
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Yanlin He,
Pennington Biomedical Research Center,
United States

REVIEWED BY

Longlong Tu,
Baylor College of Medicine, United States
Ila Mishra,
Case Western Reserve University,
United States

*CORRESPONDENCE

Krzysztof Marycz

krzysztof.marycz@upwr.edu.pl

SPECIALTY SECTION

This article was submitted to
Translational Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 22 January 2023

ACCEPTED 08 March 2023

PUBLISHED 20 March 2023

CITATION

Bourebaba L, Serwotka-Suszczak A,
Pielok A, Sikora M, Mularczyk M and
Marycz K (2023) The PTP1B inhibitor MSI-
1436 ameliorates liver insulin sensitivity by
modulating autophagy, ER stress and
systemic inflammation in Equine metabolic
syndrome affected horses.
Front. Endocrinol. 14:1149610.
doi: 10.3389/fendo.2023.1149610

COPYRIGHT

© 2023 Bourebaba, Serwotka-Suszczak,
Pielok, Sikora, Mularczyk and Marycz. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 20 March 2023

DOI 10.3389/fendo.2023.1149610
The PTP1B inhibitor MSI-1436
ameliorates liver insulin
sensitivity by modulating
autophagy, ER stress and
systemic inflammation in
Equine metabolic syndrome
affected horses

Lynda Bourebaba1,2, Anna Serwotka-Suszczak1, Ariadna Pielok1,
Mateusz Sikora1, Malwina Mularczyk1,2 and Krzysztof Marycz1,3*

1Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of
Environmental and Life Sciences, Wrocław, Poland, 2International Institute of Translational Medicine,
Wisznia Mała, Poland, 3Department of Medicine and Epidemiology, School of Veterinary Medicine,
University of California, Davis, Davis, CA, United States
Background: Equine metabolic syndrome (EMS) is a multifactorial pathology

gathering insulin resistance, low-grade inflammation and past or chronic

laminitis. Among the several molecular mechanisms underlying EMS

pathogenesis, increased negative insulin signalling regulation mediated by protein

tyrosine phosphatase 1 B (PTP1B) has emerged as a critical axis in the development

of liver insulin resistance and general metabolic distress associated to increased ER

stress, inflammation and disrupted autophagy. Thus, the use of PTP1B selective

inhibitors such as MSI-1436 might be considered as a golden therapeutic tool for

the proper management of EMS and associated conditions. Therefore, the present

investigation aimed at verifying the clinical efficacy of MSI-1436 systemic

administration on liver metabolic balance, insulin sensitivity and inflammatory

status in EMS affected horses. Moreover, the impact of MSI-1436 treatment on

liver autophagymachinery and associated ER stress in liver tissue has been analysed.

Methods: Liver explants isolated from healthy and EMS horses have been treated

with MSI-1436 prior to gene and protein expression analysis of main markers

mediating ER stress, mitophagy and autophagy. Furthermore, EMS horses have

been intravenously treated with a single dose of MSI-1436, and evaluated for

their metabolic and inflammatory status.

Results: Clinical application of MSI-1436 to EMS horses restored proper

adiponectin levels and attenuated the typical hyperinsulinemia and

hyperglycemia. Moreover, administration of MSI-1436 further reduced the

circulating levels of key pro-inflammatory mediators including IL-1b, TNF-a and

TGF-b and triggered the Tregs cells activation. At the molecular level, PTP1B

inhibition resulted in a noticeable mitigation of liver ER stress, improvement of

mitochondrial dynamics and consequently, a regulation of autophagic response.

Similarly, short-term ex vivo treatment of EMS liver explants with trodusquemine

(MSI-1436) substantially enhanced autophagy by upregulating the levels of HSC70

and Beclin-1 at both mRNA and protein level. Moreover, the PTP1B inhibitor
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potentiated mitophagy and associated expression of MFN2 and PINK1.

Interestingly, inhibition of PTP1B resulted in potent attenuation of ER stress key

mediators’ expression namely, CHOP, ATF6, HSPA5 and XBP1.

Conclusion: Presented findings shed for the first time promising new insights in

the development of an MSI-1436-based therapy for proper equine metabolic

syndrome intervention and may additionally find potential translational

application to human metabolic syndrome treatment.
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1 Introduction

Protein tyrosine phosphatases (PTPs) constitute an important,

heterogeneous group of enzymes, the activity of which is opposed to

that of protein tyrosine kinases. The mechanism of action of PTP

enzymes relies on the separation of phosphate groups from the

tyrosine residues of various enzyme proteins, thus leading to their

inactivation, which in the case of enzymes being part of the cascade,

leads to the inhibition of signal transmission. One of the most

common and best described PTP is phosphatase 1B (PTP-1B),

which is involved in regulating the insulin receptor (IR) activity.

Under the influence of primed IR- PTP-1B is also phosphorylated,

and thus activated, by attaching phosphate residues to tyrosine at

sites 66, 152 and 15. Active PTP-1B binds directly to the IR and

dephosphorylates its tyrosine residues, leading to its inactivation.

Studies have shown that PTP regulation of the insulin pathway is

mediated not only by IR, but also IR substrates (e.g., IRS-1) that are

deactivated through PTP-1B-mediated dephosphorylation (1–8).

Dephosphorylation of the insulin receptor and its substrates leads to

the inhibition of the molecular cascades stimulated by IR activation

and thus suppresses the metabolic effects of insulin. Thus, the

excessive activity of protein tyrosine phosphatases may be one of

the causes underlying insulin resistance onset. For this reason, new

methods are being sought to inhibit the activity of the PTP-1B

enzyme, which seems to be one of the key factors in regulating

insulin signalling and sensitivity of peripheral tissues.

In recent years, Trodusquemine commonly known as MSI-1436

has been extensively reported as a potent selective PTP1B inhibitor.

In a mouse model of genetic obesity, it has been shown to cause

rapid and reversible significant weight loss. Therefore it appears

that, due to its ability to improve glucose tolerance, insulin

sensitivity and enhance body weight loss, it is a potential anti-

diabetic agent (9).

Therefore, the major goal of the presented research was to

investigate the influence of MSI-1436, and thus PTP1B inhibition,

on the metabolic condition of horses diagnosed with equine

metabolic syndrome (EMS), an endocrine disorder that originates

from improper insulin management. The disease is diagnosed more

and more frequently and seems to be related to a lack of physical

activity and improper diet, especially carbohydrates overfeeding.
02
Clinical symptoms of the disease lead primarily to the development

of insulin resistance, hyperinsulinemia, laminitis, hyperlipidaemia,

local and systemic inflammation (10, 11). The increasing frequency of

diagnosing this disease necessitates a deeper understanding of both

the underlying mechanisms and the search for new diagnostic and

therapeutic solutions. One of the main insulin resistance hallmarks in

EMS lies in the profound deregulation of the liver metabolism. EMS

liver has thus been found to display increased fibrosis caused by

excessive production of extracellular matrix proteins and their

insufficient degradation by metalloproteinases, inflammation related

to the release of pro-inflammatory factors by damaged hepatocytes

and the recruitment and activation of immune cells, which is also

significant in the progressive state of organ degradation (12–14). The

inability of hepatocytes to properly clear, eliminate and recycle

damaged cellular components strongly participates in their activity

and homeostasis decline. Autophagy, which refers to a highly

conserved lysosomal degradation process is one of the main

pathways responsible for maintaining proper metabolic balance

and homeostasis (15). Earlier studies additionally evidenced critical

abnormalities in autophagic events in the course of metabolic

syndrome, type 2 diabetes and obesity, which has been associated

to prolonged pro-inflammatory responses (16).

Low-grade inflammation is indeed considered as one of the most

critical pathologic responses contributing to insulin resistance

occurrence and metabolic syndrome progression. EMS horses have

been reported to particularly exhibit elevated pro-inflammatory

cytokines levels, including interleukin-1b (IL-1b), interleukin-6 (IL-

6), tumor necrosis factor a (TNF-a), interferon g (IFN-g) and

transforming growth factor b (TGF-b) at both tissue and systemic

level, as well as impaired anti-inflammatory pathways evidenced by the

suppression of anti-inflammatory mediators’ expression such as IL-10,

IL-4 and IL-13 and more importantly, though a depletion of

immunosuppressive cells activation, namely regulatory T cells

(Tregs) (17). As a specialized lymphocytes subpopulation,

CD3+CD4+CD25hiFoxP3+ Tregs are recognized as a pivotal element

in the regulation and maintenance of immune system homeostasis.

