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Introduction: Femoroacetabular Impingement (FAI) is a hip pathology
characterized by impingement of the femoral head-neck junction against the
acetabular rim, due to abnormalities in bone morphology. FAI is normally
diagnosed by manual evaluation of morphologic features on magnetic
resonance imaging (MRI). In this study, we assess, for the first time, the
feasibility of using radiomics to detect FAI by automatically extracting
quantitative features from images.
Material and methods: 17 patients diagnosed with monolateral FAI underwent
pre-surgical MR imaging, including a 3D Dixon sequence of the pelvis. An
expert radiologist drew regions of interest on the water-only Dixon images
outlining femur and acetabulum in both impingement (IJ) and healthy joints
(HJ). 182 radiomic features were extracted for each hip. The dataset numerosity
was increased by 60 times with an ad-hoc data augmentation tool. Features
were subdivided by type and region in 24 subsets. For each, a univariate ANOVA
F-value analysis was applied to find the 5 features most correlated with IJ based
on p-value, for a total of 48 subsets. For each subset, a K-nearest neighbor
model was trained to differentiate between IJ and HJ using the values of the
radiomic features in the subset as input. The training was repeated 100 times,
randomly subdividing the data with 75%/25% training/testing.
Results: The texture-based gray level features yielded the highest prediction max
accuracy (0.972) with the smallest subset of features. This suggests that the gray
image values are more homogeneously distributed in the HJ in comparison to
IJ, which could be due to stress-related inflammation resulting from impingement.
Conclusions: We showed that radiomics can automatically distinguish IJ from HJ
using water-only Dixon MRI. To our knowledge, this is the first application of
radiomics for FAI diagnosis. We reported an accuracy greater than 97%, which is
higher than the 90% accuracy for detecting FAI reported for standard diagnostic
tests (90%). Our proposed radiomic analysis could be combined with methods
for automated joint segmentation to rapidly identify patients with FAI, avoiding
time-consuming radiological measurements of bone morphology.
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1. Introduction

Femoroacetabular impingement (FAI) is a common cause of

hip pain in young adults with an estimated incidence of 54.4

per 1,00,000 person-years (1). FAI is characterized by

impingement of the femoral head-neck junction against the

acetabular rim during hip joint motion due to morphologic

abnormalities of the proximal femur and acetabulum (2–4).

There are two distinct pathoanatomic types of FAI, although

mixed types are commonly detected at arthroscopy (5). Cam

FAI is caused by decreased offset and asphericity of the femoral

head-neck junction, while Pincer FAI is due to focal or

generalized acetabular over-coverage (3, 4). Although the

natural history of FAI is unknown, early diagnosis and

appropriate surgical treatment of the condition has been shown

to reduce symptoms and improve function, at least in the short-

term (6).

Imaging plays an important role in the diagnosis of FAI as

distinguishing the disorder from other causes of hip pain is

challenging using clinical history and physical examination (7).

Quantitative measures of bone shape on radiographs including

the alpha angle for Cam impingement and the center edge angle

for Pincer impingement are typically used for the initial

diagnosis of FAI (3, 4). However, radiographic measures of bone

shape may be influenced by technical factors during image

acquisition (8–10), and three-dimensional (3D) bone morphology

may not be reliably assessed on two-dimensional (2D)

radiographs (11, 12). Thus, computed tomography (CT) is

commonly used for pre-operative planning to provide the most

accurate assessment of 3D bone shape (3, 4). While CT provides

high spatial resolution and excellent tissue contrast for evaluating

bone, it may result in potentially harmful ionizing radiation

exposure to the pelvis (13).

Recent literature (3, 4, 14, 15) focused the attention of FAI

diagnosis on 3D MR imaging, which can enable radiologists to

detect the typical osseous pathological condition in FAI with

accuracy, sensitivity and specificity around 90% (3, 4). These

analyses are usually based on metrics arising from the shape of

the hip structures or from range of motion simulations of the

hip joint (6, 7, 15–17).

Radiomics has gained increasing popularity over the recent

years as a diagnostic image analysis method to predict and

characterize a wide variety of pathologic conditions (18–22).

