
Smoothed particle hydrodynamics
method for free surface flow
based on MPI parallel computing

Sifan Long1, Kelvin K. L. Wong2, Xiaokang Fan1, Xiaowei Guo3 and
Canqun Yang1,4*
1College of Computer, National University of Defense Technology, Changsha, China, 2School of
Computing, Central South University, Changsha, China, 3Institute for Quantum Information and State Key
Laboratory of High Performance Computing, National University of Defense Technology, Changsha,
China, 4National Supercomputer Center in Tianjin, Tianjin, China

In the field of computational fluid dynamics (CFD), smoothed particle
hydrodynamics (SPH) is very suitable for simulating problems with large
deformation, free surface flow and other types of flow scenarios. However,
traditional smoothed particle hydrodynamics methods suffer from the problem
of high computation complexity, which constrains their application in scenarios
with accuracy requirements. DualSPHysics is an excellent smoothed particle
hydrodynamics software proposed in academia. Based on this tool, this paper
presents a largescale parallel smoothed particle hydrodynamics framework:
parallelDualSPHysics, which can solve the simulation of large-scale free
surface flow. First, an efficient domain decomposition algorithm is proposed.
And the data structure of DualSPHysics in a parallel framework is reshaped.
Secondly, we proposed a strategy of overlapping computation and
communication to the parallel particle interaction and particle update module,
which greatly improves the parallel efficiency of the smoothed particle
hydrodynamics method. Finally, we also added the pre-processing and post-
processing modules to enable parallelDualSPHysics to run in modern high
performance computers. In addition, a thorough evaluation shows that the 3
to 120 million particles tested can still maintain more than 90% computing
efficiency, which demonstrates that the parallel strategy can achieve superior
parallel efficiency.

KEYWORDS

smoothed particle hydrodynamics, massively parallel, parallelDualSPHysics,
communication optimization, computational fluid dynamics

1 Introduction

With the fast development of computer hardware and the rapid improvement of
computing performance, computational fluid dynamics (CFD) provides an alternative tool
for investigating scientific problems and has been successfully applied to solving practical
engineering problems. Historically, CFD solvers have been dominated by mesh-based
methods, including finite element method (FEM), finite volume method (FVM), and the
finite difference method (FDM). For quite a long time, these mesh-based methods have
been applied to industry problems (e.g., aerospace [1], chip packaging [2], etc.). However,
due to the pre-defined mesh, mesh-based methods present some important limitations
when solving problems with complex boundary, high-speed impact response of materials
and large deformation. Meshless methods, which replace meshes with a set of arbitrarily

OPEN ACCESS

EDITED BY

W.J. Zhang,
University of Saskatchewan, Canada

REVIEWED BY

Michele La Rocca,
Roma Tre University, Italy
Zheng Fang,
University of Saskatchewan, Canada

*CORRESPONDENCE

Canqun Yang,
canqun@nudt.edu.cn

SPECIALTY SECTION

This article was submitted to
Interdisciplinary Physics,
a section of the journal
Frontiers in Physics

RECEIVED 11 January 2023
ACCEPTED 08 March 2023
PUBLISHED 20 March 2023

CITATION

Long S, Wong KKL, Fan X, Guo X and
Yang C (2023), Smoothed particle
hydrodynamics method for free surface
flow based on MPI parallel computing.
Front. Phys. 11:1141972.
doi: 10.3389/fphy.2023.1141972

COPYRIGHT

© 2023 Long, Wong, Fan, Guo and Yang.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 20 March 2023
DOI 10.3389/fphy.2023.1141972

https://www.frontiersin.org/articles/10.3389/fphy.2023.1141972/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1141972/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1141972/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1141972&domain=pdf&date_stamp=2023-03-20
mailto:canqun@nudt.edu.cn
mailto:canqun@nudt.edu.cn
https://doi.org/10.3389/fphy.2023.1141972
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1141972

distributed particles, are demonstrated to be advantageous over
mesh-based methods [3]. Recently, the academia and industry
communities have seen an exponential growth of meshless
methods in the use of CFD solvers. Among many meshless
methods, the smoothed particle hydrodynamics (SPH) method
[4] is the most popular one. Compared with the traditional
methods, the SPH method uses a series of particles to describe
the field variables (such as position, velocity and density) in space.
There is no dependency between particles, and it does not need to
set the background mesh associated with each other in the solution
area. Therefore, it can better describe the behavior of fluid at
complex boundaries. The meshless characteristic makes SPH the
primary choice for simulating problems of free surface flow,
multiphase flow and impact load.

SPH was originally proposed by Monaghan in 1977 [4] to solve
astrophysics problems. Then it was successfully applied to the
simulation of polytropic stellar models for astrophysics. SPH uses
Lagrangian perspective to describe the motion of fluid particles.
Therefore it does not need to follow the constraints of Euler method.
Particles can move freely with each other in the solution region
according to the update rules. As a result, SPH can well describe the
physical scene with complex motion boundary. Besides the ability to
deal with problems that are difficult to solve by traditional mesh-
based methods, SPH has its own drawbacks, such as tension
instability and difficulty to deal with boundary conditions. The
main obstacle that prevents its application to solving large scale real
world problems is its computation complexity. Over the last several
decades, a lot of research effort [5]; [6]; [7]; [8]; [9]; [10]; [11] has
been devoted to improving the computation efficiency of SPH. In
SPH, particles only interacts with neighboring particles within a
specific range. Therefore, the computation of SPH shows simple data
dependence relations and good data locality. This feature makes it
possible to accelerate SPHwith different levels of parallelization. The
original SPH code was developed to run on single-core CPUs.
Compared with the single core CPU, multi-core shared memory
CPUs integrate multiple computing cores into the same chip. They
interact with data through the internal bus, and the task allocation is
uniformly scheduled through the Operating System (OS). Therefore,
it is easy to execute tasks on multiple cores. At present, many SPH
codes based on multithreading acceleration technology have been
proposed. They use OpenMP to explicitly allocate computing tasks
to each core of CPU. Thus accelerating SPH with thread-level
parallelism. For example, Daisuke et al. systematically discussed
the impact of different computing core architecture organizations on
the computational efficiency of SPH method. Their experiments
showed that processor using Many Integrated Core (MIC) had
obvious acceleration effect on the parallel SPH method [12].
Then, their other work is based on the successful application of
shared memory multiprocessors in the Discrete Element Method
(DEM), which showed the universality of multi-core processors
parallel computing framework [13]. Luo et al. used OpenMP to
discuss the computational efficiency of simulating dam-break flow
in different threads under the framework of multi-core parallelism.
Their work showed that under the condition of more than 2 million
particle size, the increase of data exchange overhead between CPU
cores reduced the computational efficiency when the number of
threads increases [14]. In addition to thread-level parallelism, data-
level parallelism can be realized with Single Instruction Multiple