Tregs attenuate excessive and abnormal immune responses by

repressing most of the immune cells functions such as lymphocytes,

macrophages and B cells, via the release of potent mediators that

include inter alia IL-10, IL-35, Cytotoxic T-Lymphocyte Antigen 4
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(CTLA-4), Programmed death 1 (PD-1) and Inducible costimulator

(ICOS) (18). Tregs abundance fluctuations have been previously

correlated with various metabolic dysfunctions. Patients suffering

from obesity, insulin resistance and diabetes type 2 were

characterized by substantial decreased number of Treg cells and a

significant drop in IL-10 systemic level. Experimental Tregs exhaustion

further results in increased fasting glucose concentration, glucose

intolerance and insulin desensitization of peripheral tissues (19),

highlighting the obvious involvement of Tregs in the loss of

metabolic homeostasis, and their paramount role as potential targets

for the restoration of proper physiological integrity in patients affected

with metabolic disorders.

Insofar EMS horses are characterized by persistent insulin

desensitization, the consequent hyperinsulinemia exerts a negative

feedback that strongly inhibits autophagic pathways (20, 21). Crosstalk

between insulin resistance and autophagy has been reported in both

animals and humans. Cai and colleagues (22), demonstrated that loss

of autophagic Atg3 and Atg16L1 genes triggers insulin resistance,

impaired glucose metabolism and collapsed mitochondrial biogenesis

in murine adipose tissue. Similarly, expression of autophagy-related

markers including LC3, Beclin 1, Atg5 and Atg7 was found to be

decreased in obese mice (21), while obese and T2D patients livers

displayed reduced mammalian target of rapamycin (mTOR) activity,

and defective insulin receptor substrate 1 (IRS1) phosphorylation (23).

The exact implication of autophagic system during metabolic

syndrome pathogenesis is not fully elucidated, given the fact that

contradictory reports pointed out the protective effect of autophagy

during metabolic deviations, and thus postulated that autophagy

maybe by contrast to other findings, upregulated during insulin

resistance and inflammation (23). Öst et al. (23), emphasized that

T2D and obese patients with defective insulin signal transduction were

characterized by malfunctioning mitochondria and overactivated

autophagy/mitophagy accompanied with increased cytosolic lipid

droplets and autophagosomes formation, which subsequently

contributed to the excessive release of fatty acids and ultimately the

exacerbation of insulin resistance, confirming the existence of a more

complex crosstalk between metabolic disorders progression and

autophagic pathways.

In the current research, we aimed to investigate the clinical

influence of the selected PTP1B inhibitor MSI-1436 on insulin

sensitivity, inflammation and autophagy process taking place in the

EMS liver. Thus, impact of PTP1B inhibition using MSI-1436 on

liver ER stress, mitochondrial dynamics and autophagic network

has been evaluated in an ex vivo model of EMS liver explants, and

following clinical application of the inhibitor on diagnosed

EMS horses.
2 Materials and methods

2.1 Ethical approval

This study was approved by the Local Ethics Committee for

Animal Experiments in Wrocław (Resolution no. 058/2021/P1 of

23.09.2021 and resolution annex no. 035/2022/NZP/DO of 20.07.2022).
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2.2 Animals’ qualification

Liver tissue samples were collected post-mortem at a local

slaughterhouse, from fasting 27 horses of both genders and

various breeds at early morning. Animals qualified for this study

were assigned to either EMS or Healthy group. Horses were chosen

based on qualification criteria such as body weight (BW), body

condition score (BCS), cresty neck score (CNS), fasting insulin

levels and oral glucose tolerance test (24).

Furthermore, 6 healthy and 12 EMS Standard breed horses of

various ages and gender aged between 8 and 12 years old were

qualified for the MSI-1436(Trodusquemine) treatment and

subsequently divided into 3 experimental groups: Healthy, EMS

(a placebo group receiving saline) and MSI (horses receiving MSI-

1436, Trodusquemine). The qualification was based on an

extensive interview with the owner, previous history of

laminitis, body weight (BW), body condition score (BCS), cresty

neck score (CNS), fasting insulin concentration, and the

combined glucose-insulin test (24). To further confirm hepatic

insulin resistance in collected liver samples, ELISA Assays were

performed for GGTP and AST concentration before and after each

corresponding treatment. The qualification process was

performed by an experienced veterinarian, according to criteria

established in 2010 by the American College of Veterinary. Body

weight assessment was performed using a mobile Bosh Equine

electronic scale. Animals qualified for the EMS group were given a

singular intravenous injection (vena jugularis externa) of saline

while horses in the MSI group received a singular intravenous

injection of MSI-1436(Trodusquemine) at the dose of 25 mg/kg
b.w. One month after the treatment, blood samples and liver

biopsies were collected from all of the fasting animals, according

to the universal veterinary standards, as described by Rendle (25)

at early morniong between 7 to 9am.
2.3 Liver explants

Liver tissue samples were collected post-mortem as described

above, transferred into Transport Medium- Dulbecco’s Modified

Eagle Medium- low glucose (DMEM-LG) supplemented with 1%

penicillin and streptomycin (PS), (Sigma-Aldrich) and immediately

transported to the laboratory. Tissues were washed 3 times with

Dulbecco’s Phosphate Buffered Saline (Sigma-Aldrich) and placed

in either standard culture medium (DMEM- LG with 1% PS, Sigma-

Aldrich) or a culture medium supplemented with MSI-1436

(DMEM-LG supplemented with 1% PS and 1 mM MSI-1436,

Sigma-Aldrich). After 24h of culture, tissues were fixed for RT-

qPCR and protein expression analysis.
2.4 Determination of circulating cytokines,
adipokines and insulin levels

Fresh blood samples were collected into anticoagulants-free

vacutainers from each experimental group, incubated at room
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temperature for 30 min for blood clotting and centrifuged for 10

min at 4000 rpm in 4°C. Resulting serra were transferred to sterile

polypropylene tubes, and kept at -80°C until use.

Inflammatory markers (IL-1b, TNF-a, TGF-b), adipokines
(Adiponectin, Leptin) and insulin levels were measured in

collected serra using specific Horse ELISA kits (Table 1)

according to the manufacturer’s instructions. Briefly, proper

volumes of serra samples and each provided standards at various

concentrations were introduced into microtiter wells, and mixed

with Horse antibodies specific to each targeted protein and

streptavidin-HRP. The plates were incubated for 60 minutes at

37°C. Then, all wells were washed 5 times with the 1x Wash Buffer.

Substrates were afterwards added to each well and incubated for 10

minutes at 37°C in the dark. A stop Solution was subsequently

added, and absorbances were measured using a spectrophotometer

(Epoch, BioTek, Bad Friedrichshall, Germany) at 450 nm. Final

concentrations were derived from each constructed standard curve

and data were analysed with GrapPad Prism 9.
2.5 Complete blood count analysis

A volume of 10-mL of blood was drawn from each experimental

group animals into K3-EDTA containing tubes, gently inverted 8 to

10 times in order to ensure a complete mixture of anticoagulant and

blood, held on a tube rack and transferred to the appropriate

laboratory facility for analysis. All samples were analysed for their

contain in: White blood cells, monocytes and lymphocytes for

systemic inflammation testing using an automated complete

blood count analyser.
2.6 Flow cytometry analysis of regulatory
T cells (Tregs)

Total peripheral blood mononuclear cells (PBMC) were isolated

from each experimental group-derived blood using a Ficoll

Histopaque®-1077-based density gradient centrifugation during

30 min, at 400 × g, at 25°C. Then, the PBMC-containing buffy

coat layer was recovered and washed three times with HBSS.

Obtained PBMC were then incubated with a mouse anti-horse

CD4 (MCA1078GA, 1:200; Abd Serotec, Hercules, CA, USA),
Frontiers in Endocrinology 04
mouse anti-human CD25 conjugated with FITC (MA1-35144,

1:200; Thermo Fisher Scientific, Carlsbad, CA, USA) and anti-

human Foxp3 conjugated with PE (61-5773-82, eBioscience,

Thermo Fisher Scientific, Carlsbad, CA, USA), for 30 min at 4°C.

Labelled cells were suspended in Phosphate-Buffered Saline (PBS)

and phenotyped using a BD LSR Fortessa with FACSDiva version

9.0 flow cytometer equipped with an FCS Express 7.0 software

(Bectona Dickinson, San Jose, USA). Data analysis was performed

using the FlowJo software (TreeStar Inc., Ashland, OR, USA) for the

determination of CD4+/CD25+/Foxp3+ cells population following

appropriate gating.
2.7 Gene expression analysis

Total RNA was isolated from liver explants and biopsies with

the phenol-chloroform method as described by Chomczynski et al.,

(26), using TRIZOL reagent and in accordance to the

manufacturer’s protocol. The purity and concentration of isolated

RNA was assessed using a nanospectrophotometer (Epoch, Biotek,

Bad Friedrichshall, Germany) at a 260/280 wavelength. 500 ng of

total RNA was subjected to genomic DNA digestion and

subsequently used for cDNA synthesis using a PrimeScript™ RT

Reagent Kit with a gDNA Eraser (TaKaRa, Gdańsk, Poland). The

reaction was performed in a T100 Thermal Cycler (Bio-Rad,

Hercules, CA, USA) according to the manufacturer’s protocol.

