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Grassland canopy height is a crucial trait for indicating functional diversity or

monitoring species diversity. Compared with traditional field sampling, light

detection and ranging (LiDAR) provides new technology for mapping the

regional grassland canopy height in a time-saving and cost-effective way.

However, the grassland canopy height based on unmanned aerial vehicle

(UAV) LiDAR is usually underestimated with height information loss due to the

complex structure of grassland and the relatively small size of individual plants.

We developed canopy height correction methods based on scan angle to

improve the accuracy of height estimation by compensating the loss of

grassland height. Our method established the relationships between scan

angle and two height loss indicators (height loss and height loss ratio) using

the ground-measured canopy height of sample plots with 1×1m and LiDAR-

derived heigh. We found that the height loss ratio considering the plant own

height had a better performance (R2 = 0.71). We further compared the

relationships between scan angle and height loss ratio according to holistic

(25–65cm) and segmented (25–40cm, 40–50cm and 50–65cm) height ranges,

and applied to correct the estimated grassland canopy height, respectively. Our

results showed that the accuracy of grassland height estimation based on UAV

LiDAR was significantly improved with R2 from 0.23 to 0.68 for holistic correction

and from 0.23 to 0.82 for segmented correction. We highlight the importance of

considering the effects of scan angle in LiDAR data preprocessing for estimating

grassland canopy height with high accuracy, which also help for monitoring

height-related grassland structural and functional parameters by remote sensing.
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1 Introduction

Grassland canopy height is an essential structural trait, which is

usually regarded as one of the key indicators for representing

grassland functional diversity (Fisher et al., 2018; Rossi et al.,

2020; White et al., 2022). It is also used to classify grassland types

(Dixon et al., 2014; Wu et al., 2017), and further to characterize

various ecosystem functions, such as aboveground biomass

(Fassnacht et al., 2021), species diversity (Sankey et al., 2021;

Gholizadeh et al., 2022b) and grazing intensity (Bi et al., 2018).

The estimation of grassland canopy height can facilitate grassland

ecosystem monitoring and adaptive management.

Given the importance of grassland canopy height to grassland

ecosystems, it is particularly crucial to achieving regional grassland

canopy height mapping with high accuracy. Compared with ground

data surveys at the sample scale, remote sensing provides spatially

continuous data for canopy height estimation over a large region.

For optical remote sensing data, some studies estimated the

grassland canopy height successfully based on random forest

models, but numerous parameters (i.e., vegetation indices, climate

and topographic factors) were needed as inputs and they were often

inconsistent across grassland types (Spagnuolo et al., 2020; Yin

et al., 2020; Dusseux et al., 2022). Moreover, since the vegetation

indices are highly susceptible to change due to the effects of other

factors such as view angle, canopy structure and topography (Sims

et al., 2011; Chen et al., 2020; Gu et al., 2021), it is difficult to find a

universal vegetation index to monitor grassland canopy height. A

previous study even failed to find the relationships between multiple

vegetation indices (VIs) and grassland canopy height (Tiscornia

et al., 2019). In addition, UAV-borne ultrahigh-resolution imagery

are also used for the extraction of canopy height or other structural

in format ion based on s t ruc ture- f rom-mot ion (S fM)

photogrammetry methods, which can obtain point clouds from

multiple images (Kalacska et al., 2017; Coops et al., 2021). But, the

derived canopy height model (CHM) based on the SfM method

shows some uncertainties in the vertical direction, especially for low

plants (Cunliffe et al., 2016; Wijesingha et al., 2019), which

influences the accuracy of grassland canopy height estimation

(Michez et al., 2019; Zhang et al., 2022).

Light detection and ranging (LiDAR) offers new insight and

technology for direct vegetation canopy height acquisition due to

more powerful penetration ability than optical remote sensing

techniques (Lefsky et al., 2002). LiDAR can provide both 3D

spatial point cloud data and backscattered data (intensity data)

for each observation point through active laser emission and

reception as well as distinguish ground and non-ground points by

multiple pulse-echo data (Bakx et al., 2019; Calders et al., 2020;

Coops et al., 2021). Moreover, LiDAR point clouds allow us to get

enough information without being limited by the spatial resolution

of pixels (Jansen et al., 2019; Zheng et al., 2022). It has been widely

used in obtaining the structure of forest ecosystems (Wulder et al.,

2012; Zhao et al., 2018; Coops et al., 2021), and even global forest

canopy height products based on space-borne LiDAR have been

produced (Simard et al., 2011; Simard et al., 2018; Lang et al., 2022).

