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The composite length-biased exponential-Pareto (CLBEP) distribution is a new

composite distribution that is introduced in this article. This model’s probability

density function, moments, and quantiles, among other statistical characteristics,

are determined mathematically. The parameters’ maximum-likelihood estimation

and stochastic ordering are discussed. A comparison study with other new

composite and conventional distributions is also included. Specifically, using

two actual fire insurance data sets, the goodness of fit of this new model is

contrasted with the composite exponential-Pareto, composite lognormal-Pareto,

and composite Rayleigh-Pareto distributions (Algerian and Danish fire insurance

losses).

2010 AMS subject classifications: 62E10; 60E05.

KEYWORDS

composite distribution, Pareto distribution, length-biased exponential, maximum-

likelihood estimation, quantile function

1. Introduction

Currently, digital methods are being used in the fields of biology, economics, physical

sciences, statistical sciences, and other fields. In the applications of other fields as well as

in daily life, the statistical sciences are essential. Probability distributions are frequently

the foundation of statistical science because many problems in these fields frequently do

not follow one of the fundamental probability distributions. Actuarial science and finance

generally use common distributions to express their data on payments, quantity and number

of claims, and premium computation. Examples of these distributions are exponential,

Poisson, length-biased exponential, and Pareto.

The length-biased exponential distribution, on the other hand, offers a wide range of

practical applications in several industries (reliability, actuarial science, survival analysis, and

mathematical financiers). The lifetime of a phenomenon with nomemory, no aging, no wear

and tear, or the profits of an insurance company, or various models of surpluses and financial

assets, are frequently modeled using the length-biased exponential distribution.

The modeling of unimodal insurance loss data with a long tail appeals to actuaries.

Distributions that may replicate the heavy tail of insurance loss data are necessary to provide

a sufficiently precise estimate of the degree of connected business risk, including gamma,

Pareto, length-biased exponential, Rayleigh lognormal, and Weibull.
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For example, if there are both modest and significant losses,

insurance companies may experience losses. When modeling very

large losses, practitioners seem to favor the Pareto distribution for

size distribution. Length-biased exponential, lognormal, Rayleigh,

or Weibull models are preferred when the losses are composed

of smaller values with high frequencies and larger losses with

low frequencies [1]. Nevertheless, no conventional size model

can simultaneously account for losses that are both minor and

significant. Unlike length-biased, lognormal, Rayleigh, or Weibull

exponential models, which have a positive general fit but fit the tail

poorly, Pareto models actually fit the tail well.

When modeling data that have heavy tails, the composite

distributions appear appropriate. For instance, the one-parameter

exponential-Pareto (exp-Pareto) model and the one-parameter

inverse gamma-Pareto (IG-Pareto) model have both been proposed

as potential models for the modeling of insurance data. When they

are fitted to well-known insurance data sets, such as the Danish fire

insurance data set, they still are unable to perform satisfactorily.

So, the model needs to be improved. By exponentiation of the

random variable linked to the probability density function (pdf)

of an inverse gamma-Pareto distribution, Liu and Ananda [2]

suggested an improved version of the one-parameter IG-Pareto

model. Their suggested model outperformed the original model

significantly across several data sets. Furthermore, there are other

composite models such as the composite lognormal-Pareto (cLP)

model (see Scollnik [3] and composite Rayleigh-Pareto (cRP)

model (see Benatmane et al. [4]). For more details see [5–12].

As a result, we suggest, in this study, a novel composite

distribution that blends length-biased and Pareto exponential

distributions. This effort aims to introduce a new composite

distribution. As a result, the CLBEP distribution has a single

parameter. It is simple to determine mathematical qualities in an

explicit form. Due to its composition (two types of distributions

that can be simulated for survival analysis and actuarial purposes),

this new distribution offers advantages. Many real-life data sets can

be analyzed using the CLBEP model, which provides suitable fits to

these data sets.

The current article is structured as follows: The composite

length-biased exponential-Pareto distribution and some of its

statistical characteristics are discussed in Section 2. The estimation

of parameters is addressed in Section 3. A numerical example with

a comparison of various classical and composite models using two

real data sets is provided in Section 4.

2. Formulation of the CLBEP
distribution

For many theoretical issues, the length-biased exponential

and Pareto distributions might not be adequate. We created the

composite length-biased exponential-Pareto (CLBEP) distribution,

based on the composite transformation, to have a flexible model.