Preceding the RT-qPCR analysis, the obtained cDNA was pre-

amplified. Briefly, 20 ng of the synthesized cDNA was combined

with a mixture of specific primers, nuclease-free water and

SensiFAST SYBR & Fluorescein Kit (Meridian Bioscience,

London, UK) and subjected to the following cycling protocol:

95 °C for 2 minutes, followed by 19 cycles at 95 °C for 5 seconds,

60,4 °C for 3 minutes and 72 °C for 5 seconds. Subsequently, the

pre-amplified cDNA was diluted in 1:3 ratio with nuclease-free

water and used for RT-qPCR analysis. Expression of targeted genes

(Table 2) was analyzed using SensiFAST SYBR & Fluorescein Kit

(Meridian Bioscience, London, UK) and performed in a CFX

Connect™ Real-Time PCR Detection System (Bio-Rad). Final

volume of 10 ml was used for the reaction with the following

cycling conditions: 95 °C for 2 minutes, then 40 cycles at 95 °C for

15 seconds, next, annealing for 15 seconds, and elongation at 72 °C

for 15 seconds. Additionally, to test alternative splicing of the XBP1
TABLE 1 List of used ELISA assays kits.

ELISA Kit Source Catalogue N°

Horse Interleukin 1 Beta BT LAB E0079Ho

Horse Tumor Necrosis Factor Alpha BT LAB E0019Ho

Horse Transforming Growth Factor Beta 1 BT LAB E0058Ho

Horse Total Adiponectin MyBioSource MBS018816

Horse Leptin BT LAB E0047Ho

Horse Insulin MyBioSource MBS044785
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TABLE 2 Sequences of primers used for the RT-qPCR analysis.

Gene Sequence Amplicon Length Accession number

LAMP2
F: GCACCCCTGGGAAGTTCTTA

147 XM_014729146.2
R: ATCCAGCGAACACTCTTGGG

LC3A
F: TACGCCTCCCAGGAAACCTT

183 XM_023626428.1
R: GGGCAGAGTAGGCATGGTTG

LC3B
F: TGAGGAGACACAAGGGAAGTC

122 XM_023637465.1
R: AAGGTCTTCTCCGACGGCAT

BECN1
F: AGAAGGTCCAGGCAGAGGCTGA

329 XM_001493225.4
R: ACCCATCTTATTGGCCAGGGCG

HSC70
F: GATTAACAAGAGGGCTGTCCGTC

74 AB292109.1
R: GCCTGGGTGCTAGAAGAGAGA

PINK1
F: GCACAATGAGCCAGGAGCTA

298 XM_014737247.2
R: GGGGTATTCACGCGAAGGTA

MFN2
F: AATGCCATGCTCTGGGACAA

325 XM_023635773.1
R: CATCAGCGTCCAGGCAAAAC

PARKIN
F: CTGGAGGATTTAGTCCCGGAGC

138 XM_005608125.3
R: CCATGGCTGGAGTTGAACCTG

NIX
F: CAAGGGCTTCTTTTCCGCAG

93 XM_005607693.3
R: TGCAGGTCTAAGTGTGGTGG

BNIP3
F: GTTCCTCTTCAGACACCCGA

242 XM_023636878.1
R: GCTCCGATACACATCCTGCT

AKT1
F: CCAGGCTTGTGGTTGTCATCCT

178 NM_005163.2
R: TTCTTGAGGAGGAAGTACCGGG

CHOP
F: AGCCAAAATCAGAGCCGGAA

272 XM_001488999.4
R: GGGGTCAAGAGTGGTGAAGG

HSPA5
F: CTGTAGCGTATGGTGCTGCT

122 XM_023628864.1
R: CATGACACCTCCCACGGTTT

IL-1b
F: AAACAGATGAAGTGCTCCTTCCAG
R: TGGAGAACACCACTTGTTGCTCCA

391 NM_000576.3

TNF-a
F: AGTGACAAGCCTGTAGCCCA
R: GTCTGGTAGGAGACGGCGAT

242 NM_000594.4

TGF-b
F: ATTCCTGGCGCTACCTCAGT
R: GCTGGAACTGAACCCGTTGAT

197 NM_001081849.1

PERK
F: GTGACTGCAATGGACCAGGA

283 XM_023618757.1
R: TCACGTGCTCACGAGGATATT

ATF6
F: CAGGGTGCACTAGAACAGGG

164 XM_023640315.1
R: AATGTGTCTCCCCTTCTGCG

XBP1
F: TTACGCGAGAAAACTCATGGCC

281 XM_014742035.2
R: GGGTCCAAGTTGAACAGAATGC

GAPDH
F: GTCAGTGGTGGACCTGACCT
R: CACCACCCTGTTGCTGTAGC

256 NM_001357943.2
F
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gene, an electrophoresis in a 2% agarose gel in TBE buffer with

M50pz DNA Ladder (Blirt, Gdańsk, Poland) was performed for 1

hour at 100V. All of the obtained results were normalized to

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression.

Relative expression of each gene was calculated using the 2-DDCQ

method (27).
2.8 Protein expression analysis

In order to analyse the protein expression, liver explants were

homogenized on ice in a RIPA lysis buffer (5M NaCl, 0,5M tris-HCl

at pH 8.0, 10% NP-40, 10% sodium deoxycholate, 10% SDS,

H2OmQ) supplemented with a phosphatase and protease

inhibitors cocktail. The lysates were centrifuged for 20 minutes at

4°C, 6000×g and the obtained supernatant was transferred to fresh

tubes and stored at -20°C for further analysis. The protein

concentration was determined using the Bicinchoninic acid

(BCA) protein assay kit (Sigma-Aldrich) and the samples were

diluted with a 4 × Laemmli loading buffer (Bio-Rad, Warszawa,

Poland) at 75°C for 10 min. Following this step, the samples were

subjected to an SDS–polyacrylamide gel electrophoresis in a Tris/

glycine/SDS buffer at 100 V, the electrophoresis was performed in

Mini PROTEAN Tetra Vertical Electrophoresis Cell (Bio-Rad,

Warszawa, Poland) for 90 min. Next, the proteins were

transferred from gel to the polyvinylidene difluoride (PVDF)

membranes (Bio-Rad, Warszawa, Poland) with a Mini Trans-

Blot®Cell (Bio-Rad, Warszawa, Poland) transfer apparatus in a

Tris/glycine buffer/methanol at 100 V, 250 mA at 4°C for 45 min.

The membranes were then blocked with a 5% non-fat milk solution

in TBST. The membranes were first incubated overnight at 4°C with

primary antibodies at recommended dilutions (Table 3) and then

with an HRP-conjugated secondary antibody (dilution 1:2500 in

TBST) for 1 h at a room temperature. ChemiDoc MP Imaging

System (Bio-Rad, Warszawa, Poland) and Image Lab Software (Bio-

Rad, Warszawa, Poland) were used to detect and quantify the

chemiluminescent signals.
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2.9 Statistical analysis

Each experiment was performed in at least three replicates. The

differences between experimental groups were calculated with the

one-way ANOVA method with Tukey’s test. GraphPad Prism 9

Software (La Jolla, CA, USA) was used for all statistical analyses.

Differences with probability of p < 0.05 were indicated with an

asterisk (*), those with p < 0.001 were showcased with two asterisks

(**), differences with p < 0.001 were marked with three asterisks

(***), and differences with p < 0.0001 were marked with four

asterisks (****).
3 Results

3.1 The MSI-1436 regulates the CHOP-
HSPA5 axis, warranting activation of
transcripts essential for the elimination of
ER stress effects

Expression pattern of markers associated with ER-stress,

including master regulator CCAAT-enhancer-binding protein

homologous protein - CHOP and its critical determinant Heat

shock 70 kDa protein 5 - HSPA5/BiP, indicated on dynamics in the

axis at mRNA and protein level. In this experimental setup, mRNA

levels for CHOP were decreased in livers derived from healthy

horses, while protein levels were increased (Figures 1A–C). The

differences were significant compared to CHOP transcript levels and

protein determined in the livers of EMS horses. The MSI-1436

reduced CHOP expression in EMS livers, but a significant difference

was noted only at the mRNA level. However, the HSPA5 expression

profile established on mRNA and protein levels consistently

indicated its upregulation in the EMS liver (Figures 1D, E). At the

same time, treatment with MSI-1436 caused a decline in the

accumulation of HSPA5 transcript and protein in the livers of

horses affected by EMS. The mRNA expression profile for HSPA5

correlated with the Protein kinase R (PKR)-like endoplasmic
TABLE 3 List of the antibodies and their dilutions used for this study.