Radiomics involves the high-throughput extraction of

quantitative features from medical imaging studies such as CT

and MRI (19–21). The assumption of radiomics is that image

features quantify crucial information regarding pathologic

conditions through intra-region heterogeneity (19). Several

studies have used radiomics to evaluate musculoskeletal diseases

of soft tissue and bone (23). However, to our knowledge no

previous work has investigated the use of radiomics to diagnose

FAI (24). Thus, our study was performed to investigate the

feasibility of using radiomics on 3D-MRI to distinguish between

hips with and without symptomatic impingement in patients

with FAI.
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2. Material and methods

2.1. Image data

The study group consisted of 17 patients (13 females and four

males with mean age of 37.1 ± 5.7 years) with unilateral FAI

diagnosed at hip arthroscopy who underwent an MRI

examination of the hip prior to surgery. One patient was

diagnosed with isolated Cam FAI, while the remaining 16

patients were diagnosed with mixed Cam and Pincer FAI at

arthroscopy. Three patients underwent a follow-up MRI

examination one year after surgery. All MRI examinations were

performed on a 3T scanner (Skyra, Siemens Healthineers,

Erlangen, Germany) and included an axial dual echo T1-

weighted 3D fast low angle shot (FLASH) sequence of the pelvis

with Dixon fat-water separation and the following imaging

parameters: repetition time = 10 ms, echo time = 2.4 ms and

3.7 ms, field of view = 32 cm, acquisition matrix = 320 × 320, and

slice thickness = 1 mm.

For each MRI dataset, a fellowship-trained musculoskeletal

radiologist with 20 years of clinical experience delineated regions

of interest (ROIs) for the femur and acetabulum on each water-

only image slice of the 3D-FLASH sequence using an open-

source software viewer (ITK-SNAP v3.8.0; www.itksnap.org) (25).

The ROIs were drawn using the automatic 3D seed based

segmentation tool available in ITK-SNAP and then manually

fine-tuned slice by slice in the three main visualization axes:

axial, coronal, and sagittal.

Left and right hip femur and acetabulum ROIs for the 17

patients were subdivided into healthy joints (HJs) and joints with

impingement (IJs) according to the surgical reports. The IJs of

the three patients with follow-up MRI examinations were

excluded as the femur and acetabulum were surgically remodeled

during arthroscopy. This resulted in a total of 37 segmented

femoral and acetabular ROIs, which included 17 HJs and 17 IJs

from the pre-operative MRI examinations and three HJs from

the post-operative MRI examinations. Figure 1 shows

representative examples of segmented femoral and acetabular

ROIs from HJs and IJs.
2.2. Data augmentation

To increase sample size, a data augmentation method was used

that provided rototranslated couples of images and ROIs that were

sampled at different resolutions. Directly applying rototranslation

and subsequently changing the resolution of the image could

result in erroneously labeled pixels in the transformed ROIs due

to the interpolation process after the rototranslation, or pixels

affected by partial volume averaging. The developed data

augmentation technique instead transformed every label map

ROI in a collection of meshes, one per value of the map, and

then transformed them along with the corresponding image. The

transformations were applied in the non-gridded space of the

meshes and then rasterized in the desired space. The output
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FIGURE 1

Two examples of healthy joints (A,B) and two examples of joints with impingement (C,D) from two representative patients with FAI. For each example,
axial, coronal and sagittal views are shown. The lower right quadrant of each panel shows the segmented femur (white) and acetabulum (gray) ROIs.
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coordinate system could be also customized by setting origin,

direction, resolution, and size of the output grid space. Data

augmentation was implemented in ITK4 (26) and a containerized

version of the software has been made freely available at https://

hub.docker.com/r/erosmontin/daug.

As described in the workflow diagram in Figure 2, the 37

labeled and segmented femur and acetabulum ROIs were

augmented by a factor of 60 for a total of 2,220 datasets. The

2,220 augmented datasets were obtained by creating randomly

uniformed rototranslation between −5 and 5° in the first two

Euler’s angles (left/right and anterior/posterior) and between −15
and 15° in the third Euler’s angle (inferior/superior), with

random translations ranging between 5 and −5 mm. The

resulting images were re-sampled using two output coordinate

systems: a uniform grid of 1 mm side and a size of 120 voxels

per dimension and an anisotropic grid of resolution 0.4 × 0.4 ×
Frontiers in Radiology 03
1.2 mm and matrix size of 320 × 320 × 120. In order to maintain

the anatomical shape of the hips as realistic as possible, no

scaling was applied to the datasets.
2.3. Radiomic features extraction

For each couple consisting of an image and one associated

femur or acetabulum ROI in the augmented dataset, 182 features

were extracted using a previously described radiomic feature

extractor (19), including 91 features for the femur and 91

features for the acetabulum. The 91 features could be classified

into three main classes: (i) intensity and histogram based first

order statistics (FOS) features, (ii) texture features, and (iii) shape

and size features. A complete list of the 91 features extracted

from the augmented datasets is summarized in Table 1.
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FIGURE 2