In comparison, the application of LiDAR technology in grassland

ecosystems is still finite due to the complexity of grassland (low
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height and high density) and the small size of individual plants.

Although grassland canopy height can be estimated accurately

based on terrestrial laser scanning (TLS) data (Guimarães-

Steinicke et al., 2019; Tian et al., 2020; Xu et al., 2020), it is

limited to the sample plot scale. On the contrary, space-borne

LiDAR is too coarse to detect grassland canopy height because of

low point density or large laser footprint, even if it can cover large

regional or global areas (Malambo and Popescu, 2021). While

providing relatively high point density data, UAV LiDAR offers

the possibility to scale from sample plot to region for monitoring

the canopy height of grasslands directly (Da Costa et al., 2021;

Zhang et al., 2021), which has been successfully used to monitor the

canopy height of forests, shrubs, and crops (Zalite et al., 2016; Liu

et al., 2018b; Zhao et al., 2021).

Several studies, which explored the potential of UAV LiDAR to

estimate canopy height in grasslands, reported height

underestimation (Miura et al., 2019; Zhao et al., 2022). The

underestimation would affect the estimation of grassland

ecosystem functions related to canopy height and its

heterogeneity. For example, Da Costa et al. (2021) found that

grassland aboveground biomass estimated based on UAV LiDAR-

derived canopy height was lower than that measured on the ground.

High-density canopy was considered to be a main cause in forests,

which hamper the penetration of laser pulses to reach the ground

(Hu et al., 2020). Although grasslands may have a higher canopy

density than forests, the gaps between grass individuals combined

with high point cloud density allow UAV LiDAR to obtain reliable

ground elevation information (Getzin et al., 2021; Zhao et al., 2022).

The height loss at canopy was proved to be the main cause which

greatly reduced the accuracy of grassland height-related structural

traits (Miura et al., 2019). Zhao et al. (2022) investigated the height

information loss distributed in grassland canopy top and bottom by

comparing UAV LiDAR data with TLS data and ground-measured

data. However, there are few studies exploring the differences of

canopy height loss in the horizontal direction perpendicular to

flight routes and the influence factors contributing to this

discrepancy. Scan angle proves to be a factor severely affecting the

prediction of structural traits in forests (Keränen et al., 2016; Liu

et al., 2018a; Dayal et al., 2022) and narrower scan angle usually

leads to a more accurate estimation of the mean height. But now,

the effects of scan angle on estimating mean height of grassland are

still unclear, which is essential for developing robust LiDAR-based

models for regional grassland height estimation with various types.

In this study, we aim to estimate the grassland canopy height

based on UAV LiDAR data and further quantify the impacts of scan

angle on the loss of canopy height estimation towards a temperate

meadow steppe. The research questions of this study include (1)

how much uncertainty there is in estimating grassland height with

UAV LiDAR data; (2) how much does the loss of grassland height

relate to the scan angle, especially for the different height layers of

grassland and (3) how much can the accuracy of the UAV LiDAR-

derived grassland height be improved after correction based on scan

angle. We explore these questions by establishing the relationships

between the height loss indicators and scan angle, which are further

used to correct grassland canopy height, and comparing with in situ

data to demonstrate the feasibility of the correction method. Our
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study highlights that the accuracy of UAV LiDAR-derived

grassland canopy height estimation can be improved based on

scan angle, providing a reference to map grassland canopy height

and height-related parameters more accurately at regional scale.
2 Materials and methods

2.1 Study area

This study is conducted at the National Hulunbuir Grassland

Ecosystem Observation and Research Station (NHGEORS) (central

coordinates: 49°19ˊ56″N, 119°57ˊ18″E) located in the center of the

Hulunbuir meadow steppe in the northeast of Inner Mongolia,

China (Figure 1). It is one of the most typical temperate meadow

steppes in China, belonging to the temperate sub-humid zone with

mean annual precipitation of 380–400mm, mean annual

temperature of -2–1°C and humidity of 49%–50% (Barneze et al.,

2022; Shen et al., 2022). The landform is the undulating hill in the

piedmont of Greater Khingan Mountains with the elevation ranging

from 650m to 700m. The main soil is the light loamy chernozem

and dark chestnut soil developed on the parent material of loess.

