (38). During hepatitis B virus (HBV) infection, exosomes

derived from HBV-infected hepatocytes promote HSC activation

and LF in mice. Among them, the exosomal miR-222 could enhance

HSC activation by inhibiting transferrin receptor (TFRC)-induced

HSC iron death (39). Exosomes from hepatitis C virus (HCV)-

infected hepatocytes can also induce HSC activation. Exosomal

miR-19a can be delivered from HCV-infected hepatocytes to HSC
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and activate HSC through STAT3/TGF-b1/Smad3 signaling

pathway (40). Similarly, exosomal miR-192 released from HCV-

replicating hepatocytes could be involved in HCV-induced LF by

promoting HSC activation and transdifferentiation (41). In recent

years, Helicobacter pylori infection has been suggested to play a role

in several liver diseases. Zahmatkesh et al. demonstrated that

Exosomes derived from hepatocytes infected with helicobacter

pylori outer membrane vesicle can lead to overexpression of HSC

activation markers and fibrosis markers, suggesting a possible role

in HSC activation and LF progression (42). Dai et al. provided new

insight into the mechanism of arsenic toxicity-induced LF. They

observed that hepatocyte-derived exosomal metastasis associated in

lung denocarcinoma transcript 1(MALAT1) could induce HSC

activation in the arsenite-induced LF model, which is associated

with the regulation of collagen type I alpha2 (COL1A2) by

exosomal MALAT1 through miRNA-26b (43). In addition, Dong

et al. found that hepatocyte-derived exosomes offer new clues to the

mechanism of citreoviridin hepatotoxicity and LF. They indicated

that exosomal miR-181a-2-3p derived from citreoviridin-treated

hepatocytes could activate HSC. It is associated with the induction

of mitochondrial calcium overload by exosomal miR-181a-2-3p

through inhibition of mitochondrial calcium uptake 1

expression (44).

Exosomes derived from various cells other than hepatocytes

have also been reported to promote the activation of HSC and LF. It
Frontiers in Immunology 04
is demonstrated that exosomes may be involved in tumor-

associated LF through the activation of HSC. Feng et al. suggested

that fluid shear stress-induced exosomes from liver cancer cells may

promote HSC activation and proliferation, which is the main source

of activation of cancer-associated fibroblasts (45). In addition, Xie

et al. showed that exosomes could provide a hepatic fibrosis

microenvironment for driving pancreatic cancer liver metastasis.

They found that pancreatic ductal adenocarcinoma-derived

exosomal CD44v6/C1QBP complex can be delivered to the

plasma membrane of HSC, leading to phosphorylation of insulin-

like growth factor 1 signaling molecules, which results in HSC

activation and LF (46). There is a direct connection between

cholangiocytes and HSCs in the pathogenesis of cholestatic LF.

Exosomes derived from cholangiocytes are found to be

preferentially taken up by HSCs compared to other hepatic cells.

Notably, the cholangiocyte-derived exosomal lncRNA-H19 plays a

vital role in the progression of cholestatic LF by promoting HSC

activation and transdifferentiation (47). LF is the main pathological

feature of schistosomiasis japonica. Wang et al. found that miRNA-

33 carried by Schistosoma japonicum egg-derived exosomes could

activate HSC and promote schistosomiasis LF in mice (48). It is

widely accepted that the crosstalk between HSCs and macrophages

plays an important role in LF. Exosomes released from

macrophages have been reported to activate HSC. Chen et al.

found that exosomal miR-500 released from lipopolysaccharide
FIGURE 2

The role of exosomes in the pathogenesis of LF.
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(LPS)-treated macrophages could be taken up by HSCs. Moreover,

exosomal miR-500 could promote HSC activation and proliferation

by targeting MFN2 to inhibit TGF-b/Smad, which in turn

accelerates LF (49). In another study, Chen et al. found that

exosomal miR-103-3p released from LPS-treated macrophages

could also promote the activation and proliferation of HSC and

thus participate in LF, which may be associated with miR-103-3p

targeting Krüppel-like factor 4 (50). In addition, it has been

reported that circulating exosomes may carry miR-574-5p to

HSCs during LF, thereby stimulating HSC activation and collagen

synthesis. However, the underlying mechanism remains to be

elucidated (51).