Schematic representation of the data workflow. Data was pre-processed, and images and regions of interest (ROIs) from a total of 3 datasets [18 healthy
joints (HJs) and 15 joints with impingement (IJs)] were used for the model training phase, while four hold-out testing datasets (two healthy joints and two
joints with impingement) were used for model evaluation. The size of the training and validation datasets was augmented by a factor of 60 using a data
augmentation (dAug) method. 48 subsets of features were created from randomly selected 75% of the training data. For each subset of features, a KNN
machine learning process was repeated 100 times and the most accurate model was selected for each case. Finally, the performance of the best model
for each subset was assessed on the hold-out testing dataset.
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For each femur and acetabulum ROI, the 12 signal FOS

features were extracted from the water-only 3D-FLASH

grayscale image values in the ROIs. The following 25

histogram FOS features described the complexity of the shape

of the histogram distribution of the grayscale values in the

ROIs. The histogram settings for all feature classes were set to

32 bins with a marginal scale of 0.5 and minimum and

maximum equal to 0 and 200, respectively. These first two

subsets of features belonged to the FOS features. Texture

features were based on the gray level co-occurrence matrices

(GLCM) and gray level run length matrices (GLRLM) (27),

calculated in 26 directions, one for every neighbor of a voxel

in a 3D space with a radius set to one pixel. For each GLCM

and GLRLM feature, the extracted features were averaged over

the 26 directions to get 23 GLCM features and 11 GLRLM

features per ROI. Lastly, 20 shape and size features were

extracted from the ROI mesh of the femur and acetabulum

separately.

The resulting 182 features were subdivided in 24 subsets with a

variable number of features, divided by feature type and femur or

acetabulum ROI. For each subset, a univariate ANOVA F-value

analysis was applied to find the five most pertinent features

based on p-values among those included. This yielded 24

additional F-contrast subsets with five features each, for a total of

48 subsets. The feature selection was repeated 100 times using
Frontiers in Radiology 04
90% of the dataset and used the five most frequent features

selected by the F-contrast rank.
2.4. Machine learning model training
and evaluation

A K-nearest neighbor machine learning model was used to

identify the features most pertinent to differentiate IJs from HJs.

From the available data, 240 augmented datasets consisting of

two HJs and two IJs were randomly selected as a hold-out testing

dataset for model evaluation. The remaining 1,980 augmented

datasets consisting of 900 datasets from 15 IJs and 1,080 datasets

from 18 HJs were used for model training and validation. For

each of the 48 feature subsets, a K-nearest neighbor model (k =

3) was trained and validated using 100-fold cross-validation with

a 75/25 data split. During this selection process, the augmented

images of one patient belonged only to one group either training

or testing. The inputs of each model were the z-scored values of

the radiomic features in the corresponding subset, and the

outputs were the labels HJ and IJ. The trained model with the

highest prediction accuracy was selected as the final model for

the particular subset of features and was evaluated against the

hold-out testing dataset to assess its performance in

differentiating IJs from HJs. The process resulted in one trained
frontiersin.org
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TABLE 1 List of radiomic features. For each feature, the p-value of the Wilcoxon rank-sum test is reported along with the mean values for the feature
distribution for the health joints (HJs) and joints with impingement (IJs). Gray cells are associated with a statistically significant difference between the
distribution of the feature values in the HJs and IJs. SS, shape and size; 3D, three-dimensional; GLCM, gray level co-occurrence matrices; GLRLM, gray
level run length matrices; FOS, first-order-statistic; STD, standard deviation; MAD, mean absolute deviation; RMS, root mean square; IMOC, information
measure of correlation; R, ray; D, diameter.

Feature P-value Mean IJ Mean HJ
Acetabulum_SS_Compactness 1 1.95 × 10−4 70.532 71.172

Acetabulum_SS_Compactness 2 2.04 × 10−4 0.078 0.076

Acetabulum_SS_Maximum 3D Diameter 7.05 × 10−27 135.041 138.882

Acetabulum_SS_Minimum 3D Diameter 1.00 × 100 0.000 0.000

Acetabulum_SS_Median 3D Diameter 3.89 × 10−8 80.286 81.058

Acetabulum_SS_Mean 3D Diameter 8.40 × 10−25 76.865 77.662

Acetabulum_SS_STD 3D Diameter 3.84 × 10−6 27.655 28.414

Acetabulum_SS_Variance 3D Diameter 3.84 × 10−6 781.661 820.372

Acetabulum_SS_Skewness 3D Diameter 5.02 × 10−4 −0.375 −0.363
Acetabulum_SS_Kurtosis 3D Diameter 3.08 × 10−1 2.303 2.310