Antibody Dilution Manufacturer/Cat n°

MAP1LC3A Antibody - N-terminal region 1:1000 Aviva (arp51335)

Anti-LC3B antibody - Autophagosome Marker 1:500 Abcam (ab48394)

BECN1 Antibody - N-terminal region 1:500 Aviva (arp58595)

HSPA8 Antibody - N-terminal region (HSC70) 1:500 Aviva (arp48446)

PINK1 antibody 1:250 Biorbyt (orb331223)

Parkin Antibody (JF82-09) 1:250 Novus Biologicals (NBP2-67017)

AKT Pan Polyclonal Antibody 1:1000 Invitrogen (44-609G)

AKT (phospho-S473) antibody 1:1000 Biorbyt (orb304681)

CHOP (L63F7) Mouse mAb 1:250 Cell Signaling Technology (2895T)

BiP (C50B1@) Rabbit mAb (HSPA5) 1:1000 Cell Signaling Technology (3177T)
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reticulum kinase -PERK transcript levels, a major ER stress sensor

that modulates global protein synthesis and participates in

proapoptotic signalling. However, with the exception that MSI-

1436 significantly decreased mRNA expression of PERK in EMS

livers, both compared to untreated EMS as well as to healthy tissue

(Figure 1F). Moreover, we noticed that treatment of EMS livers with

MSI-1436 triggered an accumulation of Activating transcription

factor 6 - ATF6 transcripts, which are known to critically regulate

cellular and ER chaperones genes expression. Furthermore, a

compar i son of ATF6 mRNA expres s ion showed i t s

downregulation in control livers (Figure 1G).

To further substantiate the influence of MSI-1436 application

on ER stress regulation, the expression and splicing patterns of X-

box-binding protein 1 - XBP1 has been evaluated. Indeed, the XBP1

splicing has been shown to maintain the activity of its protein in

regulating the transcription of ER stress proteins that promote the

degradation of misfolded proteins for proteostasis restoration.

Herein, we noted that XBP1 splicing (XBP1s) was decreased due

to MSI-1436 treatment (Figures 2B, D). However, we indicated an

increased accumulation of XBP1s in livers from control horses

compared to EMS horses. Furthermore, the expression of hybrid

transcripts [formed from one strand XBP1u (Figure 2A) and one

strand XBP1s (Figure 2B)] was also increased in healthy horses

compared to EMS horses (Figure 2C). Nevertheless, the real-time

analysis of transcripts number for XBP1 indicated the opposite

profile, i.e., significantly decreased expression of XBP1 in livers from

control horses and increased from EMS horses. Simultaneously,

real-time analysis confirmed that MSI-1436 reduce mRNA levels of

XBP1 in EMS livers (Figure 2E).
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3.2 MSI-1436 facilitates autophagy in EMS-
affected liver via upregulation of BECN1

The analysis of autophagy and mitophagy-related factors

determined on livers explants indicated that MSI-1436 modulates

autophagic pathways and may act at different levels, i.e., from

autophagosome formation to autophagosome/endosome

maturation inducing expression of Beclin-1 (BECN1).

The Parkin RBR E3 ubiquitin-protein ligase - PARKIN expression

was increased in EMS livers compared to healthy livers at bothmRNA

and protein levels. The MSI-1436 did not alter PARKIN transcript

levels but significantly reduced the intracellular accumulation of its

protein (Figures 3A, B, L). In turn, Microtubule-associated protein

light chain 3A - LC3A transcripts were downregulated in EMS-affected

livers, while MSI-1436 only deepened the reduction in mRNA

expression for LC3A (Figures 3C, D). The obtained data indicate

that MSI-1436 may activate autophagy and ameliorate stress inducers

contributing to increased expression of Beclin-1 at the protein level,

simultaneously reducing its transcripts abundance (Figures 3E, F, L).

The study also showed decreased mRNA expression for PTEN-

induced kinase 1 - PINK in healthy liver tissues. Simultaneously, the

accumulation of PINK1 transcripts increased in EMS liver and was

additionally upregulated by MSI-1436 (Figure 3J). At the same time,

MSI-1436 did not alter PINK intracellular protein expression in the

EMS liver (Figure 3K). Furthermore, LC3B transcripts were decreased

in control livers while increased in EMS-affected tissue. The MSI-1436

significantly reduced the expression of mRNA for LC3B, which

correlates with lowered protein expression of cytosolic LC3B-I and

lipidated LC3B-II isoform (Figures 3G–I).
A B C

D E F G

FIGURE 1

The expression pattern of ER stress-related biomarkers. The analysis included the determination of CHOP and HSPA5 expression at mRNA and
protein levels (A-E), and the determination of transcript levels for PERK (F) and ATF6 (G). All results are shown as mean ± SD. Columns with bars
represent means ± SD. **p-value < 0.001; ***p-value < 0.001.
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The beclin-1 (BECN-1) expression profile modulated by MSI-

1439 correlates with mRNA levels for mitofusin-2 - MNF-2, which

may be essential for mitophagy induction. Simultaneously, we have

noted that MSI-1439 elevates the transcripts for Lysosomal

Associated Membrane Protein 2 - LAMP2, BCL2 Interacting

Protein 3 Like - NIX and BCL2 and adenovirus E1B 19-kDa-

interacting protein 3 - BNIP3, indicating its potential function in

mitochondria clearance and cellular homeostasis (Figure 4).
3.3 MSI-1436 activates AKT1 in livers
affected by EMS

We showed that autophagy in EMS-affected liver is additionally

triggered by MSI-1436 and might be associated with the activation

of Protein kinase B - AKT1 and its phosphorylation. Indeed, mRNA

expression for AKT1 was elevated in EMS liver compared to control

tissue, and MSI-1436 was upregulating it further (Figure 5A).

However, we have noted a significantly increased accumulation of

59kDa AKT1 protein in healthy liver (Figure 5B) simultaneously

with a low expression of the 52 kDa AKT1 subunit. The levels of 52

kDa AKT1 were increased in EMS-affected livers but decreased after

MSI-1436 treatment (Figure 5C). The EMS-affected tissues had

heightened levels of phosphorylated AKT1 on serine residue at

position 473 (S473), which can be connected with increased AKT1

catalytic activity (Figures 5D, E). Nevertheless, MSI-1436 in the

EMS liver did not alter the levels of activated AKT1. Moreover,

increased expression of the protein folding and autophagy

chaperone Heat shock cognate 71 kDa protein - HSC70 was
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noted in EMS liver. The MSI-1436 had a minor effect on both

mRNA and protein levels - the increase of HSC70 in EMS livers

treated with MSI-1435 was insignificant (Figures 5F–H).
3.4 In vivo MSI-1436 treatment
ameliorates metabolic imbalance in EMS
affected horses

Qualification of horses for in vivo studies was performed based

on a system proposed by Henneke et al. (24), which warranted

proper classification of animals in the experimental groups

(Figure 6). The mean BSC index for healthy horses was 5.4 ±

0.51, while BSC for horses with equine metabolic syndrome was

established at 6.1 ± 0.32 level. Similarly, the cresty neck score

(CNS) which refers to the degree of adiposity was estimated at 1.4

± 0.51 for horses considered as healthy, while in EMS group the

CNS was rated at 2.8 ± 0.42 i.e., two times higher than that of

healthy horses.

The levels of circulating biomarkers, i.e., gamma-glutamyl

transferase (GGT) and aspartate aminotransferase (AST),

confirmed the proper classification of experimental animals. GGT

and AST range values were increased in animals assigned to the

EMS group, indicating liver dysfunction by opposition to healthy

horses (Figures 7A, B). Therewith, treatment of EMS horses with

PTP1B inhibitor (MSI-1436) resulted in a visible amelioration of

general liver functions and integrity as evidenced by the

normalization of both GGTP and AST levels when compared to

both healthy and EMS control groups (Figures 7C, D).
A B C

D E

FIGURE 2

The expression of XBP1 and analysis of its splicing. The densitometric analysis of single-stranded cDNA annealed to double-stranded XBP1 unspliced
(XBP1u; A, D) and spliced XBP1 (XPB1s; B, D), as well as hybrid (XBP1h) formed from one strand XBP1u and one strand XBP1s (C, D). The number of
accumulated XBP1 transcripts was determined using RT-qPCR (E). All results are shown as mean ± SD. Columns with bars represent means ± SD.
**p<0.01; ***p-value < 0.001.
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The impact of MSI-1436 administration on the general

metabolic status of EMS horses has been further verified by

measuring the blood levels of insulin, glucose and selected

adipokines. As shown in the Figures 8A, B, EMS horses were

characterized by a hyperinsulinemia concomitantly to elevated

blood glucose levels when compared to healthy animals

(p<0.0001). Treatment of EMS horses with the PTP1B inhibitor
Frontiers in Endocrinology 09
MSI-1436 resulted in a significant regulation of both insulinemia

and glycemia (Figures 8C, D), which appeared lower compared to

non-treated EMS animals (p<0.001; p<0.01), suggesting an

amelioration of the insulin and glycaemic control and a probable

attenuation of insulin resistance over a period of 4 weeks post-

treatment. Furthermore, the measurement of leptin and

adiponectin, two pleiotropic hormones involved in the
A B
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FIGURE 3

The expression of autophagy-related transcripts and proteins. The tested profile included evaluation of PARKIN1 (A, B, L), LC3A (C, D, L), BECN1 (E, F, L),
LC3B (G-I, L) and PINK1 (J-L). Data are presented as a mean value obtained from measurments ± SD. Statistical significance was marked as follows: *p-
value < 0.05, **p-value < 0.01 and ***p-value < 0.001.
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modulation of glucose metabolism and insulin signalling evidenced

a profound dysregulation in the levels of adipokines under EMS

condition as compared to healthy group (p<0.05; p<0.01), which

has been partly reversed in horses that received MSI-1436 in regards

to the observed increased adiponectin circulating levels (p<0.05),

while no significant differences in Leptin levels have been detected

between EMS untreated and treated groups.
3.5 In vivo MSI-1436 application reverses
liver distress in EMS affected horses

We demonstrated that short-term treatment (24 h) of EMS liver

explants with MSI-1436 activates the protective cellular pathways

associated to autophagic system. In order to further verify how

longer application of MSI-1436 to EMS horses impacts autophagic

flux, gene expression of key autophagy mediators has been analysed

in liver biopsies obtained from untreated and treated horses.

