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DNA is a practical storage medium with high density, durability, and capacity to
accommodate exponentially growing data volumes. A DNA sequence structure is
a biocomputing problem that requires satisfying bioconstraints to design robust
sequences. Existing evolutionary approaches to DNA sequences result in errors
during the encoding process that reduces the lower bounds of DNA coding sets
used for molecular hybridization. Additionally, the disordered DNA strand forms a
secondary structure, which is susceptible to errors during decoding. This paper
proposes a computational evolutionary approach based on a synergistic moth-
flame optimizer by Levy flight and opposition-based learning mutation strategies
to optimize these problems by constructing reverse-complement constraints.
The MFOS aims to attain optimal global solutions with robust convergence and
balanced search capabilities to improve DNA code lower bounds and coding rates
for DNA storage. The ability of the MFOS to construct DNA coding sets is
demonstrated through various experiments that use 19 state-of-the-art
functions. Compared with the existing studies, the proposed approach with
three different bioconstraints substantially improves the lower bounds of the
DNA codes by 12–28% and significantly reduces errors.
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1 Introduction

The natural objective of DNA-encoding methods is to provide high-density, error-free,
and stable DNA codes by dynamic programming (Yim et al., 2014; Erlich and Zielinski, 2017;
Organick et al., 2018; Lu et al., 2023). However, the computational capacity of dynamic
programming remains infeasible with big digital data and biological sequences.
Consequently, substantial efforts have been invested in finding efficient heuristic/
optimization algorithms to tackle this feasibility (Cao et al., 2020a). These algorithms
produce upper and lower bounds in DNA sequence data by dynamic programming. A
sequence an ≥ k, if all its terms are greater than or equal to a number, k, is called the lower
bound of the sequence, while a sequence an ≤ k′, if all its terms are less than or equal to a
number, k′, is called the upper bound of the sequence (Chee and Ling, 2008). The accuracy of
both the upper and lower bounds is measured concurrently by comparing them. No matter
how strong an upper bound is, comparing it to a weak lower bound does not prove that it is
close to the optimum. Therefore, it is essential to make lower-bound improvements.
However, let us ask a more modest question. How can the improvement in the lower
bounds of DNA sequence data enable the achievement of the objectives of DNA-encoding
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methods? A precise answer negates the accomplishment of all
objectives except the stable DNA codes by reducing the non-
specific hybridization errors. However, the task of constructing
robust DNA-coding sets is still challenging due to sequence
errors. Molecular-based computation delivers a set of sequences
with the corrupt version of DNA codes, including symbol deletion or
substitution and high-magnitude errors in the code words, which
lose the sequences during the hybridization process (Yim et al., 2014;
Li et al., 2021a). These massive errors decrease the lower bounds
between the different numbers of sequences. Consequently, the
DNA synthesis process becomes noisy. It is more expensive to
synthesize and relatively reduces the stability of DNA data
storage, which can be biotechnologically quantified, controlled,
and engineered (Song et al., 2021; Song et al., 2022).

Biotechnology and bioengineering recently played a vital role in
DNA computation as nanobiotechnology synthesizes DNA.
Research communities are still combating errors in DNA-coding
sets with different computational methods (Grass et al., 2015; Yazdi
et al., 2017; Deng et al., 2019). One of the computational methods is
evolutionary computation, which comprises a set of biologically
inspired algorithms. For example, the author showed the chaos
whale optimization with sine and cosine functions to construct the
DNA sequence set (Li et al., 2021b). Similarly, Xiaoru and Ling
(2021) delivered an evolutionary-based equilibrium optimization
with a random search model to overcome the error rate in DNA-
coding sets. These studies contributed significantly to advancing
evolutionary approaches in DNA storage. However, the results still
lacked an improvement in the diversity of the sampled population.

For this purpose, the effectiveness of the optimization algorithm
will have to increase by designing the mutation strategies. Wang
et al. (2020) considered the differential evaluation algorithm with a
two-level local search strategy to improve convergence. The general
purpose of such strategies is to avoid the local minima and prevent
the population from being similar. The improvement in
evolutionary algorithms by mutation strategies also significantly
impacts the improvement of the lower bounds of DNA-coding sets.
A multi-verse optimizer (MVO) was made synergistic by damping
the strategy to gain a stable state in global search, and it also reported
4–16% of improved DNA-coding sets (Cao et al., 2020b). Rasool
et al. (2022a) used the opposition-based learning (OBL) mutation
strategy (Dong et al., 2017) for three-dimensional search space with
a meta-heuristic algorithm (Mirjalili, 2015) to generate the DNA-
coding sets for data storage. The codes generated by the improved
algorithm (MFOL) enhanced the DNA-coding sets over the
altruistic algorithm (Limbachiya et al., 2018).

Nevertheless, these evolutionary studies have performed well by
enhancing the efficiency of optimization algorithms by the mutation
strategies, but they focus on particular biological coding constraints.
The satisfaction of these constraints controls the oligonucleotide
errors in the DNA sequences (Sager and Stefanovic, 2006; Song et al.,
2018; Li et al., 2021b; Cao et al., 2022). For instance, the GC-content
and Hamming distance constraints were considered for the
oligonucleotide libraries construction by reducing the
hybridization errors (Aboluion et al., 2012; Organick et al., 2018;
Yang et al., 2020; Rasool et al., 2022b). However, the current
approaches and algorithms of DNA code construction by the
lower-bound computation do not satisfy the reverse-complement
(RC) constraints. However, unsatisfactory reverse-complement

constraints are relatively crucial in DNA codes with a high rate
of errors, which cause the DNA stability for storage (Sager and
Stefanovic, 2006; Yin et al., 2010).

In short, the conventional optimization algorithms have evolved
for lower-bound improvements. Still, various functions’
convergence abilities have declined, which was improved by
different mutation strategies with different purposes. However,
the lower bounds of DNA-coding sets were insufficient for
robust DNA storage due to non-specific hybridization errors
(Cao et al., 2020b). Although these errors have been tackled by a
few biological coding constraints, the extent of error avoidance was
low because DNA sequences overlapped, creating non-specific
hybridization that formed the secondary structure. DNA
sequences with such a structure make the chemical reaction
unstable and inactivate DNA synthesis and sequencing (Song
et al., 2021). Thus, the coding sets of DNA storage are still facing
the lowest global optimal performance with different evolutionary
algorithms and mutation strategies to store more information in a
shorter sequence with a minimum error.

