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Introduction

Approximately, 10 million new tuberculosis (TB) cases were reported in 2020, of which

12% were among children (1). It is estimated that one-quarter of the world population

(around 2 billion) is latently infected by Mycobacterium tuberculosis (Mtb) and 5-10% of

these individuals will develop active TB (ATB) (1). Infections caused by soil-transmitted

helminths (STH) and schistosomes affect about 1.5 billion and 250 million people,

respectively, worldwide (2). Children and pregnant women are the population groups

with the highest risk of infection by those parasites (3).

TB and helminth infections are poverty-related diseases that are epidemiologically

overlapped, particularly in low- and middle-income countries. In high endemic areas of

helminth and TB infections, most individuals are chronically infected by one or both types

of pathogens early in life. Although socioeconomic and cultural factors could contribute to

this spatial overlap (4), for many authors, these are not enough (5). Today, from a more

holistic perspective that takes into account the biological components of the matter too,

there is evidence that helminth infections can influence the course of other infectious

diseases, such as TB, malaria, and human immunodeficiency virus (HIV) infection (6–8).

Helminths are as varied as they are ubiquitous. However, in spite of their diversity, the

host protective responses against helminths, which are multicellular and large organisms,

primarily include immunomodulatory and wound repair mechanisms, which reduce the

tissue damage that these parasites may cause as they move through body organs (6, 7). The

modulation by helminths of host immune responses has relevant clinical and epidemiological

consequences, i.e., increased susceptibility to some infections, inadequate responses to
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vaccines, and decreased frequency and intensity of allergic,

autoimmune, and inflammatory diseases, among others (9).

As part of their manipulation of the host immunity, helminths

induce strong helper type 2 (Th2) responses and trigger complex

immune-regulatory circuits (6, 7, 9). Protection against Mtb, as

occurs with other intracellular microorganisms, requires a clearly

defined Th1 responses that could be down regulated by helminths if

co-infection takes place (8). Cadmus et al., in a very interesting

paper published recently, revised the implications of this co-

infection for tuberculosis diagnosis and vaccination in Africa,

where helminths-Mtb overlap is greater (10). Here, after a brief

incursion in the main immunological aspects of that co-infection,

we analyze some challenges and opportunities derived of it.
Host immune response in
helminth infection

Helminths are transmitted to humans via ingestion of eggs or

larvae, penetration of the skin by larvae, or larvae entering through

insect bites on the skin (11). Helminths are macropathogens that

are too large to be ingested by phagocytic cells. Helminths produce

excretory/secretory antigens (Ags) (ES) which modulate the innate

immune cells. Dendritic cells (DCs) recognize pathogen‐associated

molecular patterns (PAMPs) on ES through various pattern

recognition receptors (PRRs) including Toll-like receptors (TLRs)

(e.g., TLR2 and TLR4), C-type lectin receptors (CLRs), and

Nucleotide-binding and oligomerization domain-like receptors

(NLRs) [e.g., mannose receptor (MR) and DC-SIGN] and serve as

a mediator to adaptive immunity by presenting the Ags to T cells

(12). Protection against helminth infection is predominantly

mediated by Th2 cells, characterized by the production of

cytokines such as IL-4, IL-5, IL-10, and IL-13; antibody class-

switching to produce IgE; and activation of macrophages,

eosinophils, basophils, and mast cells (12, 13). These innate cells

eliminate helminths by expression of high-affinity Fc receptors in

eosinophils, neutrophils, and macrophages for antibody-dependent

cellular cytotoxicity and IgE-mediated degranulation of mast cells

(12). Also, tissue damage by helminths triggers the production of

IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) (14). These

cytokines are also important regulators of Th2 immune response

and activate group 2 innate lymphoid cells (ILC2) which produce

IL-5, IL-9, and IL-13 (14). The Th2 cytokines produced by the

innate cells, particularly IL-4 and IL-13, trigger macrophages

differentiation to alternatively activated macrophages (AAMs), a

phenotype causing down-regulation of IFN-g–mediated processes

and inhibition of proliferation of Th1 and Th17 cells (15).