Obtained data confirmed first that EMS horses receiving placebo

exhibited increased autophagy as demonstrated by the upregulation

of both HSC70, LAMP-2, BECN1 and LC3 by opposition to healthy

horses (Figures 9A–E).

Interestingly, the group of EMS horses intravenously treated

with MSI-1436 displayed significantly reduced autophagy one-

month post-injection, by contrast to liver explants treated for a

period of 24 h, in which autophagy was seen to be upregulated.

Indeed, the relative expression of HSC70, LAMP-2, BECN1 and LC3

was found to be downregulated when compared to untreated EMS

group (p < 0.001), suggesting that longer term MSI-1436 action

enables to reduce liver molecular stress pathways that subsequently

attenuates autophagic flux.

To confirm this hypothesis, the expression of gene involved in

the regulation of mitochondrial dynamics and ER stress was

additionally analysed. As shown in Figures 10A–C, liver tissue

derived from untreated EMS group exhibited impaired

mitochondrial homeostasis and resulting dysregulation of MFN2,

PINK1 and PARKIN transcripts levels (p < 0.05; p < 0.01).

Moreover, the expression of key ER stress factors namely, CHOP,

HSPA5, PERK and ATF6 was also found to be profoundly increased
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in the same experimental group (Figures 10D–G). Obtained data

similarly evidenced the beneficial effects of MSI-1436 treatment on

liver metabolic distress. Liver biopsies isolated from MSI-1436-

treated EMS horses where thus characterized by reduced expression

of ER stress markers (CHOP, HSPA5, PERK and ATF6) and

improved mitochondrial dynamics related regulators, where

relative expression of MFN2 was restored while that of PINK1

and PAKIN was downregulated when compared to untreated EMS

group, suggesting that longer PTP1B inhibition using MSI-1436

abolished the various molecular stresses in EMS liver, which

subsequently attenuates the increased bulk autophagic-

degradation machinery.
3.6 In vivo MSI-1436 administration
attenuates systemic inflammation in
EMS horses

Low-grade inflammation represents one of the salient hallmarks

of EMS condition in relation to insulin resistance, altered lipid

metabolism and adipose tissue homeostasis. To this extent, the

influence of prolonged PTP1B inhibition using its selective inhibitor

trodusquemine on persistent inflammatory response processes has

been evaluated. The complete blood count of EMS horses that

received placebo demonstrated an elevation in the proportion of

white blood cells and monocytes compared to healthy animals

(Figures 11G, H). Furthermore, untreated EMS-derived PBMC

displayed reduced levels of regulatory T cells (Tregs) analysed

using flow cytometry (Figures 11A–E), as evidence of disrupted

anti-inflammatory pathways (Figure 11F). Treatment of EMS

horses with trodusquemine exerted a positive effect on systemic

inflammation by lowering the total levels of lymphocytes and

monocytes (p<0.05) by opposition to untreated horses.

Interestingly, PTP1B inhibition enabled to augment and

normalize the number of Tregs to a basal level (p<0.01), which

suggests a potential regulatory effect on inflammatory responses.

To further confirm the anti-inflammatory outcomes of PTP1B

inhibition, expression levels of key inflammatory mediators have

been analysed at both mRNA and protein levels. As depicted in the
A B C D

FIGURE 4

The transcripts levels associated with mitophagy determined with RT-qPCR. The comparative analysis included an evaluation of mRNA expression
for LAMP2 (A), NIX (B), BNIP3 (C) and MNF2 (D). Data are presented as a mean value obtained from measurments ± SD. Statistical significance was
marked as follows: *p-value < 0.05, **p-value < 0.01 and ***p-value < 0.001.
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Figure 12, under EMS condition, horses were characterized by a

significant upregulation of IL-1b, TNF-a and TGF-b transcripts in

liver, as opposed to healthy animals (p<0.0001; p<0.001; p<0.05).

Similarly, the plasma protein levels of the same cytokines appeared

to be critically elevated by approximately 2-folds for IL-1b, 1.4-folds
for TGF-b and 1.6-folds for TNF-a in regards to control horses

(Figures 12D–F). Intravenous administration of MSI-1436 resulted

in a substantial lowering of the analysed circulating pro-

inflammatory cytokines, with a pronounced effect observed for

IL-1b, where its level has been decreased by up to 2-folds

compared to untreated EMS horses (p<0.01). Comparable trends

were noted at the mRNA level, where liver expression of both IL-1b,
TNF-a and TGF-b has been found to be considerably

downregulated in comparison to placebo-treated animals

(Figures 12A–C). Surprisingly, the MSI-1436-treated horses

further displayed comparable TNF-a and TGF-b mRNA levels,

and even reduced IL-1b transcript expression in relation to heathy

group, evoking a substantial potential for PTP1B inhibition using

MSI-1436 in modulating EMS-associated inflammatory bias.
4 Discussion

Equine metabolic syndrome (EMS) is a systematic disorder

presenting a phenotype of insulin resistance, increased adiposity,
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and predisposition to laminitis development in equines (28, 29).

Excessive accumulation of free fatty acids (FFAs) in non-adipose

organs engenders cellular metabolism collapse and organelles

dysfunctions, that ultimately trigger low-grade inflammation

progression and associated, insulin resistance (IR) in the hepatic

tissue. Critically, the hepatic IR is the primary event that

subsequently leads to the progression of insulin resistance in

other peripheral tissues and finally to the development of EMS

(30, 31). We have previously showed that various tissues isolated

from horses suffering from EMS are characterized by deteriorated

autophagy, mitophagy, and endoplasmic reticulum stress (ER-

stress) (32, 33). Importantly, protein–tyrosine phosphatases, such

as PTP1B and LMPTP, are considered as negative regulators of

insulin signalling pathways and thus might serve as promising

therapeutic targets in the treatment of EMS. Previously, we have

noted a positive effect of PTP1B inhibitor (Trodusquemine/MSI-

1436) on EMS horse-delivered ASCs (adipose tissue-delivered stem

cells) and human HepG2 cell line (34, 35). It was shown that MSI-

1436 regulates autophagy and ER-stress while decreasing oxidative

stress and lipotoxicity in both cellular models. To support these

findings, we evaluate for the first time the therapeutic effect of

PTP1B inhibitor in vivo and ex vivo, using EMS horse-derived liver

tissues. The use of Trodusquemine for the proposed research was

not only motivated by its proven antidiabetic and anti-obesity

effects, but also by its well tolerability and well-established
A B C
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H

FIGURE 5

The expression of AKT1 and HSC70 governed by MSI-1436. The analysis included the determination of total AKT1 mRNA levels (A), protein
expression and phosphorylation (B-E, H) as well as evaluation of HSC70 transcript (F) and protein accumulation (G, H). Data are presented as a mean
value obtained from measurments ± SD. Statistical significance was marked as follows: *p-value < 0.05 and ***p-value < 0.001.
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pharmacological profile. Indeed, various studies established the

MSI-1436 safety on different animal models including mice and

zebrafish, and reported effective doses being 5–50 times lower than

the maximum dose tolerated by humans (9, 36–38) .

Trodusquemine has also been tested for its safety and

pharmacokinetics in healthy human volunteers [NCT00509132,

2007]. Moreover, MSI-1436 is currently under evaluation in

Phase 1 and 1b clinical trials for the treatment of obesity and

type-2 diabetes [NCT00606112, 2008; NCT00806338, 2009], HER-

2 positive metastatic breast cancer [NCT02524951, 2018], as well as

atherosclerosis and inflammation [NCT04235023, 2020]. The data

generated so far demonstrated that the PTP1B inhibitor is well

tolerated by human patients and is planned to be moved to phase 2

trials (39), all of which strongly suggest its safe use for EMS

intervention in veterinary clinical practice.

In this investigation, we have found that trodusquemine

posi t ive ly regulates autophagy and mitophagy while

simultaneously modulating the ER stress and systemic

insulin resistance.