Data (SIMD) technology. Intel provides the support of the intrinsics1

instruction set macro package for SIMD technology. This macro
package provided instruction sets with different vector widths such as
Streaming SIMD Extensions (SSE), Advanced Vector Extensions
(AVX) and AVX-512, and there are rich documents attached,
developers only need to follow the instruction specification to
realize the vectorization parallelism of SPH (support C/C++). Its
principle is to convert the SPH code to the vectorization unit of the
CPU through the vectorization instruction set for calculation, and
then calculate n data at a time according to the width of the vector
register (the vector width is n), so as to accelerate the simulation
process of SPH. At present,Willis et al. showed that using AVX-512 to
optimize the serial SPH code can obtain up to 4 speedups [5].
Therefore, vectorization acceleration is also an important parallel
scheme in CPU. With the development of hardware technology, the
computational efficiency of SPH has been greatly improved. For
example, the Graphics Computing Unit (GPU) originally used for
graphics processing integrates many computing units and extremely
long pipelines. In addition, the NVIDIA has launched Compute
Unified Device Architecture (CUDA) as a new computing
framework and had gained more and more extensive applications
and attention in industry and academia. Developers can write code
using C/C++/FORTRAN language and run it with ultra-high
performance on GPU supporting CUDA, which makes it more
convenient to transplant SPH code to GPU. Therefore, data
intensive tasks are very suitable for computing using GPU. Harada
and Kawaguchi first used GPU to improve SPH calculation efficiency
to simulate the flow procedure of more than 4 million fluid particles,
but they only put part of SPH on GPU for calculation at first [6]. The
disadvantage of this method is that it will lead to frequent data
exchange between GPU and CPU in the system update stage, which
will lead to great communication overhead. Then, they implemented
the whole SPH method on GPU by introducing a three-dimensional
grid structure [7], and achieved up to 28.5x speedups, since then,more
GPU based optimizations have made great progress [8]; [9]; [10].

We have discussed the progress of multi threading, vectorization
and GPU acceleration in SPHmethods, but they are all implemented
on a single node architecture. However, the computing power of
supercomputers composed of multiple computing nodes far exceeds
that of single node computers. Regardless of using homogeneous
pure CPU/GPU and heterogeneous CPU + GPU/DSP (accelerator)
supercomputers, the SPH codes can be transplanted to clusters with
one million cores throughMPI communication. At present, Frontier
is the fastest in the TOP500 List2 of global supercomputing, it is
equipped with 8,730,112 AMD Optimized 3rd Generation EPYC
64C 2 GHz processors, and the peak performance of floating-point
operation reaches 1102 Petaflops/s (1.1 Exaflop/s). And
supercomputers have new breakthroughs in computing power
every few years, which undoubtedly provides strong computing
resource support for the CFD field. The “E” level (1 Exaflop/s)
computing era will greatly promote the development of CFD. The
parallel SPH method based on MPI has made great progress. For
example, Oger et al. successfully used 32,768 processes to simulate

1 www.intel.com/content/www/us/en/docs/intrinsics-guide.

2 www.top500.org.

Frontiers in Physics frontiersin.org02

Long et al. 10.3389/fphy.2023.1141972

http://www.intel.com/content/www/us/en/docs/intrinsics-guide
http://www.top500.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

the ball falling experiment of 100 million fluid particles throughMPI
library, and clearly captured the details of liquid splash, and it can
maintain more than 90% computational efficiency [3]. Many studies
have shown that the key to the high efficiency of large-scale parallel
SPH method is how to deal with the load balancing problem of
particles [15]; [16]; [17], so that each process can be evenly
distributed to the same number of particles as much as possible.
Guo et al. uses the open-source software Zoltan as the evaluation
weight solution to solve the load balancing problem of the SPH
method in large-scale cases [18], they used 12,000 processes to
simulate the incompressible flow problem and still achieved 43%
efficiency [19]. Domínguez et al. solved the load balancing problem
and applied non-blocking communication to hide the
communication. Finally, they simulated nearly 1 billion particles
for Weakly Compressible SPH (WCSPH) using up to 64 GPUs in
modern supercomputing system [20].

At present, the SPH method attracts researchers from all over
the world because of its superior performance. Therefore, there are
many excellent open source software, which are widely spread in
academic circles and industry, these software can available at www.
spheric-sph.org. Among them, the influential SPH open-source
software are SWIFT [21], GADGET [22], PYSPH [23],
DualSPHysics [24] and SPlisHSPlasH [25]. SWIFT and
GADGET are mainly used to simulate cosmology and
astrophysics. Both of them integrate asynchronous MPI
communication optimization technology, so they can run
directly on supercomputer for large-scale simulation. PYSPH
had been written using Python language and is developed by
Indian Institute of Technology (IIT). Because the software
architecture is effectively encapsulated, developers can
efficiently design various SPH variant algorithms without
paying attention to the specific implementation of the bottom
layer. SPlisHSPlasH realizes the pressure solver and multi-phase
flow algorithm through OpenMP, Vectorization and CUDA
optimization. DualSPHysics (dual.sphysics.org) was jointly
developed by Manchester University and Vigo University based
on practical engineering applications. It can provide solutions for
simulating free surface flow, multiphase flow and fluid-structure
coupling problems. In addition, the software also couples the
Discrete Element Method (DEM) [26]; [27], and also has a
perfect pre-processing software gencase and post-processing
module, so that developers can quickly establish their own
simulation scenarios according to rich description documents.
DualSPHysics software that is originated from SPHysics is
written in FORTRAN. Because the code did not optimize the
computational performance, the software can only solve small-
scale physical problems. Therefore, in order to optimize the low
computational efficiency of the traditional SPH method,
DualSPHysics has been developed. Developers have
implemented the CPU/GPU version of DualSPHysics using
OpenMP and CUDA optimization respectively. However, they
initially worked on a single node. Then, Domínguez et al.
implemented DualSPHysics with multiple GPU versions and
successfully applied the parallel SPH code to the interaction
analysis of underwater drilling platforms and ocean waves [20].
However, up to date, the multi-CPUs version of DualSPhysics
program has not been released. Therefore, the motivation of this
paper is to implement the multi-CPUs version of DualSPhysics on

a large-scale cluster through MPI for simulation experiments, so as
to further optimize the CPU version of DualSPhysics. In summary,
this paper makes the following contributions:

• We implemented the parallel version of DualSPHysics based
on multiple CPUs through MPI. Among them, we improved
the pre-processing and post-processing functions of the
parallel version of the software. It is extended to fluid
simulation that can support large-scale engineering cases.

• Weuse packaging operation and asynchronous communication
to hide between computing and communication, and improve
the scalability of large-scale parallel SPH code.

• The parallel version of SPH code we developed can run on
large-scale clusters with superior performance, and it can
simulate the physical scene of practical engineering
applications.

The remaining module structure of this paper are as follows:
Section 2 introduces the theory and development of smooth particle
hydrodynamics method, and Section 3 introduces the procedure of
implementing parallelDualSPHysics using MPI. Section 4 tests the
performance of the parallel version of parallelDualSPHysics, and
tests the strong scalability and weak scalability respectively, an
engineering simulation example is given.