Notably, it is reported that exosomes released from aHSC could

be delivered to qHSC and promote its activation (52). Fang et al.

found that apoptosis signal-regulated kinase 1-mediated

endoplasmic reticulum stress may lead to the release of exosomes

from angiotensin II-activated HSCs. Furthermore, these exosomes

from aHSC subsequently activate qHSC and thus participate in the

progression of LF (53). Additionally, exosomes released from qHSC

have been found to be able to block fibrotic signaling in aHSC.

Exosomal miR-199a-5p released by qHSC can be transferred to

aHSC to inhibit the expression of CTGF (54). Similarly, exosomal

miRNA-214 can be transferred from qHSCs to neighboring aHSCs

and hepatocytes, resulting in the inhibition of CTGF and its

downstream targets (55). During LF, the decreased expression of

these exosomal miRNAs can lead to an increase the expression of

CTGF (54, 55).

In conclusion, exosomes have been demonstrated to be of great

importance in the activation of HSC, thus aiding in the

comprehension of the mechanisms of various chronic liver

diseases and LF. The progression of LF is a critical factor

influencing the prognosis of chronic liver diseases (2). The

research results on exosome-mediated activation of HSC have

enriched our understanding of the initiation and progression of

LF, and are highly valuable in the clinical application of preventing

the development of LF and improving the prognosis of chronic

liver diseases.
3.2 Exosomes are involved in the
interaction between HSCs and immune
cells in LF

Interaction between HSCs and immune cells, such as

macrophages, have a significant role in the development and

progression of LF (31). As the mediator of intercellular

communication, exosomes are reported to regulate the

interactions between HSC and immune cells in LF.

In LF, immune cells are the primary source of profibrotic

signals, and HSCs regulate these cells by releasing a range of

cytokines and chemokines (31). Exosomes have been

demonstrated to be involved in the regulation of immune cells by

HSCs. HSC-derived exosomes have been reported to stimulate the

release of cytokines such as IL-6 and TNFa from macrophages and

stimulate macrophage migration, thereby modulating the

macrophage inflammatory response and promoting LF (56, 57).
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During the development of LF, exosomes secreted by aHSC can

further promote M1 polarization in macrophages, and the exosomal

dihydrofolate reductase(DHFR) may play an important role in this

process (58). Wan et al. found that exosomes released by aHSC

could induce glycolysis in hepatic non-parenchymal cells such as

Kupffer cells. They suggested that the glycolysis-related proteins

Glucose transporter type 1(GLUT1) and Pyruvate kinase isozyme

typeM2(PKM2) delivered by exosomes could affect the metabolic

switch among hepatic non-parenchymal cells, which could be

involved in LF (59). In addition, hepatic exosomes could mediate

the activation of toll-like receptor 3 in HSCs, thereby stimulating gd
T cell production of IL-17 and exacerbating LF (60).

Studies have demonstrated that during the progression of LF,

immune cells can regulate the activity of HSCs through exosomes

derived from these cells, primarily modulating HSC activation.

Macrophage-derived exosomal miRNAs such as miR-500 and

miR-103-3p have been demonstrated to activate HSC, thereby

promoting LF (49, 50). Wan et al. found that miR-411-5p

delivered by exosomes of M2 macrophages could inhibit HSC

activation in a nonalcoholic steatohepatitis model, which was

associated with the downregulation of Calmodulin-Regulated

Spectrin-Associated Protein by miR-411-5p (61). Another study

found that after binding to relaxin, hepatic macrophages could

mediate the inactivation of aHSC via miR-30a-5p in their released

exosomes (62). In addition, exosomal miR-223 derived from natural

killer cells was reported to target ATG7 to inhibit autophagy,

thereby suppressing TGF-b1-induced HSC activation (63).

Exosomes have been demonstrated to play a critical role in the

regulation of the interaction between HSCs and immune cells in LF.

A thorough investigation of the underlying molecular mechanisms

by which exosomes regulate HSCs and immune cells may provide a

useful approach for disease progression monitoring and potential

therapeutic strategies in the future.
4 Clinical application of
exosomes in LF

4.1 Diagnostic potential of exosomes in LF

Accurate and timely diagnosis of LF is essential for effective

disease management and improved prognosis. Exosomes are

distributed in various biological fluids, such as blood, serum,

urine, saliva, amniotic fluid, etc (22). The progression of the

diseases could be tracked by detecting exosomes in body fluids

(11). In recent years, the potential of exosomes as biomarkers in the

diagnosis, staging, and prognosis of various diseases has attracted

much attention (23). The detection of exosomes from patients’

blood samples may provide a less invasive way to diagnose

LF (Table 1).