It was clearly shown that MSI-1436 positively stimulates

autophagy processes in isolated liver explants. It was presented by

an increased accumulation of LAMP2 and HSC70 transcripts and a

greater concentration of BECN1 and HSC70 proteins in MSI-

treated tissue compared to untreated tissue. The obtained results

stay in line with the data presented by other authors. Experiments

on hepatocyte-specific DGAT1 knockout mice revealed that

restored LAMP-2 expression in livers improved autophagy

function and ameliorated alcohol-induced liver injury (40). In

addition, LAMP-2 is an indispensable component of complete

CMA (chaperone-mediated autophagy) that is mediated by heat

shock cognate 71 kDa protein (HSC70) (41). We have noted
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significant discrepancies in the protein accumulation of evaluated

LC3 splice variants responsible for autophagosomes and

autolysosome formation. LC3A was upregulated, while LC3B-I
A B C

D E

FIGURE 6

Clinical parameters used for horses’ enrolment into “experimental EMS” and “control” group. Individual data representation of body weight (A), body
score condition (B), cresty neck score (C), fasting insulin (D) and CGIT (E).
A B

C D

FIGURE 7

Liver function evaluation in healthy and EMS horses. Bar charts
depicting the serum levels of GGTP (A) and AST (B) measured in
healthy and EMS horses before treatments. Bar charts depicting the
serum levels of GGTP (C) and AST (D) measured in healthy and EMS
horses following 4 weeks treatment with MSI-1436 or Placebo. Data
are presented as a mean value obtained from measurments ± SD.
Statistical significance was marked as follows: *p-value < 0.05; **p <
0.01 and ***p-value < 0.001.
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and LC3B-II decreased after MSI-1436 treatment. Significant

accumulation of complete LC3 protein is commonly associated

with autophagosome formation, while downregulation of LC3B

subunit seems to have no significant influence on autophagy

efficiency. As reported by Baeken et al. (2020), the nuclear

trapping and other methods of LC3B inhibition in human IMR90

cells are actively buffered by LC3A accumulation and compensated

by LC3C (42). Longer term MSI-1436 application resulted in

different effects on liver autophagy machinery. Indeed,

intravenous administration of MSI-1436 to EMS horses triggered

a reduction in gene expression of key autophagy mediators

including HSC70, LAMP-2, BECN1 and LC3A/B, suggesting a

possible modulatory effect on liver tissue degradative processes.

Previous reports demonstrated that various metabolic stress

conditions such as lipotoxicity, insulin resistance, or

inflammation upregulate autophagy owing to its cytoprotective

functions and, in order to maintain cellular and tissular

homeostasis by improving cell viability/death balance and

attenuating the underlying inflammatory state (43, 44). Thus, the

persistence of the cellular stressors including ER/Oxidative stress

and inflammation sustains the transcriptional upregulation of

autophagy genes, while excessive or persistent autophagy can also

promote apoptosis (45).

Similarly to our findings, other studies proved that alleviation of

metabolic dysfunctions-related events contributes to the
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attenuation of the adaptative processes constituting autophagy.

Escribano-López and collaborators (46), showed that treatment of

Type 2 Diabetes patients with the SS-31 Mitochondrial Antioxidant

compound, reduced oxidative and ER stress, improved

mitochondrial functions and decreased Beclin1, LC3 I and LC3 II

expression, which attenuated autophagy response. Therewith, other

research demonstrated that inhibition of PTP1B abolished ER

stress-dependent autophagy activation in rats through the

downregulation of Beclin-1 and LC3-II/I pathways (47). Also,

PTP1B knockdown has been reported to efficiently suppress

overactivation of autophagy in endothelial cells (48), as well as

PTP1B deficient mice displayed reduced LC3B-II, LC3B-II/LC3B-I

ratio, Atg5, Atg7 and p62 adaptor protein under tunicamycin-

induced ER stress, pointing out the critical therapeutic benefice of

PTP1B activity suppression (49). Taken together, it is plausible to

postulate that prolonged inhibition of PTP1B with MSI-1436 in

EMS horses may indirectly attenuate autophagy by reducing other

metabolic stress responses including oxidative and ER stress as well

as mitochondrial impairment.

Dysfunctions of mitochondria fission and fusion processes, as

well as mitophagy, have been reported to play a considerable role in

the development of free fatty acid-induced hepatic insulin resistance

(50, 51). Mitophagy is a catabolic process that selectively degrades

damaged or superfluous mitochondria. It reverses mitochondrial

dysfunction and preserves mitochondrial dynamics and proper

functionality. For that reason, mitophagy could promote

mitochondrial fatty acid oxidation, thus inhibiting hepatic fatty

acid accumulation and improving liver functionality during insulin

resistance. We have shown that the PTP1B inhibitor upregulated

PINK1, MFN2, NIX and BNIP3 transcripts in equine liver explants.

Previously, using neuronal N2a and hepatic L02 cells, it was

demonstrated that PINK1 activation is crucial for PARKIN

recruitment and phosphorylation, which further induce LC3-II

colocalization with mitochondria and leads to mitophagy

progression (52, 53). Moreover, Bnip2 and Nix are subunits of

mitochondrial BNIP3L/Nix protein located in the outer membrane.

This protein belongs to the BH3-only protein from the BCL2 family

and thus regulates also the cell viability. BNIP3L/Nix serves as a

mitophagy receptor that recognizes autophagosomes, hence

participating in the selective removal of damaged mitochondria

(54–56). Moreover, the overexpression of Mnf2 that regulates

mitochondria fusion is essential for metabolic homeostasis of liver

tissues. It has been shown that the ablation of Mfn2 in a mice model

results in glucose intolerance, increased hepatic gluconeogenesis,

impaired insulin signalling, as well as the development of ER

stress (57).

In vivo application of MSI-1436 to EMS horses resulted in

similar amelioration of mitochondrial dynamics. The PTP1B

inhibitor exerted a strong regulatory effect on the expression of

MFN-2, PINK1 and PARKIN confirming the efficacy of the inhibitor

in improving mitochondrial and overall liver metabolism under

EMS condition. Previously, ablation of PTP1B in mice has also been

shown to improve mitochondrial integrity by suppressing ER-stress

mediated overexpression of Pink1 and Parkin (49), which reinforces

the beneficial use of PTP1B inhibitors for the restoration or

improvement of mitochondrial biogenesis.
A B
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FIGURE 8

Circulating levels of key insulin resistance related metabolic
parameters determined following in vivo application of MSI-1436
inhibitor. Blood levels of Leptin (A), Adiponectin (B), Insulin (C) and
Glucose (D) were determined in healthy, EMS untreated and EMS
treated horses. Data are presented as a mean value obtained from
measurments ± SD. Statistical significance was marked as follows:
*p-value < 0.05; **p < 0.01, ***p-value < 0.001 and ****p-value <
0.0001.
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It has been shown previously using a broad spectrum of liver

cell lines and hepatoma cells that ER-stress impairs insulin

signalling by depleting the insulin receptor on the cell surface

(58). The disruption of ER homeostasis leads to ER-stress that

activates unfolded protein response (UPR) (59). Here, we have

shown that the use of MSI-1436 in either ex vivo or in vivomodel of

equine EMS has therapeutic potential for ER-stress mitigation

evidenced by decreased level of transcripts commonly indicated

as important ER-stress markers, i.e. HSPA5, PERK and XBP1 (60–

62). The results are consistent with other studies focused on MSI-

1436 therapeutic potential in a mouse model of diet-induced obesity

and IR-dependent atherosclerosis (9, 63). Abdelsalam et al. (48),

reported a critical suppression of ER stress related markers CHOP,

BiP, ATF-4 and GRP94 following PTP1B inhibition in endothelial

cells. Furthermore, PTP1B knockout mice were found to be

protected against ER stress when exposed to Tunicamycin, and

further prevented the activation of TRIB3, Atg5/7, LC3B and p62

proteins while ameliorated IRS-1 tyrosine phosphorylation (49).

PTP1B silencing in experimental mice similarly prevented obesity-

induced ER stress by inactivating CHOP, BIP, GRP94, ATF4 and

XBP1 factors (64). Interestingly, obtained results suggest a selective

way of ER-stress signalling pathways regulation after PTP1B

inhibition, that was evidenced by an upregulation of ATF6

expression and confirmed by XBP1 splicing depletion.