During the early phase of infection, Th1, Th2, and Th17

immune responses and IgE production reduce the infectivity of

the parasite (13). The parasite survival process is the result of

adaptation between host and parasite, predominantly through

expansion of Th2 and contraction of Th1 subpopulations during

the latency stage (11, 13). During the chronic longstanding

infection, a change from inflammatory Th2 phenotype to

modified Th2 phenotype is characterized by increasing secretion
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of IL-10 and TGF-b by regulatory T cells (Tregs) and switching of

inflammatory IgE to non-inflammatory IgG4 by regulatory B cells

(Bregs) (16). A study showed that infection with multiple species of

worms promoted accumulation of IL-10 and TGF-b and caused

down modulation of Th1 and Th2 response, resulting in immune

hypo-responsiveness (17). This could be one of the reasons of

reduced allergy-related diseases in helminth endemic populations.
Host immune response
to tuberculosis

TB is an airborne disease spread by aerosolized particles

containing Mtb. Innate defense begins at lining of the respiratory

mucosa where an invasion barrier is represented by the airway

epithelial cells (AECs). The receptors on AECs recognize the

PAMPs on Mtb and controls the secretion of airway surface

liquid (ASL) containing antibacterial agents, and presenting the

antigen to mucosal‐associated invariant T cells (MAITs) to produce

IFN‐g, TNF‐a, and granzyme for Mtb clearance (18). When Mtb

successfully reach the alveoli, the bacilli are ingested by alveolar

macrophages and other innate immune cells including DCs and

neutrophils (19). These cells recognize Mtb through various PPRs

including TLRs (e.g., TLR2, TLR4, TLR8, and TLR9) (20), NLRs

(e.g., NOD1, NOD2, NLRP3, and NLRC4) (19), and CLRs (e.g.,

MR, DC-SIGN, dectin-1, dectin-2, and Mincle) (21) and effect a

variety of innate immune defense functions such as phagocytosis,

autophagy, apoptosis, and inflammasome activation (19).

Nevertheless, the bacilli had various immune escape mechanisms

by interfering the innate immune system which enable them to

survive and multiply intracellularly, including inhibition of

maturation and acidification of the phagolysosome, inhibition of

oxidative stress, inhibition of autophagy and apoptosis, altering

recognition by structural mutations, suppression of cellular

immune responses and induction of tolerance, among others (19).

The onset of adaptive immune response begins whenMtb-infected

DCs migrate into the lymph nodes and prime CD4 T-cells. During the

pre-immune specific phase, before the availability of activated specific

cellular effectors, bacilli multiply in the lungs (22). Mtb is an

intracellular pathogen that elicits protective Th1 immune responses

(IFN-g and TNF-a) against Mtb by activating the antimycobacterial

mechanisms in macrophages (23). The balance between Th1 and Th17

(IL-17 and IL-22) is important to control bacterial growth and limit

immunopathology because the later have been implicated in TB

pathology including neutrophilic inflammation and tissue damage

(22). Following the establishment of both innate and adaptive

immunity, Mtb is contained in granulomas, cellular aggregates

constituted by macrophages, multinucleated giant cells, epithelioid

and foamy cells, granulocytes, and lymphocytes (23), in a non-

replicating phase (multiplication of Mtb is halted by the immune

system to prevent further progression) which is observed in 90% of

Mtb infected individuals, also known as latent Mtb infection (LTBI),

which is an asymptomatic and non-infectious state (24). In some LTBI

people (5-10%), Mtb overcome the immune system control and

multiply, macrophages in the granuloma die, and the caseous
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necrotic center of the granuloma liquefies and cavitates, leading to the

release of Mtb into the airways, resulting in progression from LTBI to

TB disease and transmission (25). Also, an immune balance between

Tregs and Th17 is important to control Mtb growth without causing

tissue damage and to encapsulate granuloma to limit Mtb spread.

Imbalance of Tregs/Th17, i.e., favoring Tregs will cause Mtb

dissemination, while favoring Th17 will cause inflammation and

neutrophils recruitment, resulting in growth of the granuloma and

development of TB (26).

Immune response to helminths
and Mycobacterium tuberculosis
co-infection

In acute helminthic infections there may be activation of Th1

responses that would stimulate type 1 alveolar macrophages

(involved in the early control of mycobacterial infection).

Consequently, primary helminth infection could contribute to

early control of mycobacterial infection (27). In correspondence

with this, different studies carried out in animals co-infected show

an accelerated increase in the number of alveolar type 1

macrophages, which occurs transiently, only during the acute

stage of the helminthic infection (27). In vivo studies in mice

showed that acute helminth infection increased CD4 T cells count

and Th1 cytokine levels (IFN-g) which may contribute to the

augmentation of the activation and recruitment of neutrophils

and alveolar macrophages for early control of mycobacterial

infection (27). In vitro models also showed that helminth

infections directly reduced/control Mtb growth in monocytes and

macrophages before development of cell-mediated immunity (28).