Exosomal miRNAs have been demonstrated to be involved in

HSC activation, immune response, and other biological processes

associated with LF. Furthermore, patients with LF exhibit altered

levels of exosomal miRNAs, making them attractive candidates for

diagnosing LF. In chronic hepatitis B, serum exosomes containing
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miR-92a-3p and miR-146a-5p have been identified as promising

biomarkers for assessing LF. These biomarkers can be used to

monitor the progression of LF and distinguish between the disease’s

early and advanced stages (64). In chronic liver diseases of non-viral

etiology, serum exosomal miR-122 has been established as a

promising diagnostic tool for LF. It has been observed that serum

exosomal miR-122 levels decrease significantly with the progression

of LF, possibly due to the inhibition of miR-122, which promotes

the proliferation of HSC and the expression of fibrosis-related

markers (65). In metabolic-associated fatty liver disease

(MAFLD), exosomal miR-27a, which is involved in the

development of LF, is significantly elevated in serum and

positively correlates with the degree of LF. As such, serum

exosomal miR-27a has been proposed as a potential diagnostic

biomarker for MAFLD-associated LF (37). The exosomal miR-574-

5p expression has been found to be upregulated in LF and to

positively correlate with HSC activation and collagen deposition,

suggesting its potential as a biomarker for the diagnosis of LF (51).

Exosomal miR-500 and miR-103-3p, which are involved in the

development of LF, have also emerged as promising biomarkers for

diagnosis and disease staging (49, 50). Plasma exosomal miR-155,

which increases with the progression of liver fibrosis, has been

proposed as a sensitive biomarker of LF. Furthermore, in patients

with liver fibrosis undergoing liver transplantation, high expression

of exosomal miR-155 has been associated with a worse clinical

outcome compared to low expression (66).Some exosomal miRNAs

have been demonstrated to be no less effective than existing

diagnostic tools for diagnosing LF. Specifically, exosomal miR-

92a-3p and miR-146a-5p are more advantageous in diagnosing

advanced fibrosis associated with chronic hepatitis B than LSM,
Frontiers in Immunology 06
APRI, and FIB-4 (64). Additionally, using exosomal miR-155 in

combination with Type IV collagen (CIV), hydroxyproline (Hyp),

and aspartate aminotransferase (AST) may improve the diagnostic

accuracy of LF (66). Exosomal miR-122 is more effective in

identifying advanced liver fibrosis when combined with FIB-4 and

transient elastography (65). Therefore, the combined use of

exosomal miRNA with clinically used LF diagnostic methods may

significantly enhance the diagnosis.

Exosomes carrying circRNA and lncRNA also have the

potential to become biomarkers of LF. In patients with liver

failure, serum exosomal circ-Death Inducer-Obliterator 1(circ-

DIDO1) levels are decreased, and exosomal circDIDO1 has been

shown to inhibit HSC activation in LF. It suggests that Serum

exosomal circ-DIDO1 may serve as a diagnostic biomarker for LF

(67). Xiao et al. demonstrated that serum exosomal lncRNA-H19

levels were positively correlated with the severity of LF in patients

with biliary atresia. This finding suggests that exosomal lncRNA-

H19 may serve as a potential biomarker for cholestatic LF in biliary

atresia (68). Research has demonstrated that exosomal lncRNA-

MALAT1 is involved in arsenite-induced LF and is upregulated in

the sera of individuals exposed to arsenite, indicating its potential as

a biomarker for arsenicosis-induced LF (43). The cluster of

differentiation of 44 (CD44) can promote the progression of LF

and is upregulated in serum exosomes of patients with congestive

hepatopathy. This suggests that serum exosomal CD44 may have

the diagnostic ability for LF in congestive hepatopathy (69).

The detection of exosomal miRNAs, circRNAs, and lncRNAs

from serum or plasma is a promising approach to enhance the

diagnosis of LF. These exosomal ncRNAs can be stably present in

blood, and the current methods for isolation, extraction, and
TABLE 1 Biomarker potential of exosomes in LF.