Upon aberrant misfolded proteins accumulation, ER stress is

initiated via a series of genes transcription and proteins expression

that activate three distinct adaptative arms including the activating

transcription factor 6 (ATF6) signaling, which triggers the assembly

of molecule chaperones, the transcription of ER stress effectors, and
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mediates proper protein folding (65). Interestingly, ATF6 deficiency

alters the expression of ER chaperones and exacerbates liver injury,

necroptosis, impaired fatty acid oxidation, steatosis and insulin

resistance arising from acute stress (66). Herein, we observed that

EMS livers exhibited increased expression of ATF6 transcript, as a

result of the increased ER perturbations and metabolic stress signals

load. Increased expression of ATF6 under EMS condition is directly

related to its adaptative role in the activation of molecular

chaperones that sense ER stress and tend to activate homeostatic

responses to protect hepatic cells from ER stress-induced damage

and apoptosis (67, 68). Remarkably, treatment of EMS liver tissue

with the PTP1B inhibitor MSI-1436 substantially induced ATF6

overexpression, evoking the selective stimulation of an ATF6-

protective pathway. This hypothesis is supported by previous

findings showing that enhanced expression of liver endogenous

chaperones including ATF6- GRP78 axis fosters the heightening of

protective UPR and expression of additional chaperones such as

GRP94, that cooperate to further attenuate lipids accumulation and

promote their clearance from the hepatocytes in ob/ob mice (69).

Consistently, ATF6 overexpression in obese or diabetic livers

regulates blood glucose level, reduces glucose intolerance and

ameliorates insulin sensitivity (70, 71). Moreover, other research

reported on the beneficial outcomes of ATF6 pathway stimulation

in facilitating pro-survival UPR, for the prevention of diabetes

progression (72). Hence, it can be concluded that MSI-1436

ameliorates liver metabolic homeostasis by targeting the folding

capacity of the ER via an ATF6-selective pathway.

Another important UPR event is represented by the IRE1a-
mediated XPB1 splicing. The dimerization and trans-
A B

C D E

FIGURE 9

Expression of liver key autophagy associated mediators following in vivo application of MSI-1436 inhibitor. Relative gene expression of HSC70 (A),
LAMP2 (B), BECN1 (C), LC3A (D) and LC3B (E) were determined from healthy, EMS untreated and EMS treated horses. Data are presented as a mean
value obtained from measurments ± SD. Statistical significance was marked as follows: *p-value < 0.05; **p < 0.01 and ***p-value < 0.001.
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autophosphorylation of IRE1a under prolonged misfolded protein

burden activates its C-terminal RNase domain that catalyses the

unconventional splicing of X-box–binding protein 1 mRNA. The

resulting spliced XBP1 mRNA is further translated to an active and

stable form of the XBP1s protein, which initiates and regulates the

expression of main UPR chaperones, Endoplasmic Reticulum-

Associated Degradation (ERAD) elements and ER biogenesis

mediators (73). Hither, we observed an upregulated expression of

unspliced XBP1 transcript in liver tissue derived from EMS horses.

Intriguingly, the level of spliced XBP1 was found lowered compared

to healthy livers, suggesting an altered UPR program. These

observations can be explained on the basis of previously

published research demonstrating an impaired XBP1s processing

and nuclear translocation in the course of various metabolic

conditions such as obesity, insulin resistance, and type 2 diabetes

(74, 75). The reported progressive decline in hepatic XBP1 post-

transcriptional splicing has been mainly attributed to an increase in

IRE1a S-nitrosylation and depleted endoribonuclease activity

mediated by elevated inducible nitric oxide synthase (iNOS)

activity, during metaflammation characteristic of metabolic

syndrome and obesity (76). Noteworthy, incubation of EMS liver

explants with MSI-1436 resulted in a further decreased expression

of total XBP1 mRNA and spliced XBP1 level. This outcome is in

agreement with our recently published data, showing the ability of

MSI-1436 to blockade XBP1 splicing in a model pf tunicamycin-

indued ER stress in HepG2 cell line (77). These findings

additionally suggest that the mechanisms underlying XBP1

functional outputs under metabolic ER stress differ from other

proteostatic perturbators and seemingly encompass more intricate

and interconnected molecular events, and the implication of
Frontiers in Endocrinology 15
unrelated external influences leading to either increased or

decreased IRE1a-XBP1 axis activation (78). However, we bring

the evidence that MSI-1436 application may represent an efficient

genetic inhibitor of certain aspects of IRE1a activity for the

attenuation of sustained XBP1 expression and unconventional

splicing under unfavourable metabolic conditions in the liver, as

previously reported by Bailly-Maitre and colleagues (79), who

uncovered that the inhibition of IRE1a-mediated XBP1 splicing

using Bax-inhibitor 1 protects mice from obesity-associated insulin

resistance development.

Unresolved or maladaptive misfolded protein burden dictates cell

fate and leads to the expression of chaperone proteins that shorten

cellular lifespan and initiate apoptotic cascades. Among those death

signalling molecules, CHOP transcription factor is considered as a

major misfolded protein stress-associated pro-apoptotic mediator. It

stimulates the expression of a variety of upstream effectors including

BIM, BAK, BAX, TRB3 and Caspase 3 (80). Here we found that EMS

livers were characterized by upregulated CHOP mRNA and

unexpected reduced CHOP protein level, whereas MSI-1436

treatment enabled to substantially downregulate Chop gene

expression, without restoring normal levels of its protein. This

divergence between gene and protein expression has already been

previously reported in other studies, in which changes in mRNA

levels initiating the UPR and ER stress have been found to not

translate into protein changes. What is more, the occurrence of

various post-translational modifications that fluctuate with the degree

of metabolic failure have been shown to orchestrate chaperone

proteins downregulation, protein synthesis and ubiquitination

deterioration, as well as intracellular trafficking and excretion

decline under sustained metabolic stress (81, 82), suggesting that
A B C

D GE F

FIGURE 10

Impact of MSI-1436 administration on key mitochondrial dynamics and ER stress related markers expression in EMS affected horses. Relative gene
expression of Mitochondrial dynamics (A, B, C) and ER stress (D, E, F, G) mediators analysed using RT-qPCR technique. Data are presented as a
mean value obtained from measurments ± SD. Statistical significance was marked as follows: *p-value < 0.05; **p < 0.01 and ***p-value < 0.001.
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EMS condition may disrupt the balance between gene and protein

expression, and MSI-1436 might rather specifically attenuate ER

stress at gene transcriptional level instead of protein post-

translational maturation.

Our obtained data thus evidenced a reduced CHOP protein

abundance under EMS condition, which was not restored by MSI-

1436. Although CHOP protein is expected to be upregulated in the

course of ER stress progression, previous investigations have

highlighted a counterintuitive implication of CHOP factor in the

onset of obesity and liver steatosis. Indeed, the development of

obesity and associated excessive fats deposition in mice has been

associated with a depletion in CHOP protein. Moreover, CHOP has

been found to strongly suppress the expression of lipids metabolism

master regulators including CEBPA, PPARA, and SREBF1 and to

consequently hamper adipogenesis and adipose tissue expansion (83–
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85). In the liver, CHOP protein suppression has similarly been

associated with steatosis occurrence, excessive lipids accumulation

within hepatocytes and generally establishment of leptin resistance

(86, 87). Moreover, CHOP depletion has been shown to promote

liver inflammation, impaired glucose and insulin tolerance during

high fat feeding (84), suggesting the important role of CHOP protein

as a molecular mediator that is altered during systemic metabolic

impairments similar to EMS. Taken together, these findings

substantiate the protective effect of MSI-1436 on liver metabolic

distress that translates through ER stress adaptation, mitochondrial

failure attenuation and subsequent autophagy regulation, which

ultimately leads to a substantial amelioration of liver functions.

Liver insulin desensitization has been largely associated to

increased adiposity and low-grade inflammation persistence.

During metabolic syndrome progression, the highly pro-
A B
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FIGURE 11

Effect of in vivo MSI-1436 treatment of inflammatory cells distribution in EMS horses. Gating strategy of the flow cytometry analysis of T cells in
peripheral blood. R1 gate was set up around the cell population visible in the FSC/SSC axis (A). The doublets were excluded from analysis by set up
the gate R22 (B). Gate R19 was set up on the cells positive to CD4 (C). The division of CD25 on CD25 negative and positive (dim, medium and high)
(D). The percentage of the triple positive cells (CD4+CD25+Foxp3+) was established from set up the quadrants R24 (D). Additionally, the percentage
of the CD4+CD25high+Foxp3+ cells (Tregs) was established (E). Average Tregs levels determined in each experimental group (F). Total white blood
cells (WBC) (G) and monocytes (MO) (H) densities obtained from the complete blood count analysis. Data are presented as a mean value obtained
from measurments ± SD. Statistical significance was marked as follows: *p-value < 0.05 and **p < 0.01.
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inflammatory microenvironment is typically maintained by the

constant release of abnormal cytokines levels including IL-1b,
TNF-a, IL-6 and, acute phase proteins, which strongly contribute

to the metabolic failure of metabolically active organs such as liver

(88). In this study, we found that EMS horses displayed elevated levels

of IL-1b, TNF-a and TGF-b, which are known as pivotal pro-

inflammatory mediators and were characterized by higher

monocytes number and poor CD4+CD25+Foxp3+ regulatory T

cells activation. What is more, we demonstrated that treatment of

EMS horses with the potent PTP1B inhibitor MSI-1436 resulted in a

significant regulation of inflammatory responses, evidenced by a

substantial decreased levels of both IL-1b, TNF-a and TGF-b at

mRNA and protein level, and by an interesting stimulation of CD4

+CD25+Foxp3+ regulatory T cells activation. Previous investigations

reported on the close crosstalk between inflammation and PTP1B

activity. Song et al. (89), found that PTP1B expression increases

significantly after inflammation induction using LPS, and that it

potentiates the microglial proinflammatory response. Moreover, they

showed that pharmacological PTP1B blockade resulted in a marked

suppression of iNOS, COX-2, TNF-a, and IL-1b levels, which stands

in line with our observed results. Similarly, PTP1B deficiency in a

model of high fat diet-induced obesity in mice has been reported to

substantially protect against hypothalamic microglia inflammation,

which has been attributed to a restoration of the JAK2-STAT3

signalling, initially negatively regulated by PTP1B overactivation

(90). Our data are furthermore in agreement with earlier researches

that evaluated the impact of liver PTP1B inhibition or deficiency on

inflammatory processes. Loss of PTP1B in the course of liver steatosis
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and fibrosis directly suppressed the expression of TGF-b, while its

depletion in a model of ethanol-induced liver injury in mice resulted

in a visible attenuation of induced injury, inflammation, and steatosis

that has been correlated with a reduced oxidative stress (91, 92).

