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A tremendous commitment of resources is needed to acquire, understand and
apply battery data in terms of performance and aging behavior. There are many
state of performance (SOP) and state of health (SOH) metrics that are useful to
guide alignment of batteries to end-use, yet how these metrics are measured or
extracted can make the difference between usable, valuable datasets versus data
that lacks the necessary integrity to meet baseline confidence levels for SOP/SOH
quantification. This work will speak to 1) types of data that support SOP and SOH
evaluations on mechanistic terms, 2) measurement conditions needed to assure
high data integrity, 3) equipment limitations that can compromise data high
fidelity, and 4) the impact of cell polarization on data quality. A common goal
in battery research and field use is to work from a data platform that supports
economical paths of data capture while minimizing down-time for battery
diagnostics. An ideal situation would be to utilize data obtained during normal
daily use (“pulses or cycles of convenience”) without stopping the daily duty cycles
to perform dedicated SOP/SOH diagnostic routines. However, difficulties arise in
trying to make use of daily duty cycle data (denoted as cycle-by-cycle, CBC) that
underscores the need for standardization of conditions: temperature and duty
cycles can vary over the course of a day and throughout a week, month and year;
polarization can develop within an immediate cycle and throughout successive
cycles as a hysteresis. If CBC data is envisioned as a data source to determine
performance and aging trends, it should be recognized that polarization is a
frequent consequence of CBC and thus makes it difficult to separate reversible
and irreversible components to metrics such as capacity loss and resistance
increase over aging. Since CBC conditions can have a major impact on data
usability, we will devote part of this paper to CBC data conditioning and
management. Differential analyses will also be discussed as a means to detect
changing trends in data quality. Our target cell chemistries will be lithium-ion
types NMC/graphite and LMO/LTO.
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1 Introduction

Batteries are an integral part of daily life. Whether used in
electric vehicles (EVs) or consumer electronics, most individuals
have contact with a battery every day. This abundant use necessitates
the need to effectively track state of performance (SOP) and state of
health (SOH). These two and other metrics help ensure that the
battery can meet consumer expectations and provide critical
information on how batteries need to be replaced or used over
the course of their life. Tracking state often relies on the ability to use
electrochemical signatures or values from the battery during
operation (Dubarry et al., 2017; Gering, 2017; Qian et al., 2019;
Ng et al., 2020).

Many battery parameters used in SOH or SOP determinations
are not simple values directly obtained from battery test equipment.
Instead, time-series measurements are often made with the results
then used directly or for secondary calculations. As the complexity
of the time-series measurements increases and as calculations are
made, the potential for measurement uncertainty to impact the
values used for SOH or SOP determination also increases (Morrison
et al., 2001). Understanding how measurement uncertainty and
variation in measured values applies to different experiment and
field data acquisition scenarios is critically important for researchers,
developers, and those interested in deployment advance new battery
technologies or expand the use cases that batteries are used in. This
aspect of data integrity helps define the context of “usable” data.

With respect to electrochemical data two common approaches for
data capture are often used. Inmost early-stage work straight cycling is
typicallymore common for capturing aging trends. Formore advanced
batteries, researchers will often incorporate a combination of cycling
and periodic tests such as reference performance tests (USABC, 2015).
Both can be used to make predictions on life and performance (Kunz
et al., 2021; Kim et al., 2022a), but there are also disadvantages to both
data types. For periodic evaluation such as reference performance tests
(RPTs), items need to be brought to a normal condition. This requires
time and effort and reduces the ability for continuous, real-time
evaluation of the system. For individual cycle data concerns on the
interplay between kinetic, thermodynamic, and mass transport
processes come into play as the cycling which is used is often at a
higher rate than used for RPTs. While there are possible limitations to
both, for most in operando assessments and predictions the ability to
use cycle data is critical, but there needs to be understanding on the
nature of the specific data used.

Herein we detail many of the implications of data usability and
highlight the need to understand items like measurement uncertainty
when performing analysis on battery data. We also point to the need
to qualify and understand the impact that different aspects including
use case may have on the data that is collected. We discuss data
reliability issues stemming frommeasurement equipment limitations,
conditional factors such as higher cycling rates that cause cell
polarization, and other temporal consequences such as temperature
drift due to cell heat generation or to environmental variance.

2 Materials and methods

A key role for Idaho National Laboratory (INL) is research on
battery energy storage (BES). INL has served in this role for more

than 30 years as a trusted partner with the U. S. Department of
Energy. Within this research space, the topic of battery aging is a
central theme, considering various battery chemistries, cell
architectures, test conditions and aging mechanistic pathways.
Accurate and quantitative evaluations of battery degradation call
for accurate, reliable data.

2.1 The case for improved data quality and
usability

Data quality is a practical consideration in field use, since battery
management system (BMS) decisions and actions will benefit from
high data integrity over regimes of current, voltage, temperature and
cycling rate (I,V,T,rcycle). Data that is encumbered with polarization
effects will not provide a reliable platform for BMS actions, nor will it
provide satisfactory usable data for precise battery aging analyses.
That is the prevailing reason why battery aging data for capacity loss
from RPT obtained over slow cycling rates is preferred over daily
cycle-by-cycle (CBC) data that is based on more rapid cycling
conditions.

Low measurement uncertainty carries several benefits. Battery
failure precursors are easier to capture when measurement error is
low since there will be less competing noise to interpret. Modeling
and analysis also call for clean data so that the physics are properly
rendered for actual physical phenomena, and not burdened with
measurement uncertainty. BMS actions will be more precisely
guided through higher quality data. Thus, battery data integrity
has to meet or exceed expectations for the intended use, and when
accomplished will improve the efficiency and economics of battery
energy storage (BES).