A study by O’shea et al. showed that there is a negative

association between helminth infection and LTBI-positivity, and

blood from helminth-infected individuals had increase of

eosinophils and greater ability to control Mtb growth, suggesting

the possibility of a reduction of LTBI prevalence among individuals

with helminth-induced eosinophilia (29). However, in a later stage,

eosinophilia has been associated with the progression to ATB (30).

In Mtb infected patients, the chronic infection with

Strongyloides stercoralis had significantly skewed the Th1 and

Th17 immune responses during TB infection to a predominantly

Th2 response with increase of Tregs. In these co-infected patients,

the production of Th1 (INF-g, TNF-a, and IL-12) and Th17 (IL-17A
and/or IL-17F) cytokines were decreased, while Th2 (IL-4 and IL-5)

and Tregs (TGF-b) cytokines were increased (31). The Th2, Tregs,

and immunomodulatory cytokines (mainly IL-10, and TGF-b)
produced during helminth infection may act as inhibitors of Th1

responses (reduced IFN-g and TNF-a) required for Mtb infection

control and increased the risk of reactivation in LTBI (10).

The helminth-Mtb co-infection compromised the immune

response of monocytes, i.e., reduced frequencies of monocytes

expressing CD80/CD86 (molecules that interact with CD28 and

CTLA-4 for T-cell activation), elevated M2 polarization (anti-

inflammatory monocytes/macrophages), reduced monocyte

cytokines IL-1b, TNF-a, IL-6, and IL-12 production, increased

IL-10 production, and diminished T-cell activation (32). In
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addition, IL-10 impaired macrophage activities by delaying

phagosome maturation and inhibiting the expression of IFN-g-
induced antimycobacterial effector molecules (33). Interestingly,

following anti-helminthic treatment, the altered monocyte

functions are restored (32) and Th1 and Th17 cytokines

increased, and Th2 and Tregs cytokines decreased (31).

In helminth-infected TB patients, TLR2 and TLR9 in PBMCs

and the pro-inflammatory cytokine (IL-1b, IL-6, IFN-g, IL-12, and
TNF-a) responses to TLR2 and TLR9 ligands were significantly

reduced (34). The responsiveness to these ligands were restored

upon anti-helminthic therapy (34). Also, the downregulation of

CLRs by IL-4 and IL-13 in helminth-infected patients, reduced

amounts of pro-inflammatory cytokines like IL-6, IL-1, or G-CSF,

impaired phagocytosis, and Th1/Th17 differentiation (33).

In a mice model, it was observed that the helminth-induced Th2

environment and increased IL-4, caused accumulation of AAMs.

Attenuation of the nitric oxide production by these cells

compromised the ability to kill Mtb, resulting in intracellular

survival and multiplication of the bacilli (35). Also, helminth co-

infection caused accumulation of high arginase-1 expressing

macrophages in the lung forming type 2 granulomas and

resulting in lung fibrosis, mucous plug formation, and

exacerbated inflammation that damage the lung (36).

The helminth-Mtb co-infected patients also present more

advanced TB. In individuals co-infected with S. stercoralis and

pulmonary TB there is an increased risk of bilateral lung lesions

and cavitation, and higher plasma levels of matrix metalloproteinases

(MMPs) (37). Another study on S. stercoralis and tuberculous

lymphadenitis (extrapulmonary TB) co-infection showed elevated

levels of MMPs and tissue inhibitor of metalloproteinases (TIMPs)

(38). The increased secretion of MMPs increased inflammatory

responses in the host because it may cause extracellular matrix

degradation (i.e., basement membrane disintegration, proteolytic

cleavage of tissue matrix, and collagen breakdown), contributing to

the dissemination of TB infection, and recruitment of leucocytes

which leads to necrosis and cavitation (38).