2 Smoothed particle hydrodynamics
method

Unlike mesh-based methods, the SPH method is a typical
particle method, which uses a series of nodes as interpolation
points. These nodes carry the information of physical variables,
such as position, velocity and density, and then use these particles to
discretize the Navier-Stokes (N-S) equation. In SPH method, the
fluid particles after the N-S equation is discretized are regarded as
weakly compressible, and then, the update of particles is based on
the interpolation of all particles within the smooth length h. The 2D
example corresponds to a circle in the support domain, and the 3D
example corresponds to a sphere in space. In the definition domain
Ω, any continuous field function in space can be represented by the
following equation:

F r() � ∫F t′()δ t − t′()dt′ (1)

Where δ(t − t′) is a Dirac function, according to the basic
principle of SPH introduced above, the field function (Eq. 1) of any
variable in space can be approximated by integration. So the field
function in space can be expressed by the following Eq. 2.

F t() � ∫F t′()W t − t′, h()dt′ (2)

Where t is the vector variable in space (e.g., velocity, density and
position), W is the smooth kernel function, which needs to meet
many characteristics, such as the smooth kernel function must be
sufficiently smooth and always greater than or equal to 0. By
interpolating the continuous function F in Eq. 2 with discrete
particles, the value of particle a can be calculated by
interpolation of all neighboring particles in the support domain.

Frontiers in Physics frontiersin.org03

Long et al. 10.3389/fphy.2023.1141972

http://www.spheric-sph.org
http://www.spheric-sph.org
http://dual.sphysics.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

F ta() ≈ ∑
b

F tb()W ta − tb, h()ΔVb (3)

The volume ΔVb of particles b is used in particle approximation
in order to replace the infinitesimal volume element dt’ as shown in
Eq. 3. Then, the mass of particle b can be expressed by the following
formula: mb = ΔVbρb. Therefore, Eq. 3 is further converted to the
following form.

F ta() ≈ ∑
b

F tb()mb

ρb
W ta − tb, h() (4)

Eq. 4 is the discrete procedure of SPHmethod, and Figure 1 shows
the particle approximation process of the SPHmethod, the calculation
of particle i can be interpolated according to its corresponding
neighbor particles in the support domain. Therefore, it can be
used to discrete the momentum conservation equation, and finally
obtain the discrete form of acceleration solved by Eq. 5.

dva
dt

� −∑
b

mb
Pb

ρ2b
+ Pa

ρ2a
+ Πab()∇aWab + g (5)

Where P is the pressure, va is the velocity of particle a, ρ is the
density,m is mass of the particle, g is the acceleration of gravity (g =
9.8m/s2), Πab is the given artificial viscosity, Monaghan proposed
the idea of artificial viscosity because of its simplicity, and the
viscosity term Πab is defined as follows:

Πab � 1
−λ�cabμab

�ρab
, vab · rab < 0

0, vab · rab > 0

⎧⎪⎨⎪⎩ (6)

The viscosity termΠab is given by Eq. 6, where rab = ra − rb, vab =
va − vb represent the position and velocity of particles (a and b)
respectively, λ represent the coefficient to be adjusted, and
μab � hvab · rab/(r2ab + η2), η2 � 0.01h2, �cab � 0.5(ca + cb) is the
speed of sound transmission.

Similarly, because the mass of particles is the same, the
calculation formula of fluid density can only be obtained by
discretizing the continuity equation through Eq. 4.

dρa
dt

� ∑
b

mbvab∇aWab (7)

Where vab = va − vb and ∇aWab = ∇aW(ra − rb, h).
In the discrete solution of the SPH method, the fluid particles are

generally assumed to be weakly compressible, the pressure calculation
of particles is determined by Eq. 7 and equation of state. Therefore, the
pressure calculation of particles can be described by Eq. 8.

P � B
ρ

ρ0
()γ

− 1[] (8)

Where γ = 7 for water, ρ0 = 1000 kg/m3, B � c20ρ0/γ, and c0 �
c(ρ0) �

���������(zP)/(zρ)√
when ρ = ρ0, c0 represents the speed of local

sound.
In addition, three common kernel functions are provided showing

as Eqs 9–11, where q = t/h, t is the distance between particle a and
particle b arbitrarily in the influence domain, h is the smooth length.

1. Gaussian kernel

W t, h() � αDe
−q2 (9)

Where αD is equal to 1

π
1
2 h
, 1
πh2 and

1
π 3

2h
3 in one/two/three dimension,

respectively. Gaussian kernel function has good mathematical
properties, including its smoothness and high accuracy.
Therefore, it is very suitable for solving higher-order derivatives.

2. Cubic spline kernel

W t, h() � αD

1 − 3
2
q2 + 3

4
q3, 0≤ q≤ 1

1
4
2 − q()3, 1≤ q≤ 2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (10)

Where αD is equal to 10
7 πh

2, 1
πh3 in two dimensions and three

dimensions, respectively. Compared with other kernel functions,
Cubic spline is the most widely used kernel function.

3. Quintic kernel

W t, h() � αD 1 − q

2
()4

2q + 1(), 0≤ q≤ 2 (11)

Where αD is equal to 7
4πh2,

21
16πh3 in two dimensions and three

dimensions, respectively. The kernel function has good stability
and high interpolation accuracy.

In the process of SPH calculation, each particle has to interact
with multiple neighbor particles, which will lead to the low
computational efficiency of SPH method. Obviously, finding
neighbor particles is also a time-consuming step. At present, the
more efficient neighbor search algorithms of SPH method are Cell
Linked list [28] and Verlet list algorithm [9]. The two algorithms are
widely used in various mainstream SPH open source software. The
CLL method is simple to implement and consumes less memory. In
contrast, Verlet list algorithm uses the strategy of consuming
memory in exchange for time. It needs to save the information
of particles in the previous step, so the memory consumption is

FIGURE 1
Interpolation principle of the smoothed particle hydrodynamics
method, including kernel approximation and particle approximation.

Frontiers in Physics frontiersin.org04

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

large. DualSPHysics uses the cell linked list method to search for
neighbor particles.

3 ParallelDualSPHysics

This section describes the parallel version based on DualSPHysics
code implemented by MPI in multi-core CPU cluster architecture,
which is named parallelDualSPHysics. In DualSPhysics software,
Neighbor List (NL), Particle Interaction (PI) and System Update
(SU) are the three calculation modules of the SPH method. [29]
showed that particle interaction accounts for more than 90% of the
calculation time on single core CPU. Therefore, the key to achieve the
ideal acceleration effect is to evenly distribute the computing load of the
particle interaction part to each processor. In addition, with the increase
of particle size, the processor communication overhead also needs to be
controlled within a reasonable range, so that it cannot become the main
factor restricting the computing overhead. Therefore, the
communication mode needs to be optimized.

3.1 Storage structure of particles

As mentioned earlier, the calculation process of serial SPH
method consists of three steps: neighbor list search, particle
interaction and system update. In the process of calculation, the
simulation results are output in the form of Bi4 binary file every fixed
time step. Then performance of the subsequent rendering on the
simulation result output file are shown in Figure 2.