Exosome –
Cargos

Expression
in LF

(vs. Controls)

Source Clinical Implication References

miR-92a-3p Upregulated Serum Potential non-invasive biomarker of significant LF in chronic hepatitis B. (64)

miR-146a-5p Upregulated

miR-122 Downregulated Serum Potential diagnostic biomarker for LF associated with chronic liver disease of non-viral etiology
with the ability to identify advanced LF

(65)

miR-500 Upregulated Serum Potential diagnostic biomarker for advanced LF (49)

miR-103-3p Upregulated Serum Potential diagnostic biomarker for advanced LF (50)

miR-27a Upregulated Serum Potential diagnostic biomarker for MAFLD-associated LF (37)

miR-574-5p Upregulated Serum Potential diagnostic biomarker for LF (51)

miR-155 Upregulated Plasma Potential diagnostic biomarker for LF;
Promising prognostic biomarker for patients with LF undergoing liver transplantation

(66)

circDIDO1 Downregulated Serum Potential diagnostic biomarkers of LF in liver failure (67)

lncRNA-H19 Upregulated Serum Potential diagnostic biomarker for cholestatic LF in biliary atresia (68)

lncRNA-
MALAT1

Upregulated Serum Potential diagnostic biomarker of LF in arsenicosis (43)

CD44 Upregulated Serum Potential diagnostic biomarkers of LF in congestive hepatopathy (69)
LF, Liver fibrosis; MAFLD, metabolism-associated fatty liver disease; CD44, cluster of differentiation of 44.
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detection of these molecules are now becoming mature (11).

Furthermore, these exosomal non-coding RNAs can be used as

biomarkers to monitor the progression of LF caused by different

diseases and to distinguish between the disease’s early and advanced

stages. The combined use of exosomal miRNA with clinically used

LF diagnostic methods may significantly enhance the diagnosis.

Moreover, monitoring the progression of LF over time through the

use of exosomes may help develop more effective treatment

strategies. Despite the promising results of the current studies,

some limitations must be addressed. Specifically, the current

studies are limited in sample size and the number of biomarkers

tested, and the exosome detection technology is not yet suitable for

widespread clinical use. Further research is necessary to ensure the

accuracy and reliability of these biomarkers in different populations

and clinical settings. Also, cost-effective and efficient exosome

detection methods must be developed to promote their clinical use.
4.2 Therapeutic potential of
exosomes in LF

Despite recent improvements in LF treatment, it does not meet

the current medical needs. Effective and safe anti-fibrotic drugs are

still needed to delay and reverse LF and improve patient prognosis

(2). In recent years, the therapeutic potential of exosomes has

attracted significant attention, providing new ideas for treating LF

(23, 70).
4.2.1 Potential of exosomes as therapeutic
agents for LF

Native exosomes, which carry biomolecules from parental cells

and serve as intercellular communication carriers, have emerged as

a novel therapeutic strategy for various diseases (71). Numerous

studies have demonstrated the anti-fibrotic properties of native

exosomes, indicating their potential as therapeutic agents for LF

(Table 2). Mesenchymal stem cells(MSC) play a crucial role in cell

therapy. They have been extensively utilized in research and clinical

trials to treat multi-system diseases, such as LF. It is generally

accepted that MSCs mainly exert their effects through paracrine

mechanisms mediated by exosomes and other factors (82, 83).

Studies have indicated that Mesenchymal stem cell-derived

exosomes(MSC-EXO) possess therapeutic properties, including

reducing liver inflammation and fibrosis, stimulating liver cell

regeneration, and improving liver function. Tian et al. found that

MSC-EXO could ameliorate LF by promoting the shift of

macrophages from the M1 pro-inflammatory phenotype to the

M2 anti-inflammatory phenotype. This effect is attributed to the

ability of miR-148a delivered by MSC-EXO to regulate KLF6/

STAT3 signaling (72). Bone marrow mesenchymal stem cell-

derived exosome(BMSC-EXO) have been demonstrated to be

more effective than BMSC in alleviating LF It has been reported

that BMSC-EXO can inhibit HSC activation by inhibiting the Wnt/

b-catenin pathway, thereby alleviating CCl4-induced LF in rats
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(73). Furthermore, Ma et al. found that BMSC-derived exosomal

circCDK13 could regulate Milk fat globulin-egf factor 8(MFGE8)

expression through miR-17-5p/KAT2B to inhibit LF (74). Human

umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-

EXO) also could be a potential therapeutic approach for LF.