As we will demonstrate herein, data noise can vary between data
types, e.g., capacity loss vs. resistance rise (conductance loss), due to
the compounding of error that will attend metrics like resistance
measurements.

2.2 Test articles

The test articles for this work are lithium-ion cells, ranging from
prototypes to commercial-grade products. For this study, cells are
divided between those of an NMC/graphite architecture, and cells
comprised of a lithiated titanium oxide (LTO) anode and a lithium
manganese oxide (LMO) cathode, collectively denoted LMO/LTO.
The NMC cell group served our research on battery extreme fast
charging (XFC), while the LMO/LTO cells are being tested to
understand battery aging under anticipated charging station
conditions that utilize BES-assisted energy delivery to electric-
drive vehicles. To facilitate testing, well-calibrated test channels
are matched to the anticipated voltage and current conditions of
the batteries on test, and ancillary equipment such as environmental
chambers (BTZ-133, ESPEC corp. or similar) are used to ensure
consistent thermal conditions. Most of the data given herein was
obtained through Maccor Series 4,000 testers (MACCOR, Inc.),
denoted as units “21a” and “37”. Maccor 21a is rated at 0–5 V, with a
single 30 A current range. Maccor 37 is rated at 0–5 V, with 0.5, 5,
and 50 A current ranges for each channel. Specifications for these
tester units are summarized in Appendix A. A relevant summary of
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the NMC cell chemistries and related test conditions are given in a
recent publication on accelerated methods for battery aging
predictions (Kim, et al., 2022a). Test conditions for the LMO/
LTO cells are given in Table 1, Table 2, covering cycle-life and
calendar-life conditions.

2.3 Categories of data measurement
uncertainty

Data measurement uncertainty can arise from measurement
equipment limitations, conditional factors such as higher cycling
rates that cause cell polarization, and other temporal consequences
such as those tied to inadequate thermal management of the
batteries while on test. Regarding cell polarization, this is
caused chiefly from electrolyte concentration polarization (CP)
that develops in a cell due to a current(s) of high enough
magnitude that do not allow reversible relaxation of the
electrolyte concentration gradients during the cycling.
Ultimately, polarization is tied to the electrolyte diffusion rates
through the porous structure of the electrodes and separator and
their absolute thicknesses. Polarization can be manifest for a single
cycling event, and can be carried forward in time through
polarization hysteresis (PH) if there is insufficient rest time
between cycling events. Also affecting data usability is the data
acquisition rate, which can range from being too low (causing
sparse datasets), to too high (creating excessively large datasets
more difficult to manage). Lastly, we recognize that cell design can
have a profound influence on the achievable thermal management
and related temperature gradients within cells under test. Such
gradients can cause localized aging and further complicate
understanding the aging mechanisms.

2.3.1 Equipment limitations: Test channel accuracy
and precision

Careful tester channel selection is particularly important when
the suite of tests to be performed on a cell includes both high- and
low-rate tests. In the case where the tester channel current
measurement accuracy is a percentage of the chaennel’s full scale
across its usable range, accommodating for high current while
making accurate measurements on the low current tests can be
accomplished by using a multi-range channel, or switching among
channels with ideal current ranges between tests. Similarly, a current
sensor operating in a battery management system under varying,
real-world conditions, operating near the bottom of its range will
have the same limitations as in the lab, and this effect canmanifest as
errors in battery state estimationand control.

Baseline error bars should be based on testequipment accuracy
specifications (e.g., 0.025% of full scale for current, as given in the
Appendix A for the referenced Maccor test channel specifications),
and these error bars might be added to by conditional uncertainties
and temperature externalities. For example, temperature drift due to
seasonal changes or conditions that create a hot spot not well
managed by thermal management could carry with it a temporal
shift in something like measured capacity or resistance. While not an
outcome of tester limitations, such temperature effects should be
carefully captured and studied to determine their relative impact on
overall data precision.TA
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To conclude, whether in the lab or in the field, it is important
that sensing equipment is sized to best match the predominant cell
usage conditions, possibly by switching between the most
appropriately sized sensor if possible. Some battery management
systems may rely on subtle signatures of changing parameters as
precursors for unsafe conditions, and it is important to avoid false
positives or negatives due to measurement error.

2.3.2 Impact of cell polarization on data usability
Polarization is a common challenge in lithium-ion cells,

which can manifest within a single cycling condition through
CP or be passed from cycle to cycle under a growing hysteresis,
PH. As mentioned above, polarization is tied chiefly to the
electrolyte diffusion rates through the porous structures of
the solid media (electrodes and separator), and the relaxation
kinetics of polarized conditions are made more problematic for
thicker electrodes and those with lower porosity and higher
tortuosity. In other words, the effective electrolyte diffusive path
length will control the rate of relaxation of CP when a cell is put
on rest. While polarization of the lithium concentrations can
occur in the solid state within the electrode materials, the time
and length scales therein are smaller than what we would find in
the porous (void) spaces across a cell, and so it is assumed the
solid state is not the constraining environment for polarization.
Thus, electrolyte CP is generally a reversible condition that can
be managed to produce more consistent data quality. Because CP
is tied to electrolyte properties and performance of such in
porous electrode structures, a change of electrolyte can
improve polarization relaxation kinetics and reduce the time
needed to “depolarize” a cell. Management of CP can also
involve temperature and to a lesser extent, SOC conditions.
Electrolyte diffusion is higher at higher temperatures (Gao et al.,
2022), so there can be an advantage to operating at slightly
higher temperatures to reduce CP provided this is weighed
against the increased aging rates that can emerge at such
conditions.