Let T be an arbitrary random variable with density function

f (t; θ) =

{

cf1(t) 0 < t ≤ θ

cf2(t) θ ≤ t < ∞

where f1 is a length-biased exponential density, f2 is a two-

parameter Pareto density, and c is the normalizing constant. Hence,

f1(t) =
t

λ2
exp

(

−
t

λ

)

, 0 < t ≤ ∞,

f2(t) =
αθα

tα+1
, t > θ ,

where λ, α, and θ are unknown non-negative parameters. To obtain

a composite smooth density function, we use the continuity and

differentiability conditions at the threshold point θ , i.e.,

{

f1(θ) = f2(θ)
d
dt
f1(θ) =

d
dt
f2(θ).

These two restrictions give

{

θ
λ2

exp
(

− θ
λ

)

= α
θ

(λ−θ)

λ3
exp(− θ

λ
) = −α(α+1)

θ2
.

After some calculation, we get

{

2− β +
(

β2 exp(−β)
)

= 0

α = β2 exp(−β)
with β =

θ

λ
.

Using the numerical methods, we find

{

β = 2.5118

α = 0.51181.

To find the normalizing constant, we use the density

condition (

∞
∫

0

f (t, θ)dt = 1), which has

c =
1

e−
θ
λ

(

θ
λ
+ 1

)

+ 2

=
1

e−β (β + 1) + 2
= 0.43766.

Since f (t; θ) can be expressed as

f (t; θ) =











2.7613t

θ2
exp

(

−2.5118t

θ

)

0 < t ≤ θ

0.224

t1.51181
θ0.51181 θ ≤ t < ∞.

(1)

2.1. Statistical properties of the CLBEP
distribution

In this subsection, many statistical properties are presented,

such as the behavior of PDF and quantile function, as well as the

moments and stochastic ordering.

lim
t→0

f (t; θ) = 0 and lim
t→∞

f (t; θ) = 0.
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The following proposition states that there is one shape for the

PDF of the CLBEP distribution. Furthermore, the plots of PDF

for some parameter value of the proposed model are presented in

Figure 1.

Proposition 1. The PDF f (t; θ) in Equation (1) of the CLBEP

distribution is unimodal for θ > 0.

Proof. The first derivative of f (t; θ) is

df (t; θ)

dt

=

{

− 0.000 2
θ3

exp
(

−2. 5118 t
θ

)

(34679t − 13807θ) 0 < t ≤ θ

− 0.338 65
t2.511 8

θ0.51181 θ ≤ t < ∞.

The CLBEP distribution is unimodal with maximum value at the

point t̂ = 0.398 14θ , where the unique mode is tmod = 0.398 14θ .

2.2. Cumulative distribution function and
moments of the CLBEP distribution

The cumulative distribution function (c.d.f.) of this composite

model is

F(t; θ) =

{

0.43768
(

1− (1+ 2.5118t
θ

) exp
(

−2.5118t
θ

))

0 < t ≤ θ

1− 0.43768
(

θ
t

)
0.51181

θ ≤ t < ∞

(2)

The kthmoment about the origin of the CLBEP distribution can be

obtained as:

E
(

Tk
)

= −
0.43768θk

(2.5118)k

(

Ŵ
(

k+ 2, 2.5118
)

− Ŵ
(

k+ 2
) )

+ 0.224θ0.51181

(

x
k−1.5118

k− 1.5118

)
∣

∣

∣

∣

∣

∞

θ

,

which E
(

Tk
)

= ∞ (infinite), for k ≥ 2.

The mean of the CLBEP distribution is given by

E (T) = 0.160 03θ + 0.437 67.

2.3. The quantile function of the CLBEP
distribution

The quantile function of the CLBEP distribution is given in the

following theorem.

Theorem 1. The quantile function of the CLBEP distribution is

F−1
T (u) =

{ −θ
2.5118 −

θ
2.5118W−1(

u
0.43768e − e−1) if 0 < u < u0

θ

(

0.43768
(1−u)

)1.953 9
if u0 < u < 1

where u0 = 0.43768.

Proof. For u ∈ ]0; u0[ , we have to solve the equation F(t) = u

with respect to t, t > 0

0.43768

(

1− (1+
2.5118t

θ
) exp

(

−2.5118t

θ

))

= u

−(1+
2.5118t

θ
) exp

(

−2.5118t

θ

)

=
u

0.43768
−1

Multiplying by e−1 both sides, we find

−(1+
2.5118t

θ
) exp

(

−2.5118t

θ

)

e−1= (
u

0.43768
−1)e−1

W(z)exp(W(z)) = z

We see that −(1+ 2.5118t
θ

) is the Lambert W function of the real

argument ( u
0.43768 − 1)e−1. Then, we have

W(
u

0.43768e
−e−1) = −1−

2.5118t

θ
. (3)

Moreover, for any θ , t > 0, it is immediate that −(1+ 2.5118t
θ

) <

0, and it can also be checked that

( u
0.43768e − e−1) ∈

]

−1
e ; 0

[

since u ∈ ]0; u0[

Therefore, by taking into account the properties of the negative

branch of the Lambert W function, Equation (3) becomes

W−1(
u

0.43768e
−e−1) = −(1+

2.5118t

θ
).

