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Fiber-reinforced polymer (FRP)-reinforced concrete (RC) elements fail under
one-way shear in a devastating and complicated manner with no adequate
warning. In recent decades, there has been pioneering research in this area;
however, there is no agreement among researchers regarding mechanically-
based models. Thus, in this current study, a plasticity-based model is
developed for FRP-RC elements under shear. A selected model was firstly
assessed for its accuracy, consistency, and safety against an extensive
experimental database. Secondly, a plasticity-based model (i.e., crack shear
sliding model) was adapted, refined, and proposed for FRP-RC elements under
one-way shear. The two proposed models were found to be reliable and more
accurate with respect to selected existingmethods. Modeling of FRP’s axial rigidity
is more consistent only under Young’s modulus with respect to the experimental
database. Several concluding remarks on the selected existingmodels are outlined
and discussed to assist the future development of thesemodels and design codes.
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1 Introduction

The dilemma of shear of reinforced concrete (RC) elements is an old problem. This
dilemma lacks robust mechanical models based on physics and is affected by several
mechanisms and parameters (Ali et al., 2021; Ebid and Deifalla, 2021; Alkhatib and
Deifalla, 2022; Deifalla and Salem, 2022; Salem and Deifalla, 2022). Fiber-reinforced
polymer (FRP)-RC elements increase the ambiguity further by adding several effects,
including and not limited to FRP’s linear behavior up to failure and the variability of
FRP’s Young’s modulus (Hassan and Deifalla, 2015; Elmeligy et al., 2017; Deifalla, 2020c;
Deifalla, 2021a; Deifalla, 2022). Thus, the complexity associated with developing a
physically-based mechanical model is considerable and requires further investigation of
new representation approaches (Deifalla and Ghobarah, 2010a; Deifalla et al., 2013; Deifalla
et al., 2014; Deifalla, 2015; Deifalla et al., 2015). This is imperative to attaining a much deeper
understanding of failure under shear and, consequently, a base for optimum shear provisions
in terms of reduced materials, prolonged life span, and improved reliability (Deifalla and
Ghobarah, 2010b; Deifalla and Ghobarah, 2014; Deifalla, 2020b; Deifalla, 2021b; Deifalla,
2021d).
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Since the 1950s, developing a mechanical model with a physical
basis for the shear strength of steel-RC elements has been an
ongoing area of investigation, with several models developed. The
first were empirically based on simplified ones (Zsutty, 1968), which
included the basic variables of concrete compressive strength,
flexure reinforcement ratio, and element depth and width. Those
variables were considered significant for shear strength by many
researchers (Leonhardt et al., 1964). Later, the size effect was
investigated and considered in those models (Hedman et al.,
1978; Bazant and Kim, 1984; Ghannoum, 1998). Thereafter,
researchers have considered the following variables: effect of the
maximum nominal aggregate size (Bentz, 2005), fracture energy
(Bazant and Planas, 1998), and element shear slenderness (Zsutty,
1968). These empirical models have included effective variables
based on the results of experimental investigation; however, little
attention has been directed to modeling the actual shear mechanism
and behavior. Recently, research has aimed at achieving a more
profound comprehension of shear behavior (Vecchio and Collins,
1986; Muttoni and Fernández Ruiz, 2008; Tung and Tue, 2016).
With technological advances in experimental measurements and
numerical analysis, a more refined grasp can be gained of the
contribution of each shear mechanism. Therefore, several
mechanical models have been developed (Huber et al., 2016;
Cavagnis, 2017; Cladera et al., 2017). There are a handful of
these in the literature for steel-RC elements under one-way shear,
including but not limited to a compression chordmodel (Zink, 1999;
Zararis and Papadakis, 2001). A compression field assumes that the
governing mechanism is the aggregate interlock (Vecchio and
Collins, 1986; Bentz et al., 2006). The critical shear displacement
method (CSDM) (Yang, 2014; Yang et al., 2017) assumes that the
delamination crack, which is at the level of flexural reinforcements,
is the main trigger for shear failure developing, thus signifying the
aggregate interlock effect. A fracture mechanics-based model
accounts for residual concrete tensile stress after concrete
cracking (Bazant and Kim, 1984; Ghannoum, 1998). The crack
sliding shear model (CSSM) is based on a plasticity solution
(i.e., upper and lower bound limit analysis theorem) (Fisker and
Hagsten, 2016). CSSM thus accounts for the effect of concrete
cracking and applies the tensile stress criterion to the flexural
cracks’ tips, which connect with a shear crack (Tue et al., 2014).
Critical shear crack theory (CSCT) includes several shear
mechanisms: residual tensile stress in the shear crack, aggregate
interlock, and dowel action in one united failure criterion (Muttoni
and Fernández Ruiz, 2019). The multi-actionmodel (MAM) is based
on several shear mechanisms, including but not limited to the
compression chord. Reineck’s model includes all shear
mechanisms, especially, the compression zone direct shear
mechanism in a kinematically consistent manner (Reineck, 1991).
This model is based on the equilibrium between both internal and
the external stresses due to shear acting upon cracked concrete teeth.
The most recent model is shear crack propagation theory (SCPT),
which predicts crack propagation and stresses in uncracked
concrete, different shear mechanisms, and stresses at the tip of
the crack over the loading history (Classen, 2020). However, SCPT is
more of a tool for targeting the mechanical bases of one-way shear in
steel-RC elements, to be implemented for developing design models.