Thus, in this paper, a bioengineering-based evolutionary
approach has been proposed to solve the aforementioned
problems. This approach integrates the MFO (Mirjalili, 2015)
with two customized mutation strategies (MFOS) and practically
applies it to construct DNA-coding sets. We customized the original
mutation strategies for compatibility with the optimization
algorithms to improve the lower bounds for the DNA code
construction. Then, as the main objective of this study, MFOS is
used with combinatorial constraints (GC-content, Hamming
distance, no-runlength, and RC constraints) to construct DNA-
coding sets. The computational RC constraint significantly increases
the number of DNA strands (codes) and avoids further non-specific
hybridization. The experiments are performed on 19 benchmark
functions, and the Wilcoxon rank-sum test is used to evaluate the
improved algorithm’s quality. The performance is compared with
six existing evolutionary algorithms. The overall contribution of the
proposed approach produced DNA-coding sets with improved
lower bounds and coding rates compared to previous studies. It
is a collaborative effort of information technology and
biotechnology domains to solve a bioinformatics-based
computational problem for DNA data storage. The following are
the noteworthy contributions of this study:

• A novel evolutionary approach is proposed to construct DNA-
coding sets by using theMFOS algorithm with two customized
mutation strategies for speedy convergence and powerful
exploration and exploitation capabilities.

• The novelty of this study is the practical implication of the
MFOS algorithm with DNA coding constraints to improve the
lower bounds and coding rates of the DNA codes by storing
larger data files in the shorter sequence of DNA, and the
results are compared with the existing literature.

• Computational RC constraints are satisfied to generate stable
DNA codes with our two theorems by eliminating the
undesired non-specific hybridization errors due to the
secondary structure in DNA sequences. Additionally, an
empirical thermodynamic analysis is performed on the RC
constraints to validate the DNA coding sets and compare them
with the prior constraints.
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The rest of this paper is organized as follows. Section 2 briefs the
existing DNA coding constraints. Section 3 introduces the
evolutionary approach. Section 4 describes the experimental
procedure, Section 5 provides result evaluation, and Section 6
reports the conclusion and future work.

2 DNA coding constraints

The crucial part of DNA data storage is to construct DNA
sequences with minimum errors during the synthesis and
sequencing processes. These complicated processes are prone to
insertion, substitution, and deletion errors (Yim et al., 2014; Wang
et al., 2022). These errors with each nucleotide occur due to the
consecutive repetitive subsequences, homopolymers, and GC-
content with the minimum and maximum bases. The prior
benchmark coding constraints (Cao et al., 2020b), including GC-
content, no-runlength (NL), and Hamming distance, have also been
used to construct DNA sequences by avoiding those errors.
Additionally, this study introduces computation reverse-
complement constraints to overcome further non-specific
hybridization errors and the secondary structure during the DNA
synthesis and sequences with the following mechanism.

A DNA code with length n will be a set of codes (x1x2x3...xn),
while the quaternary alphabets xi ∈ A,C, G, T{ } represent the four
DNA nucleotides that form a DNA sequence. For a DNA sequence
x � x1x2x3...xn, the reverse sequence xr � xnxn−1...x1, complement
sequence xc � xc

1x
c
2x

c
3...x

c
n, and reverse-complement sequence xrc �

xc
nx

c
n−1...x

c
1 were used. We applied the c mark to indicate the

Watson–Crick complement of DNA nucleotide, thus Tc � A, Ac �
T,Gc � C andCc � G (Aboluion et al., 2012). For instance, the DNA
sequences AAGGTACT, AGTACCTT, and TGAAGCAT are the
reverse, complement, and reverse-complement sequences for the
TCATGGAA.

In retrospective studies (Cao et al., 2020b; Rasool et al., 2022a),
some sequences were similar among the set of DNA sequences,
including reverse or reverse-complement, and then non-specific
hybridization occurred, which caused errors by forming the
secondary structure (SS). A sequence structure in which a set of
pairs of nucleotides support a secondary structure is known as the
stem, while the number of repeated nucleotides is known as the stem
length. The secondary structure is a result of similar sequences with
base-pairing connections in which one sequence folds back to itself
(Heckel et al., 2019). DNA sequence with a secondary structure
makes chemical reaction less active, which causes the redundancy of
that DNA sequence during the synthesis and sequencing process.
Thus, the secondary structure must be unfolded before reading such
sequences in the wet lab. Constructing robust DNA codes with fewer
resources and errors will be helpful. This problem motivated us to
put forward a novel solution that must deliver sufficiently different
DNA sequences among a set of sequences by evading the secondary
structure.

To avoid the SS before DNA reading, one can eliminate the
base–pair connection by selecting a sequence with appropriate
nucleotides that must have a sufficient code rate, R, and
Hamming distance, d. The net code rate R � log4k/n, where k is
the number of codes in a set (coding set) and n is the sequence length
number. For example, let us take a set of quinary DNA codewords

Σ � AT,AC, CT, CG, TG{ } with length 2 n. Any DNA code with
such length is designed by a bijective map between quinary codes
and fixed Σ, then the code rate log4 5/2 ≈ 0.5804. Thus, in this paper,
we considered the SS with a positive integer m having stem length l
and sequence length with n − 1. In this case, Theorem 1 constructs
the mathematical proof to design the DNA sequences free from
secondary structure.

Theorem 1. A DNA sequence with length n is free from the SS if
there does not exist a sequence of the stem length l> 1 with a
minimum Hamming distance dH � d and n − 1.

Proof. For a given sequence x � x1x2x3...xn, two subsequences
xixi+1...xi+m−1 and xjxj+1...xj+m−1∃ |i − j|>m and
(xixi+1...xi+m−1)sc � xjxj+1...xj+m−1; then, these two subsequences
are known as disjoint secondary-complement. It should be noted
that a xrc is a secondary-complement (sc) sequence, but all
secondary-complement sequences may not be xrc. In this
scenario, if there is a secondary structure with the stem length
l> 1, there will be two disjoint subsequences (x and y) ∃ x � ysc.
Thus, the results evolve as contrapositive logic for such observation
that if a sequence x � x1x2x3...xn is free from SC subsequences with
length l and n − 1, then the corresponding DNA sequence will also
be freed from the SS.

Apart from the SS problem, the deletion and substitution errors
ε and Hamming weightM in the lower bounds caused the density of
the DNA data storage system. Proposition 12 (King, 2003) leads us
to construct Theorem 2 (Note 01 in the Supplementary Materials)
based on reverse-complement with K-constraint length. The
purpose of this theorem is to improve the lower bounds of DNA
codes by RC constraints for a maximum number of DNA sequences
with minimum errors r. It is constructed by Shannon’s relationship,
considering the redundancy of explicit DNA codes with �r/2� logM.