Finally, ∀θ > 0, t = F−1
T (u) ,

F−1
T (u) =

−θ

2.5118
−

θ

2.5118
W−1(

u

0.43768e
−e−1), where 0 < u < u0.

Now, for u ∈ ]u0; 1[ , we have to solve the equation F(t) = u

with respect to t, t > 0

1− 0.43768

(

θ

t

)0.51181

= u

it is easy to find

F−1
T (u) = θ

(

0.43768

(1− u)

)1.953 9

where u0 < u < 1.

2.4. Stochastic ordering

Consider two random variables Z1 and Z2. Then, Z1 is said to

be smaller than Z2 in the following cases:

1. Stochastic order (Z1 <S Z2 ), if FZ1 (t) < FZ2 (t), ∀t.

2. Convex order (Z1 ≤cx X2), if for all convex functions 9 and

provided expectation exists, E[9(Z1)] ≤ E[9(Z2)].

3. Hazard rate order (Z1 ≤hr Z2), if hZ1 (t) ≥ hZ2 (t), ∀t.

4. Likelihood ratio order (Z1 <lr Z2), if
fZ1 (t)

fZ2 (t)
is decreasing in t.

Remark 1. Likelihood ratio order ⇒ hazard rate order ⇒

stochastic order, If E[Z1] = E[Z2], then convex order⇔ stochastic

order.
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FIGURE 1

The plots of PDF for some parameter value of θ .

Theorem 2. Let Zi ∽ CLBEP distribution (θi); i = 1, 2 be two

random variables. If θ1 ≤ θ2, then Z1 <lr Z2,Z1 <hr Z2;Z1 <S Z2
and Z1 ≤cx Z2.

Proof.

Case I: 0 < t ≤ θ

We have

fZ1 (t; θ1)

fZ2 (t; θ2)
=

θ22

θ21
exp

(

−2.511 8t

θ1
+

2.511 8t

θ2

)

.

Using the ln
(

fZ1 (t;θ1)

fZ2 (t;θ2)

)

for simplification, we can find

d
dt
ln

(

fZ1 (t; θ1)

fZ2 (t; θ2)

)

=
2.5118θ22

θ21

(

θ1 − θ2

θ1θ2

)

.

To this end, if θ1 ≤ θ2, we have
d
dt
ln
(

fZ1 (t;θ1)

fZ2 (t;θ2)

)

≤ 0. Thismeans

that Z1 <lr Z2.

Case II: θ ≤ t < ∞

We have

fZ1 (t; θ1)− fZ2 (t; θ2) =
0.261 48

t1.511 81

(

θ0.511811 − θ0.511812

)

.

We can see, if θ1 ≤ θ2, then fZ2 (t; θ2) ≤ fZ2 (t; θ2) .

Furthermore, according to Remark 1, the theorem is proved.

3. Generating random values from the
CLBEP distribution

3.1. Parameter estimation

In this section, we will introduce two methods of estimating the

unknown parameter θ .

3.1.1. An ad hoc procedure based on percentiles
The following ad hoc procedure provides a closed form for

the parameter θ , estimated using percentiles. Let t1, t2, ..., tn be

a random sample from the CLBEP model. Assume that t1 ≤

t2 ≤ ... ≤ tn and tm ≤ θ ≤ tm+1. Based on percentiles, the

parameter θ can be estimated, as the pth percentile, where p =

F(θ)

p = 0.43768

(

1− (1+
2.5118θ

θ
) exp

(

−2.5118θ

θ

))

= 0.312 99.

According to Klugman et al. [1], we have a

smooth empirical estimate of the pth percentile

given by

θ̂ = (1− h)tm + htm+1
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with
{

m = [(n+ 1)p]

h = (n+ 1)p−m.
(4)

The Pareto distribution or the length-biased exponential

distribution will be a more superior model than the composite

length-biased exponential-Pareto distribution according as θ̂ is

closer to t1 or tn.

3.1.2. Maximum-likelihood estimation
Assume again that t1 ≤ t2 ≤ ... ≤ tn and tm ≤ θ ≤ tm+1. Then,

the likelihood function is

L(t1, ..., tn; θ) =

n
∏

i=1

f (ti) =

m
∏

i=1

f1(ti)

n
∏

i=m+1

f2(ti)

=

m
∏

i=1

2.7613
ti

θ2
exp

(

−2.51181
ti

θ

) n
∏

i=m+1

(0.224)

t1.51181i.