Acetabulum_SS_Equivalent R 8.23 × 10−9 29.685 29.940

Acetabulum_SS_Max (D/2)/R 1.33 × 10−6 2.278 2.323

Acetabulum_SS_Spherical disproportion 2.04 × 10−4 2.357 2.377

Acetabulum_SS_Sphericity 2.04 × 10−4 0.425 0.422

Acetabulum_SS_Area: 4.12 × 10−8 26,104.756 26,797.037

Acetabulum_SS_Surface to volume ratio 8.01 × 10−1 0.239 0.239

Acetabulum_SS_Volume 8.23 × 10−9 110,294.697 113,301.147

Acetabulum_SS_mean normal0 5.02 × 10−38 0.002 0.000

Acetabulum_SS_mean normal1 7.05 × 10−2 0.000 0.000

Acetabulum_SS_mean normal2 8.90 × 10−63 0.000 0.000

Acetabulum_FOS_Signal Energy 1.25 × 10−1 8,908,360,167.973 9,029,094,220.532

Acetabulum_FOS_Signal Kurtosis 3.28 × 10−8 3.164 3.002

Acetabulum_FOS_Signal MAD 2.30 × 10−4 45.377 45.680

Acetabulum_FOS_Signal Max 5.92 × 10−11 506.108 483.538

Acetabulum_FOS_Signal Mean 5.13 × 10−1 148.772 149.660

Acetabulum_FOS_Signal Median 6.60 × 10−1 151.536 152.836

Acetabulum_FOS_Signal Min 1.02 × 10−45 0.103 0.027

Acetabulum_FOS_Signal Range 6.59 × 10−11 506.006 483.511

Acetabulum_FOS_Signal RMS 5.01 × 10−1 159.258 160.171

Acetabulum_FOS_Signal Skewness 8.14 × 10−4 −0.013 −0.067
Acetabulum_FOS_Signal STD 3.20 × 10−2 56.610 56.744

Acetabulum_FOS_Signal Variance 3.20 × 10−2 3,269.960 3,290.429

Acetabulum_FOS_Histogram Entropy 7.44 × 10−4 3.870 3.932

Acetabulum_FOS_Histogram Kurtosis 9.43 × 10−4 5.834 5.370

Acetabulum_FOS_Histogram MAD 3.11 × 10−7 0.023 0.023

Acetabulum_FOS_Histogram Max 3.01 × 10−6 0.116 0.109

Acetabulum_FOS_Histogram Mean 1.00 × 100 0.016 0.016

Acetabulum_FOS_Histogram Median 2.85 × 10−8 0.000 0.000

Acetabulum_FOS_Histogram Min 1.00 × 100 0.000 0.000

Acetabulum_FOS_Histogram Range 3.01 × 10−6 0.116 0.109

Acetabulum_FOS_Histogram RMS 1.57 × 10−2 0.035 0.034

Acetabulum_FOS_Histogram Skewness 5.38 × 10−3 2.002 1.914

Acetabulum_FOS_Histogram STD 1.57 × 10−2 0.032 0.031

Acetabulum_FOS_Histogram Uniformity 1.57 × 10−2 0.080 0.076

Acetabulum_FOS_Histogram Variance 1.57 × 10−2 0.001 0.001

Acetabulum_FOS_Histogram TotalFrequency 2.01 × 10−2 350,260.772 354,414.303

Acetabulum_FOS_Histogram Quantile 0.01 4.60 × 10−7 20.879 20.089

Acetabulum_FOS_Histogram Quantile 0.1 9.38 × 10−1 71.165 71.871

Acetabulum_FOS_Histogram Quantile 0.2 5.37 × 10−1 99.367 99.955

Acetabulum_FOS_Histogram Quantile 0.3 1.96 × 10−1 119.924 120.471

Acetabulum_FOS_Histogram Quantile 0.4 2.59 × 10−1 136.658 137.477

Acetabulum_FOS_Histogram Quantile 0.5 6.31 × 10−1 151.467 152.765

Acetabulum_FOS_Histogram Quantile 0.6 2.11 × 10−1 165.649 167.260

Acetabulum_FOS_Histogram Quantile 0.7 1.97 × 10−1 180.254 181.852

Acetabulum_FOS_Histogram Quantile 0.8 6.42 × 10−1 196.832 198.016

Acetabulum_FOS_Histogram Quantile 0.9 6.01 × 10−1 219.129 219.801

(continued)
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TABLE 1 Continued