At least, three additional studies evidence that the modulation

of Th2 and Tregs immune responses by helminths could

downregulate the Th1 and Th17 immune responses against Mtb

infection and lead to the progression of LTBI to ATB and more

serious forms of ATB associated to therapeutic failure: (i)

endogenous reactivation of LTBI has been associated with

increased production of IL-10 and TGF-b by circulating

monocytes and possibly Tregs (39) and (ii) in patients with LTBI,

co-infection with helminths (filariae and hookworms) can diminish

Mtb-specific Th1 (IL-12 and IFN-g) and Th17 (IL-23 and IL-17)

responses and may predispose toward the development of ATB (34,

40, 41). Together with those immunological evidences that reinforce

the opinion that helminth co-infection reduces the host resistance

to Mtb infection, it is necessary to mention two epidemiological

researches with divergent results: a study in Ethiopia found a greater

risk of ATB in intestinal helminth co-infected individuals (42),

whereas an investigation in India on individuals infected with

intestinal and filarial helminths did not encounter significant

progression from LTBI to ATB (43). Analyzing the divergence

from a more holistic perspective, Aranzamendi et al. advanced the
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opinion that it may be the consequence of the interaction of factors

such as species of helminth involved, parasite load, and infection

chronicity (44).
Impact of helminth infections on TB
diagnosis, treatment, and vaccination

In TB endemic countries, sputum smear microscopy is

primarily used for diagnosis of PTB. It is suggested that helminth

infection alters the clinical presentation in TB patients, but the

findings are inconclusive. Kumar et al. (2020) showed that S.

stercoralis-infected TB patients had greater bacterial burden and

lungs cavitation (37), but Mhimbira et al. (2017) showed lower rate

of sputum smear positivity and less lungs cavitation only in

Schistosoma mansoni-infected TB patients, not in other helminth

infections (45). Therefore, a new area worth to be explored is to

determine the helminth species-specific impact on immune

response and its impact on diagnosis and clinical presentation.

Currently, there are only two methods in use for LTBI

screening, i.e., tuberculin skin test (TST) which measure delayed-

type hypersensitivity (DTH), T-cell responses to purified protein

derivative (PPD), and interferon-gamma (IFN-g) release assays

(IGRAs), which measure the T-cell release of IFN-g following

stimulation with Mtb antigens (ESAT-6 and CFP-10), both tests

are consequences of immune responses Th1 mediated. Helminth

infections which induce Th2 responses (anti-Th1) and a hypo-

responsive state indirectly reduce the DTH responses (46) and

altered the cytokine production resulting in indeterminate IGRA

results (47). A study by Toulza et al. (2015) showed that helminth-

infected patients had significant reduction of CD4+IFN-g+ T-cells

after stimulation with PPD and ESAT-6/CFP10, and the effects were

reversed after anti-helminthic treatment (48). Another study

showed that high IgE production induced by helminths had

significantly reduced the TST positivity in children but the effect

is weakened with increasing age (49). Considering the negative

influence of the Th2 response associated to helminth infections with

an inhibitory effect on Th1 responses, and the reports of Th2

cytokine responses, such as IL-10, to Mtb antigens in helminth

infected TB patients (50), the supplementation of the current IGRA

tests with the determination of Th2 cytokines, such as IL-10 could

be explored to increase the performance of these tests in helminth

endemic populations.

In addition to a negative impact on anti-Mtb immunity,

intestinal helminth infection has shown to have a negative

influence on clinical response to anti-TB therapy. As an efficient

clinical response to Mtb treatment is dependent upon an effective

Th1 response, the more delayed clinical evolution in Mtb-helminth

co-infected patients in association with increased IL-10 levels may

indicate that helminth infection in TB patients may tilt their

cytokine profile towards a Th2 response (50).

In a prospective hospital-based study, it was observed that besides

older age (>40 years old) and diabetes mellitus, hookworm infection

could cause high therapeutic failure in PTB (51). Another research

showed that treatment with anti-parasites drugs, such as albendazole,

could reduce the eosinophils counts and IL-10 level (52). This is
Frontiers in Immunology 04
indicative that timely diagnosis and treatment of intestinal helminth

infection may be important for a successful response to anti-TB

treatment. Some classical anti-helminthic drugs, such as avermectins,

mefloquine, niclosamide, nitazoxanide, nitroimidazoles,

pyronaridine, and auranofin, have anti-TB activity too (53). In

future, repurposing these anti-helminthic drugs could be exploited

for complementary anti-TB treatment.