Standard battery accelerated degradation or lifetime tests
include cycling test under different aging conditions and
periodical evaluation through a reference performance test (RPT)
(Knap et al., 2018). Data from CBC and RPT are used to develop a
variety of diagnostic techniques. CBC data includes changes in
capacity, coulombic efficiency (CE), end-of-charge voltage

(EOCV), and end-of-discharge voltage (EODV) during cycling. A
low C-rate, such as C/10 or C/20, is used during RPT to assess the
State-of-Health (SOH) of lithium-ion batteries. As one example,
RPT data is used to understand battery aging based on differential
voltage and incremental capacity.

Figure 1 demonstrates the concept of RPT-based aging data
being different than that based on CBC conditions, considering
discharge capacity loss data acquired through RPT (C/20 rate) versus
CBC (C/2 rate). The 2 cells shown are from battery pack P462
(moderate loading NMC532/Gr single layer pouch cells), where cell
4 (panel A) was cycled at a 6C charge rate while cell 16 (panel B) was
cycled at a 4C charge rate. All CBC discharging was done at C/
2 constant-current rate. It is readily seen that the nature of the aging
conditions uniquely influences the differences between RPT and
CBC discharge capacity loss.

It is interesting to note that the performance and aging trends
observed in CBC data is not consistent with that from RPT data as
shown in Figure 2, which further breaks down the origins of
polarization and its hysteresis between cycles. It is mainly
because of polarization at higher C-rate. The capacity measured
during RPT provide a more of a true polarization-free assessment of
the available and accessible capacity. In contrast, capacity from CBC
data (C/2, 1C, 2C, etc.) will appear to give values less affected by
aging because only a small portion of the active material can be used
for energy storage from Beginning of Life (BOL) and forward due to
the polarization-limited lithium transport. That fraction, as
positioned within the whole capacity, will therefore represent a
lesser amount of material affected by irreversible aging mechanisms.
Nevertheless, because CBC data enables rapid prognosis/diagnosis
of battery aging, some studies have used it to understand battery
aging (Severson et al., 2019; Chen et al., 2021), although use of CBC
data for highly quantitative aging analyses must be done with care to
identify contributions from polarization.

2.3.3 Data acquisition rate and type (mV or dt step)
Capacity measurement during cycling or RPT are not

significantly affected by how frequently data recorded since it is
measured at cut-off conditions, which are commonly determined by
voltage or time. That is why data acquisition rate has been
disregarded in R&D and industry.

Recent advancement in diagnostic methods based on
electrochemical signatures have drawn more attention to the

TABLE 2 (B) BTMS calendar-life testing of LMO/LTO cells.

Group Aging temperature Aging type Aging voltage (V) Cell numbers

K 30 Calendar 2.604 78 28 66

L 30 Calendar 2.581 41 65 5

M 30 Calendar 2.426 45 1 69

N 40 Calendar 2.604 77 49 21

P 40 Calendar 2.581 19 33 88

Q 50 Calendar 2.8 3 34 20

R 50 Calendar 2.604 83 16 23

Maccor 21 Maccor 21 Maccor 37A
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data acquisition rate. For example, differentiation of
electrochemical signatures, such as incremental capacity (IC)
and differential voltage (DV), requires more frequent data
collection with less time and voltage step. If too large or too
small step size is used, it requires more intensive filtering methods
(i.e., higher filtering coefficients) to process data. In that case,
important information from raw data is possibly removed by
filtering or smoothing process. Even if cycling test focusing on cell
performance improvement, data needs to be collected with small
step size for comprehensive understanding of results, which can
be a guide to improve next tests. Data acquisition rate plays a more
important role during fast charging studies. Thermodynamic and
kinetic degradation become more obvious with an increase in

C-rate. Data acquisition rate needs to be more carefully
determined in order to gather thermodynamic and kinetic
contributions during fast charging.

On the other hand, analyzing database with too high data
collection rate leads intensive computational load. According to
published research (Fathi et al., 2014; Harlow et al., 2019), slow
cycling tests with an extremely low C-rate (C/150) took more than
10 years and long cycle life cells lasted over 5,000 cycles. Without
careful planning on the data collection rate, massive data would be
generated in these long-term tests. As big data and cloud computing
have attracted attention, data sharing, storage, and analysis become
more challenging when data size is too huge due to too small
step. For effective data collecting, careful planning of the data

FIGURE 1
RPT (C/20) and CBC (C/2) data differ due to how polarization affects accessible capacity. Pink curves represent the trendlines for CBC data just
following the RPTs, effectively removing polarization hysteresis effects between RPT conditions. Panel (A) shows cell 4 which was charged at a 6C rate
and had undergone lithium plating, while panel (B) shows cell 16 which was charged at a 4C rate but did not exhibit lithium plating.

FIGURE 2
Dissection of CBC battery aging data for NMC/Gr cells, identifying the progression of PH between RPT intervals. Examples of individual EODV and
EOCV are given, each spanning a 20-min period.
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acquisition rate by using both time step and voltage step is strongly
recommended.

2.3.4 Environmental chamber issues (lag time and
precision)

Our chambers are “climatic chambers” in terms of temperature,
but even they experience fluctuations that may vary over different
timescales, from the immediate, diurnal, and perhaps monthly or
seasonal variations. Precision and response rates of temperature
control might also vary with weather conditions, such as low versus
high humidity.