Previous experimental studies have shown that the shear
behavior of concrete elements can be clarified into four

categories based on the shear span-to-depth ratio: 1) short
elements (i.e., a/d < 1); 2) deep elements (i.e., 1< a/d <2.5); 3)
flexure shear dominated elements (i.e., 2.5< a/d <5.0); 4) flexure
dominated elements (i.e., 5.0 < a/d). In both short and deep
elements, the behavior is dominated by the arch action, while the
flexure and shear element is not.

This current study developed a physically based model for
FRP-RC slender elements under one-way shear. The work is part
of extensive research that aims to investigate the strength of
reinforced concrete elements under shear, punching shear, and
torsion (Deifalla and Ghobarah, 2010a; Deifalla and Ghobarah,
2010b; Deifalla et al., 2013; Deifalla et al., 2014; Deifalla and
Ghobarah, 2014; Deifalla, 2015; Deifalla et al., 2015; Hassan and
Deifalla, 2015; Elmeligy et al., 2017; Deifalla, 2020b; Deifalla,
2020c; Deifalla, 2021a; Ali et al., 2021; Deifalla, 2021b; Deifalla,
2021d; Ebid and Deifalla, 2021; Alkhatib and Deifalla, 2022;
Deifalla, 2022; Deifalla and Salem, 2022; Salem and Deifalla,
2022). Many of these include the shear strength of FRP-
reinforced concrete elements (Ali et al., 2021; Ebid and
Deifalla, 2021). Ali et al. (2021) assessed the available design
codes and provided a regression model. Ebid and Deifalla (2021)
developed a machine learning model. The current study aims to
develop a mechanical model based on the concept of plasticity.
The CSSM applies to special cases of one-way shear and punching
shear and was thus selected for this study. The original CSSM did
not address the shear strength of FRP-RC beams and is only
applicable to steel-RC beams. Thus, extending it, based on the
experimental database, to FRP-RC beams is a significant
refinement. A comprehensive literature review for
experimental testing of elements under one-way shear was
conducted. The CSSM was refined (RCSSM) to model
behavior, and a new mechanical model is proposed for FRP-
RC slender elements under one-way shear. A few models were
selected from the literature to compare to the developed model;
however, a comprehensive assessment of existing shear models
for FRP-RC slender elements is not within the scope of this study.
The RCSSM was used to compute the element’s strength and
compare it with existing models in the literature. Concluding
remarks are outlined and discussed.