In DualSPHysics, there are three steps to create a simulation
example, which are pre-processing, solver calculation and post-
processing to show the simulation results. As shown in Figure 2, the
preprocessing part is responsible for the establishment of the model,
and parse the model file (VTK, STL file format) into particle
information. In addition, the software also provides XML files for
parameter setting, after the GenCase module completes the
configuration of the preprocessing part, particles can be calculated
by SPH solver. This part will realize the fluid simulation process, the
result file at that time is output every fixed time step, these output files

contain information such as position, velocity and density of particles.
When the simulation is finished, all the output files are post-processed,
and the particle information in the result file is rendered. Finally, the
whole procedure of simulation can be displayed by visualization
software such as ParaView.

We introduce the program architecture of serial version
DualSPHysics. However, the parallel version of the SPH method will
face many different challenges, one of which is the storage of particle
information. In order to realize the distributed storage of particles, we
designed a particle parallel storage framework as shown in Figure 3.We
take the storage of particle velocity and density as an example to explain
in detail. In the object-oriented programming paradigm, the storage of
particles is based on the Array of Structure (SoA). x, y, z andw represent
the three components of velocity and density of T0(x, y, z, w), and their
memory gradually increases in 4-bits according to Figure 3.

In parallelDualSPHysics, the number of particles transferred across
processes is variable, therefore the array for storing particles must be
dynamic. However, dynamic array will slow down the whole simulation
process due to its frequent allocation and assignment each time.
Therefore, this paper adopts the strategy of sacrificing space for
time, which replaces the dynamic array structure with a fixed-length
array. The principle is as follows: First, we create an array with a fixed
length of Np_Max. Np_Max should be greater than Np, which is the
total number of particles in the current process. The Np_Max array
consists of three parts, which store local particles, ghost particles and
reserved space respectively. Local particles do not transfer across
processes, so they are stored at the top of the array, followed by
ghost particles. When particles transfer across processes, the reserved
space will receive ghost particles transferred from adjacent processes. In
this way, the problem of particle storage across processes can be solved
and the cost of time is also considered.

3.2 Domain decomposition

Domain decomposition algorithm uses the idea of divide and
conquer to divide the computing region into several subregions, and
then assign each subregion to the corresponding processor. When
the whole problem scale remains unchanged, the computing load

FIGURE 2
In DualSPHysics, pre-processing, SPH solver and post-processing are the three main functional modules of the software.

Frontiers in Physics frontiersin.org05

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

borne by each processor will decrease with the increase of processor.
Ideally, their computing time will show a linear decrease. Similarly,
in the parallel process of SPH, in order to obtain the ideal
acceleration effect, each processor is required to allocate the same
number of fluid particles as much as possible.

In the parallel computing structure of the SPH method, in order to
evenly distribute the computing tasks to their respective processes at the
start time, this paper proposes a domain decomposition (DD)
algorithm, as shown in Figure 4. All particles are distributed in the
whole solution domain. To evenly distribute all the particles to their
corresponding processes, we first divide the particles into two parts by
dichotomy. Then each part is divided repeatedly until all processes
receive the same number of particles. At last, the whole solution
domain is evenly divided into sub-regions from 1 to n. Each sub-
region corresponds to particle block j. And these particle blocks

are also stored in the corresponding process as a preparation for
following calculation. The specific implementation details of the
domain decomposition (DD) algorithm are shown in
Algorithm 1.

Algorithm 1. Domain decomposition (DD).

FIGURE 3
The particle storage structure for parallelDualSPHysics.

FIGURE 4
According to the principle of domain decomposition, particles are equally distributed to different subsets as computing tasks.

Frontiers in Physics frontiersin.org06

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

As described in Algorithm 1, the whole solution region is
divided into several sub-regions corresponding to the number of
processes. First of all, the algorithm divides the particles in lines 1 to
4. Because the particles are stored in an array that is unordered, the
particles need to be sorted before dividing the sub-regions. This
procedure is completed by the root process Proot. Then the sorting
results are divided according to the sub-regions responsible for the
process by dichotomy and stored in the index, which can largely
avoid the exhaustion of computing resources caused by the overall
movement of particles. Then, in line 5, the partition result is sent to
the corresponding process through the Scatter() function. At this
time, each process obtains the particles it needs to store. The
particles are only stored in the form of an index (the range is
Pinit to Pfinish). Its particle information is stored in the arranged
particle array (e.g., Pos[p]/Velrhop[p]/Code[p]), so the particle
information stored by each process after domain decomposition
can be obtained according to the index range obtained. Finally, the
position, velocity, density, and other information of particles are
stored in the corresponding process in lines 7 to 11.

3.3 Parallelized particle interaction

In DualSPHysics open source software, according to the analysis
in Figure 2. Among them, the most time-consuming part is the
procedure of SPH solution, which requires continuous iteration until
all time steps are completed. Therefore, to design an efficient SPH
parallel algorithm, it is necessary to solve the particle communication

problem. When the particle size to be simulated expands, the
communication time overhead will greatly exceed the time
overhead of particle computing, this will become a bottleneck
restricting the parallel efficiency of programs, and an effective way
to solve this bottleneck is the overlap of computing and
communication. Its basic principle is that in the calculation
process, the data that needs communication at the boundary is
sent out by non-blocking communication, and the central part of
data that does not need communication is calculated at the same time.
Ideally, when the data in the central part is calculated, the boundary
data is received, and then the data in the boundary part is calculated.
Therefore, the communication time is effectively hidden, which will
greatly improve the performance of parallel scalability.

Algorithm 2. parallel particle interaction (PPI).

FIGURE 5
In the particle interaction module, particles use non-blocking communication to achieve the overlap between computation and communication.

Frontiers in Physics frontiersin.org07

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

Particle interaction is the most time consuming module in the
SPH method. This module calculates the force of each particle
through the interpolation of neighbor particles and presents it in
the form of acceleration. Because of its computation complexity, this
module accounts for over 90% of the total execution time. Therefore,
in order to achieve an efficient acceleration effect, we need to solve the
parallel scalability problem of the particle interaction module. As
shown in Figure 5, this paper proposes a strategy for overlapping
computation and communication to hide communication latency and
optimize the parallelization of particle interaction modules. First, it
divides particles into two groups: boundary ghost particles and central
particles, according to the smooth radius of 2h away from the process
boundary. Then, according to the calculation rules of the SPHmethod
on the support domain (only the neighbor particles within the smooth
radius are calculated), the corresponding neighbor particles of the
central part of the particles completely fall into the process. So it can
complete the calculation of particle interaction without

communicating with the adjacent process. Ghost particles need to
communicate with neighboring processes. Therefore, in order to
minimize the communication overhead, we first send ghost
particles to adjacent processes through asynchronous transmission.
At the same time, we calculate particles located in the central part.
When the center particle calculation is completed, the boundary
particles are also sent and received. Finally, we calculate the ghost
particles that fall into the boundary part. This strategy makes full use
of the idle waiting computing resources caused by the transmission of
ghost particles. Therefore it effectively alleviates the parallel efficiency
of programs.

Therefore, in the parallel framework, the calculation process of
particle interaction is divided into two processes: ghost boundary
particle and central particle. According to this particle partition
method, we propose a parallelized particle interaction (PPI)
algorithm based on communication hiding to realize the
parallelization of the SPH method.

FIGURE 6
The entire procedure of parallelizing the particle update module.