As the typical area for observation and research on the structure

and function of temperate meadow grassland ecosystem, more than

30 dominant species were recorded in our field measurements and

several grassland communities could be distinguished, including

Poaceae (Leymus chinensis, Stipa baicalensis and Cleistogenes

squarrosa), Fabaceae (Astragalus laxmannii and Oxytropis

myriophylla), Asteraceae (Artemisia scoparia, Artemisia frigida
Frontiers in Plant Science 03
and Klasea centauroides), Amaryllidaceae (Allium tenuissimum

and Allium polyrhizum), and Ranunculaceae (Thalictrum

squarrosum and Clematis hexapetala) (Zhu et al., 2019). The

grassland structure in this region has obvious hierarchical

differences, especially in the canopy height due to the high

diversity of grassland species. A representative grassland area

covering about 400×400m with rich species and significant

canopy height differences is selected for UAV flight experiment

and method development in this region.
2.2 Data acquisition

2.2.1 Field measurements
The field measurements data were collected from August 1 to 6

in 2021. A total of 32 sample plots were uniformly distributed in the

northwest and southeast regions of the study area. Each plot was

1×1m in size and it was divided into 25 investigation units with

0.2×0.2m. Within each unit, all species and their respective

numbers were recorded and the height of each dominant species

was measured at least three times from three different individual

plants. Therefore, the mean height of each unit could be calculated

as the mean height of each species, weighted by species abundance.

Plot-level canopy height was obtained by averaging the mean height

of each unit. Besides, the central coordinate pairs of each sample

plot were recorded by Trimble GeoXH 3000 handheld GPS

(Trimble Navigation Ltd, Sunnyvale, USA) and the differential

correction was performed to minimize the position errors and

obtain a decimeter-level positioning accuracy.
FIGURE 1

The location of National Hulunbuir Grassland Ecosystem Observation and Research Station (red star) and land cover data with 10m spatial resolution
from ChinaCover2020 (left) (Wu et al., 2017), and UAV RGB image with 32 field-measured sample plots and photographs (right).
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2.2.2 UAV LiDAR data acquisition
and preprocessing

The flight campaign for acquiring the UAV LiDAR data of the

study area was conducted on August 6, 2021 using DJI M600 UAV

platform (DJI, Shenzhen, China). LiAir VH Pro LiDAR scanning

system (Green Valley Inc., Beijing, China) was equipped, emitting

905nm pulses at a frequency of 480,000 pulses/second with a

detection range of about 320m. The integrated LiAir VH Pro

system equipped with global navigation satellites system (GNSS)

and inertial navigation system (INS) provided high-precision

positioning information of 5cm for UAV LiDAR data. The UAV

flew around 100–120 m above ground level with a flight speed of 5–

6 m/s. The maximum scan angle of ±40° and more than 50% flight

strip overlap were set, resulting in an average point cloud density of

248 points/m2. Additionally, UAV RGB images of the flight region

with 2cm spatial resolution were obtained synchronously with

LiDAR data acquisition, which could be conducive to

determining the boundaries of sample plots. Among the ground

sample plots, 19 sample plots were scanned twice with different scan

angles by UAV laser scanner, while 13 sample plots were scanned

once, thus, a total of 51 observation samples were acquired.

Before extracting the height of grassland canopy, preprocessing

of denoising and filtering for UAV LiDAR data were performed.

Outliers were identified and eliminated when the distance from the

center point to its nearest neighboring point was more than a

threshold, which was determined as five times standard deviation of

the distance (mean distance + 5×std) in this study. After denoising,

a local minimum filtering algorithm was applied to identify seed

ground points within each investigation unit (0.2×0.2m), which was

proved to be an effective method for ground finding (Wang et al.,

2017; Zhao et al., 2022). The rest laser returns points were

considered vegetation points. The vegetation and ground points

were classified by the commercial software Terrasolid (Terrasolid,

Helsinki, Finland).
2.3 Methods

2.3.1 Estimation of mean canopy height and
extraction of scan angle

There are several methods commonly used to extract height

parameters, such as based on 95th or other percentiles (Zhao et al.,

2022) and rasterized canopy height model (CHM) (Wang et al.,

2017; Zhang et al., 2021). In this study, we estimated grassland

canopy height by building the CHM. A digital surface model (DSM)
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and digital terrain model (DTM) with 0.1m spatial resolution were

generated by triangulated irregular network interpolation based on

vegetation points and ground points, respectively. CHM was

established by subtracting DTM from DSM, and the value of each

pixel was the estimated mean height of all plants within this pixel.