2 Experimental database

The present study adopts the most comprehensive database
for FRP-RC beams available, consisting of 420 specimens tested
in 57 studies (Ali et al., 2021; Ebid and Deifalla, 2021). Further
details of the database are available in previous studies (Ali et al.,
2021; Ebid and Deifalla, 2021). All these experimental tests
utilized FRP as the flexure reinforcement. All elements were
four-point static loading, which failed in shear. Shear
strengthening and retrofitting using FRP is out of the scope
for this study. Table 1 show the frequency distribution of the
mechanical and geometrical parameters of the test specimens
while the details of all data are available in the supplementary file
at the end of the paper. Figure 1 shows the frequency of the values
used for the effective depth (d), the compressive strength of
concrete (f c’), the flexural reinforcement ratio (ρ), and FRP’s
Young’s modulus (E). The scope of this study includes slender
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elements which are either flexure shear-dominated or flexure-
dominated elements. Thus, the database was filtered to eliminate
short and deep elements—defined as those with a shear span-to-
depth ratio value of less than 2.5. Hence, a total of 278 specimens
were used in this study. The developed models and conclusions in
the current study are limited to slender elements and are not
necessarily applicable for short and deep elements. Although FRP
manufacturing and products have improved significantly over
the years, the model depends on FRP’s mechanical properties,
which are evaluated specifically for the FRP implemented in each
research study; thus, the model analysis is not dependent on the
quality of the FRP.

3 Assessment of selected models

Several methods have been developed over the last four decades
for FRP-RC beams. The well-known design guide for FRP (ACI)
(ACI-440.1R-15, 2015) is based on Tureyen and Frosh’s model
(Tureyen et al., 2006). In addition, a few mechanical models were
found in the literature that address the shear of slender FRP-
reinforced concrete elements. These are based on the following
well-known shear models: 1) the M model (Mari et al., 2014), which
is based on the compression chord model; 2) the DNmodel (Dhahir
and Nadir, 2018), which is based on the compression field model; 3)
the B model (Baghi et al., 2018), which is based on the modified
compression field theory (MCFT) (Bentz et al., 2010). The details of
these models are out of the scope of this study, and any further
details about the application and derivation of these models can be
found in the original manuscript (ACI-440.1R-15, 2015; Tureyen
et al., 2006; Mari et al., 2014; Dhahir and Nadir, 2018; Baghi et al.,
2018; Bentz et al., 2010). Table 2 shows the five methods selected:
ACI, M, DN, and B.

3.1 Overall

Figure 2 shows measurements against calculated strength using
the ACI, M, DN, and B methods, and the ideal 45-degree line as well
as the best-fit-line and the χ factor, which is calculated as the inverse
of the best-fit-line slope. χ is an indication of the over- or
underestimation of the used method. Table 3 shows the statistical
measures for the SR (i.e., the measured divided by the calculated
strength) using different methods as well as the coefficient of

TABLE 1 Database of parameters for slender FRP-RC elements under shear.

Source Range

Database size 420

Studies in the database 57

fc (MPa) 20–93

b (mm) 89–1830

d (mm) 73–938

a (mm) 299.6–3096

a/d 1.08–16.2

ρf (%) 0.09–3.98

Ef (GPa) 29–192

FIGURE 1
Database frequency distribution.
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correlation between the calculated and measured strengths. The SR
statistical measures include the minimum, maximum, average,
coefficient of variation, and median. ACI is overly conservative,
with a SR average value of 2.02 and a χ factor value of 1.87. The B

model is the least conservative, with a SR average value of 0.46 and a
χ factor value of 0.43. For the other models, the SR average value
ranged 0.61–0.92 and the χ factor ranged 0.50–1.50. For consistency,
the coefficient of variation ranged 42%–53%, showing a serious lack

TABLE 2 Summary of selected model and design codes.