Additionally, we acknowledge that environmental chambers
used to control the ambient temperature of cells during testing
have limits to their rate of heat removal or addition. While we strive
to achieve uniform thermal conditions for all articles within an
environmental chamber, it is known that Joule heating during
cycling raises the cell’s temperature relative to the ambient
temperature. It is standard practice, when feasible, to install
thermocouples on cells at key locations to monitor such
temperature differences. This practice also helps understand if
there are any temperature variations across the chamber which
need to be accounted for when doing analysis. This “skin
temperature” is only a rough guide to cell temperature, since the
internal temperature can undergo appreciable gradients that cover
several degrees. As mentioned below, this creates a challenge to
assign a single temperature to the emergent data.

2.3.5 Cell design and other conditional
uncertainties (polarization consequences obscure
capacity and impedance)

Cell design can contribute to measurement uncertainty, such as
the outcomes that arise for using thicker electrodes. Since the
lithium-ion transport distances within the electrolyte phase grow
with increasing electrode thickness, electrolyte concentration
polarization deepens therein, and the electrode utilization
becomes worse with thicker electrodes. This becomes an issue of
balancing available active material with the thickness-dependent
path length for lithium transport. More material is accessible at
slower cycling rate because the lithium flux does not exceed the as-
polarized electrolyte transport capabilities over the entire path
length. As electrodes become thicker and/or rates become higher,
an imbalance is created wherein the flux cannot be sustained over
the entire path length, causing severe concentration polarization and
under-utilized active material in some cases (Gao et al., 2022).

It is worth noting that the cell-specific attributes that
contribute to polarization consequences can change with cell
aging. Porous structures may undergo extended growth of
passivation films over the battery lifecycle, which might impact
more severely the nano-porous regions, for example. Therefore,
management of CP and related relaxation kinetics could involve
adaptive measures that account for cell aging. By necessity such
measures should involve a more sophisticated method to
approaching and/or changing voltage limits, so that the voltage
change due to polarization stays within manageable values. Within
this polarization context, shorter power pulses or reduced power
levels can be consequences for an aging cell. However, other non-
polarization factors such as an increased voltage drop due to higher
ohmic resistance over aging can also affect when a cell reaches a

voltage limit, creating the possibility that a voltage limit is reached
due to higher overall cell impedance before substantial CP is
developed.

For high-energy cells with thicker electrodes, capacity measured at
C/20 will give more of a true polarization-free assessment of available
and accessible capacity. Measured over an aging timeline, the C/20 basis
will be an accurate reflection of all factors that contribute to capacity loss
in terms of loss of lithium inventory (LLI) and loss of active material
(LAM). Conversely, capacity measured at higher rates (C/2, 1C, 2C, etc.
Perhaps at CBC conditions) will appear to give values less affected by
aging since the polarization-limited lithium transport will allow only a
fraction of the active material to be involved in energy storage, from
BOL and forward. That fraction, as positioned within the whole
capacity, will therefore represent a lesser amount of material affected
by irreversible aging mechanisms.

Lastly, two other factors deserve mention. First, a battery’s form
factor can cause spatially-variant thermal performance and related
temperature gradients. This makes it difficult to assign a single
temperature to battery data and increases measurement uncertainty.
There can also be hot spots in battery packs where there are
temperature differences between cells. Collectively, these thermal
artifacts can cause significant impacts to data reliability and
usability, especially to metrics like cell resistance which is highly
sensitive to temperature. Second, the design of cell fixtures and the
quality of electronic connections can influence data measurement
quality. Simple examples include having fixtures that provide
consistent and perhaps adaptive pressure management for pouch
cells, and having low-impedance connections free of corrosive
conditions such as excessive moisture.

2.3.6 Externalities (temperature effects, seasonal
factors)

In addition to laboratory-based effects and impacts to error there
are conditions which often arise in the characterization and acquisition
of data from deployed BES. Deployed storage whether stationary or
electric vehicle batteries does not see uniform use and also is exposed to
non-uniform temperatures. On the temperature side fluctuations over
the course of the day as well as seasonal changes can all impact
measured quantities. This is especially true when measurements
have a significant contribution from impedance related to transport
in the electrolyte. As temperatures go up (or down) themeasured values
will change and can create referencing issues if not properly accounted
for. A practical method to help account for these impacts is to use a set
of two parallel thermalmeasurements in addition to the electrochemical
data acquisition. One on the cell and one for the ambient thermal
condition.

2.3.7 Elusive standard conditions for diagnostics
Unfortunately, all the items noted above related to measurement

uncertainty are not well collected in the literature and often are not fully
accounted for in education programs or are emphasized differently
from program to program. This lack of uniformity impacts the ability to
use all data for diagnostic or prognostic purposes. For that reason, there
is a need to drive more discussion across the battery community. Some
of this resides in how data is collected, but also in how researchers and
technologists consider using and sharing data that is collected (Ward,
et al., 2022). In addition to publishedwork and literature-based activities
the battery community needs to continue to evolve and refine best data
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practices as part of the student and early career development process,
which will support harmonization of battery data quality standards
over time.