3 Evolutionary approach

The proposed evolutionary approach leverages the development
of the MFO (Mirjalili, 2015) with DNA coding constraints. The
MFO algorithm is selected because it can solve the challenging
constraints and unknown search space problems for several
applications, i.e., sequence compression problems, which
motivated us to generalize this algorithm with DNA coding
constraints. Moth belongs to the butterfly family with various
similar characteristics. It has a particular navigation mechanism
known as transverse orientation (TO) to fly by using the moonlight.
The TO mechanism empowers the moth to fly by regulating a fixed
angle by the Moon’s focal point, which allows it to fly long distances.
Meanwhile, the moth often collides with human-made light due to
being closer than moonlight, which distracts the moth from the
destination. However, the moth endures in preserving the same
angle, which causes its deadly spiral path. Eventually, this behavior
supports the convergence of the moth toward the light. This concept
provides a mathematical optimizer algorithm termed a moth-flame
optimizer (MFO) for object convergence (Mirjalili, 2015).

This evolutionary algorithm has two candidate solutions, moth
and flame, and one problem variable is the position of the moth
during flight. Thus, a moth can fly by changing the position in 1/2/
3 or hyper dimension of space. The moth candidate solution can be
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considered in the following matrix Q due to its population-based
system.

Q �

q1,1
q2,1

q1,2 /
q2,2 /

q1,d−1 q1,d
/ q2,d

..

.
..
. ..

. ..
. ..

.

qn−1,1
qn,1

/ /
qn,2 /

/ qn−1,d
qn,d−1 qn,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Qf �

Qf1

Qf2

..

.

Qfn−1
Qfn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where n indicates the moth numbers and d presents the dimension
variable.

An evolutionary population-based algorithm also considers an
array of fitness values for all moths. The first row ofQmatrix directs
the position vector of a moth, which requires passing the fitness
function. As a result, a fitness value is assigned to those particular
moths as Qf1 in Qf matrix.

Meanwhile, the second candidate solution of MFO, the flame,
also has a similar matrix R as assumed for the flame. The array
dimension of both solutions is equal in numbers. Hence, a similar
fitness array is also considered for the flame.

R �

r1,1
r2,1

r1,2 /
r2,2 /

r1,d−1 r1,d
/ r2,d

..

.
..
. ..

. ..
. ..

.

rn−1,1
rn,1

/ /
rn,2 /

/ rn−1,d
rn,d−1 rn,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Rf �

Rf1

Rf2

..

.

Rfn−1
Rfn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where n indicates the number of flames and d represents the
dimension variable.

It should be noted that moth and flame are both solutions.
However, the difference between these solutions is the mechanism
we conducted with them to update them in all iterations of
processes. The moth’s solution flies in a circular search space by
acting as a search agent. In contrast, the flame is the destination
solution for the moth in that search space. Hence, the moth struggles
to reach the destination as an optimal solution by flying around the
search space. Overall, this algorithm (Mirjalili, 2015) mechanism is
based on the following three tuples to optimize the problem for an
optimal solution.

MFO � U, P, T( ), (3)
where U is a function that is responsible for the moth’s random
population with its related fitness. This function can be modeled as
U: Ø → Q,Qf{ }. Meanwhile, the P function is assumed to fly the
moth in a search space. It attains the Q matrix and returns the
updated Qi, which is shown as P: Q → Qi. The third tuple is the T
function, which delivers the true value if it satisfies the termination
criteria; otherwise, it returns false values; it is shown as
T: Q → true, false{ }.

The P function is executed iteratively until it delivers the T
function with the true value. The inspiration of this evolutionary
algorithm is the TO mechanism by which the moth updates its
location by considering the flame location with the following
computation model:

Qi � S Qi, Rj( ), (4)

where Qi represents the i-th moth updates, S indicates the spiral
function, and Rj presents the j-th flame.

The spiral function is a key component of the MFO, which
decides the moth movement with respect to flames. A conceptual
model is drawn in Figure 1 for the moth location updates according
to the flame. The vertical axis indicates the position of a moth in one
dimension, and the horizontal axis presents the possible position
update for the next location. The dashed black lines display the
locations that can be used for the next position of the moth in the
green horizontal line concerning the orange horizontal line of a
flame. The exploitation and exploration processes can be
determined in the search space. Moth uses one dimension to
explore and exploit the search space of flame. Exploitation
emerges if the next position between the moth and flame is
inside the search space, as directed by arrow 2. In contrast,
exploration appears if the position updates between the moth
and flame are outside the space, as indicated by arrow 1, 3–5 in
Figure 1. Exploration and exploitation can be observed by following
three rules.

1) A moth may converge by altering the random number [−1,+1]
in the flame neighbor.

2) The lower random number is the closest distance to the flame.
3) The position frequency increases automatically as the moth

comes closer to the flame.

For an effective possible solution, finding the best solution can
be considered a flame candidate solution. TheQmatrix (1) indicates
the best solution gained so far. Apart from these three-tuple-based
functions of the MFO algorithm, two consequential parameter-
based arrays are also examined as upper and lower bounds:

ub � ub1, ub2, ub3, . . . , ubn−1, ubn[ ], (5)
lb � lb1, lb2, lb3, . . . , lbn−1, lbn[ ], (6)

where the variables ub and lb present the upper and lower bounds
with n number of moths, respectively. These variables are
responsible for the moth’s local and global search space limit.

FIGURE 1
Conceptual model for moth–flame algorithm to update moth’s
location according to a flame.
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It must be noted that these considerations are for optimizing the
MFO algorithm, while in nature, it might not be a real
mechanism.

The evolutionary mechanism of this algorithm permits the moth
to attain the best position in the local and global search space.
However, a problem can occur that causes the MFO algorithm
(Mirjalili, 2015) to fall into the local optima due to only updating the
moth position corresponding to the flame and in one dimension. If
all moths update the position with respect to only a single flame, all
will be converged due to flying toward a flame in the search space
that causes the exploration. In contrast, if all moths update the
position with only n different locations and dimensions, say 3D
dimensions, it stagnates the exploitation. Both cases adversely affect
the promising solution of theMFO algorithm. In order to sustain the
balance between exploitation and exploration capabilities and find
the optimal global solution for the moth, this study employed two
mutation strategies to synergy the original evolutionary algorithm:
Levy flight and opposition-based learning (OBL) mutation strategy.
To determine the optimal global solution, the algorithm compares
the output values of the computed global solution Sg with the values
of global position Pg. If the output of Sg >Pg, the algorithm will
return the output Xm as the optimal global solution. In this paper,
we have omitted the theoretical explanation of the OBL strategy, and
readers can see the literature (Rasool et al., 2022a). Meanwhile, the
theoretical details of the Levy flight are moved in Note 02 in the
Supplementary Materials.