Method Shear resistance, V Symbols

ACI (ACI-440.1R-15, 2015) Based on the model by Tureyen and Frosh (Tureyen et al., 2006), the ACI design
code for conventional steel RC was modified such
that: 0.4(

����������
2nρ + (nρ)2

√
− nρ) ���

f c′
√

bd

n � Ef
Ec

M model (Mari et al., 2014) Based on the compression chord model, the model was developed such
that: ξ[(1.072 − 0.01n) cd + 0.036]f ctbd

ξ � 1.2 − 0.2 a
d d

c
d � nρ(−1 +

�����
1 + 2

nρ

√
)

DN model (Dhahir and Nadir, 2018) Based on the compression field, the model was developed such

that: AE(−2.58+
��������������
7.18+10506(0.15lb+0.72c)bf ′c

AE

√
5253 )

V≥ 0.14(0.15lb + 0.72c)bf ′c

B model (Baghi et al., 2018) Based on the MCFT (Bentz et al., 2010), the model was developed such
that: 0.07(Eρb

f ′cd
)

��
f ′c

√
bd

0.05
��
f ′c

√
bd≤V≤ 0.3

��
f ′c

√
bd

FIGURE 2
Calculated versus measured strength for existing selected models.
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of consistency. For safety, the lower 95% is calculated for the ACI; M
is above 0.85, which is considered reasonable. However, that
calculated for the B and DN models is lower than 0.85, which is
needed for the higher safety factor for the purpose of design. The
coefficient of correlation between measured strength and that
calculated using various methods had values of 0.90, 0.86, 0.66,
and 0.88 for the ACI, M, DN, and B methods, respectively, Thus, the
strength calculated using various models is highly correlated to
experimental measurements; however, the ACI, M, and Bmodels are
strongly correlated compared to DN.

3.2 Against size

Table 4 shows the coefficient of correlation between measured
and calculated strengths for selected methods against element size.
The correlation coefficient between size and calculated SR for ACI,
M, DN, and B was 0.04, 0.28, 0.82, and 0.02, respectively. Thus, the
calculated SR for all models, excepting DN, is weakly correlated to
size compared to the DN model. In addition, Figure 3 shows the
calculated SR for the ACI, M, DN, and B models against size and
best-fit-line for each model. The best-fit-line slope for the calculated
SR for the ACI, M, DN, and B models against size are 2.0E-4, 6.0E-4,
18E-4, and 0.3E-4, respectively. In all models, safety increases with
increased concrete compressive strength. DN is less consistent with
size than other models and needs further investigation into its size
effect.

3.3 Against concrete compressive strength

From Table 4, the correlation coefficient between concrete
compressive strength and calculated SR for ACI, M, DN, and B
was −0.09, −0.12, −0.35, and −0.12, respectively. Thus, the calculated

SR for all models except DN is weakly correlated with concrete
compressive strength. In addition, Figure 4 shows the calculated SR
for the ACI, M, DN, and B models against concrete compressive
strength as well as the best-fit-line for each model. The best-fit-line
slope for the calculated SR for the ACI, M, DN, and Bmodels against
concrete compressive strength is -47E-4, -28E-4, -81E-4, and -15E-4,
respectively. For all models, safety decreases with increased concrete
compressive strength. DN is less consistent with concrete
compressive strength than other models, and needs further
investigation into its concrete compressive strength.

3.4 Against flexure reinforcement axial
rigidity

From Table 4, the correlation coefficient between flexure
reinforcement axial rigidity and calculated SR for ACI, M, DN,
and B was −0.40, −0.44, −0.01, and 0.18, respectively. Thus, the
calculated SR for the DN and B methods is weakly correlated
compared to the ACI and M models; they thus need further
investigation into flexure reinforcement axial rigidity. In
addition, Figure 5 shows the calculated SR for the ACI, M, DN,
and B models against flexure reinforcement axial rigidity as well as
the best-fit-line for each model. The best-fit-line slope for the
calculated SR for the ACI, M, DN, and B models against flexure
reinforcement axial rigidity is −0.69, −0.35, −0.006, and 0.07,
respectively. For all models except B, safety decreases with
increased flexure reinforcement axial rigidity. This could be
because existing models underestimate the dowel action
component of lower values for flexure reinforcement axial
rigidity. The ACI is less consistent with flexure reinforcement
axial rigidity than other models and needs further investigation
into its flexure reinforcement axial rigidity.