2.4 Differential methods for CBC data:
Capacity and conductance loss rate analyses

Differential or rate analysis of raw data helps to explore
measurement variance for data employed in aging evaluations.
Herein we apply sigmoidal rate expressions (SRE) to describe aging
mechanisms that stem from LLI and LAM. Capacity and conductance
(denoted as K) losses are considered. Due to their smooth analytical
rendering over time, SRE-based rate analyses serve as a good statistical
baseline to establish a standard to compare against data variance. The
generalized form for an SRE is given as follows:

ψSL j, i*, t( ) � 2Mj
1
2
− 1

1 + exp ajt( )bj( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

which can be differentiated over time through analytical or
numerical methods. Here, “j” is the mechanism index, i* denotes
an arbitrary use condition, and “t” is time. The parameters (a, b, M)
are kinetic and thermodynamic terms that capture essential
information to describe the progression of a given battery aging

mechanism, and are well discussed elsewhere (Kim et al., 2022a).
Note that more than one aging mechanism can be active at a time. In
this work, SRE were used to describe capacity and conductance
losses of cells comprised of an LMO/LTO cell chemistry. SRE
regression of capacity and conductance loss data produced R2

values generally in excess of 0.995, allowing high confidence for
using the SRE differential outcomes for aging rate analyses.

Considering cell conductance loss, the differential with respect
to cycle count can be expanded as given below. Alternately, the
differential over time could be utilized, especially for cases of
calendar-life data.

dK

dncyc
� d 1

R

dncyc
� d I

V

dncyc
� d Itrue ± Ierror

Vtrue ± Verror
[ ]

dncyc
(2)

where the greatest measurement uncertainty occurs at

dK

dncyc
� d Itrue+Ierror

Vtrue−Verror
[ ]
dncyc

�
d Itrue 1+δI( )

Vtrue 1−δV( )[ ]
dncyc

(3)

Given the Maccor tester channel rated accuracies of 0.025% of
full scale for current (100*δI) and 0.02% of full scale for voltage
(100*δV), the greatest measurement uncertainty for differential
conductance data would only be less than +0.05% within a given
range. This infers there can be more powerful factors that influence
data uncertainty aside from equipment limitations.

FIGURE 3
Comparison of capacity versus RPT for representative LMO/LTO cells, showing (A) C/20 conditions as measured by 0.5 A versus 30 A channels, and
(B) C/1 conditions measured with the same channels. A notable mismatch is observed for measuring C/20 capacity with the 30 A channel.

FIGURE 4
Data comparison for a C/20 discharge capacity test of an LMO/LTO cell using (A) 30 AMaccor channel versus the Keysight multimeter, and (B) 0.5 A
Maccor channel range versus the Keysight multimeter.
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3 Results

3.1 Regarding equipment limitations

Consider a power cell that is aged in a cycling routine using a
10C rate, and then performs an incremental capacity test at regular
intervals, using C/20 charge and discharge current. Error in the
overall capacity measurement depends on the error in current

measurement of each sample used in the numerical integration of
current over the duration of the test. Temporal effects such as
temperature changes (due to ohmic heating or drift within the
ambeintenvironment within the temperature chamber) may arise
and influence measurement accuracy or the basis upon which the
data are compared.

Limitations on the availability of multi-range channels
necessitated that some cells be tested on channels with a single

FIGURE 5
Differential or incremental capacity signatures (dQ/dV) for an LMO/LTO cell, comparing C/20 data obtained through (A) 50 AMaccor range (orange)
versus the Keysight multimeter (blue), and (B) 0.5 A Maccor range (orange) versus the Keysight multimeter (blue). Panels (C) and (D) show the unfiltered
data for 50 A (blue) and 0.5 A (ornage) ranges for the tester and meter, respectively.

FIGURE 6
(A) dQ/dV signatures of an LMO/LTO cell at C/20 discharge (0.145 A) using the 50 A Maccor range (orange) versus the Keysight multimeter (blue).
Maximum possible ± variance is imposed, resulting in the red set of profiles. For the sake of clarity panel (B) enlarges the range of interest between
2.30 and 2.65 V.
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30 A charge and discharge current range to accommodate the 10C
cycling, while other identical cells were connected to multirange
channels with 0.5/5/50 A current ranges. These cells were cycled
identically from Vmax to Vmin at 30°C, with reference tests
completed every 60°days. The C/20 capacity measurements
during the reference test for a cell on the single range channel,
and for one on the multi-range channel are shown in Figure 3, with
their respective error bars for the current range used (0.025% of full
scale). While the 30 A single range tester measurements perform
well within the general accuracy, it is clear that the small C/
20 capacity degradation trend is not well captured. A 1C
discharge capacity test was also performed at the same interval as
part of the reference performance tests. While the C/20 capacity data
from the 30 A channel are not useful to show small changes in
capacity, the data were originally captured to use for IC analysis. It is
important to maintain the discipline of including error bars in
battery data, where feasible, since the data may act as guides for BMS
actions or human decisions.

To investigate the usefulness of the C/20 data for IC analysis
with varying degrees of current uncertainty, an experiment was
performed using an auxiliary precision current meter to

simultaneously capture log current for tests performed on both
0.5°A and 50 A range settings. These tests were performed
sequentially on the same cell, and the tester data are compared
across ranges and with the precision meter. Results are summarized
in Figure 4.

Despite the difference in current control and measurement on the
higher range channel, the features of the incremental capacity signature,
once processed (interpolated data from 2.7 to 1.8 V linearly with dV of
0.002°V, then Savitsky-Golay filter was used with nl and nr
parameters = 5.5, M = 3), match well between the high-res meter
data and the tester data for both high and low ranges, as seen in
Figure 5A,B. In the less accurate tester case, the peak intensity is slightly
greater than the meter because the tester was actually discharging at a
lower current than the target, resulting in over measured capacity of
about 1.5%. The peak locations are the same on the x-axis as expected,
because the voltage measurement characteristics are the same for the
tester at both current range settings. The unfiltered data from the tester
versus the meter are given in panels (C) and (D), respectively. Lastly,
Figure 6A,B indicate how the dQ/dV profiles in Figure 5 would shift
according to the maximum rated error for the Maccor 50 A channel.
Note that panel (B) enlarges the range of interest between 2.35 and
2.6 V. Again, the magnitude of the error bounds is driven by using a
high-amperage test channel to measure a small current at the C/
20 cycling condition. This can result in significant misdiagnosis of
the progression of aging mechanisms, for example.