Meanwhile, the computation time complexity is a crucial metric
for evaluating the algorithm run time. It is based on algorithm
structure and parameter settings, i.e., number of candidates, location
updates, maximum iterations, number of variables, and sorting
mechanism. The Quicksort method has been adopted with a time
complexity of O(nlogn) for the best case and O(n2) for the worst
case. Considering the moth move function, P, and the mutation
strategies, the overall computation time complexity of the improved
MFOS algorithm is as follows:

O MFOS( ) � O t O Quicksort( )((
+O location updates withmutation strategies( ))),

O MFOS( ) � O t n2 + n × v( )( ) � O tn2 + tnv( ),
where t represents the iteration numbers, n indicates the number of
moths, and v is the variable number.

In summary, the MFO (Mirjalili, 2015) has the capability to
explore and exploit the solution in the search space, while Levy
flight enables MFO for the candidate solution to acquire tiny
flight with profound exploration and exploitation ability, and the
OBL mutation strategy is concerned with the opposite directions
for the optimal solution. These strategies significantly improve
the MFOS capabilities for jumping from the local area to the
promising global areas. The nest subsection investigates the
practical implication of constrained optimization with an
improved evolutionary approach. The pseudocode of the
improved evolutionary algorithm is presented in Algorithm 1.
The information about mutation strategies mentioned in
Algorithm 1 is provided in Note 02 in the Supplementary
Materials.

Input: The population size N for 2 candidate solutions

(Q, R), moth location (L), moth FitnessFunction (Qf),

flame FitnessFunction (Rf).

Output: Optimal global solution Xm
1: Initialize random population Xi;

2: for (each moth Xi) do

3: Calculate Qf and Rf population using Eqs 1, 2;

4: if (population N converge), then

5: Update L for lb & ub using Eqs 5, 6;

6: else

7: Update Qf and Rf with Eqs 3, 4; end if end for

8: for synergy of mutation strategies with Eq. (9) and

OBL; do

9: if (iteration reaches), then

10: Compute global solution;

11: else

12: Re-run mutation strategies;

13: else if

14: Calculate fitness of population; end else if

15: end if

16: end for

Return: Optimal global solution Xm.

Algorithm 1 Pseudocode of the improved MFOS algorithm.

3.1 Constrained optimization with MFOS

In order to solve the multi-objective problem of the DNA data
storage, the proposed meta-heuristic evolutionary algorithm is
applied to the DNA coding constraints (Section 2) to find the
lower bounds of DNA code words on coding sets, C(n,W, d),
where n shows the sequence length, W indicates the GC-content
with �n/2� parameters, and d is the Hamming distance. It is
convenient to achieve longer codes with repeated values.
However, the DNA codes with such sequences are more likely
to have errors prone to the nucleotides’ insertion, deletion, or
substitution. Therefore, the improved MFOS algorithm tackles
this problem by considering computational-based biological
coding constraints. Church et al. (2012) reported the
influential factors of errors in the sequence and suggested
satisfying the GC-content and no-runlength constraints to
reduce the sequencing errors (Church et al., 2012). In this

TABLE 1 MFOS’s operators and parameter settings.

MFOS operators Methods and parameters

Population size 50

Number of iterations 500

Parent selection Random

Population selection Two best individuals

Crossover probability 0.8

Crossover method Arithmetic crossover

Mutation probability 0.05

Mutation method Levy flight and OBL
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regard, this study introduces RC constraints to reduce the error
occurrence probability. The DNA code words’ construction that
meets the constraint criterion (based on Algorithm 2) is adopted
as a primer or address libraries of oligos. These DNA storage code
words are more suitable for constructing random storage.
Organick et al. (2018) proved that each oligo file can be
retrieved without errors from the random-access storage. The
development of lower bounds on C(n,W, d) sets with MFOS
achieves the significant number of code words for coding sets that
construct the highly robust DNA data storage. The pseudocode
for DNA coding constraint’s satisfactory criteria with MFOS is
presented in Algorithm 2.

Input: Sequence length (n), CGC,NL,RC (GC-content, No-

runlength, RC constraint, and Hamming distance (d)),

Secondary structure (SS).

Output: DNA coding sets CGC,NL,RC.

1: Initialize individual constraint Ci;

2: for (constraints satisfaction) do

3: Update CGC,NL,RC;

4: if (error occurrence), then

5: remove SS using Theorem 1;

6: else if (iter ≤ 500) then

7: maximum iteration using Theorem 2 for best n and d;

8: if (lower bounds improved), then

9: constraint satisfied;

10: else

11: update DNA coding constraint; end if

12: end else if

13: iter � iter + 1 ← Cn;

14: end if

15: end for

Return: Improved DNA coding sets CGC,NL,RC(n,W, d).

Algorithm 2 Pseudocode of constraints satisfactory criteria with
MFOS.

The following are MFOS’s fundamental steps to construct DNA
storage coding sets with constraints CGC,NL,RC(n,W, d), and the
schematic of improvedMFOS and its implication for DNA storage is
illustrated in Figure 2. Concisely, this approach compresses four
major components: 1) initialization, fitness, and convergence
computation; 2) synergy of mutation strategies for the best global
solution; 3) avoidance of errors by theorems; and 4) DNA coding
constraints satisfaction.

• The Universe population N is initialized with the best candidate
solution frommoth and flame, and MFOS algorithm parameters
are set with possible DNA coding that follows the particular
constraints (GC, No-runlength, and Hamming distance).

• The DNA storage coding set is performed with the initial
Universe population, and globally optimal solutions are
secured with the current fitness of the candidate solution.

FIGURE 2
Schematic of the improved MFOS evolutionary approach with combinatorial DNA coding constraints.
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FIGURE 3
Convergence efficiency of unimodal (F2 and F5), multimodal (F9 and F12), and composite (F14 and F18) functions with 3D search space, search
history, and curves.
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• The lower and upper bounds are computed with Eqs 5, 6 for
the candidate solution, updating its exploration and
exploitation position with Eq. 3.

• The updated position is executed with two mutation strategies
(Levy flight and OBL) to assign the global search space to the
candidate for the improved MFOS algorithm.