Feature P-value Mean IJ Mean HJ
Acetabulum_FOS_Histogram Quantile 0.99 2.50 × 10−1 275.952 275.856

Acetabulum_GLCM1_Autocorrelation 2.09 × 10−3 412.618 412.658

Acetabulum_GLCM1_Cluster Prominence 1.16 × 10−3 3,785,761.635 3,762,839.933

Acetabulum_GLCM1_Cluster Shade 1.88 × 10−3 77,673.614 77,506.818

Acetabulum_GLCM1_Cluster Tendency 2.21 × 10−3 1,669.689 1,670.428

Acetabulum_GLCM1_Contrast 8.85 × 10−1 24.033 24.616

Acetabulum_GLCM1_Correlation 5.59 × 10−8 1,351,021.973 1,446,471.264

Acetabulum_GLCM1_Difference Entropy 5.86 × 10−1 3.285 3.303

Acetabulum_GLCM1_Dissimilarity 3.17 × 10−1 3.421 3.481

Acetabulum_GLCM1_Energy 5.27 × 10−17 0.004 0.003

Acetabulum_GLCM1_Entropy 4.92 × 10−9 8.688 8.728

Acetabulum_GLCM1_Homogeneity 6.93 × 10−2 0.381 0.376

Acetabulum_GLCM1_homogeneity2 4.47 × 10−2 0.301 0.296

Acetabulum_GLCM1_IMOC1 7.58 × 10−2 −0.163 −0.160
Acetabulum_GLCM1_IMOC2 2.53 × 10−2 0.854 0.849