The auxiliary meters used to collect high resolution data in
tandem with the Maccor Series 4,000 battery tester were both
Keysight 34401 A 6 ½ digit digital multimeters that were
calibrated with stated current measurement accuracy of +/-
0.216 mA and stated voltage measurement accuracy of 0.1 mV,
using the 1 A range. The voltage meter was run in the 10 V
range resulting in V measurement error of 0.1 mV [compare to
Maccor tester specification of 0.025% of 5 V = 1 mV (10x worse)].
Testing was done within 90 days of calibration of the tester and
voltage meter.

3.2 CBC versus RPT conditions: Identifying
and managing polarization

There are simple methods that can be used to quantify the
influence of CBC conditions on battery data, and a few are

FIGURE 7
Effect of charging C-rates on dQ/dV profiles for NMC532/Gr
pouch cells with moderate energy storage loading. In practical terms
the data becomes unusable above the 2C rate.

FIGURE 8
CBC profiles for EODV of an NMC811/Gr cell cycling at a 4CCCCV charge rate, (A) covering the entire test period and (B) isolating the final post-RPT
segment to demonstrate the magnitude of PH. In (A) the red dots represent the voltage in the CBC cycle that immediately follows an RPT.
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mentioned here. First, a static capacity test can be performed
wherein a cell is discharge cycled between two voltage targets
(typically Vmax to Vmin) using progressively higher constant-
current (CC) conditions. The cell must be well rested between
cycling conditions. For example, this could entail performing a
C/3 CC charge followed by a constant voltage (CV) taper charge
until a current threshold is reached, then a short rest (10–15 min),
followed by the CC discharge. This is repeated over the entire range
of discharge currents, which in terms of C-rates referenced to the C/
1 basis, could involve conditions such as C/10, C/3, C/1, 2C, 4C, 6C,
etc. Cell polarization will cause diminished capacity at the higher
discharge rates. Note that static capacity tests are sensitive to
temperature, so the test conditions should match the
temperature(s) of interest for the ultimate application. By
surveying a matrix of discharge currents, polarization effects can
be inferred for an arbitrary CBC condition. Another gauge of

polarization during CBC conditions is to monitor the rate of
voltage relaxation through EOCV and EODV. These terms are
discussed more thoroughly below. Although the level of
“adequate” rest of a cell to mitigate polarization effects is
somewhat arbitrary, a rough guide is to achieve less than 1 mV/
min change in EOCV or EODV before the cell resumes its cycling
protocol. Lastly, through a similar technique cell impedance at
1 kHz can be monitored during rest periods to detect when the
change in impedance (dR/dt) has satisfied a pre-set threshold value.

3.3 Differential capacity (dQ/dV): Heavily
influenced by cycling rate

Differential capacity/Incremental capacity analysis is a method to
identify the battery state-of-health. Due to the low computational

FIGURE 9
CBC profiles for EODV of NMC811/Gr cells cycling at a 1, 6, and 9C CCCV charge rates, (A) covering the entire test period and (B) isolating a
between-RPT segment to demonstrate the magnitudes of PH that vary with rate. In (B) the plots are expanded for the sake of clarity.

FIGURE 10
Differential rate analysis of C/1 capacity loss for representative LMO/LTO cells tested under nine different cycle-life conditions. Data variance per cell
is relatively low. Mechanistic trends are visible, such as gas formation in cell J-81 evidenced by an increasing rate after the first 6,000 cycles.
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load, it is widely used to classify and quantify the percentage of LLI
and LAM based on slow rate response (<C/10) (Kim et al., 2022b).
The most profound influence on dQ/dV integrity is the constant-
current cycling rate used to create the data. Polarization, even at
modest levels, can skew the position of peaks and valleys within the
dQ/dV profile and alter their relative heights, depths, and area,
respectively. Figure 7 compares dQ/dV at a reference performance
test with that of different charging rates for a NMC532/Gr cell used in
a fast-charge study (Kim et al., 2022a). As charge rate increases,
discernible features (e.g., peak height, depth, and area under peaks)
become less obvious. These outcomes can greatly confound the
evaluation of aging mechanisms tied to subtle changes in the peak
vs. valley artifacts and will obscure quantification of aging in terms of
loss of lithium inventory and loss of active materials from the anode
versus the cathode. Note that the propensity to polarize can change as
a cell ages, making the determination of the true dQ/dV response a
moving target. In comparison, uncertainties due to an electronic test
channel are a minor contribution, provided the channel is operated
within the intended specification for voltage and current ranges.

3.4 Relaxation data (EOCV, EODV)

As previously mentioned, non-ideal cycling conditions can
create a polarization hysteresis that builds up throughout battery
testing. Generally, this occurs when there is insufficient rest between
cycling conditions to allow for polarization to dissipate and the
effects of CP are carried forward through successive cycling
elements. The PH is a reversable effect that can mask the signals
from irreversible effects (i.e., battery degradation) located in the
cycle-by-cycle data. Two primary signals of interest are EOCV and
EODV. Currently, EOCV and EODV are captured 15 min after their
respective charge and discharge cycles, but are measured over the

entire rest period. These terms can be influenced by the preceding
cycling rate and data capture rate.