To ensure the comparability with measured heights from ground

sample plot (1×1m), we extracted all the pixels (10×10) within each

ground sample plot from the CHM, which were located by central

coordinates and high-precision UAV RGB images, and the mean

CHM value of all pixels was calculated as the estimated mean

grassland height by LiDAR. Meanwhile, the mean scan angle

(absolute value) of all point clouds within these pixels at one scan

was calculated as the scan angle of the corresponding

observation sample.

2.3.2 Division of modeling and validation datasets
We divided the sample plots into two datasets for the modeling

and validation of height correction, respectively. The modeling

dataset included the sample plots with single scanning and the

first scan data of the sample plots with double scanning (N = 32),

while the second scan data of the sample plots with double scanning

were used as validation dataset (N = 19) (Table 1). From the table,

similar data distributions were represented between two datasets

and informed a reasonable division of our samples.

2.3.3 Height correction
Two indicators were adopted to represent the height

information loss in our study, including height loss (Hloss) and

height loss ratio (Hloss Ratio) calculated as follows:

Hloss=Hmeasured−Hestimated

Hloss Ratio= 
Hloss

Hmeasured

Where Hloss was the loss of grassland canopy height at the level

of sample plot; Hmeasured and Hestimated were the canopy height

measured on the ground for each sample plot and their

corresponding estimated mean canopy height based on UAV

LiDAR data, respectively. Hloss  Ratio was the proportion of

height information loss to the measured grassland canopy height.

The relationships between height loss indicators and scan angle

were determined based on a simple linear regression model to

quantify the effects of scan angle on grassland canopy height

estimation. F-test was adopted to test the significance of these

relationships at levels of 0.01 and 0.05. In order to further analyze

the effect of plant height on the relationship between scan angle and
TABLE 1 Statistics of field-measured grassland canopy height and the LiDAR scan angle of the observation samples for modeling and validation
datasets.

Dataset Parameter Maximum Minimum Mean STD

Modeling dataset (N=32)
Height from ground (cm) 63.9 29.6 45.6 8.19

Scan angle (°) 40 1 15.41 10.68

Validation dataset (N=19)
Height from ground (cm) 63.9 29.6 46.62 9.23

Scan angle (°) 40 4 18.5 8.58
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the loss of grassland height, we also compared the performance of

the relationships among three segmented height ranges of ground-

measured canopy height (25–40cm with 12 samples, 40–50cm with

10 samples and 50–65cm with 10 samples), which was divided

according to the plant functional groups with different plant

competitive ability (Koyanagi et al., 2013; Ladouceur et al., 2019)

as well as combined the common principle of sample equalization.

Additionally, we used a t-test to test the significance of the

differences in height loss between the three sets.

According to the determined relationships between height loss

indicators and scan angle of the modeling dataset within holistic

and segmented height ranges, two forms of correction method

(holistic correction and segmented correction) were adapted to

calculate two height loss indicators of the validation dataset and

subsequently used them for the height loss correction as follows:

H
0
estimated=Hestimated+Hloss

H
0
estimated=Hestimated*(

1
1−Hloss Ratio

)

Where H
0
estimated was the final grassland canopy height of each

sample plot within the validation dataset estimated by UAV LiDAR

data after correcting the loss of grassland height determined byHloss

or Hloss  Ratio, which were obtained from the relationships between

scan angle and them.
2.3.4 Accuracy assessment before
and after correction

We used the validation dataset to assess the performance of the

height correction method by comparing the coefficient of

determination (R2), root mean squared error (RMSE) and mean

absolute percentage error (MAPE) before and after correction.