FIGURE 7
The principle of dynamic adjustment of particles in three adjacent processes.

Frontiers in Physics frontiersin.org08

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

The PPI Algorithm 2 describes the particle interaction method
based on our communication hiding strategy. Firstly, lines 2-3 divide
the process boundary according to the smooth radius of 2 h. Then, in
lines 4-10, all particles are divided into central particles and ghost
particles according to their distances from the process boundary. Then
the number of ghost particles to be communicated is sent through the
MPI_Sendrecv() function to apply for enough memory to store the
ghost particles. In order to reduce the number of communications and
savememory resources, this paper also uses the Pack/Unpack() function
to implement the packaging operation of particle information in lines
13 and 19. According to the principle of particle division, we send ghost
particles to adjacent processes in the way of asynchronous transmission
in lines 14 and 15. Then we calculate central particles in line 17. When
the central particle calculation is completed, we use the Waitall()
function to check whether the ghost particle transmission is
complete, after which we calculate the ghost particle. Finally, the
interaction force of all particles is calculated and its acceleration is

output to the subsequent particle updatemodule. The algorithm realizes
the overlap of computation and communication, and theoretically
meets the design requirements of efficient parallel programs.

Algorithm 3. Parallel system update (PSU).

FIGURE 8
A parallel workflow of the parallelDualSPHysics with six processes, where dashed lines represent data communication, there are four
communication stages: I, II, III, and IV.

Frontiers in Physics frontiersin.org09

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

3.4 Parallelized system update

Unlike the serial SPH system update module, the parallel system
update module not only needs to deal with the update of particle
information, but also needs to consider the situation of cross-process
transfers of particles caused by the change of position. Similarly,
handling the communication of particles is still the primary task to
optimize parallel efficiency. Therefore, this paper proposes a parallel
system update (PSU) method as shown in Algorithm 3.

The serial version of SPH does not need to consider the problem
of particles moving across processes in the system update module,
which is a unique feature of the parallel version of SPH code.
Therefore, particle storage needs to use the storage structure
presented in Figure 3. The back end of the array can store ghost
particles transferred from adjacent processes. It ensures the cross-
process transfer of ghost particles. First of all, the algorithm updates
the position, velocity, and density information of particles in lines 4-
5 according to the acceleration. Then, in lines 6-10, particles outside
the process boundary are detected. These particles are called ghost
particles and will be transferred across the process. Particles that are
within the process boundary are called local particles, which do not
require cross-process transfer. Partitioning of particles has become
the basic requirement to implement communication hiding and

improve the scalability of parallel programs. In lines 14-16, the
algorithm sends the ghost particles to the destination process by
asynchronous transmission. Then the algorithm reorders the local
particles and stores them in the local process in order (the transfer of
ghost particles will leave enough room for array elements). In line
17, the algorithm calls the MPI_Waitall function to check whether
the ghost particles have been transferred. When the return value of
status is true, we store the ghost particles received from the
neighboring processes behind the local particles. Finally, we
get all the particle information after the cross-process transfer of
particles. The hidden strategy of computation and communication is
an effective way to solve the problem that the program enters the
parallel performance bottleneck prematurely.

The PSU algorithm can be described in Figure 6, and p1-p17 is used
to represent the particles in process Proc_m. After the particles update
the position coordinate information, the ghost particle set that needs to
cross the process is detected. For example, the set Pg0 = {p4, p7, p9, p13,
p16} represents the ghost particles that will cross the process. When the
particles cross the processor, the Pg0 is first sent to the adjacent
processes through asynchronous transmission. At the same time, the
ghost particles are eliminated and the local particles are reorganized.
The set Po = {p1, p2, . . . , p15, p17} represents the reorganized local
particle set. Finally, add the ghost particle set Pg1 = {g1, g2, g3, g4} from
the adjacent process to the local particle set. Therefore, the Pf particle set
is the final stored particles of process Proc_m, which also shows that the
number of particles of process Proc_m is equal to local particles
plus ghost particles sent by adjacent processes in a given time
step. Obviously, the communication is also hidden in the phase of
ghost particle asynchronous communication and local particle
reorganization.

3.5 Dynamic load balancing

In the particle update stage, due to the existence of ghost particles
across the process, there will be a major load imbalance problem for the

TABLE 1 The configuration information of the experimental platform.

Equipments Platform # I

Model Intel(R) Xeon(R) E5-2620 v2 @2.10 GHz

CPU cores 12 cores

Memory 64G/128G

Instruction sets sse, sse2, sse4_1, sse4_2, avx

Operating system CentOS7.6

Compiler GCC-8.3.0

FIGURE 9
Test case shows the flow of pure fluid.

Frontiers in Physics frontiersin.org10

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

fluid particles allocated by the process, which will lead to excessive
computational load in some processes and idle waiting in other
processes, slowing down the whole simulation process. In order to
alleviate the imbalance of particle load in the calculation procedure of
SPH, we locally adjust the particles of adjacent processes.

Load balancing is a common problem in parallel computing [15].
At present, many studies have shown that using Zoltan open source
framework to realize resource allocation can achieve significant results
[30]. However, due to the complexity of the software, this paper adopts
local adjustment algorithm to realize particle dynamic load balancing.
As shown in Figure 7, due to particle update, the number of particles in
process 1 is much smaller than that in process 0/2. When the difference
in the number of particles between the two processes reaches a given
threshold, the program can determine that the calculation load is
unbalanced. Therefore, it needs to move t particles from process
1 to process 0/2 to alleviate the problem of calculation load
imbalance. The adjustment of local algorithm is simple to
implement, and can also obtain good performance.

3.6 Parallel SPH framework

Previously, we gave the parallelization method of particle
interaction and particle update module, which is combined with the
whole SPH. Therefore, this paper describes the calculation flow of
parallel SPH as shown in Figure 8. We show six processes as an
example. First, we use the domain decomposition algorithm to divide
the whole SPH region, and store the particles in the corresponding
processor. Then, the CLL algorithm is used to sort the fluid particles and
store them in the corresponding cell they belong to. At the same time, it
can be seen that communication needs to be carried out in the part of
particle interaction and particle update. When processes need to
communicate, each process sends boundary data to adjacent
processes. However, as the size of simulated particles increases, the
time spent communicating between processes will be much longer than
the time spent computing, thus becoming amajor constraint on parallel
scalability. Therefore, communication optimization is needed to
obtain efficient parallel programs. In this paper, communication

FIGURE 10
Fluid particles calculated by different processes.

FIGURE 11
(A,B) respectively describe the acceleration and computational efficiency obtained in different processes for 128Gmemory nodes with fixed particle
number, and it also increases the benchmark under ideal conditions for comparison.

Frontiers in Physics frontiersin.org11

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

hiding is used to alleviate the impact of communication on
parallel efficiency. Their principle is to send out the data of
the boundary part first, and then calculate the central data
irrelevant to the boundary part. In this way, the computation
and communication can be hidden, and the parallel efficiency of
SPH can be improved.

4 Experiment

This section evaluates the performance of our parallel SPHmethod,
including strong scalability and weak scalability. The feasibility of the
parallel method in this paper is fully verified. In addition, we also give an
example of practical engineering application.