• The DNA-coding sets with CGC,NL(n,W, d) constraints are
merged with RC constraints (CGC,NL,RC(n,W, d)) to eliminate
the non-specific hybridization error using theorems 1 and 2,
and the coding set with different iterations is computed.

• If the results of combinatorial constraints satisfy the improved
coding rate and find the lower bounds in a higher number of
codes, then the new output will be the best DNA data storage
coding sets C.

These critical steps have been followed in constructing DNA
codes for data storage.

4 Experimental setup

The implementation was conducted in an integrated
environment of different tools. All the evolutionary algorithms
are executed on MacBook 2.4 GHz Intel Q-Core i5, 8 GB
2133 MHz DDR3, language Python with 3.8.11v, Google’s
Collaboratory, and 3-dimensional convergence plots into
MATLAB R2018b. In the proposed work, an image file
(horse.png1) is converted into binary data by using the python
package (TransBin). The binary data are mapped through the
quarterly number (A-0, T-1, C-2, and G-3) of DNA bases (A, T,
C, and G) for the construction of DNA code words. The proposed
MFOS evolutionary algorithm is programmed in Magma
software (Cannon et al., 2011) by varying the sequence lengths
and Hamming distance. The DNA coding constraint-based
theorems are used to generate the least-errors DNA codes
with high density and coding ratio. As a result, .cod files are
received with different DNA codes that satisfy the GC-content,
no-runlength, and RC constraint with different numbers of
sequence length and Hamming distance. Consequently, the
received DNA codes from .cod files are calculated to construct
the lower bound tables. Furthermore, 19 mainstream benchmark
functions are implemented with the MFOS algorithm, and the
theoretical details are provided in Note 03 in the Supplementary
Materials.

All mainstream functions have been implemented with
identical conditions. The number of iterations for each
function is set at 500, and the number of moths or population
size is adjusted to 50. The MFOS convergence rate directly
depends on the population size with crossover and mutation
probabilities. The higher the crossover, the greater the
exploration ability. Typically, the crossover probability is
adjusted in the 0.6–1.0 range. In contrast, mutation
probability is often considered lower as compared to
crossover, i.e., 0.005 to 0.05 (Wang et al., 2020). It should be

noted that the moth number of candidate solutions (i.e., flame)
must be selected on an experimental basis. The larger the number
of candidates’ solutions, the larger the chances of achieving the
global optimum. In this study, the number of moths is reasonably
estimated up to 30 times to eliminate the randomness of the
optimizer results. However, this number can be 10 or 20 as well
for different varieties of experiments. The summary of these
operators and their parameter selections is presented in Table 1.

MFOS is a heuristic algorithm based on the MFO algorithm
(Mirjalili, 2015), which must be executed almost 10 times to deliver
significant results. It is a general standard that an evolutionary
optimizer performing for n times can be evaluated by average (AVG)
and standard deviation (SD) with the optimal solution in the last
iteration, which will be computed as performance metrics (Mirjalili,
2015). This study used the following rule to report the optimal
solution with AVG and SD scores.

• The lowest average score is the highest algorithm
performance.

• The minimum standard deviation score is the maximum
stability of the algorithm.

In addition, the proposed algorithmMFOS is compared with the
original MFO (Mirjalili, 2015) and various well-known and popular
optimizer algorithms to validate the performance, for example, the
Firefly Algorithm (FFA) (Emary et al., 2015), Grey Wolf Optimizer
(GWO) (Mirjalili et al., 2014), Differential Evolution (DE) (Zhang
et al., 2011), Multi-Verse Optimizer (MVO) (Mirjalili et al., 2016),
and Harris Hawks Optimization (HHO) (Heidari et al., 2019). The
FFA is a multi-objective optimizer for various domains and still has
multiple variants. GWO achieved suitable compromises between
exploration and exploitation. Recently, theMVO algorithm has been
popular in DNA coding constraints in various DNA-based storage
studies, i.e., DMVO (Cao et al., 2020b). HHO is a swarm-based
algorithm that supports multiple iterations. A statistical test is
computed from the benchmark functions to ensure the result’s
originality. A non-parametric Wilcoxon rank-sum test (Kim and
Kim, 1996) is adopted to evaluate and compare the results of MFO
and MFOS algorithms.

Furthermore, the MFOS algorithm is applied in the Magma
program with DNA coding constraints, i.e., GC-content and RC
constraint, to assess the DNA storage effectiveness by the coding
sets. The received lower-bound values are compared with a state-of-
the-art Altruistic algorithm (Limbachiya et al., 2018) and two recent
optimizer algorithms [KMVO (Cao et al., 2020a) and DMVO (Cao
et al., 2020b)]. In addition, this study reported the lower bounds of

TABLE 2 Superscript identifications and their meanings.

Superscript Meaning

A Altruistic algorithm (Limbachiya et al., 2018)

K KMVO (Cao et al., 2020a)

u DMVO (Cao et al., 2020b)

L MFOL (Rasool et al., 2022a)

S MFOS (our proposed algorithm)

1 http://clipart-library.com/clipart/horse-clip-art-9.htm
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DNA codes with RC constraint and compared the results with
previous work, MFOL (Rasool et al., 2022a). A thermodynamic
analysis is performed on coding constraints and compared with the
newly introduced RC constraint to validate it by the computation of
temperature variance.

5 Result evaluations

5.1 Benchmark function’s evaluation

A general trend exhibits the improved performance of our
evolutionary algorithm in many functions. The improved AVG
and SD values in the results prove that strategic combination is
more effective in gaining convergence for the global optimum than
MFO and the other five algorithms. Further evaluations are reported
in Note 04 in the Supplementary Materials.