Acetabulum_GLCM1_Inverse Difference moment 8.34 × 10−1 1.000 1.000

Acetabulum_GLCM1_Inverse Difference moment2 3.14 × 10−1 0.997 0.997

Acetabulum_GLCM1_Inverse Variance 7.70 × 10−2 0.294 0.289

Acetabulum_GLCM1_Max Probability 5.20 × 10−31 0.010 0.009

Acetabulum_GLCM1_Sum Average 3.74 × 10−2 38.546 38.583

Acetabulum_GLCM1_Sum Entropy 5.62 × 10−10 5.651 5.662

Acetabulum_GLCM1_Inertia 8.85 × 10−1 24.033 24.616

Acetabulum_GLCM1_Variance 3.74 × 10−2 636.010 636.624

Acetabulum_GLCM1_SumVariance 2.32 × 10−3 1,270.949 1,270.749

Acetabulum_GLRLM1_Short Run Emphasis 1.00 × 100 1.000 1.000

Acetabulum_GLRLM1_Long Run Emphasis 1.00 × 100 1.000 1.000

Acetabulum_GLRLM1_Gray Level Non Uniformity 1.33 × 10−1 10,131.157 10,161.108

Acetabulum_GLRLM1_Run Length Non Uniformity 1.88 × 10−2 243,991.016 248,399.650

Acetabulum_GLRLM1_Run Percentage 2.21 × 10−2 0.700 0.701

Acetabulum_GLRLM1_Low Gray Level Run Emphasis 3.48 × 10−08 0.008 0.008

Acetabulum_GLRLM1_high Gray Level Run Emphasis 4.57 × 10−1 488.358 491.584

Acetabulum_GLRLM1_Short Run Low Gray Level Emphasis 3.48 × 10−8 0.008 0.008

Acetabulum_GLRLM1_Short Run High Gray Level Emphasis 4.57 × 10−1 488.358 491.584

Acetabulum_GLRLM1_Long Run Low Gray Level Emphasis 3.48 × 10−8 0.008 0.008

Acetabulum_GLRLM1_Long Run High Gray Level Emphasis 4.57 × 10−1 488.358 491.584

Femur_SS_Compactness 1 2.80 × 10−5 97.238 95.325

Femur_SS_Compactness 2 4.06 × 10−5 0.311 0.320

Femur_SS_Maximum 3D Diameter 1.28 × 10−11 98.059 96.502

Femur_SS_Minimum 3D Diameter 1.00 × 100 0.000 0.000

Femur_SS_Median 3D Diameter 1.32 × 10−32 52.943 51.766

Femur_SS_Mean 3D Diameter 1.58 × 10−28 53.273 52.292

Femur_SS_STD 3D Diameter 3.99 × 10−3 21.963 21.716

Femur_SS_Variance 3D Diameter 3.99 × 10−3 485.407 474.968

Femur_SS_Skewness 3D Diameter 5.95 × 10−6 −0.003 0.014

Femur_SS_Kurtosis 3D Diameter 2.91 × 10−5 2.029 2.017

Femur_SS_Equivalent R 1.55 × 10−15 29.942 29.468

Femur_SS_Max (D/2)/R 5.95 × 10−2 1.640 1.638

Femur_SS_Spherical disproportion 4.06 × 10−5 1.488 1.470

Femur_SS_Sphericity 4.06 × 10−5 0.675 0.682

Femur_SS_Area: 5.41 × 10−18 16,812.378 16,063.082

Femur_SS_Surface to volume ratio 8.92 × 10−1 0.150 0.150

Femur_SS_Volume 1.56 × 10−15 113,467.792 107,716.557

Femur_SS_mean normal0 3.32 × 10−2 0.000 0.001

Femur_SS_mean normal1 1.70 × 10−2 0.000 0.000

Femur_SS_mean normal2 1.43 × 10−7 0.007 0.004

Femur_FOS_Signal Energy 6.00 × 10−1 5,452,299,893.617 5,413,605,031.369

Femur_FOS_Signal Kurtosis 1.57 × 10−5 3.189 3.150

Femur_FOS_Signal MAD 9.01 × 10−9 44.042 45.469

Femur_FOS_Signal Max 1.52 × 10−3 474.457 471.013

(continued)
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TABLE 1 Continued

Feature P-value Mean IJ Mean HJ
Femur_FOS_Signal Mean 5.14 × 10−2 107.595 109.316