4 Refinement of CSSM (RCSSM)

In this study, the CSSM was selected as it is based on plasticity
and can be used for both shear and punching shear.

4.1 Background of the crack shear sliding
model (CSSM)

This section will briefly outline the original CSSM for one-way
shear of concrete elements without stirrups. The CSSM is based on
plasticity, where lower and upper boundary solutions for beams
under shear are developed. Consider a four-point loading on
rectangular beams without stirrups.

4.1.1 Upper bound plasticity solution
An upper bound solution assumes that the beam is divided

into two regions with a straight yield-line having an inclination
angle β with the beam longitudinal axis, as shown in Figure 6
(Nielsen and Bræstrup, 1975). The middle region (I) is assumed
to move vertically using a simple displacement field, while the
outer region (II) is assumed to not move. Thus, the work equation
is such that:

TABLE 3 Statistical measures for SR.

ACI M DN B

Mean 2.02 0.93 0.72 0.46

C.O.V. 41% 41% 51% 43%

L.L. 99% 1.92 0.88 0.68 0.44

Minimum 0.66 0.31 0.09 0.13

Maximum 7.75 3.04 2.68 1.68

Median 1.82 0.83 0.68 0.41

Correlation coefficient 0.90 0.86 0.66 0.88

TABLE 4 Correlation coefficient between various methods and variables.

ACI M DN B

Size 0.04 0.28 0.82 0.02

Concrete compressive strength −0.09 −0.12 −0.35 −0.12

Flexure reinforcement axial rigidity −0.40 −0.44 −0.01 0.18
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V � 1
2
f cb 1 − cos β( ) h

sin β u (1)

which represents the energy dissipation in the concrete, while
the longitudinal reinforcements have negligible energy dissipation:

τ
f c
� V
bhf c

� 1
2

1 − cos β( ) 1
sin β (2)

Finding the minimum V concerning variable β, thus β � 0.
However, β≥ tan−1ha; thus the upper bound solution for the shear
strength is such that:

V � 1
2
f c

�������
1 + a

h
( )2

√
− a
h

⎡⎢⎢⎣ ⎤⎥⎥⎦bh (3)

4.1.2 Lower bound plasticity solution
For the case of a four-point bending concrete beam, Figure 7

shows a schematic that can be used to develop a lower bound
solution. Shear is transferred via a single strut in what is called an
“arch mechanism”, where axial compression acts on region ABDE.

The forces from the reinforcement to the arch are transferred
through regions AEF and BCD; consequently, both regions are
subjected to biaxial stresses. An anchor plate is used to transfer
the anchoring force to the concrete, while the stress is taken as fc.
Thus, the measure of the angle subtended by BDE is π/2, while the
maximum shear resistance corresponds to the maximum BC, which
is obtained at maximum CD. Since a circle having BE as diameter is
the locus of point D, the maximum CD = h/2, where BC is such that:

BC � xo � 1
2

������
a2 + h2

√
− a[ ] (4)

while the maximum shear capacity is such that:

V � bxof c (5)
which can be written in a form like the upper bound solution such
that:

V � 1
2
f c

�������
1 + a

h
( )2

√
− a
h

⎡⎢⎢⎣ ⎤⎥⎥⎦bh (6)

which is identical to an upper bound solution. This is, therefore, a
unique plastic solution for shear resistance.