FIGURE 12
Speedup and computational efficiency for 64G memory nodes, the particle size of (A) and (B) is 3 million, and that of (C) and (D) is 70 million.

FIGURE 13
(A) and (B) assign an average of 50,000 and 100,000 particles to each processor for weak scalability testing, respectively.

Frontiers in Physics frontiersin.org12

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

FIGURE 14
The bridge model used in this paper.

FIGURE 15
Simulation procedure of flood impact on bridge.

Frontiers in Physics frontiersin.org13

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

4.1 TestCases and hardware

The configuration information of the supercomputer CPU node
is shown in Table 1. Among them, the CPU with hardware
configuration uses Intel(R) Xeon(R) E5-2620 v2, which carries
12 cores in one node. It also supports vectorization instruction
set based on SIMD technology. In addition, their memory
configurations are 64G and 128G. Our platform runs
CentOS7.6 and the compiler we used is GCC-8.3.0.

Fluid flow is ubiquitous in nature. The rapid development of
CFDmakes it possible to simulate the fluid mechanics of complex
fluids, such as blood flow behavior in blood vessels [31],
meteorological monitoring [32], tsunami prevention and
control [33], etc. In order to evaluate the parallel performance
of the large-scale SPH code proposed in this paper. We used the
testcase shown in Figures 9, 10. This testcase simulates the flow
procedure of pure fluid. In this testcase, the parallel performance
of the program has a great relationship with the number of
particles calculated. Figure 10 describes the use of different
processes to solve the whole task. It can be seen that each
process is only responsible for a small part of the task.
Particle communication occurs within the range of 2 h away
from the process boundary, which is also the using scope of the
communication hiding strategy.

4.2 Efficiency and scalability

Parallel scalability is usually used to evaluate the parallel
performance of large-scale programs. Under the condition that
the overall computing scale remains unchanged, the computing
time of a program with superior parallel efficiency will
decrease linearly with the increase of computing nodes. This rule
is also known as the strong scalability of programs. In the same way,
weak scalability describes the internal law that the computing scale

and nodes increase equally while the computing time remains
unchanged. We first evaluate the parallel efficiency of 3 million
particles at 128G nodes shown in Figure 11.

Figure 11 describes the parallel efficiency of simulating
3 million particles with 128 processes. When the number of
processes is less than 20, a better linear acceleration ratio can
be obtained. At this time, the parallel efficiency is close to 80%. But
when the number of processes increases to 128, the parallel
efficiency of the program drops sharply to 70%. The reason for
this phenomenon is that the ratio of boundary particles to central
particles is too large. And it is assumed that the ratio is τ. With the
increase of the number of processes, τ becomes larger and larger
due to the continued segmentation of the whole solution domain
by the domain decomposition algorithm (the number of central
particles decreases with the increase of the number of processes).
In an ideal case, we give a threshold of τ0. Which represents the
critical proportion that the center particle just completes the
calculation when the boundary particle completes the
transmission. In order to obtain the linear acceleration ratio,
obviously, according to the strategy of communication hiding,
we know that in the phase of particle interaction and system
update, the transmission of boundary ghost particles always ends
before the completion of the calculation of the central particle. So
the CPU can always perform the calculation task of particles
continuously. This principle is the key to ensuring that parallel
programs obtain the linear acceleration ratio. Therefore, the value
of τ of this testcase is greater than the threshold τ0, which violates
the principle of efficient parallelism.

Figure 12 evaluates the parallel efficiency of two testcases on a
64G memory node. Among them, Figures 12A, B present a testcase
with 3 million particles. While Figures 12C, D present a testcase with
70 million particles. [19] showed that the number of particles will
affect the parallel efficiency of the program. According to the
previous analysis, we know that when the ratio τ of the boundary
ghost particles and the center particles is greater than the critical

FIGURE 16
Simulation details of water flow (fluid particle) after passing through the pier.

Frontiers in Physics frontiersin.org14

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

value τ0, the time spent on particle transmission is greater than its
calculation time, which will lead to the reduction of parallel
efficiency. By analyzing Figure 12B, we find that the parallel
efficiency drops sharply when the number of processes exceeds
200. Its efficiency drops further to 20% when 1024 processes are
used. In order to alleviate the parallel efficiency of the program, it is
necessary to increase the number of particles to obtain an efficient
linear acceleration ratio. Figures 12C, D show the linear acceleration
ratio obtained when the number of particles is 70 million. Over 90%
of the parallel efficiency can be achieved when the number of
processes is 1024, which shows that under the requirements of
efficient parallel efficiency (the ratio of ghost and central particles is
less than the threshold τ0). This paper realizes the development of

SPH large-scale parallel program by implementing the strategy of
communication hiding. At the same time, we can also see that the
superlinear acceleration ratio can be obtained when the number of
processes is relatively small, which is caused by the reading and
writing of the simulation results and the disturbance of the system.

The weak scalability of parallel software is also an important
standard for parallel performance. It reveals the impact of the
increase of computing scale and computing nodes on the whole
parallel system. Figure 13 shows the parallel weak scalability
results of the SPH code. We evaluated the weak scalability of
50,000 and 100,000 particles per node, increasing from 100 to
1024 processes. The number of calculated particles can exceed
120 million particles at most. The results show that with the

FIGURE 17
Simulation procedure of water flow through ship and square cylinder.

Frontiers in Physics frontiersin.org15

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

increase of the computing scale and the equal proportion of
computing nodes, the time consumed by each computing node
has no significant difference in the acceptable range. This result
shows that the parallel SPH code developed in this paper achieves
efficient parallel scalability. It also proves the effectiveness of our
communication hiding strategy in the development of large-scale
parallel SPH code.

4.3 Engineering simulation

In the field of engineering practice, it is often necessary to model
and simulate the scene of fluid flow. This part presents a simulation
case with actual scale, which shows the impact process of bridge
subjected to flood. As shown in Figure 14, the bridge model used in
this paper has eight piers. The length, width and height of the bridge
are 70m, 5m and 9m, respectively.

The application uses more than 7 million fluid particles to
simulate the flood. The actual physical time for simulating 10 s is
2.5, 3.7, 5.2, 6.1, 7.4, 8.2, 9.1 and 10 s respectively. Considering
the calculation efficiency, the smooth length of this example
cannot be reduced without limitation. At the same time, in order
to ensure that the proportion of boundary particles to central
particles is within a reasonable range, we use 256 processes to
conduct the simulation. It took nearly 17 h to obtains the results.
The simulation results (Figure 15) clearly capture the flow of
water after passing through the pier. Many flow details can be
successfully captured as the number of particles exceeds ten
million. It can give the corresponding simulation results as an
aid and reference before engineering practice, which shows that
the parallel SPH method developed in this paper can have the
potential for practical engineering application.

It can be seen from the simulation results (Figure 16) that it
captures the splash image of the water flowing through the pier. And
the velocity of the fluid particles above the bridge pier is slowed
down (the color of the fluid particles represents the magnitude of the
velocity). Particles that do not touch the pier pass by the pier, and the
velocity is not significantly reduced. Through the analysis of the
simulation results, it can clearly capture the details of the interaction
between the water flow and the pier. It can also calculate the impact
force of the current on the pier at the moment, which is of great
significance for engineering application.