Femur_FOS_Signal Median 9.57 × 10−1 103.399 105.017

Femur_FOS_Signal Min 6.17 × 10−4 0.005 0.005

Femur_FOS_Signal Range 1.51 × 10−3 474.452 471.008

Femur_FOS_Signal RMS 9.18 × 10−3 120.138 122.498

Femur_FOS_Signal Skewness 6.08 × 10−2 0.492 0.460

Femur_FOS_Signal STD 1.04 × 10−11 53.108 54.840

Femur_FOS_Signal Variance 1.04 × 10−11 2,901.252 3,096.223

Femur_FOS_Histogram Entropy 1.22 × 10−8 3.757 3.818

Femur_FOS_Histogram Kurtosis 1.94 × 10−7 7.490 6.996

Femur_FOS_Histogram MAD 7.29 × 10−5 0.023 0.023

Femur_FOS_Histogram Max 6.14 × 10−8 0.141 0.135

Femur_FOS_Histogram Mean 1.00 × 100 0.016 0.016

Femur_FOS_Histogram Median 6.13 × 10−1 0.000 0.000

Femur_FOS_Histogram Min 1.00 × 100 0.000 0.000

Femur_FOS_Histogram Range 6.14 × 10−8 0.141 0.135

Femur_FOS_Histogram RMS 3.78 × 10−11 0.037 0.036

Femur_FOS_Histogram Skewness 4.04 × 10−8 2.243 2.130

Femur_FOS_Histogram STD 3.78 × 10−11 0.034 0.033

Femur_FOS_Histogram Uniformity 3.78 × 10−11 0.088 0.084

Femur_FOS_Histogram Variance 3.77 × 10−11 0.001 0.001

Femur_FOS_Histogram TotalFrequency 5.28 × 10−6 364,675.636 341,770.827

Femur_FOS_Histogram Quantile 0.01 2.74 × 10−32 11.652 10.566

Femur_FOS_Histogram Quantile 0.1 4.94 × 10−11 42.755 41.529

Femur_FOS_Histogram Quantile 0.2 8.77 × 10−2 57.505 58.061

Femur_FOS_Histogram Quantile 0.3 6.83 × 10−1 72.388 73.532

Femur_FOS_Histogram Quantile 0.4 2.71 × 10−1 87.956 89.458

Femur_FOS_Histogram Quantile 0.5 9.79 × 10−1 103.491 105.169

Femur_FOS_Histogram Quantile 0.6 9.29 × 10−1 119.544 121.615

Femur_FOS_Histogram Quantile 0.7 5.92 × 10−2 136.633 139.423

Femur_FOS_Histogram Quantile 0.8 3.96 × 10−3 155.352 158.833

Femur_FOS_Histogram Quantile 0.9 4.43 × 10−4 178.631 182.855

Femur_FOS_Histogram Quantile 0.99 3.54 × 10−2 236.499 240.235

Femur_GLCM1_Autocorrelation 1.33 × 10−1 262.482 266.457

Femur_GLCM1_Cluster Prominence 1.40 × 10−1 2,025,184.196 2,086,235.334

Femur_GLCM1_Cluster Shade 7.53 × 10−2 44,524.817 45,592.806

Femur_GLCM1_Cluster Tendency 9.93 × 10−2 1,064.219 1,080.678

Femur_GLCM1_Contrast 2.55 × 10−4 17.938 18.510

Femur_GLCM1_Correlation 1.40 × 10−3 1,088,137.899 1,292,560.837

Femur_GLCM1_Difference Entropy 2.07 × 10−3 3.033 3.057

Femur_GLCM1_Dissimilarity 1.72 × 10−3 2.800 2.852

Femur_GLCM1_Energy 2.88 × 10−5 0.005 0.005

Femur_GLCM1_Entropy 6.48 × 10−6 8.410 8.456

Femur_GLCM1_Homogeneity 3.75 × 10−3 0.431 0.427

Femur_GLCM1_homogeneity2 1.77 × 10−3 0.360 0.355

Femur_GLCM1_IMOC1 9.06 × 10−1 −0.216 −0.216
Femur_GLCM1_IMOC2 8.47 × 10−1 0.911 0.910

Femur_GLCM1_Inverse Difference moment 3.88 × 10−4 1.000 1.000

Femur_GLCM1_Inverse Difference moment2 1.68 × 10−3 0.997 0.997

Femur_GLCM1_Inverse Variance 6.76 × 10−8 0.339 0.332

Femur_GLCM1_Max Probability 2.26 × 10−2 0.016 0.017

Femur_GLCM1_Sum Average 1.58 × 10−1 29.192 29.319

Femur_GLCM1_Sum Entropy 1.31 × 10−4 5.648 5.672

Femur_GLCM1_Inertia 2.55 × 10−4 17.938 18.510

Femur_GLCM1_Variance 1.58 × 10−1 481.675 483.756

Femur_GLCM1_SumVariance 9.09 × 10−2 768.788 782.895

Femur_GLRLM1_Short Run Emphasis 1.00 × 100 1.000 1.000

Femur_GLRLM1_Long Run Emphasis 1.00 × 100 1.000 1.000

Femur_GLRLM1_Gray Level Non Uniformity 1.79 × 10−7 11,202.527 10,159.714
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TABLE 1 Continued

Feature P-value Mean IJ Mean HJ
Femur_GLRLM1_Run Length Non Uniformity 1.27 × 10−5 274,901.209 254,372.230

Femur_GLRLM1_Run Percentage 6.58 × 10−1 0.768 0.762

Femur_GLRLM1_Low Gray Level Run Emphasis 6.18 × 10−24 0.015 0.017

Femur_GLRLM1_high Gray Level Run Emphasis 1.56 × 10−1 329.245 333.812

Femur_GLRLM1_Short Run Low Gray Level Emphasis 6.18 × 10−24 0.015 0.017

Femur_GLRLM1_Short Run High Gray Level Emphasis 1.56 × 10−1 329.245 333.812

Femur_GLRLM1_Long Run Low Gray Level Emphasis 6.18 × 10−24 0.015 0.017

Femur_GLRLM1_Long Run High Gray Level Emphasis 1.56 × 10−1 329.245 333.812
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model for each of the 48 subsets of features which was then

evaluated against the testing dataset.
3. Results

Table 1 shows the mean values of each feature distribution in the

femur and acetabulum for HJs and IJs and the corresponding p-values

for the Wilcoxon rank sum tests comparing differences in values

between groups. The results show that 116 features out of the total

182 features could differentiate IJs from HJs (p < 0.05, hereinafter

indicated by *). Out of these 116 features, 45 features (39%)

belonged to the intensity-based FOS group [16 signal (14%) and 29

histogram (25%)], 33 (28%) to the shape and size group, and 38

(33%) to the textural features group [28 GLCM (24%) and 10

GLRLM (9%)]. Among the 45 statistically significant FOS features,

24 features were from the femur (8 signal and 16 histograms), 21

from the acetabulum (8 signal and 13 histogram), and 20 were

from both the femur and acetabulum (8 signal and 12 histogram).

Table 2 shows the diagnostic performance of the machine learning

models for differentiating IJs from HJs using the hold-out testing

dataset. For each subset of features, the accuracy, specificity,

sensitivity, and AUC of the models were reported along with the

number of features in the training subset. The table had 48 entries,

24 reporting the performance of the model trained using all the

features in a specific subset and 24 entries reporting the

performance of the model trained using only the five most pertinent

features in the specific subset with the lowest F-contrast p-values.