θ0.51181

= (2.7613)m (0.224)n−m θ0.51181(n−m)−2me
−2.51181

θ

∑m
i=1 ti

m
∏

i=1
ti

n
∏

i=m+1
t1.51181i

= kθ0.51181n−2.51181me
(

−2.51181
θ

∑m
i=1 ti

)

.

with

k = (2.7613)m (0.224)n−m

m
∏

i=1
ti

n
∏

i=m+1
t1.51181i

.

Define ln L = ln k + (0.51181n − 2.51181m) ln θ +
(

−2.51181
θ

∑m
i=1 ti

)

.

Differentiating ln L with respect to θ gives

d ln L

dθ
=

0.51181n− 2.51181m

θ
+

2.51181
∑m

i=1 ti

θ2
.

Hence, the solution of the likelihood equation d ln L
dθ

= 0 is

θ̂ =
2.51181mt̄m

2.251181m− 0.51181n
, if

n

m
6= 4.9 and t̄m =

∑m
i=1 ti

m
. (5)

Since this estimator requires the value of m, we

recommend the following algorithm (see Teodorescu and

Vernic [13]):

4. Numerical and application examples

In this section, the estimation procedure described in Section

3 has been explained using two data samples generated from the

CLBEP model. The generating algorithm used is based on the

inversion of the c.d.f. (Equation 2).

Step 1. Estimate m as above, from Equation (4).

Step 2. Evaluate θ̂ from Equation (5).

Step 3. Verify if θ̂ is in between tm ≤ θ̂ ≤ tm+1. If

so, then θ̂ is the MLE. If not, use Algorithm 2.

An alternative algorithm would be to replace Step

1 with the consideration of all possible values

for m and the achievement for each of them of the

verification of step 3:

Algorithm 1. Estimate θ using MLE.

Step 1. For each m (m = 1, 2, ..., n − 1), evaluate θ̂m

from Equation (4). Check if θ̂m is in between tm ≤

θ̂ ≤ tm+1. If yes, then θ̂m is the MLE. If no, go to

next m.

Step 2. If there is no solution to θ, try an

alternative model.

Algorithm 2. Estimate θ using percentiles.

TABLE 1 Test for θ = 5.

Classes ni fi Theoretical freq., pi
n(fi−pi)

2

pi
(CLBEP)

[0, 2) 16 0.1480 0.1358 0.1184

[2, 4) 22 0.2037 0.1688 0.7748

[4, 6) 13 0.1203 0.1060 0.2053

[6, 10) 14 0.1296 0.1070 0.5120

[10, 60) 27 0.25 0.2151 0.6115

[60, 7000) 16 0.1480 0.1306 0.2507

∑

108 1 χ2distance : 2.4730

4.1. Example

The data set given in this subsection, consisting of 108 values,

was sampled from a length-biased exponential-Pareto population

with parameter θ = 5 (see Table 1 in the Appendix).

The estimated values of the parameter are:

- By Algorithm 1,m = 39 : θ̂1 = 5.053 6.

- By Algorithm 2, MLE Step 1: θ̂2 = 4.9812.

- By Algorithm 2, MLE Step 2 : θ̂3 = 4.9810.

We notice that Algorithm 2 in Step 1 gives a more accurate

value. We also applied the χ2 test to check the distribution fitting,

and the results for θ̂3 are given in Tables 1–4.

The χ2 distances calculated for all the estimated values of the

parameters are

χ2distance
(

θ̂1

)

= 2.4591

χ2distance
(

θ̂2

)

= 2.4819

χ2distance
(

θ̂3

)

= 2.4818.

The χ2 test accepts the length-biased exponential Pareto model

for all values of the parameter as expected, which d2
(

θ̂1

)

is a

minimum.
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TABLE 2 Test for θ̂1 = 5.0536.

Classes ni fi Theoretical
n(fi−pi)

2

pi
(CLBEP)

freq., pi

[0, 2) 16 0.1480 0.1338 0.1628

[2, 4) 22 0.2037 0.1679 0.8223

[4, 6) 13 0.1203 0.10648 0.1931

[6, 10) 14 0.1296 0.1076 0.4833

[10, 60) 27 0.25 0.2162 0.5681

[60, 7000) 16 0.1480 0.1314 0.2291

∑

108 1 χ2distance : 2.4591

TABLE 3 Test for θ̂2 = 4.9812.