5.2 Convergence efficiency

The convergence curve is a key criterion for evaluating the
optimizer’s convergence speed and ability to jump out from the
local optima. This study re-executed experiments on the specific
mainstream functions by using five moths over 500 iterations.
These functions are selected based on the best performance from
Tables 1, Table 2, and 3 given in Note 03 in the Supplementary
Materials. Two metrics, search history and convergence rate, are
adopted to affirm the convergence of the improved MFOS
algorithm. Search history is a qualitative metric that plots the
3D representation curves with the sequence of different
iterations. It may also be seen from the 3D representation that
fluctuation-flow are greatly dependent on the iteration sequence
with different values. These observations guarantee the MFOS’s
effectiveness for the optimized problem to attain the balanced
transition between exploration and exploitation. In addition, the
convergence rate is a quantitative metric that plots the best
candidate’s fitness in each iteration. The fitness reduction with
the passage of iterations empowers the MFOS convergence. To
analyze the effectiveness of the Levy flight and OBL mutation
strategies, Figure 3 illustrates the comparison of the original
MFO, our MFOS, and the other five algorithms. In the unimodal
F2 function, although the MFO secured the optimal global
solution, it failed to jump out from the local optima in its
early fitness. In contrast, the MFOS algorithm converges more
speedily than the MFO and attains the optimal global solution
after almost 100 iterations. Meanwhile, our optimizer attained
optimal solution at 50 iterations in the F12 function. In contrast,
the MFO fell into the local optima. Likewise, in the composite
F18 function, the MFO curve tends to be horizontal with no more
extended convergence, while the MFOS easily and rapidly
converges and accesses the global optima due to its mutation
strategies. In summary, the search-based meta-heuristic MFOS
convergence curves are empirically insured by quantitative
metrics. It is observed that the improved algorithm exhibits
competitive results over the state-of-the-art optimizers by
endowing a balanced nature between exploration and
exploitation.

5.3 Wilcoxon rank-sum test

Rank-sum statistical tests are used for doubtful distribution;
without consideration, either the object is known or unknown. A
popular rank-sum test proposed by Wilcoxon is an alternative non-
parametric test for ranking two samples (Kim and Kim, 1996). The
null hypothesis of the Wilcoxon rank-sum test is typically
interpreted as equal medians instead of equal means. The two
populations have the same distribution with the same median,
which is another way to conceptualize the null. If evidence is
found that one distribution is shifted to the left or right of the
other, the null hypothesis will be rejected. Rejecting the null proves
that the medians of the two populations are different because we
assume that our distributions are equal. This study investigates the
statistically significant difference between the MFO and MFOS
algorithms by computing the rank-sum of any two samples of
the 30 iterations.

Particularly, an algorithm is pondered as statistically substantial
if the P − value > 0.05. In Figures 4A–C, the results met the
threshold criteria (p > 0.05) in various functions, and the
threshold line presents the P − value. These results demonstrate
the statistical significance of the MFOS algorithm due to stronger
exploration and jumping-out ability from the local optimum.

5.4 Bounds on DNA storage coding
constraints

The MFOS evolutionary algorithm is programmed to enhance
the lower bounds of DNA coding sets with CGC,NL(n,W, d)
constraints which present three GC-content, No-runlength, and
Hamming distance constraints that delivered the constraints
satisfied DNA sequences. Meanwhile, the acquired MFOS outputs
are compared with recently best-obtained results from Altruistic
(Limbachiya et al., 2018), KMVO (Cao et al., 2020a), and DMVO
(Cao et al., 2020b). The altruistic algorithm (Limbachiya et al., 2018)
obtained results by utilizing 4≤ n≤ 13 and 1≤d≤ 13 constraints
with W � �n/2�. The algorithms (KMVO (Cao et al., 2020a) and
DMVO (Cao et al., 2020b)) found the lower bounds with 4≤ n≤ 10
and 1≤ d≤ n boundary. The bold entries in Table 3 and Table 4
show the lower bounds of DNA coding sets with our improved
MFOS algorithm, and superscript identification is classified in
Table 2.

5.4.1 Lower-bound improvements
New lower bounds reported by the MFOS outperformed other

algorithms, shown in Table 3. We analyzed the previous three studies’
lower bounds and then compared our lower bounds with the one with
the highest lower bound. For example, at n = 8 and d = 3, the lower
bounds of the Altruistic algorithm are 289, KMVO has 319, DMVO
obtained 324, and our work achieved 469. Therefore, we compared
MFOS with the one with the highest lower bound (DMVO). While few
coding sets are on the same previous level, i.e., MFOS has the same sets
as KMVO and DMVO when n = 5 and d = 3,4, and n = 11 and d =
10 with an Altruistic algorithm. Similarly, few lower bounds are
reported with fewer coding sets as the number of sequence lengths
(n) increased. For example, MFOS lower bounds were reduced by
0.83% at n = 12 and d = 3, and 11.11% at n = 11 and d = 8, compared to
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the Altruistic algorithm. However, with an average of 52.28%, the
proposed algorithm improved the lower bound coding sets compared
with that of the d = 5. Meanwhile, compared with KMVO and DMVO
algorithms in the same state (n = 6–13 and d = 5), the MFOS
algorithm’s lower bounds are 12–35% higher than the KMVO and
12–28% higher than the DMVO.

These considerable improvements in MFOS are strengthened by
adopting Levy flight and OBL mutation strategies. This strategic
method accredits the MFOS algorithm with fast convergence and
stronger exploration abilities, enabling it to jump out of the local
optima to secure itself in the optimal global solution. In conclusion,
the proposed MFOS algorithm considerably acquired a large
number of lower-bound DNA-coding sets compared to the
benchmark algorithm and designed the conditions to store larger
files in the DNA storage system.

Regardless of these substantial developments, the fact that the
consecutive repetition of subsequences unaffected with
CGC,NL(n,W,d) is still prone to errors in developing DNA coding
sets (Erlich and Zielinski, 2017). Additionally, retrospective studies (Cao
et al., 2020b; Rasool et al., 2022a) discovered the SS due to this
consecutive repetition of similar subsequences that folds back to
themselves. We used the RC constraint with computational
modeling to eliminate such an SS to design a stable DNA synthesis
and sequencing process. Therefore, this study introduced reverse-
complement constraints (Section 2) to construct more robust DNA-
coding sets; and the higher the robustness, the lower the error
probability in the DNA data storage. RC is added to three basic
constraints CGC,NL(n,W,d) and was implemented with the
proposed MFOS algorithm. Table 4 represents the yielded coding
sets with 4≤ n≤ 10 and 3≤ d≤ n bounds that satisfy the four
constraints CGC,NL,RC(n,W,d). The particular selection of these
lower bounds enabled this study to compare the results with MFOL
(Rasool et al., 2022a). The results revealed that RC constraints with the
MFOS algorithm increased the DNA-coding sets in various n/d. For
instance, in all n, 28.12 and 33.52% of DNA coding sets have been
improved when d = 4 and d = 5, respectively. In glance of a specific
number of sequences, e.g., n = 10 at d = 5, MFOS lower bounds are
31.21% better than the MFOL algorithm.

In contrast, the coding set in a particular Hamming distance is
also increased and decreased. For example, in d = 3, 21.13% of lower
bounds increased and 11.71% decreased, which is insufficient for
DNA data storage construction. It is probably due to the decrement
of the MFOS algorithm candidate sets, which decrees the number of
appropriate sequences. It indicates there is still room to construct
more robust DNA codes without decreasing the lower bounds. For
instance, if the candidate sets are increased, n = 10 and d = 7, MFOS
can deliver larger sequences with improved lower bounds.