HucMSC-EXO could inactivate the TGF-b1/Smad signaling

pathway and inhibit epithelial-mesenchymal transition (EMT) in

the liver (75). Moreover, hucMSC-EXO may reduce oxidative stress

and inhibit apoptosis in LF (76). Glutathione peroxidase 4 (GPX4)

is a key regulator of ferroptosis. HucMSC-EXO has been shown to

significantly reduce GPX4 expression in aHSC and collagen

deposition in mouse models of LF. It is attributed to Beclin 1

(BECN1) delivered by hucMSC-EXO, which could induce

ferroptosis in HSC by modulating the xCT/GPX4 axis and thus

alleviate LF (77).

Exosomes from other sources, such as human embryonic stem

cells (hESC), are also promising therapeutic agents for LF. Wang

et al. demonstrated that 3D hESC-derived exosomes (3D-hESC-

EXO) could reduce hepatic collagen deposition, attenuate LF, and

promote liver reconstruction and liver function recovery. The anti-

fibrotic effect of 3D-hESC-EXO is attributed to the delivery of miR-

6766-3p, which attenuates HSC activation and alleviates LF by

targeting the TGFbRII-SMADS pathway (78). Notably, the

combination of nilotinib with stem cell exosomes could exert

better anti-fibrotic effects in CCl4-induced LF in rats compared to

their respective use (84). Safran et al. demonstrated that hepatocyte-

derived exosomes can reduce collagen deposition, fibrosis and

improve liver function in a mouse model of CCl4-induced LF,

which is attributed to the inhibition of HSC differentiation by miR-

423-5p delivered by hepatocyte-derived exosomes (35). Natural

killer cell-derived exosomes (NK-EXO) have been reported to

alleviate CCl4-induced LF in mice, possibly due to the high

expression of miR-223 in NK-EXO that inhibits autophagy and

thus attenuates HSC activation (63, 79). Wu et al. found that

intravenous adipose-derived stromal cell(ADSC)-derived

exosomes(ADSC-EXO) effectively improved liver function and

reduced hepatic collagen deposition in mice with LF. Notably,

ADSC-EXO may reverse the pro-fibrotic phenotype in vivo and

in vitro. Upon more in-depth study, they concluded that ADSC-

EXO improve LF by inhibiting HSC activation and remodeling

hepatocyte glutamine synthetase-mediated glutamine and ammonia

homeostasis (80). In addition, umbilical cord plasma-derived

exosomes (UCB-EXO) may be a promising therapy for LF.

Huang et al. found that UCB-EXO also exert antifibrotic effects in

a mouse model of LF. The mechanism may be that UCB-EXO

inhibit the TGF-b-ID1 signaling pathway to block HSC

activity (81).

Native exosomes derived from various cell sources have the

potential to be utilized as therapeutic agents for LF. Combining

natural exosomes with other therapeutic strategies is a promising

approach to enhance the clinical efficacy of LF. Despite the potential

of native exosomes as therapeutic agents, there remain numerous

challenges to their successful application in clinical practice. The

poor targeting property of native exosomes is a major obstacle to
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their successful application as therapeutic agents (85). However,

engineered exosomes offer a potential solution to this issue. For

instance, exosomes modified with targeted peptides of aHSC can

increase the efficiency of targeted hepatic stellate cell delivery and
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improve efficacy in treating LF (86). The use of native exosomes as

LF therapeutic agents has other drawbacks, including a lack of long-

term studies to assess safety and efficacy, a lack of comprehensive

exploration of therapeutic mechanisms, and the potential for
TABLE 2 Potential role of exosomes as therapeutic agents for LF.

Source of
exosomes

Experimental
model

Exosome -
Cargos

Species Delivery of
exosomes

Treatment Mecha-
nism

Potential therapeutic
implication

References

MSC CCl4 miR-148a Mice Intravenous
injection

Regulate KLF6/STAT3
signaling and promote the
conversion of macrophages
from M1 pro-inflammatory
phenotype to M2 anti-
inflammatory phenotype

Reduce liver inflammation
and fibrosis, improve liver
function

(72)

BMSC CCl4 Unknown Rat Intravenous
injection

Inhibit the Wnt/b-catenin
pathway to suppress HSC
activation

Reduce liver collagen
accumulation and
inflammatory response,
promote hepatocyte
regeneration and improve
liver function

(73)

BMSC Thioacetamide circCDK13 Mice Intraperitoneal
injection

regulating the expression of
MFGE8 through miR-17-5p/
KAT2B axis.