Classes ni fi Theoretical
n(fi−pi)

2

pi
(CLBEP)

freq., pi

[0, 2) 16 0.1480 0.1365 0.1045

[2, 4) 22 0.2036 0.1692 0.7587

[4, 6) 13 0.1202 0.1059 0.2098

[6, 10) 14 0.1295 0.1068 0.5226

[10, 60) 27 0.25 0.2146 0.6275

[60, 7000) 16 0.1480 0.1304 0.2585

∑

108 1 χ2distance : 2.4819

TABLE 4 Test for θ̂3 = 4.9810.

Classes ni fi Theoretical
n(fi−pi)

2

pi
(CLBEP)

freq., pi

[0, 2) 16 0.1480 0.1366 0.1043

[2, 4) 22 0.2035 0.1692 0.7587

[4, 6) 13 0.1202 0.10594 0.2099

[6, 10) 14 0.1295 0.1068 0.5225

[10, 60) 27 0.25 0.2146 0.6275

[60, 7000) 16 0.1480 0.1304 0.2585

∑

108 1 χ2distance : 2.4817

4.2. Goodness of fit

In this subsection, we apply the composite length-biased

exponential-Pareto model to two real insurance data sets.

Data set I: is 100 Algerian (SAA company) fire insurance losses

(see Appendix).

We provide in Table 5 the estimated value of fitted models

and the values of the −LL,AIC,AICc, and BIC evaluated at the

maximum-likelihood estimators.

Data set II: is 2, 156 Danish fire insurance losses.

We use the same analysis, we find

Tables 5, 6 indicate that the CLBEPmodel outperforms classical

distributions, composite Rayleigh-Pareto, composite exponential-

Pareto, and composite lognormal-Pareto models in terms of −LL,

AIC, AICc, and BIC for data sets I and II. In addition, in data set

TABLE 5 Estimated values of fitted models and −LL,AIC,AICc, and BIC

data set I.

Distributions Parameters -LL AIC AICc BIC

Pareto θ̂ = 0.12,

α̂ = 0.486

165.80 333.62 333.68 338.83

Exponential λ̂ = 0.7855 124.14 250.27 250.32 252.88

Length-biased expo θ̂ = 0.6965 115.97 233.94 233.98 236.55

c exponential-P θ̂ = 1.867 4.58 9.75 9.79 12.35

c lognormal-P θ̂ = 1.241,

α̂ = 1.267

4.28 8.92 8.98 14.13

c Rayleigh-P θ̂ = 2.654 4.08 8.76 8.80 11.36

CLBEP θ̂ = 0.21 3.75 7.84 7.92 10.38

TABLE 6 Estimated values of fitted models and −LL,AIC,AICc, and BIC

data set II.

Distributions Parameters -LL AIC AICc BIC

Pareto θ̂ = 0.313,

α̂ = 0.546

5.67 11.35 11.353 22.702

Exponential λ̂ = 0.417 4041.1 8084.2 8084.2 8089.9

Length-biased

expo

θ̂ = 0.834 6447 12, 892 12, 892.001 12898

c Exponential-P θ̂ = 2.477 6.58 12.56 12.562 18.23

c Lognormal-P θ̂ = 1.385,

α̂ = 1.436

3.88 7.76 7.762 19.11

c Rayleigh-P θ̂ = 2.848 3.57 7.72 7.721 13.39

CLBEP θ̂ = 2.3 3.52 7.62 7.621 13.36

II, the Pareto model outperforms the conventional model since it

covers a larger loss (n = 2, 156).

5. Conclusion

A unique distribution known as the composite length-biased

exponential Pareto generated is suggested for application. Some

of the mathematical features of this distribution include the

quantile function, stochastic ordering, moments of the CLBEP, and

maximum-likelihood estimation. In contrast to other conventional

and new composite distributions, the distribution proposed in

this work gives very satisfactory results. The goodness of fit

of this novel model is compared to different conventional

and new composite models, such as composite exponential-

Pareto, composite lognormal-Pareto, and composite Rayleigh-

Pareto distributions, using two real fire insurance data sets

(Algerian and Danish fire insurance losses). Compared to the

standard models, the composite models provided a far better

fit to the data. The composite exponential-Pareto, composite

lognormal-Pareto, and composite Rayleigh-Pareto distributions do

not fit as well as the CLBEP model provides. We predict that

researchers interested in statistical sciences and their applications,

such as dependability and actuarial sciences, will be drawn

to the CLBEP model. A future research may examine the

Bayesian estimation of the CLBEP parameter, introducing the

truncated version of the CLBEP distribution. In addition, it is
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interesting to use similar composite distributions to model the

epidemic problem.
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