Besides, the 1:1 line was used to measure the deviation of the

UAV LiDAR-estimated grassland height from the ground-
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measured height. Detailed descriptions of the Eqs. were shown as

follows:

R2=1−o
n
i=1(yi−byi )2

on
i=1(yi−yi)

2

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi−byi )2

s

MAPE=o
n

i=1

yi−byi
yi

���� ����� 100%
n

where n was the number of validation sample plots; yi and ŷi
were the measured and predicted values of the ith sample plot; yi was

the mean measured value of all the validation sample plots.
3 Results

3.1 Grassland height estimation
before correction

Grassland height estimated by UAV LiDAR showed a low

accuracy (R2 = 0.29, p< 0.01, RMSE = 27.59cm) and a significant

underestimation by comparing with the field-measured height

(Figure 2A). The field-measured grassland canopy height for the

plots of the modeling dataset distributed between 26.9cm and

63.9cm with an average of 45.6cm, while the corresponding UAV

LiDAR-estimated height data only ranged from 10.5cm to 34.4cm

with a mean height of 19.9cm.

Our results also showed inconsistent performance of UAV

LiDAR-derived grassland canopy height in three different height

ranges (Figure 2B). Highest correlation between measured height

and estimated height was found in the height range of 50–65cm (R2

= 0.34, p< 0.05), which better than that of all samples (Figure 2A),
A B

FIGURE 2

Plot-level measured canopy height versus estimated canopy height from CHM in whole height ranges (A) and three height ranges (25–40cm, 40–
50cm, 50–65cm) (B) for the modeling dataset.
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but it also had maximum underestimated deviations with MAPE of

60.7%. Beyond our expectations, UAV LiDAR basically failed to

estimate the grassland height which was in the height range of 25–

40cm and 40–50cm with R2 = 0.07 and 0.02 (p > 0.05) and even it

showed a negative performance in the height range 40–50cm.
3.2 Relationships between scan angle and
height loss

We compared the relationships between scan angle and two

height loss indicators based on the samples of the modeling dataset

shown in Figure 3. There was a stronger significant negative

relationship between scan angle and height loss ratio (R2 = 0.71,

p< 0.01) than height loss (R2 = 0.18, p< 0.01). In the scan angle

range of 0–40°, the loss of grassland height estimated by UAV

LiDAR ranged from 14.3cm to 40.1cm, while the ratio of the loss

ranged from 42% to 74%.

The stronger linear negative relationships between scan angle

and two height loss indicators were also found when the canopy

height ranges of plants themselves were considered (Figure 4). The

height loss ratio still showed higher correlations with scan angle (R2

from 0.78 to 0.86) than height loss (R2 from 0.69 to 0.79). The

highest correlation between height loss ratio and scan angle

appeared in the height range of 25–40 cm (R2 = 0.86, p< 0.01),

while it was 40–50cm for height loss (R2 = 0.79, p< 0.01). The height

loss ratio showed consistent variation with scan angle changes for

the height ranges of 25–40cm and 40–50cm (slope = -0.76 and

-0.74), which was lower than that in the range of 50–65cm (slope =

-0.89). Meanwhile, the maximum fitting values of the loss ratio for

three height ranges were different when the scan angle was 0

(66.36%, 70.56% and 76.22%, respectively).

Grassland canopy height information loss of sample plots

showed certain differences in three different height ranges (25–

40cm, 40–50cm and 50–65cm) when the scan angle between 0 and

40° (Figure 5). With the increase of mean canopy height of plants at

plots level, the mean height loss increased from 23.1cm (25–40cm)
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to 26.8cm (40–50cm) and 34.0cm (50–65cm) and there were