Reduce collagen deposition
and fibrosis in the liver

(74)

hucMSC CCl4 Unknown Mice Liver Injection Inactivate the TGF-b1/Smad
signaling pathway and
inhibit epithelial
mesenchymal transition

Alleviate liver inflammation
and collagen deposition and
significantly restore serum
AST activity

(75)

hucMSC CCl4 Unknown Mice Intravenous
injection

Reduce oxidative stress and
inhibit apoptosis

Relieve collagen deposition
in liver

(76)

hucMSC CCl4 BECN1 Mice Intravenous
injection

Regulate the xCT/GPX4 axis
to induce ferroptosis in HSC

Alleviates collagen
deposition in liver and
reduces GPX4 expression in
activated HSC

(77)

hESC CCl4 and alcohol miR-6766-3p Mice Intravenous
injection

Targeting the TGFbRII-
SMADS pathway and
thereby attenuating HSC
activation

Reduce hepatic collagen
deposition, attenuate hepatic
fibrosis, and promote liver
reconstruction and liver
function recovery

(78)

HepG2 cell CCl4 miR-423-5p Mice Intravenous
injection

Inhibit HSC differentiation Reduce collagen deposition
and fibrosis in the liver, and
improve liver function

(35)

NK CCl4 Unknown Mice Intravenous
injection

Inhibit the activation of HSC Reduce collagen deposition
and fibrosis in the liver, and
improve liver function

(79)

NK TGF-b1 miR-223 LX-2 cell – Inhibit HSC activation by
inhibiting autophagy

Reduce HSC proliferation
and the levels of a-SMA
and CoL1A1

(63)

ADSC DEN,
CCl4

Unknown Mice Intravenous
injection

Inhibit HSC activation and
remodel hepatocyte
glutamine synthetase-
mediated glutamine and
ammonia homeostasis

Improve liver function,
reduce liver collagen
deposition and reverse the
pro-fibrotic phenotype

(80)

UCB CCl4 Unknown Mice Intravenous
injection

Inhibit the TGF-b-ID1
signaling pathway to block
HSC activity

Improve liver function and
reduce collagen deposition

(81)
MSC, mesenchymal stem cell; BMSC, bone marrow-derived stem cells; CCl4, carbon tetrachloride; hucMSC, human umbilical cord mesenchymal stem cell; EMT, epithelial-mesenchymal
transition; HSC, hepatic stellate cell; GPX4, glutathione peroxidase 4; NK, natural killer cell; DEN, diethylnitrosamine; ADSC, adipose-derived stromal cell; UCB, umbilical cord plasma.
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prohibitive costs. Additional efforts and further research are

required to facilitate the clinical application of exosomes as

therapeutic agents for LF.

4.2.2 Potential of exosomes as therapeutic
targets for LF

Given the different roles of exosomes in the development of LF,

exosomes and the cargoes they carry constitute numerous potential

targets to influence the progression of LF. As mentioned above,

exosomes play a key role in intercellular communication between

HSC and other cells in the progression of LF. In light of several

studies, we propose that affecting HSC function by targeting

exosomes is a promising therapeutic direction for LF.

Targeting exosomes as a therapeutic approach to inhibit LF may

be achieved by altering the cargo composition of exosomes, affecting

the formation and release of exosomes, and blocking the

propagation of exosomes (12). Exosomes have been implicated in

the progression of liver fibrosis through the miRNA they carry. Luo

et al. found that miR-27a inhibitors could reverse the promotion of

HSC proliferation and activation by hepatocyte-derived exosomal

miR-27a, suggesting that exosomal miR-27a is a potential

therapeutic target for MAFLD-associated LF (37). Similarly,

Wang et al. demonstrated that inhibition of miRNA-33

expression in Schistosoma japonicum egg-derived exosomes could

reduce the extent of LF in schistosomiasis. MiRNA-33 is capable of

promoting the activation of HSCs (48). Additionally, inhibition of

miR-500 in macrophage-derived exosomes may also inhibit the

proliferation and activation of HSC (49). Thus, exosomes can be

targeted to treat LF by inhibiting the miRNAs they carry that

promote disease progression. Regulation of the parent cells of

exosomes can control the production and release of exosomes.