The magnitudes and shapes of EOCV and EODV curves give
insights into the related polarization, which is unique to each cell
chemistry and the prevailing operating conditions of (I,V,T,rcycle). For
example, it is known that electrolyte diffusivity suffers at lower
temperatures, causing the magnitude of CP to increase and the
needed relaxation time to be prolonged. Likewise, higher cycling
rates will drive CP to greater levels, where in the case of fast
charging the electrolyte will be depleted at the anode side and be
enriched on the cathode side. Such localized electrolyte concentrations
will cause correspondingly local properties, for example, higher viscosity
and lower diffusivity at the cathode during fast charge (Gao et al., 2022).
Figure 8A shows capture of EODV data for P531 (low loading
NMC811/Gr single layer pouch cells) cell 4 (cycled at 4C charge
rate, C/2 discharge rate), where a distinction is made between RPT
values (red dots) and CBC data (blue line). The PH profile following the
final RPT is shown in panel (B), showing that the PH exhibits
plateauing behavior, i.e., PH is bounded andwill have finite progression.

This analysis also becomes more interesting as groups of cells
tested under different charging C-rates are analyzed. As the C-rate
increases, the extent (both in magnitude and rate) of PH also
increases. This can be seen for case of 1C, 6C, and 9C in
Figure 9 for an NMC/Gr cell group. Panel (A) shows overall
cycle and panel (B) shows a zoomed-in portion for easier visual
comparison.

3.5 Example outcomes from differential
methods for CBC data (SRE approach)

Using data from the aforementioned LMO/LTO cells from
cycle-life testing, differential plots for capacity loss and

FIGURE 11
Differential rate analysis of conductance loss for representative LMO/LTO cells tested under nine different cycle-life conditions. Data variance per
cell is relatively high compared to capacity loss data (same scales used as in Figure 10). Some of the noise appears random, with many points in the
negative rate region.
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conductance loss are given in Figure 10 and Figure 11.
Representative cells were used from each group, where three
replicates were tested for each condition. Note that the
differential is with respect to cycle count, which can be converted
to a time basis simply by considering the number of cycles per day.
Figure 10 shows modest values for the capacity differential data
(dCapacity/dncyc), generally less than 0.005 percent per cycle, while
most cells are under 0.002 percent per cycle following early-life aging
which is dominated by loss of lithium inventory. Data variance per
cell is relatively low. Mechanistic trends are visible, such as gas
formation in cell J-81 evidenced by an increasing rate after the first
6,000 cycles. However, Figure 11 shows that conductance loss

differential values have considerably more noise and larger
values. Data variance per cell is relatively high compared to
capacity loss data (same scales used). Some of the noise appears
random, with many points in the negative rate region, which strictly
speaking would be a non-physical result. The difference between
Figure 10 and Figure 11 are that Figure 10 relies essentially on data
for current, while Figure 11 relies on the ratio of current over voltage,
such that there is a compounding of measurement error, whether
that error is sourced from equipment inaccuracies or from other
sources mentioned above.

To help set the context for the magnitude of “noise” in the
differential conductance data, the SRE basis was used to synthesize

FIGURE 12
Differential rate analysis of conductance loss for four selected cells from Figure 11, where (A) Differential profiles from SRE are overlaid on data for
these cells. SRE parameters were obtained from regression of conductance data, typically with R2 ≥ 0.999. In many instances the magnitude of the data
spikes exceed the magnitude of the SRE value, exposing worse cases of measurement variance. Panel (B) shows the accompanying skin temperatures of
two of the cells, where the case of cell D-58 demonstrates a correspondence of the rate of conductance loss with temperature rise starting around
6,000 cycles.
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smooth analytical curves for the differentials over cycle count.
Figure 12A shows the outcome for four selected cells. Differential
profiles from SRE are overlaid on data for these four cells. SRE
parameters were obtained from regression of conductance data,
typically with R2 ≥ 0.999. In many instances the magnitude of the
data spikes exceeds the magnitude of the SRE value, exposing worse
cases of measurement variance. However, some trends appear not to
be completely random. Figure 12B shows the corresponding
temperature data for cells J-81 and D-58. Inspection of the
trends for the conductance data reveal that there is a
correspondence to that of the temperature trends, especially for
cell D-58 after 6,000 cycles. This is a plausible physical connection,
given the relatively high sensitivity of battery resistance to
temperature. A chief contributor of this sensitivity is the
electrolyte. As an example, a common Li-ion battery electrolyte
for research is the system ethylene carbonate (EC) plus ethyl-methyl
carbonate (EMC) at a mass ratio of (3:7) with 1 molal LiPF6. At
around room temperature this electrolyte resistance has a variability
due to temperature of 1.75% per degree centigrade, and it is
reasonable to expect that comparable electrolytes for other Li-ion
systems would have similar variances. Therefore, it is probable that
temperature variance plays a role in measurement uncertainty for
cell conductance of the LMO/LTO cells.

To validate the current accuracy, the LMO/LTO cells were
discharged and charged at C/20 rate in these three testing ranges
for the reference performance test, where the constant-current
condition was 0.145 A. Based on the data analysis, only by using
the current range of ±500 mA is the accuracy at 0.145 A
maintained within ±0.025%. When using the other current
ranges of ±5 A and ±50 A the measurement error at 0.145 A
exceeds ±0.025%. Figure 13A shows that increasing the testing
range causes enlarged data scattering, and the standard deviations
from the low range to the high range are 2.424 × 10−5, 1.381 × 10−4

and 9.203 × 10−4, respectively. Correspondingly, the real accuracies
in these three ranges are ±0.0167%, ±0.0952% and ±0.634%.
Within an appropriate range selection, the current
measurement accuracy is outside the value that the tester

claims. Recall the voltage accuracy claimed by the tester
is ±0.02% at full scale.