Mesh-based methods such as the finite element method, finite
volume method, and finite difference method have no advantages
over the particle method in dealing with large deformation
problems, they are not good at capturing the simulation
procedure of free surface flow. Therefore, in order to further
verify the parallel method presented in this paper. As shown in
Figure 17, we show the procedure of interaction between water
flowing through a ship and a square cylinder, which further
demonstrates the unique advantages of the SPH method for
simulating free surface flow. The test case simulates the flow
process of actual physical time from 2 to 16 s, and each time
interval is 2 s. Also based on the consideration of calculation
efficiency, the calculation time of 512 processes in this paper is
nearly 9 h. This test case calculates a total of 50 million fluid
particles. Obviously, it clearly shows a series of changes from the
beginning of the flow to the contact with obstacles (ships and

cylinders). And it can capture the details of the surrounding flow
and reflected flow formed after the water contacts the cylinder, at
the same time, the water contact boundary is reflected back. The
simulation results show that the increase in particle number can
improve the calculation accuracy. Therefore, it is of great
significance to develop a large-scale parallel SPH method for
practical engineering applications.

5 Conclusion

This paper gives a large-scale parallel program named
parallelDualSPHysics based on the single-CPU version. Firstly,
we give a domain decomposition algorithm, which distributes the
solution region equally to each process, so each processor can get
the same number of particles and complete the initialization
configuration of the parameters. Secondly, we present a parallel
version of the particle interaction algorithm, which divides each
region into a boundary part and a center part. Based on this
division, we achieve overlap between calculation and
communication, which greatly improves the parallel efficiency
of the program. In addition, we have parallelized the system
update module, which rearranges local particles to hide
communication when ghost particles are sent. Finally, we have
improved the initialization of particles and the output module of
results under the parallel framework, which further enhances the
functionality of parallelDualSPHysics. To verify its parallel
performance, we tested its scalability, When the number of
simulated particles exceeds 70 million, we still get more than
90% computational efficiency with 1024 cores. On the weak
scalability test, we tested 120 million particles and the
statistical time overhead remained within a reasonable range.
Therefore, through the scalability analysis of parallel programs, it
is found that the parallelDualSPHyiscs software given in this
paper can achieve high parallel efficiency. In the future plan, we
will carry out the following research. On the one hand, we
combine OpenMP multi-core parallel and SIMD vectorization
optimization techniques within a single node to further improve
the computational efficiency of SPH codes. On the other hand,
based on the concurrency of large-scale programs, we will
develop methods that couple other physical fields to efficiently
apply to the study of fluid-structure interactions to solve large-
scale engineering applications with complex boundaries.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

SL: paper writing, experimental testing, KW: provide ideas. XF:
language polishing. XG: Build an experimental scheme. CY: writing,
revising and put forward innovation points. All authors contributed
to the article and approved the submitted version.

Frontiers in Physics frontiersin.org16

Long et al. 10.3389/fphy.2023.1141972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

Funding

This work was supported by the National Key Research and
Development Program of China (Grant No. 2020YFA0709803),
Research on Key Technologies of Numerical Simulation of
Explosion Shock (Grant No. 22-TDRCJH-02-001), and the
National Natural Science Foundation of China (Grant No.
61902413 and No. 62002367).

Acknowledgments

Thank the reviewers and editors for their valuable comments,
which have greatly improved the quality of this paper.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Spalart PR, Venkatakrishnan V. On the role and challenges of cfd in the aerospace
industry. Aeronaut J (2016) 120:209–32. doi:10.1017/aer.2015.10

2. Yao XJ, Wang ZD, Zhang WJ. A new analysis of the capillary driving pressure for
underfill flow in flip-chip packaging. IEEE Trans Components PackagingManufacturing
Tech (2017) 4:1534–44. doi:10.1109/TCPMT.2014.2339493

3. Oger G, Le Touzé D, Guibert D, De Leffe M, Biddiscombe J, Soumagne J, et al. On
distributed memory mpi-based parallelization of sph codes in massive hpc context.
Comp Phys Commun (2016) 200:1–14. doi:10.1016/j.cpc.2015.08.021

4. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: Theory and
application to non-spherical stars. Monthly notices R astronomical Soc (1977) 181:
375–89. doi:10.1093/mnras/181.3.375

5. Willis JS, Schaller M, Gonnet P, Bower RG, Draper PW. An efficient simd
implementation of pseudo-verlet lists for neighbour interactions in particle-based
codes (2018). arXiv:1804.06231.

6. Harada T, Koshizuka S, Kawaguchi Y. Smoothed particle hydrodynamics on gpus. In:
Proc. Computer Graphics Int.; May 30-Jun. 2, 2007; Rio de Janeiro, Brazil (2007). p. 671–91.

7. Amada T, Imura M, Yasumuro Y, Manabe Y, Chihara K. Particle-based fluid
simulation on gpu. In: ACM workshop on general-purpose computing on graphics
processors (Citeseer), 41. Springer (2004). p. 42.

8. Crespo AC, Dominguez JM, Barreiro A, Gomez-Gesteira M, Rogers BD, Langowski
J. Gpus, a new tool of acceleration in cfd: Efficiency and reliability on smoothed particle
hydrodynamics methods. PLoS ONE (2011) 6:e20685. doi:10.1371/journal.pone.
0020685

9. Winkler D, Rezavand M, Rauch W. Neighbour lists for smoothed particle
hydrodynamics on gpus. Comp Phys Commun (2018) 225:140–8. doi:10.1016/j.cpc.
2017.12.014

10. Khrapov S, Khoperskov A. Smoothed-particle hydrodynamics models:
Implementation features on gpus. Cham: Springer (2017).

11. Long S, Fan X, Li C, Liu Y, Fan S, Guo X-W, et al. Vecdualsphysics: A vectorized
implementation of smoothed particle hydrodynamics method for simulating fluid flows
on multi-core processors. J Comput Phys (2022) 463:111234. doi:10.1016/j.jcp.2022.
111234

12. Nishiura D, Furuichi M, Sakaguchi H. Computational performance of a smoothed
particle hydrodynamics simulation for shared-memory parallel computing. Comp Phys
Commun (2015) 194:18–32. doi:10.1016/j.cpc.2015.04.006

13. Nishiura D, Sakaguchi H. Parallel-vector algorithms for particle simulations on
shared-memory multiprocessors. J Comput Phys (2011) 230:1923–38. doi:10.1016/j.jcp.
2010.11.040

14. Luo Z, Wu Q, Zhang L. Parallel simulation of dam-break flow by openmp-based
sph method. J Phys Conf (2017) 916:012042. doi:10.1088/1742-6596/916/1/012042

15. Verma K, Szewc K, Wille R. Advanced load balancing for sph simulations on multi-
gpu architectures. In: Proceeding of the 2017 IEEEHigh Performance ExtremeComputing
Conference (HPEC); September 2017; Waltham, MA, USA. IEEE (2017). p. 1–7.