Therewith, Wiede and collaborators (93), recently demonstrated

similarly to our findings that global or hematopoietic deletion or

inhibition of PTP1B with MSI-1436 is accompanied by the

recruitment of a number of immunosuppressive cells including

CD4+ regulatory T cells (Tregs) mediated by the STAT-5 signaling

priming in C57BL/6 mice, highlighting the importance inmodulating

PTP1B for the proper control of liver deterioration associated to

inflammatory pathways.

Similar outcomes have been observed regarding the levels of

selected adipokines, including adiponectin, which appeared to be

augmented in horses having received MSI-1436 inhibitor. As a

consequence, we observed that MSI-1436-treated horses exhibited

lower circulating concentrations of insulin and glucose compared to

untreated animals, which displayed critical hyperinsulinemia,

hyperglycaemia and hypoadiponectinemia as prominent EMS

clinical manifestations. Adiponectin is among the most important

hormones secreted by adipose tissue with strong insulin sensitizing

properties. Moreover, the fat cytokine is known to participate in

glucose metabolism regulation and to exert anti-inflammatory

properties (94). Adiponectin levels have been previously reported

to be substantially reduced in patients suffering from obesity,

diabetes mellitus, cardiovascular diseases and metabolic

syndrome, which has been further correlated to the progression

of insulin resistance and chronic inflammation of the metabolic
A B C
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FIGURE 12

Inflammatory mediators status changes resulting from the in vivo MSI-1436 administration to EMS affected horses. Relative gene expression of IL-1b
(A), TGF-b (B) and TNF-a (C) determined by means of RT-qPCR technique in liver biopsies sampled following 4 weeks of MSI-1436 treatment.
Circulating levels of IL-1b (D), TGF-b (E) and TNF-a (F) proteins quantified using specific ELISA assays in blood samples derived from each
experimental group. Data are presented as a mean value obtained from measurments ± SD. Statistical significance was marked as follows: *p-value
< 0.05; **p < 0.01; ***p-value < 0.001 and ****p-value < 0.0001.
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organs (95). Here we found that EMS horses exhibited critical low

adiponectin levels and that PTP1B inhibition inversely correlates

with higher adiponectin levels; this is in accordance with a previous

study of Swarbrick and colleagues (96), who showed that specific

PTP1B inhibition with ISIS-113715 inhibitor significantly increased

blood adiponectin concentrations by 70% in obese and insulin-

resistant rhesus monkeys. Likewise, nonspecific PTP1B inhibition

in a model of Zucker diabetic fatty (ZDF) rats has been brought out

to restore the plasma adiponectin levels, which were even

comparable to normal rats (97).

The restoration of normal adiponectin levels may further

explain the observed anti-inflammatory effect of MSI-1436, and

together substantiate the visible regulation of insulinemia and

glycemia in EMS horses. Indeed, consistently to our findings,

increased adiponectin levels consequently to PTP1B inhibition

has been correlated to an amelioration of insulin sensitivity and a

resulting decreased hyperinsulinemia and glucose intolerance in

various animal models (96–99). In type 2 diabetic human patients,

PTP1B inhibition also resulted in a remarkable reduction in fed and

fasted glucose and HbA1c levels parallelly to lowered insulin blood

levels, in relation to an improved adiponectin secretion (100).

Taken together, our and others data clearly suggest the

effectiveness of PTP1B inhibition in improving the metabolic

balance under insulin resistance and metabolic syndrome

condition. These positive outcomes essentially derive from the

attenuation of various molecular pathophysiological processes

including low-grade inflammation, hormonal imbalance, ER

stress, mitochondrial dysfunction and autophagy that contributes

to the restoration of insulin sensitivity and proper control of glucose

disposal in insulin-responsive tissues.
5 Conclusion

In the present study, we have performed the ex vivo and in vivo

assessment of the potential therapeutic efficiency of PTP1B

inhibitor for the first time using the liver explants of EMS-

suffering horses. The obtained results indicate that MSI-1436

might serve as an essential therapeutic agent modulating the

autophagic processes of liver cells delivered from insulin-resistant

horses. The addition of MSI-1436 positively regulates autophagy

and autophagosome formation and induces mitophagy. At the same

time, it inhibits the ER-stress resulting from ongoing inflammation

due to pathological deposition of free fatty acids within the non-

adipogenous organs. In vivo administration of MSI-1436 to EMS

horses further confirmed its potent therapeutic effect on rescuing

distressed liver and restoring proper metabolic homeostasis, by

reducing inflammatory processes, and regulating the circulating

levels of insulin and glucose, pointing out the remarkable insulin

sensitizing effects of MSI-1436 and PTP1B inhibition strategy in

EMS affected horses.
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46. Escribano-López I, de Marañon AM, Iannantuoni F, López-Domènech S, Abad-
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AKT1 Serine/threonine-protein kinase 1

AST Aspartate aminotransferase

ATF4 Activating Transcription Factor 4

ATF6 Activating Transcription Factor 6

Atg16L1 Autophagy Related 16 Like 1

Atg5 Autophagy Related 5

Atg7 Autophagy Related 7

BAK Bcl-2 homologous antagonist/killer

BAX BCL2 Associated X

BCS Body condition score

BIM Bcl-2-like protein 11

BiP Binding immunoglobulin protein

BNIP3 BCL2 and adenovirus E1B 19-kDa-interacting protein 3

BW Body weight

CEBPA CCAAT enhancer binding protein

CHOP CCAAT-enhancer-binding protein homologous protein

CMA Chaperone-mediated autophagy

CNS Cresty Neck Score

CTLA-4 Cytotoxic T-Lymphocyte Antigen 4

DGAT1 Diacylglycerol O-Acyltransferase 1

DMEM-LG Dulbecco’s Modified Eagle Medium with Low glucose

EMS Equine metabolic syndrome

ER Endoplasmic reticulum

ERAD ER-associated degradation

FFAs Free fatty acids

GGTP Gamma-glutamyl transpeptidase

GRP94 Glucose-regulated protein 94

HE Healthy

HepG2 Human hepatocellular carcinoma

HSC70 Heat shock cognate protein 70

HSPA Heat Shock Protein Family A (Hsp70)

ICOS Inducible costimulator

IFN-g Interferon g

IL-1b Interleukin-1b

IL-6 Interleukin-6

IR Insulin receptor

IR Insulin resistance

IRS-1 Insulin receptor substrate 1
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JAK2 Janus Kinase 2

LC3 Microtubule-associated protein 1A/1B-light chain 3

LMPTP Low molecular weight phosphotyrosine protein phosphatase

MFN2 Mitofusin 2

mTOR Mammalian target of rapamycin

NIX BCL2 Interacting Protein 3 Like

PBMC Peripheral blood mononuclear cells

PD-1 Programmed death 1

PERK Protein kinase R (PKR)-like endoplasmic reticulum kinase

PINK1 PTEN-induced kinase 1

PPARA Peroxisome proliferator-activated receptor alpha

PS Penicillin –Streptomycin

PTP1B Protein-tyrosine phosphatase 1B

PTPs Protein-tyrosine phosphatases

RT-qPCR Reverse transcription-quantitative polymerase chain reaction

SREBF1 Sterol regulatory element-binding protein

STAT3 Signal transducer and activator of transcription 3

STAT-5 Signal transducer and activator of transcription 5

T2D Type 2 Diabetes

TGF-b Transforming growth factor b

TNF-a Tumor necrosis factor a

TRB3 Tribbles Pseudokinase 3

TRIB3 Tribbles Pseudokinase 3

UPR Unfolded protein response

Xbp1 X box binding protein-1

ZDF Zucker diabetic fatty
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