Hou et al. found that IL-6 treatment could promote macrophages to

release exosomes rich in antifibrotic miR-223, which could be

transferred to hepatocytes to inhibit LF, providing a therapeutic

target for NAFLD-associated LF treatment (87). GW4869 is a

neutral sphingomyelinase inhibitor that blocks exosome

production by preventing the formation of ILV (88). GW4869

could reduce miR-192 levels in HCV replicating hepatocyte-

derived exosomes, a major regulator of HCV-mediated LF,

thereby impeding HSC transdifferentiation and a-SMA

accumulation (41). Fang et al. found that treatment of exosomes

released from aHSC cells with annexin may block the activation of

qHSC cells (53). It provides a new idea for blocking the spread of

exosomes and inhibiting LF.

Traditional Chinese medicine(TCM) is receiving increasing

attention in treating LF. Many natural compounds and extracts of

herbs are considered beneficial in the treatment of LF, however,

their therapeutic mechanisms are not yet clear (89). Salidroside is

derived from the Chinese herb Rhodiola rosea. Salidroside has been

reported to inhibit LF by reducing the exosomal SphK1-induced

activation and migration of HSC (90). Therefore, exosomes can

serve as drug targets for TCM in the treatment of LF, providing

directions for further research on the therapeutic mechanism of

TCM for LF.
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The use of exosomes as therapeutic targets offers promising

avenues for novel treatment strategies for LF, and provides novel

insights into the mechanisms of anti-fibrotic drugs. However,

further research is required to elucidate the details of exosome

involvement in LF and its regulatory mechanisms, in order to drive

the development of anti-fibrotic therapies targeting exosomes.

4.2.3 Potential of exosomes as drug delivery
system for LF

Exosomes play an important role in intercel lular

communication and can transfer substances such as proteins,

nucleic acids and lipids from donor cells to recipient cells.

Exo somes have be t t e r b io compa t ib i l i t y and lowe r

immunogenicity. They are able to penetrate tissues, diffuse into

the bloodstream, and also cross biological barriers, such as the

blood-brain barrier. In addition, exosomes have a strong ability to

home in on target tissues or cells (23, 29). Therefore, exosomes have

been widely used in drug delivery studies (91). Compared to other

drug delivery systems (e.g. liposomes), exosome-based drug delivery

systems offer advantages in terms of increased stability, reduced

toxicity, and targeted delivery (92, 93). Given these advantages of

exosomes, they have been noted as a promising drug delivery

system for LF (Figure 3).

While advanced gene therapy technologies offer new

therapeutic promise for LF, there are challenges, such as the need

for safer and more effective delivery systems (94). Exosome-based

drug delivery systems may provide the impetus for developing gene

therapy for LF. Clustered regularly interspaced short palindromic

repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing

is a promising therapeutic technology, but its low intracellular

delivery efficiency hinders its clinical application (95). The

CRISPR-Cas9 gene editing deliverables contain plasmids and

Cas9 ribonucleoprotein (RNP) (96). Luo et al. used AML12 cell-

derived exosomes to efficiently deliver CRISPR/dCas9-VP64

plasmid DNA into HSC, providing new feasibility for gene

therapy of LF (97). The large size of Cas9 ribonucleoprotein

(RNP) limits its delivery vector selection and clinical use in gene

therapy. Wan et al. loaded Cas9 RNP into HSC-isolated exosomes

by electroporation. They promoted the effective delivery of Cas9

RNP and its accumulation in liver tissues, and this delivery system

plays a strong therapeutic potential in LF (96).

Using exosomes as in vivo carriers for nucleic acids delivery is

receiving increasing attention. Due to its advantages, such as

immunological and homing properties, MSC-EXO is widely used

in studies to deliver therapeutic RNAs (98). MiR-122 can negatively

regulate the proliferation and collagen production of HSCs (99). By

packaging miR-122 into adipose-derived MSC (AMSC) secreted

exosomes, miR-122 can be target delivered to HSC and exert anti-

LF effects (100). Similarly, engineering AMSC-derived exosomes

could also serve as delivery vehicles for miR-181-5p, a possible

regulator of autophagy in HSC, and thus exert therapeutic effects on

a mouse model of LF (101). In addition, MSC-EXO has

demonstrated the ability to deliver circDIDO1 to HSC for

antifibrotic effect, making it a promising delivery vehicle for
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circRNA therapy in vivo (67). STAT3 is an important transcription