FIGURE 3
SR calculated using selected model versus size.
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4.1.3 Crack sliding model
Figure 8 shows a cracking pattern, starting vertically at the

maximum moment cross-section and is then followed by
diagonal cracks due to shear. The first crack is usually vertical
and close to the point load, starting at the beam bottom soffit; the
next one is a diagonal crack directed towards the point load. The
load required to initiate diagonal cracks increases with closeness
to the support: the cracking load curve. On the other hand, the
load resistance for crack sliding decreases with closeness to the
support: the shear capacity curve. Therefore, the decrease in the
shear span value decreases the angle of inclination of the yield-
line and increases the load resistance. The yield-line is defined
as the intersection of both the shear capacity and the cracking
load. This method predicts much lower shear capacity with
respect to the original plastic solution. The yield-line is named
the “critical diagonal crack”, where the shear capacity is less
than the cracking load. The CSCT is based on the observation
that yield lines are formed as a transformation from the critical
diagonal crack (Muttoni, 1990). This observation was confirmed
by measuring the relative displacement along the critical diagonal

crack. Initially, the relative displacement along the critical
diagonal crack is perpendicular to the crack, while another
component of the displacement is formed parallel to the
critical diagonal crack. This indicates that the yield line is a
transformation of the critical diagonal crack. The cracking
moment and the shear capacity of a diagonal crack can be
simplified by using an equivalent plastic distribution for the
normal stress; the bending moment resistance of concrete
element can be calculated as shown in Figure 11. Thus, the
cracking moment for concrete is such that:

Mcr � 1
2
bh2f tef (7)

where f tef is the effective tensile strength calculated as f tef � νtf t,
where f t is taken as 0.26f2/3c and νt is taken the constant value of 0.6,
and b is the width. In addition, the size effect can be considered using
a Weibull factor s(h) on f tef , such that:

s h( ) � h

100
( )−0.3

(8)

FIGURE 4
SR calculated using selected model versus concrete compressive strength.
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where the depth is in mm. Thus, the concrete tensile stress is
such that:

f tef � 0.6f t s h( ) (9)
For a concrete element with inclined cracks shown in Figure 9,

assuming a straight-line from point A to point B, a statically
equivalent uniform tensile stress (f tef ) equivalent to the uniform
tensile stresses along the curve from point A to point B. Thus, taking
the moment equilibrium at point A, the cracking load is calculated
such that:

Mcr � 1
2
bh2 1 + x

h
( )2[ ]f tef (10)

where x is the critical diagonal crack horizontal component.
Shear resistance is reached due to the failure along the two

diagonal yield-lines and the upper face of the reinforcements in
tension, which can be calculated if the yield-line could be simplified
into a straight line, as shown in Figure 10. In addition, an over-RC
element can be assumed; thus, the relative horizontal displacement

along the yield-lines and the tensile failure at the reinforcement are
negligible.

Hence, replacing a with x = a − x′ in the upper bound plasticity
solution, shear resistance (V) may be calculated such that:

V x( ) � 1
2
f c

��������
1 + x

h
( )2

√
− x

h
⎡⎢⎢⎣ ⎤⎥⎥⎦bh (11)

The cracking load (Vcr) is calculated fromMcr while neglecting
the contribution of the longitudinal flexure reinforcement, such
that:

Vcr x( ) � 1
2
b h2 + x2[ ]f tef

a + Lo

/

2( ) (12)

where Lo is the support length. Therefore, the critical shear crack
location and the minimum shear strength can be calculated by
equating both the Vcr and the V. The calculations are numerically
long; thus, for the purpose of design, ignoring the support plate
width (Lo) [75], the following equation can be used to find the
critical crack position, such that:

FIGURE 5
SR calculated using selected model versus flexure reinforcement axial rigidity.
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x

h
( )3

+ x

h
− 4

τc
ftef

a

h
� 0 (13)

In addition, the calculated shear strength is compared with the
measured ones; thus, a softening factor υ is proposed such that:

υ � υsυo (14)
υs � 0.5 (15)

υo � 0.88���
fc′

√ 1 +
����
1000
h

√( ) 1 + 0.26ρ( ) (16)

where υs is a reduction factor for the sliding, and fc′ is the concrete
compressive strength in MPa, h in meters, and ρ is the flexure
reinforcement ratio in percentage. The shear resistance can be
simplified such that:

V x( ) � τc
2
x /

h( ) bh (17)

where

τc � 1
2

�
5

√ − 2[ ]]s]ofc (18)

FIGURE 6
Upper bound solution of four-point loading beam.