significant differences between each pair at 0.01 level. By

comparison, the differences of height loss ratio between the three

height ranges were non-significant and they showed similar

averages with 59.5% in 25–40cm and 57.9% in 40–50cm and

60.7% in 50–65cm, which closed to the average of all

samples (58.3%).
3.3 Grassland height after correction

After correcting the loss of grassland height, for the validation

dataset, the estimated grassland height based on UAV LiDAR

showed significantly improved accuracy with R2 increased from

0.23 to 0.68 (holistic correction) and 0.82 (segmented correction),

RMSE decreased from 19.17cm to 5.26cm and 3.85cm, respectively

(Figure 6). It was also demonstrated that the segmented correction

performed better than holistic correction for correcting the height

loss as shown in Figures 6B, C.
4 Discussion

4.1 Effects of scan angle

Our study demonstrated that the loss of grassland height was

strongly related to the scan angle, and there was a larger height loss

with the decreasing scan angle. Actually, with the increase of scan

angle, more tilted laser beams hit the targets and there is a larger

contact surface between the plant individual and the laser beams as

well as more chances to encounter gaps within the canopy

(Kamoske et al., 2019). It demonstrated that a higher probability

of getting information at the top of the plant and penetrating deeper

into the dense canopy to obtain the ground when the scan angle is

larger. Moreover, we compared the estimated height of plant and

ground, then found limited differences for ground elevation and

larger differences for grassland canopy height between two scanning
FIGURE 3

The relationships between scan angle and height loss (A) and height loss ratio (B).
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with various scanning angles, which indicated the height loss came

from the underdetection of highest points of plant canopies.

Although height information loss was common in grassland when

estimating height based on UAV LiDAR, whether it used point-

based, CHM-based or voxel-based methods (Streutker and Glenn,

2006; Guo et al., 2021b), this part of the loss could be effectively

corrected by scan angle according to our study. After the correction

based on scan angle, the accuracy of grassland canopy height

estimation based on UAV LiDAR was significantly improved
Frontiers in Plant Science 07
(Figure 6) and closer to the real. These enabled further accurate

estimation of ecological parameters related to grassland canopy

height, such as grassland aboveground biomass (Michez et al., 2019;

Morais et al., 2021), functional diversity (Lavorel et al., 2007) and

revegetation effectiveness (Li et al., 2019).

Moreover, simple linear relationships between scan angle and

the loss of grassland height were built based on the assumption that

all the height information loss was caused by scan angle in our

study. However, obtaining the peak information of each individual
A B

FIGURE 5

Mean canopy height information loss (A) and height loss ratio (B) differences of sample plots in three different height ranges (25–40cm, 40–50cm
and 50–65cm). ** represents the significance at the level of 0.01 and NS represents non-significant for t-test.
FIGURE 4

The relationships between scan angle and height loss or height loss ratio at three different height ranges [25–40cm (A–D); 40–50cm (B–E); 50–
65cm (C–F)].
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plant by UAV LiDAR in grassland was still a challenge due to the

small size of individual grassland plants or the lack of obvious

crowns (Zhao et al., 2022). Thus, determining the amount of height

information loss caused by scan angle through multiple repetitive

observations on the same grassland as well as combined with the

results of model simulations would be conducive to extracting

grassland canopy height information or other structural traits

more accurately based on UAV LiDAR. Multiple scanning

observations can help us to determine the height loss caused by

scanning angle and can also be applied in the grassland height

estimation by averaging the heights of multiple corrections.

Specially, it was also informed that the loss of grassland height

caused by scan angle was further related to the height of plants

themselves. Higher grassland plants tend to have more height loss

within the same range of scan angles, while the mean height loss

ratio was similar among three height ranges (Figure 5), which could

explain the lower correlation between scan angle and height loss

than height loss ratio without the height separation process

(Figure 3). Although the use of height loss ratio reduced the

effects, we still obtained a better performance of height estimation

after correcting the loss of grassland height based on segmented

correction than holistic correction (R2 = 0.68 and 0.82, respectively)

because of the better fitting relationships between scan angle and

height loss ratio in three height ranges (25–40cm: R2 = 0.86, 40–

50cm: R2 = 0.78 and 50–65cm: R2 = 0.82) than that in the whole

height range (25–65cm: R2 = 0.71). Therefore, the application of the

correction method would depend on the grassland condition. The

holistic correction method could be established and used to correct

the loss for the grassland with small height differences in a regional

scale. But for the grassland with various layers of height, there

would be a better performance using the segmented correction

method, which needed a step about layering the grassland heights in

advance. A few metrics relative to the grassland height might be

considered for the preprocessing of layering, which could be

predicted accurately by remote sensing, such as biomass and

some biochemical traits (Jin et al., 2013; Lussem et al., 2019).