When both current and voltage accuracies affect the
measurement simultaneously and in an opposite way, [ dK

dncyc
] has

the maximum and minimum value (see Eqs 2, 3 and Supplemental
Information). Using LMO/LTO cell D-58 as a basis the difference
((dK/dn)max - (dK/dn)min) in Figure 13C is less than 8.5 × 10−6. and
decreases over cycle count. The real dK/dn fluctuates up and down,
and the fluctuation value can be estimated by the difference between
the real value and the simulated value obtained by using SRE fitting.
The fluctuation can be as large as 4.5 × 10−5, which is significantly
larger than the deviation that the accuracy from current and voltage
can induce. Therefore, the fluctuation of dK/dn, especially the bigger
spikes in Figure 13B for cell D-58, reflects the influence from other
uncertainties outside of those from channel specifications for
current and voltage.

4 Discussion and conclusion

Battery data is used toward a number of objectives, including but
not limited to battery materials design and optimization,
performance validation, lifecycle diagnostic and predictive
analyses, and decisions toward possible second use versus
materials recycle. Toward these objectives it is crucial that the
battery data measurement accuracies meet or exceed the intended
accuracy of each objective. This is fundamentally import to
economic factors ties to battery valuation over an entire lifecycle.

To meet this broad goal, battery data must be acquired under
consistent, well-defined and reproducible conditions. Measurement
equipment must be rated to handle the voltage and current ranges
foreseen for the battery operating conditions, and such equipment
should undergo periodic calibration to confirm accuracy is within
manufacturer’s specifications.

Three primary sources of measurement uncertainty affect data
usability. First is the use of test channels not well matched to test
conditions, such as using a high-amperage channel to measure very

FIGURE 13
Analyses of an LMO/LTO cell at a C/20 rate, showing (A) variance of current measured by a Maccor test channel at 0.5, 5 and 50 A ranges. Panel (B)
shows the differential conductance profiles (dK/dn) for cell D-58, showing the original profile and profiles adjusted for the maximum (green) and
minimum (orange) errors (per Eqs. 2 and 3). The SRE differential outcome is included in (B). Panel (C) shows the differences between thesemaximum and
minimum error outcomes over cycle count.
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low currents. Second, variations in temperature are a source of
measurement uncertainty due to cell ohmic heating as well as
imperfect thermal management that is a result of the combination
of the cell fixture and surrounding thermal environment. Cells can
heat faster than environmental chambers can react, causing a time lag
in thermal management. And, temperature profiles within cells can
cover several degrees of variation. All said, choosing a single
temperature to assign to a given set of battery data can quickly
become problematic, and routes should be sought to identify
representative if not averaged values that might vary over time.
Third, cell polarization is a chief cause for data uncertainty as it
causes a reversible source of voltage shift that obscures outcomes tied
to capacity determination, impedance quantification, and achievable
power. Sufficient rest of cells between cycles is required to avoid
polarization hysteresis. While polarization and underlying CP cannot
be avoided for some test conditions, it is useful to establish a slow-rate
baseline (e.g., C/20 or C/10) to define the true irreversible aging
consequences. Understanding the basic physics behind polarization
will help the battery practitioner understand conditions under which
polarization can bemore severe, andwhat routes can be used to detect,
avoid or manage it. It is noted that cell aging can exacerbate the above
sources of data uncertainty as cells become more resistive. Regardless
of the sources of uncertainty, it is highly advised to employ error bars,
when feasible, to bound the confidence intervals of the data, a useful
practice for BMS as well as human-decision activities.

In addition to these sources of uncertainty, data acquisition rates
should be chosen that support quantitative analyses while not
becoming a computational burden in terms of processing times
and storage space. For example, data acquisition rates for
polarization relaxation of EOCV and EODV may have a graded
approach (frequent at first then slower later) and be different than
what is used for CBC or RPT capacity determination. Having
sufficient data in the time domain is especially important when
kinetic factors are considered.

Differential techniques can be employed to further explore
behavior of data uncertainty, such as the dCapacity/dncyc and
dK/dncyc methods discussed herein. Conversion from dncyc to
dtime is accomplished when the cycles-per-time is known. These
techniques reveal the magnitude of uncertainty or “noise” in relation
to a physics-based rate expression for cell aging, herein provided by
SRE formulae. Our analysis shows that, in general terms,
temperature fluctuations have a more profound effect on
conductance data uncertainty than equipment measurement errors.

As battery-based energy storage proliferates into more economic
sectors, it is a critical challenge for battery stakeholders to ensure
data measurement uncertainty is understood and within desirable
bounds, and that data usability is high. This will support chain-of-
custody issues tied to battery valuation over life, as well as move the
industry to more standardization of battery data creation and use.
This will also allow more CBC-type data to be used to selectively
replace expensive alternatives such as RPT. The findings of this
paper support these directions.
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Appendix

Maccor “37 A” Specifications (4,000 Series):
Current Range +—500 mA Accuracy +/− 0.025% FS.
Current Range +/−5 A Accuracy +/− 0.025% FS.

Current Range +/−50 A Accuracy +/− 0.025% FS.
Voltage Range 5 V Accuracy +/− 0.02% FS.
Maccor ‘21’ Specifications (4,000 Series):
Current Range +/−30 A Accuracy +/− 0.025% FS.
Voltage Range 5 V Accuracy +/− 0.02% FS.
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