FIGURE 7
Lower bound solution for beam without stirrups.

FIGURE 8
Cracking of beams without stirrups.
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4.2 Model refinement

Based on the observed FRP-RC elements’ behavior, the FRP-
RC beams’ different from the steel RC elements is the variable
Young’s modulus for FRP, or it is different in the axial rigidity of
FRP reinforcements (Hassan and Deifalla, 2015; Ali et al., 2021;
Ebid and Deifalla, 2021). Thus, two refined models are
proposed—RCSSM-1 and RCSSM-2—where the effect of
Young’s modulus and FRP axial rigidity, respectively, are
included.

4.2.1 First model
In this model, Young’s modulus was included in the CSSM using

multivariable non-linear regression (RCSSM-1); thus, the shear
resistance is such that:

V x( ) � τc
2
x /

h( ) bh 0.87
Ef

Es
( )0.2( ) (19)

where Ef is FRP’s Young’s modulus in GPa, and Es is steel’s
Young’s modulus in GPa.

4.2.2 Second model
In this model, the flexure re/inforcement axial rigidity

was included in the CSSM using multivariable non-
linear regression (RCSSM-2); thus, the shear resistance is
such that:

V x( ) � τc
2
x /

h( ) bh 0.80 ρ
Ef

Es
( )0.11( ) (20)

where Ef is FRP’s Young’s modulus in GPa, and Es is steel’s
Young’s modulus in GPa.

5 Assessment of the RCSSM

The developed model was assessed by comparing its
performance to that of the selected models with respect to the
overall performance of the selected parameter.

5.1 Overall

Figure 11 shows the measured strength against the calculated
strength using the CSSM, RCSSM-1, and RCSSM-2 methods,
respectively, as well as the ideal 45-degree line, and the best-fit-
line and the χ factor. Table 5 shows the statistical measures for the
calculated SR for different methods. The CSSM model is the least
conservative, with an SR average value of 0.71 and a χ factor value
of 0.707. For the proposed models, the SR average value is
1.03 and the χ factor value is 1.06. For consistency, the
coefficient of variation for all models ranged between 24% and
26%, showing good consistency. For safety, the lower 95%
calculated for the RCSSM-1 and RCSSM-2 is above 0.85,
which is considered reasonable. However, that calculated for
the CSSM is lower than 0.85, which needs a higher safety
factor for the purpose of design.

5.2 Against size

Table 6 shows the coefficient of correlation between measured
strength and that calculated using various methods against size.
The correlation coefficient between size and calculated SR for
ACI, M, DN, B, CSSM, RCSSM-1, and RCSSM-2 is 0.04, 0.28,
0.82, 0.02, 0.13, 0.19, and 0.24, respectively. Thus, the calculated
SR for the proposed models is weakly correlated to size. In
addition, Figure 12 shows the calculated SR for ACI, M, DN,
and B models against the size as well as the best-fit-line for each
model. The best-fit-line slope for the calculated SR for ACI, M,
DN, B, CSSM, RCSSM-1, and RCSSM-2 against size is 2.0E-4,
6.0E-4, 18E-4, 0.3E-4, 1E-4, 2E-4, and 3E-4. For all proposed
models, safety increases with increased concrete compressive
strength. The proposed models are consistent in size
compared to other models.

FIGURE 9
Stress distribution across diagonal crack.