We have illustrated Figure 5 to compare lower-bound
improvements for 7≤ n≤ 10 and 3≤ d≤ 5. Figure 5A is based on the
bounds of Table 3, which demonstrates that the GC-content and no-
runlength constraints have adequately improved the lower bounds of
DNA codes in the lower Hamming distance with all sequence lengths.
This improvement is comparatively less with a higher Hamming
distance, while it is still more considerable than the existing work
with the same constraints. In contrast, Figure 5B reported the lb
comparison based on Table 4. It reveals that lower bounds have been
significantly improved with a higher Hamming distance with the
combination of four constraints, including the RC constraint. The

improvement in lower bounds means that the DNA codes given in
the particular sequence length have more capacity to accommodate the
digital data, improving the density and sequence stability. These
consequential performances of the improved algorithm with strategic
mutations and the RC constraint confirm its implication for the practical
problems of DNA data storage. In addition, the DNA sequences
constructed by MFOS for n = 7 and d = 5 are presented in Table 5.

5.4.2 DNA coding rates
The advancement in the lower bounds is directly favorable to the

improvements in DNA coding rates (R), which can be defined as
(Cao et al., 2020a):

R � log4 K/n, (10)
where K indicates the number of DNA-coding sets and n presents
the sequence length number.

The empirical analysis of Table 3 revealed that the MFOS
algorithm acquired almost the same coding rate with shorter
sequence lengths n − 1. For example, the Altruistic algorithm
reported R = log4190/12 = 0.315 when n = 12 and d = 6, while the
MFOS algorithm reported a 0.316 coding rate when n = 11 and
d = 6. Although KMVO and DMVO’s coding rates were better
than the Altruistic algorithm, the MFOS’s coding rate was more
effective. For example, KMVO informed 0.499 coding rates with
n = 7 and d = 3, while the proposed algorithm found 0.498 rates
with n = 6 and d = 3. In comparison with DMVO, the MFOS
reached 0.323 at n = 7 and d = 5, while DMVO got a 0.32 coding
rate at n = 8 and d = 5. Meanwhile, in Table 4, the MFOS
algorithm has significantly helped to improve the lower bounds
in various coding sets as compared to the previous algorithm
(Rasool et al., 2022a). For instance, MFOL achieved a
0.545 coding rate when d = 3 and n = 9, while the current
algorithm (MFOS) has attained almost the same coding rate of
0.544 with a shorter sequence (n − 1) at n = 8 with d = 3.
Similarly, at d = 5, the MFOS’s coding rate was 0.323 with
n = 7. However, the previous MFOL algorithm had 0.32 with
n = 8. The evaluation of Table 4 revealed that the improved
evolutionary algorithm had increased by 50% in DNA coding
sets, while 35.7% of coding sets have the same level as MFOL.
These adequate improvements in the lower bounds report the
satisfaction of DNA coding constraints.

Figure 6 compares the DNA-coding rate based on the
standard error mean (SEM) for d = 3. The SEM measures how
precise the new sample is as the probability of the existing sample.
It is used to statistically estimate the interval of the DNA code
rate between our new codes with previous codes. Figure 6A
presents the coding rate of Table 3 based on CGC,NL(n,W, d)
constraints and provides the SEM between our code rate and the
Altruistic algorithm (Limbachiya et al., 2018; Cao et al., 2020a;
Cao et al., 2020b). The rising of bars with the increasing sequence
length indicates the improving coding rates with n − 1 sequence.
However, the red error bars specify the estimation of the mean
error between our DNA codes and previous ones. It means that
the smaller the error bar, the larger the coding rate with the better
estimation of DNA codes. Similarly, Figure 6B delivered the same
comparison for CGC,NL,RC(n,W, d) constraints based on Table 4.
It emphasizes the effectiveness of combinatorial constraints,
wherein four constraints have been configured to attain the
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maximum coding rate with the slightest mean error. Overall, this
evaluation provides the strength that larger digital files can be
stored in shorter sequences with n − 1 by avoiding the mean
error.

Hence, these analytical results determined that shorter
sequences can also gain the same DNA storage performance as
longer sequences. Consequently, shorter sequences would easily
reduce the cost and make it easier to synthesize with more stable
conditions. The increased lower bounds in the given coding sets
signify the reduction of the SS in the DNA sequences, which helped
the proposed approach to avoid the non-specific hybridization
errors. These results emphasize the improvement of lower
bounds for the further advancement of density-based DNA data
storage.

5.5 Temperature variance of DNA codes

The temperature variance of DNA codes analytically evaluates
the rationality of the newly introduced constraint. In DNA coding,
half of the double-stranded DNAs split into single-stranded DNAs
during the denaturation process (Sager and Stefanovic, 2006) by the
melting temperature (Tm). It relies on GC-content that influences

TABLE 3 Lower bounds’ comparison of the MFOS algorithm with KMVO (Cao et al., 2020a), DMVO (Cao et al., 2020b), and Altruistic algorithm (Limbachiya et al.,
2018) for CGC,NL(n,W, d).

n/d d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

4 11a

12S

5 20k,u 8k,u

20S 8S

6 56k 24u 8k,u

63S 27S 9S

7 127k 45k 17u 7u

208S 68S 23S 8S

8 324u 106u 35u 14u 5k,u

469S 171S 42S 18S 6S

9 713u 199a 65k 24u 10k,u 5k,u

1210S 279S 90S 37S 13S 6S

10 2081k 555u 159u 54k 20u 10u 4a,k,u

3391S 829S 205S 79S 25S 10S 4S

11 4320a 1235a 284a 82a 29a 9a 4a 4a

4703S 1967S 429S 124S 41S 8S 5S 4S

12 12068a 3326a 662a 190a 58a 22a 8a 4a

11967S 5195S 934S 509S 73S 13S 9S 6S

13 41867a 7578a 1432a 1201a 123a 39a 13a 6a

42343S 8392S 1780S 1519S 197S 51S 15S 9S

TABLE 4 Lower bounds of MFOS with CGC,NL,RC(n,W, d).

n/d d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9

4 11L

11S

5 24L 8L

21S 8S

6 58L 26L 7L

71S 26S 7S

7 148L 49L 19L 6L

134S 63S 23S 5S

8 328L 114L 35L 11L 6L

419S 149S 51S 11S 6S

9 906L 281L 83L 30L 9L 4L

1026S 362S 113S 49S 9S 4S

10 2254L 721L 189L 79L 17L 5L 5L

2249S 897S 248S 127S 27S 5S 5S
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the chemical reaction of DNAmolecules: the higher the GC-content
presents, the higher the Tm. In the PCR, a proper Tm can be more
suitable in binding the forward and reverse primers. Hence, the
primers with similar Tm can eliminate non-specific hybridization
linked with oligo design and its thermodynamic features. DNA
sequences with the same Tm are more stable in constructing the
DNA codes. This Tm variances are conducted to differentiate the
sequence stability: the smaller the temperature variance, the more
stable the Tm of the DNA coding set (Chee and Ling, 2008; Dinis
et al., 2020).