factor in the pathogenesis of LF. Tang et al. loaded STAT3-targeting

antisense oligonucleotide and small interference RNA (siRNA) onto

MSC-EXOs separately, and with the delivery advantage of

exosomes, these two approaches effectively suppressed STAT3

levels and ameliorated LF in LF mice (102). Osteopontin plays an

important role in the pathogenesis of LF. Tang et al. used

electroporation to enable exosomes to carry siRNA targeting

osteopontin to inhibit LF. This exosome delivery system showed

high uptake and low toxicity, effectively improving the low delivery

efficiency of siRNA to target organs (103). In addition, He et al.

found that intravenous injection of exosomes loaded with the

transcription factor RBP-J decoy oligodeoxynucleotides effectively

inhibited Notch signaling in macrophages and ameliorated LF in

mice (104).

The advantages of exosome-targeted delivery may also

contribute to therapies that interfere with RNA function in vivo.

Li et al. use exosomes to deliver engineered RNA-binding proteins

for targeting and degrading specific RNAs in lysosomes. They found

that delivery of acidified exosomes engineered with Lamp2b-HuR

attenuated LF while reducing some inflammatory genes (105). In

addition, drug delivery systems that hybridize exosomes with other

nanoparticles offer new strategies for treating LF. In response to the

limitations of LF treatment due to inefficient drug delivery and

Kupffer cell-induced inflammation, Ji et al. developed an exosome-

liposome hybrid drug delivery system (LIEV) to load clodronate

(CLD) and nintedanib (NIN). This drug delivery system enhances
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the inhibitory effect of CLD on Kupffer cells. It increases the

effective delivery of NIN to hepatic fibroblasts, providing a safer

and more effective treatment for LF (106).

Although exosomes have promising applications as drug

delivery vehicles for LF, the limitations of exosomes compared to

other advanced drug delivery systems have hindered their clinical

application. First, the extraction and isolation of exosomes can be

more inefficient due to the complexity of the technology. Low yields

and high costs prevent exosomes from being used as drug delivery

vehicles on a large scale (107, 108). Second, exosomes are limited in

their drug loading. The natural components that exosomes

inherently carry limit the loading of exogenous substances (92).

In addition, there are difficulties in controlling and evaluating

exosome-delivered drugs. Exosomes have a high degree of

heterogeneity, increasing their quality control challenge. The lack

of knowledge about exosome properties and physiopathology

makes it difficult to assess drug delivery efficacy (23, 107).

Therefore, significant efforts addressing these challenges are

necessary to facilitate the clinical application of exosome-based

drug delivery systems.
5 Conclusion

As the vital mediator of intercellular communication, exosomes

have been shown to play an essential role in the pathogenesis of LF.

Exosomes primarily regulate HSCs, which have a major role in LF.
FIGURE 3

Clinical application of exosomes in LF.
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Exosomes can promote LF by participating in the activation of

HSCs and the interaction of HSCs with immune cells. Many serum-

derived exosomes have shown great diagnostic potential in LF. In

particular, several of these exosomal miRNAs are promising

diagnostic and prognostic biomarkers for LF caused by different

diseases. Exosomes from multiple sources, mainly MSC, have

demonstrated strong anti-fibrotic potential in experimental

animal models. These exosomes could be promising candidates

for LF treatment agents. Several studies have elucidated the

mechanisms of exosome regulating LF, providing multiple

potential therapeutic targets for LF. Affecting the function of

HSCs by targeting exosomes may be a new idea in the

development of anti-LF therapies. In addition, exosomes have the

potential to serve as a delivery system for LF drugs. Engineered

exosomes can improve the delivery efficiency of various anti-LF

agents such as non-coding RNAs in vivo, while providing new

feasibility for various LF therapies such as gene therapy.

Although exosomes have significant diagnostic and therapeutic

potential in LF, there is still a long way to go before they are

available for clinical use. Technical issues such as how to efficiently

extract and detect exosomes are obstacles to the translation of

existing research results to the clinic (109). Despite these difficulties,

further exploration of the mechanisms of exosomes and the

development of exosome-based diagnostic and therapeutic

approaches are needed to benefit patients with LF.
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