FIGURE 10
Shear failure of a concrete beam with four-point bending
loading.
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5.3 Against concrete compressive strength

Table 6 shows the coefficient of correlation between
measured and calculated strength for the selected methods

against concrete compressive strength. The correlation
coefficient between concrete compressive strength and
calculated SR for CSSM, RCSSM-1, and RCSSM-2
is −0.27, −0.29, and −0.35, respectively. Thus, the calculated SR
for the proposed models is moderately correlated to concrete
compressive strength. In addition, Figure 13 shows the
calculated SR for CSSM, RCSSM-1, and RCSSM-2 against
concrete compressive strength as well as the best-fit-line for
each model. The best-fit-line slope for the calculated SR for
CSSM, RCSSM-1, and RCSSM-2 against concrete compressive

FIGURE 11
Calculated versus measured strength of proposed models.

TABLE 5 Statistical measures for calculated SR for proposed models.

CSSM RCSSM-1 RCSSM-2

Mean 0.70 1.03 1.03

C.O.V. 26% 24% 25%

L.L. 99% 0.68 1.01 1.00

Minimum 0.25 0.38 0.37

Maximum 1.46 1.91 2.19

Median 0.66 1.01 0.99

Correlation coefficient 0.92 0.92 0.92

TABLE 6 Correlation coefficient between proposed models and variables.

CSSM RCSSM-1 RCSSM-2

Size 0.13 0.19 0.24

Concrete compressive strength −0.27 −0.29 −0.35

Flexure reinforcement axial rigidity 0.49 0.32 0.16
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FIGURE 12
SR calculated using proposed models versus size.

FIGURE 13
SR calculated using proposed models versus concrete compressive strength.
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strength is 31E-4, 45E-4, and 56E-4. For proposed models,
safety increases with increased concrete compressive
strength—consistent with concrete compressive strength
compared to other models.

5.4 Against flexure reinforcement axial
rigidity

Table 6 shows the coefficient of correlation between measured
and calculated strength for the selected methods against
flexure reinforcement axial rigidity. The correlation coefficient
between flexure reinforcement axial rigidity and calculated
SR for ACI, M, DN, B, CSSM, RCSSM-1, and RCSSM-2 is
0.40, 0.40, −0.01, 0.18, 0.49, 0.32, and 0.16, respectively.
Thus, the calculated SR for RCSSM-2 is more weakly correlated
to the flexure reinforcement axial rigidity than RCSSM-1
and CSSM. In addition, Figure 14 shows the calculated SR
for CSSM, RCSSM-1, and RCSSM-2 models the flexure
reinforcement axial rigidity as well as the best-fit-line
for each model. The best-fit-line slope for the calculated SR
for ACI, M, DN, B, CSSM, RCSSM-1, and RCSSM-2 against
flexure reinforcement axial rigidity is −0.69, −0.35, −0.006, 0.07,
0.19, 0.16, and 0.08. For all proposed models, safety increases
with increased flexure reinforcement axial rigidity. RCSSM-1 is

more consistent with flexure reinforcement axial rigidity than
RCSSM-1 and CSSM.

6 Conclusion

This study selected five methods and evaluated them with respect
to an intensive experimental database; it concluded that:

- ACI is overly conservative, while the B model is the least
conservative.

- The DN model is less consistent than other models with
respect to the size effect and concrete compressive strength.

- The ACI and M models are less consistent with respect to
flexure reinforcement axial rigidity than other models.

In addition, the critical shear sliding model was adapted
and further refined to include the effect of Young’s modulus
to fit the experimentally observed strength. The concluding
remarks are:

- Adding the effect of Young’s modulus improved the strength
predictions with respect to those measured. However, the
proposed model was not consistent with flexure
reinforcement axial rigidity.

FIGURE 14
SR calculated using proposed models versus flexure reinforcement axial rigidity.
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- Adding the effect of flexural reinforcement axial rigidity
improved the strength and consistency with respect to
flexural reinforcement axial rigidity.
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