Bacille Calmette-Guérin (BCG), a strong Th1 inducer, is a

vaccine for protection against TB, recommended for neonates and

infants from countries with high endemicity of TB (54). A study by

Elias et al. (2008) showed that chronic helminths infected

populations had poor immune response to BCG vaccination due

to impaired Th1 responses (reduced IFN-g and IL-12) and

enhanced Tregs responses (increased TGF-b) (55). These

responses were reversed by anti-helminthic treatment (55) and

monocytes were able to respond optimally to TB antigenic

stimulation (32), suggesting that deworming may be necessary in

helminth endemic countries to restore immune responsiveness and

improve the efficacy of BCG.

Secretory IgA (sIgA) serves as first-line defense in protecting

intestinal, respiratory, and urogenital mucosal epithelia and

maintenance of mucosal homeostasis. It is known that TGF-b
production/presence is associated to a switch for IgA production

(56). Therefore, the cytokine environment characteristic of

helminth infection (high TGF-b) could be conductive to produce

sIgA mucosal responses, which could be considered for the

prioritization of development of mucosal vaccines for TB and

other microorganisms in populations with high helminth

endemicity, to complement the “classical” Th1 inducing vaccines

in use and evaluation for different diseases. This kind of vaccines

could be a valuable tool in the prevention of primary infection,

avoiding the microorganism entrance, the subsequent development

of acute and chronic infections, and transmission (57, 58). The use

of such vaccines in children, during the first year of life could be of

paramount importance to prevent primary infection with multiple

infectious agents. In this regard, it has been reported that the

presence of helminth infection during pregnancy could bias the

immune response of the child toward an IgA response to oral

vaccines during the first year of life, compared to children born

from helminth uninfected mothers. It has been hypothesized that

the placental transfer of TGF-b and IL-10 during pregnancy, and

through breast milk during lactation “educate” the immune

response of the child promoting mucosal IgA responses (59). At

the same time, several helminth infections are associated with

eosinophils presence and activation, which correlated with the

evidences of the role of eosinophils in the production and

maintenance of IgA plasma cells (60).

Considering the route of entry of Mtb via inhalation, mucosal

vaccines could represent a promissory alternative for TB

vaccination (61, 62). Multiple experimental results, including

non-human primates (NHP), demonstrated the protective effect

of mucosal TB vaccine candidates using intranasal and aerosol

routes of administration, different technological vaccine platforms,

and different schemes of immunization such as prime or as BCG

booster (62–68). In line with it, some mucosal prophylactic vaccines

for TB have been tested in human clinical trials (61). Experimental
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studies using IgA antibody formulations provide additional support

of the potential of mucosal immunization for TB protection, in this

regard, it has been reported that the mucosal administration of

secretory IgA monoclonal antibodies directed to Mtb HspX surface

antigen and human secretory IgA purified from colostrum before

Mtb challenge in mice induced a significant decrease of bacterial

burden and histopathological lesions in lungs compared to

untreated controls (69, 70).

Besides TB and other infectious diseases gaining access by the

respiratory, gastrointestinal, genitourinary and other mucosal sites,

the development of mucosal vaccines against helminths is another

possibility in helminths endemic areas, in this regard, the protective

role of SIgA against helminth infections after mucosal vaccination

in different animal models have been reported (60). The impact of

SIgA in protection was associated to the presence of lower parasitic

loads, fecal and female eggs count, and worm length, which is

consistent with in vitro reported activities of SIgA from immunized

animals, such as antibody-dependent cellular cytotoxicity (ADCC)

of eosinophils, neutralization of helminth excretory/secretory

products and the attachment to different helminth stages (60).
Conclusion

In high endemic areas of helminth and TB infections, most

individuals are chronically infected by one or both types of

pathogens early in life. In chronic helminth infection, the

modulation of Th2 and Tregs immune responses by those

parasites could downregulate the Th1 and Th17 immune

responses against Mtb infection and leads to the progression of

LTBI to ATB and more serious forms of active TB associated to

therapeutic failure. The helminth immune modulation could also

cause indeterminate results in LTBI diagnostic tests and poor

immunogenicity of BCG vaccination. From clinical and

epidemiological perspectives, it is necessary to consider that the

immunomodulation in co-infected patients could be reversed

through anti-helminthic treatments, suggesting with an additional

argument that deworming programs are necessary in the countries
Frontiers in Immunology 05
with high burden of helminth and TB infections. Looking ahead, the

immune environment of high TGF-b level associated to helminth

infections suggests the promissory use of TBmucosal immunization

as an alternative, or complement, to “classical” Th1 inducing

vaccines in co-infection settings.
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