16. Egorova MS, Dyachkov SA, Parshikov AN, Zhakhovsky V. Parallel sph
modeling using dynamic domain decomposition and load balancing displacement
of voronoi subdomains. Comp Phys Commun (2019) 234:112–25. doi:10.1016/j.cpc.
2018.07.019

17. Chaussonnet G, Dauch T, Keller M, Okraschevski M, Ates C, Schwitzke C, et al.
Influence of the flow physics on the load balancing during sph simulations. In: High
performance computing in science and Engineering’19. Berlin, Germany: Springer
(2021). p. 463–77.

18. Devine K, Hendrickson B, Boman E, St. John M, Vaughan C (2000). Design of
dynamic load-balancing tools for parallel applications. In Proceedings of the 14th
international conference on Supercomputing. Santa Fe New Mexico: US Department of
Energy March 2000 United States 110–8.

19. Guo X, Rogers BD, Lind S, Stansby PK. New massively parallel scheme for
incompressible smoothed particle hydrodynamics (isph) for highly nonlinear and
distorted flow. Comp Phys Commun (2018) 233:16–28. doi:10.1016/j.cpc.2018.06.006

20. Domínguez JM, Crespo AJ, Valdez-Balderas D, Rogers BD, Gómez-Gesteira M.
New multi-gpu implementation for smoothed particle hydrodynamics on
heterogeneous clusters. Comp Phys Commun (2013) 184:1848–60. doi:10.1016/j.cpc.
2013.03.008

21. Schaller M, Gonnet P, Draper PW, Chalk AB, Bower RG, Willis J, et al. Swift: Sph
with inter-dependent fine-grained tasking. Astrophysics Source Code Library (2018).
ascl–1805.

22. Nori M, Baldi M. Ax-gadget: A new code for cosmological simulations of fuzzy
dark matter and axion models. Monthly Notices R Astronomical Soc (2018) 478:
3935–51. doi:10.1093/mnras/sty1224

23. Ramachandran P, Bhosale A, Puri K, Negi P, Muta A, Dinesh A, et al. Pysph: A
python-based framework for smoothed particle hydrodynamics. ACM Trans Math
Softw (Toms) (2021) 47:1–38. doi:10.1145/3460773

24. Domínguez JM, Fourtakas G, Altomare C, Canelas RB, Tafuni A, García-Feal O,
et al. Dualsphysics: From fluid dynamics to multiphysics problems. Comput Part Mech
(2021) 1–29:867–95. doi:10.1007/s40571-021-00404-2

25. Dan K, Bender J, Solenthaler B, Teschner M. Smoothed particle hydrodynamics
techniques for the physics based simulation of fluids and solids (2020). arXiv:2009.06944.

26. Yu J, Yao W, Duan K, Liu X, Zhu Y. Experimental study and discrete element
method modeling of compression and permeability behaviors of weakly anisotropic
sandstones. Int J Rock Mech Mining Sci (2020) 134:104437. doi:10.1016/j.ijrmms.2020.
104437

27. Wong KK. Three-dimensional discrete element method for the prediction of
protoplasmic seepage through membrane in a biological cell. J Biomech (2017) 65:
115–24. doi:10.1016/j.jbiomech.2017.10.023

28. Gómez-Gesteira M, Crespo AJ, Rogers BD, Dalrymple RA, Dominguez JM,
Barreiro A. Sphysics–development of a free-surface fluid solver–part 2: Efficiency and
test cases. Comput Geosciences (2012) 48:300–7. doi:10.1016/j.cageo.2012.02.028

29. Domínguez J, Crespo A, Gómez-Gesteira M, Marongiu J. Neighbour lists in
smoothed particle hydrodynamics. Int J Numer Methods Fluids (2011) 67:2026–42.
doi:10.1002/fld.2481

30. Puri K, Ramachandran P, Godbole P. Load balancing strategies for sph. In:
Proceeding of the 2013 National Conference on Parallel Computing Technologies
(PARCOMPTECH); February 2013; Bangalore, India. IEEE (2013). p. 1–5.

31. Sigalotti LDG, Klapp J, Pedroza K, Nathal E, Alvarado-Rodríguez CE.
Numerical simulation of the blood flow through a brain vascular aneurysm
with an artificial stent using the sph method. Engineering (2018) 10:891–912.
doi:10.4236/eng.2018.1012062

32. Gissler C, Band S, Peer A, Ihmsen M, Teschner M. Approximate air-fluid
interactions for sph. In: Proceedings of the 13th Workshop on Virtual Reality
Interactions and Physical Simulations. Lyon, France: The Eurographics Association
(2017). p. 29–38.

33. Hasanpour A, Istrati D, Buckle I. Coupled sph–fem modeling of tsunami-borne
large debris flow and impact on coastal structures. J Mar Sci Eng (2021) 9:1068. doi:10.
3390/jmse9101068

Frontiers in Physics frontiersin.org17

Long et al. 10.3389/fphy.2023.1141972

https://doi.org/10.1017/aer.2015.10
https://doi.org/10.1109/TCPMT.2014.2339493
https://doi.org/10.1016/j.cpc.2015.08.021
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1371/journal.pone.0020685
https://doi.org/10.1371/journal.pone.0020685
https://doi.org/10.1016/j.cpc.2017.12.014
https://doi.org/10.1016/j.cpc.2017.12.014
https://doi.org/10.1016/j.jcp.2022.111234
https://doi.org/10.1016/j.jcp.2022.111234
https://doi.org/10.1016/j.cpc.2015.04.006
https://doi.org/10.1016/j.jcp.2010.11.040
https://doi.org/10.1016/j.jcp.2010.11.040
https://doi.org/10.1088/1742-6596/916/1/012042
https://doi.org/10.1016/j.cpc.2018.07.019
https://doi.org/10.1016/j.cpc.2018.07.019
https://doi.org/10.1016/j.cpc.2018.06.006
https://doi.org/10.1016/j.cpc.2013.03.008
https://doi.org/10.1016/j.cpc.2013.03.008
https://doi.org/10.1093/mnras/sty1224
https://doi.org/10.1145/3460773
https://doi.org/10.1007/s40571-021-00404-2
https://doi.org/10.1016/j.ijrmms.2020.104437
https://doi.org/10.1016/j.ijrmms.2020.104437
https://doi.org/10.1016/j.jbiomech.2017.10.023
https://doi.org/10.1016/j.cageo.2012.02.028
https://doi.org/10.1002/fld.2481
https://doi.org/10.4236/eng.2018.1012062
https://doi.org/10.3390/jmse9101068
https://doi.org/10.3390/jmse9101068
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1141972

	Smoothed particle hydrodynamics method for free surface flow based on MPI parallel computing
	1 Introduction
	2 Smoothed particle hydrodynamics method
	3 ParallelDualSPHysics
	3.1 Storage structure of particles
	3.2 Domain decomposition
	3.3 Parallelized particle interaction
	3.4 Parallelized system update
	3.5 Dynamic load balancing
	3.6 Parallel SPH framework

	4 Experiment
	4.1 TestCases and hardware
	4.2 Efficiency and scalability
	4.3 Engineering simulation

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