Additionally, the performance of estimated grassland height

was inconsistent between three height ranges (Figure 2), which
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mainly depended on the effects of various scanning angles. Within

each height range, scanning angles determined the loss of grassland

height and further affected the height estimation accuracy. For

example, the negative relationship between the field-measured and

estimated canopy height was found in the height range of 40-50cm,

because the sample plot with relatively higher plants (>45 cm) had

smaller scanning angles and resulted in larger height loss.

Although our results demonstrated that the height loss

correction models were effective when the scanning angle was less

than 40 degrees, whether there was still a significant linear

relationship between scanning angle and height loss or would

tend to saturate when the scanning angle larger than 40 degrees

needs to be further explored. Limited by the parameters of the UAV,

the scanning angle was difficult to obtain the complete data between

0-90 degrees, it could be considered in combination with the

terrestrial laser scanner or simulation to complete the entire range

of data acquisition and analysis in the future study.
4.2 Height estimation among
different grasslands

Our results demonstrated that the ability of UAV LiDAR for

grassland canopy height estimation varies across different ranges of

grassland height (Figure 2). Different grassland types commonly

showed various structures due to the differences in dominant

species and the height of the grassland was one of the main

manifestations, which was even used to distinguish the grassland

types (Wu et al., 2017). Moreover, grassland types or conditions

were usually considered to be an important input or influence

factors to estimate ecological parameters by remote sensing (Li

et al., 2016; Guo et al., 2021a; Gholizadeh et al., 2022a), which were

also considered to be a vital cause of the different performance of

UAV LiDAR-derived grassland height.

In this study, we proved that grassland height estimated by

UAV LiDAR data was severely affected by scan angle and it could be

estimated with high accuracy after the scan angle-based correction

on the temperate meadow grassland. By comparing the profiles of
FIGURE 6

Estimated canopy height versus measured canopy height before (A) and after correcting the height loss based on the holistic correction (B) and
segmented correction (C) for validation dataset.
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grassland height estimated by UAV LiDAR data along the direction

perpendicular to flight path (Figure 7), the estimated height showed

inverted parabolic trends with scan angle both in our study and in

the temperate typical steppe located in Inner Mongolia grassland

ecosystem research station (43°38′ N, 116°42′ E). The similar

performance in two temperature grassland types demonstrated

the universal effects of scan angle on grassland canopy height

estimation based on UAV LiDAR.

However, we did not determine the specific relationships

between scan angle and the loss of grassland height and analyze

the difference in the relationships between the two grassland types

due to the lack of ground samples data. Conducting similar work in

various grassland types to validate the universality of the method

would be valuable for building a more robust grassland height

estimation model under multiple conditions. Compared with the

meadow steppes, the lower vegetation cover and simpler vertical

structure of typical or desert steppes may affect the height

correction results at different height layers due to the differences

in the reception of UAV LiDAR signals. For typical or desert

steppes, the methods usually were conducted by constructing

empirical relationships between in situ data and optical remote

sensing data (Lussem et al., 2019),or building complex machine
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learning models, which required large amounts of ground survey

data(Viljanen et al., 2018; César De Sá et al., 2022). Therefore,

analyzing the performance of estimating the height towards

different grassland types combining LiDAR and optical data is a

necessary future work for ecological applications.
4.3 Impacts of UAV LiDAR data for
grassland height estimation

We used a CHM-based method that relied on the UAV LiDAR

data to estimate the grassland height, and the spatial resolution of

CHM was commonly regarded as a crucial issue affecting the

accuracy of height estimation. The selection of optimal spatial

resolution of CHM had been widely explored in forest

ecosystems, while it was rarely reported in grasslands. For

example, it was proved that the spatial resolution of CHM

between 0.1m and 2m all performed well in estimating the

canopy height of forests (Yin and Wang, 2019; Gu et al., 2020;

Picos et al., 2020). However, we found that grassland height

estimation showed less tolerance to the CHM resolution than

forests after testing the performance of CHM with varied spatial
A

B

FIGURE 7

Profiles of estimated grassland height with scan angle along the direction perpendicular to the flight path in our study (A). temperate meadow
steppe) and Inner Mongolia grassland ecosystem research station (B). temperate typical steppe).
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resolutions (0.05m, 0.1m, 0.2m, 0.5m and 1m). We demonstrated

that it had the best performance at the spatial resolution of 0.1m

and it might fail when the spatial resolution of CHM is coarser than

1m (p > 0.05) before correction (Figure 8), which might be relative

to the smaller size of grassland plants. The coarser spatial resolution

would lose the details of grassland individual canopy, while finer

spatial resolution might introduce redundant information (i.e.,

canopy gaps) (Sadeghi et al., 2016). The best resolution should be

appropriate to or better than the size of the individual plants.