As themain objective of this work was to generate a DNA sequence
with shorter sequences, an experiential thermodynamic test was

TABLE 5 DNA coding sets received at n � 7, d � 5 from Table 4.

No. Codes No. Codes No. Codes No. Codes

1 CTGTGAC 7 TAGCCTA 13 GAATGCT 19 CATCGAG

2 ATGTACG 8 TCAGTCA 14 TACGCAG 20 GGCACTA

3 CATCTGC 9 GAGATTC 15 GTACGAT 21 ACGAGTC

4 GCAATCT 10 GTACTAT 16 ACTGACA 22 TGTTACG

5 AGACATG 11 GATGCTA 17 CTACGAT 23 TGAACTG

6 GTCTGAC 12 CTGCCTC 18 GTGACAC – –

TABLE 6 Comparison of CGC,NL and CGC,NL,RC(n,W, d) for Tm variance of DNA
codes with 5 < n < 10, 2 < d < 9.

n/d d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

7 CGC,NL 5.2569 5.3208 5.5191 4.4609 – –

CGC,NL,RC 4.0324 5.1284 4.7892 4.7177 – –

8 CGC,NL 4.1352 5.671 5.3907 5.3168 4.0051 –

CGC,NL,RC 5.4981 4.7806 5.1395 5.4902 4.8491 –

9 CGC,NL 5.961 6.3107 4.9608 4.3775 4.7926 5.6901

CGC,NL,RC 4.2694 4.6816 3.5994 3.2428 3.7327 4.4057

FIGURE 4
Wilcoxon rank-sum test’s comparison of MFO and MFOS algorithms for (A) unimodal functions, (B) multimodal functions, and (C) composite
functions.

FIGURE 5
Comparison of improved lower bounds (lb) with different sequence lengths based on (A) Table 3 and (B) Table 4.

Frontiers in Genetics frontiersin.org12

Rasool et al. 10.3389/fgene.2023.1158337

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1158337


performed to authenticate the DNA sequences. The experiential
parameters of primer concentration are set at 200nM, and the salt
concentration at 50nM. For instance, based on these concentrations, a
primer (ACGTATCAGA) with n � 10 reported 30% GC-content, and
nucleotide degeneration is allowed at Tm � 26°C. The coding sets with
our evolutionary approach are examined with and without the newly
added constraint for its associated Tm values. Table 6 delivers the
comparison of Tm variances with CGC,NL; CGC,NL,RC constraints for
particular (6 < n < 10, 2 < d < 9) lower bounds. The results demonstrate
the lowest Tm variance for the new constraint (CGC,NL,RC) compared to
CGC,NL. For comprehensive insights, a clustered bar chart is illustrated
in Figure 7. It compares the Tm variances for CGC,NL and
CGC,NL,RC(n,W,d) when n = 9 and Hamming distance is 2 < d <
9. It indicates the 22% smaller Tm variance for the new constraint as
compared to CGC,NL. The lowest Tm variances for CGC,NL,RC(n,W,d)
indicates significantly more effective results for the RC than the existing
constraints. This analysis dominates the practical inference and demand
of the RC constraint for DNA-coding sets as it decreases 13.36–37.99%
Tm variances when n = 9. These smaller Tm variances of the DNA-
coding set provide support to the stable PCR reaction due to the
reduction of non-specific hybridization, which proved the RC
constraint applicability.

6 Conclusion

Computationally optimized DNA storage algorithms have
uncertainty for DNA code stability as required by the DNA
synthesis and sequencing process. We, therefore, applied
mutation strategies to enhance the optimization efficiency by
improving the lower bounds, which allowed us to construct
stable DNA codes with the minimum hybridization errors. We
synergized a bioengineering-based evolutionary approach with the
MFOS algorithm and RC coding constraints to construct more
stable and robust codes for DNA storage. The results presented in
Figures 3, 4 indicate the MFOS’s competence, faster convergence,
and better optimization efficiency than previous algorithms. The
improved heuristic algorithm is practiced to generate the optimized
DNA code words with the GC-content, Hamming distance, no-
runlength constraints, and improved 12–28% lower bounds coding
sets than the prior algorithm (DMVO), as revealed in Table 3. In
addition, the RC constraint with MFOS meaningfully enhanced the
coding rate in 50% of the lower bounds at the same constraints
compared with the existing work (Table 4). It attained effective
coding rates with shorter sequences by avoiding the SS and
enhancing DNA storage density and stability. Consequently, our
approach’s shorter sequences can help reduce errors during DNA
synthesis and sequencing. Thus, storing a larger file in a shorter
DNA sequence is feasible due to the improved lower bounds and
coding rates of DNA coding sets. Eventually, comparing
temperature variances (Tm) with and without the RC constraint
demonstrates that smaller Tm variances of DNA sequences can
avoid further non-specific hybridization for stable DNA data
storage. This evolutionary approach enhances the robustness of
optimization algorithms for a biological purpose: the construction of
DNA coding sets for the future digital data storage technology into
DNA. The proposed approach will apply to constructing sequence
data in other bioengineering technologies.

In the future, the DNA codes generated by the MFOS algorithm
can be assessed under more strict constraints, i.e., hairpin structure
or triplet-based unpaired constraints (Zhu et al., 2021). As the
constraints are strict, the DNA-coding set will be smaller and
have a higher density of DNA data storage codes. Similarly,
various lower bounds and coding rates are still captivating to be
enhanced for more stable DNA codes. Additionally, the constructed

FIGURE 6
DNA-coding rate comparison at d = 3 using standard error mean based on (A) Table 3 and (B) Table 4.

FIGURE 7
Comparison of Tm variances when n = 9 for the CGC,NL and
CGC,NL,RC(n,W,d) constraints.
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coding sets by the proposed approach can be used to design an end-
to-end DNA data storage system (Takahashi et al., 2019).
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