Moreover, the effect of CHM spatial resolution on canopy height

estimation varies across forest types (Sadeghi et al., 2016; Yin and

Wang, 2019; Liu et al., 2020) due to various species, sizes and

postures of plants. The optimal spatial resolution of CHM for

estimating grassland canopy height could be a focus of future

work and it might also be inconsistent for different grassland

types.Additionally, although the accuracy of grassland canopy

height estimation was affected by the spatial resolution of CHM,

the performance in each spatial resolution was improved after

correcting the effects of scan angle. The scan angles of adjacent

points were basically the same and the angle differences along the

direction perpendicular to the flight courses still existed. Therefore,

the effects of scan angle were relatively independent of the spatial

resolution of CHM.

Point cloud density was considered to be another factor from

UAV LiDAR data affecting the accuracy of grassland canopy height

estimation (Peng et al., 2021; Zhao et al., 2022). Lower point cloud

density usually decreases the probability of obtaining information

about the targeted plants. For example, we estimated grassland

height at the spatial resolution of 1×1m including 10×10 pixels, but

the estimated maximum height from UAV LiDAR data did not

occur at the same location as the maximum height from the ground

sample survey data shown in several sample plots both before and

after correcting the loss of height. The point densities of these

sample plots were counted and found to be lower (124–164 points/

m2) than the average point cloud density (248 points/m2). Although
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it did not significantly affect the estimation of mean height at the

sample plot scale in our study, it could lead to that the highest plant

individuals were not always detected at the top position and this

relative information was lost due to the insufficient point cloud

density. Moreover, it had been shown that the accuracy of

monitoring grassland height tended to stabilize when the point

cloud density exceeded a certain threshold for terrestrial laser

scanning (Zhao et al., 2022), but there were fewer studies

quantified this relationship based on UAV LiDAR-based height

and the point density threshold. Usually, points cloud density is

related to the UAV or sensor parameters (i.e., flight area, flight

speed and pulse frequency). Therefore, reconciling appropriate

point cloud density and projected grassland monitoring area

would be clearly an important issue in mapping structural traits

related to canopy height over regional grasslands.
5 Conclusions

In this study, we demonstrated that scan angle was a main cause

for the difference of grassland canopy height loss in the horizontal

direction and developed a grassland canopy height correction

method based on scan angle. There were significant linear

relationships between height loss indicators and scan angle, and

height loss ratio had a stronger relationship with scan angle than

height loss, which was used to correct the height loss of grassland

canopy estimation. After correction, the accuracy of grassland

canopy height estimation was improved with R2 from 0.23

(RMSE = 19.17cm) to 0.68 (RMSE = 5.26cm) for holistic

correction and 0.82 (RMSE = 3.85cm) for segmented correction.

Moreover, due to the influence of the canopy height of the grassland

itself, different fitting linear relationships between scan angle and

height loss indicators among three height ranges were found, which

explained the better performance of segmented correction method.

By exploring the effects of scan angle on grassland canopy height
FIGURE 8

The performance of the estimated grassland height based on UAV LiDAR-derived CHM with varied spatial resolutions.
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estimation, our study demonstrated the necessity for correcting the

effects of scan angle on LiDAR-derived canopy height in grasslands,

which should be a crucial preprocessing step for estimating

grassland canopy height accurately.

Our study illustrated that the grassland canopy height can be

estimated with high accuracy by UAV LiDAR data after correction

based on scan angle. Continuous height maps for regional grassland

can be described and further used for ecological applications, such as

grassland aboveground biomass estimation or functional diversity

assessment. Currently, research about the height estimation in

grassland by UAV LiDAR has been increasing, we suggest some

crucial issues caused by grassland conditions, data acquisition and

environment factors should be addressed in the future for improving

the ability of monitoring grassland structure and functions. These will

provide references to bridge the scale gap of grassland structural trais

estimation between sample plot measurements, regional UAV or

airborne and even global satellite monitoring.
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