The top performing models analyzed all GLCM texture features

from the femur and acetabulum followed by the models analyzing

all intensity-based FOS features from the femur and acetabulum, all

shape and size features from the femur and acetabulum, and all

intensity-based histogram FOS features of the femur.

The model trained with all GLCM texture features from the

femur and acetabulum had the highest diagnostic performance

for differentiating IJs from HJs with 0.977 accuracy, 0.977

specificity, 0.976 sensitivity, and 0.977 AUC. Three of the five

features of this model with the lowest F-contrast p-values were

related to GLCM of the femur (GLCM Max Probability*,

GLCM1 Energy*, and GLCM1 Correlation*), while two were

related to GLCM of the acetabulum (GLCM Correlation*, GLCM

Inverse Variance). The F-contrast model using the five most

pertinent features had 0.972 accuracy, 0.977 specificity, 0.966

sensitivity, and 0.972 AUC.
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The model trained with all FOS features from the femur and

acetabulum had 0.972 accuracy, 0.975 specificity, 0.969

sensitivity, and 0.972 AUC for differentiating IJs from HJs. The

five most pertinent features of this model with the lowest

F-contrast p-value were all related to the histogram of the femur

(Histogram Quantile 0.99, Histogram Quantile 0.6, Histogram

Uniformity*, Histogram Quantile 0.4, Histogram RMS*). The

F-contrast model using these five features had 0.949 accuracy,

0.955 specificity, 0.941 sensitivity, and 0.948 AUC.

The model trained with all shape and size features from the

femur and acetabulum had 0.970 accuracy, 0.968 specificity,

0.972 sensitivity, and 0.970 AUC for differentiating IJs from HJs.

The five most pertinent features of this model with the lowest

F-contrast p-values were all related to the shape and size of the

femur (SS Area*, SS Mean 3D Diameter*, SS Median 3D

Diameter*, Equivalent R*). The F-contrast model using these five

features had 0.957 accuracy, 0.958 specificity, 0.955 sensitivity,

and 0.957 AUC. As shown in Table 1, among the 40 shape and

size features of the femur and acetabulum, 33 (83%) were

significantly different between HJs and IJs.

The models trained with all intensity-based FOS histogram

features from the femur had 0.972 accuracy, 0.969 specificity,

0.975 sensitivity, and 0.972 AUC for differentiating IJs from HJs.

The five most pertinent features of this model with the lowest

F-contrast p-values included the Femur Histogram Quantile 0.1*,

Femur Histogram Total Frequency*, Femur Histogram Median,

Femur Histogram Range*, and Femur Histogram Quantile 0.3.)

The F-contrast model using these five features had 0.953

accuracy, 0.951 specificity, 0.956 sensitivity, and 0.953 AUC.

The model trained with the femur histogram features yielded

an accuracy of 0.97 (0.97, 0.973, 0.965, 0.969). For the subset

with the five most relevant features (F-contrast), these values

became 0.953, 0.951, 0.956, and 0.953. In particular in the

F-contrast subset included the femur Histogram Quantile 0.1*,

femur Histogram Total frequency*, femur Histogram Median,

femur Histogram Range*, and femur Histogram Quantile 0.3

features.

Figure 3 shows the diagnostic performance of the machine

learning models for differentiating IJs from HJs during the 100-

fold cross-validation training phase. Models trained with femur

intensity-based FOS and GLCM texture features all had

accuracies above 0.95, while most models trained with acetabular

intensity-based FOS and GLCM texture features had accuracies

under 0.95. The differences were more notable for the F-
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TABLE 2 Diagnostic performance of the machine learning models for differentiating IJs from HJs using each subset of features on the hold-out testing
dataset. The complete list of features contained in each subsets can be seen in Supplementary Table S1.

Subset Features Selection Accuracy Specificity Sensitivity AUC # Features
Acetabulum All 0.963 0.965 0.962 0.963 91

Acetabulum F-contrast 0.966 0.961 0.971 0.966 5

Acetabulum_FOS All 0.962 0.960 0.964 0.962 37

Acetabulum_FOS F-contrast 0.900 0.901 0.898 0.900 5

Acetabulum_GLCM All 0.962 0.969 0.955 0.962 23

Acetabulum_GLCM F-contrast 0.967 0.965 0.969 0.967 5

Acetabulum_GLRLM All 0.961 0.965 0.956 0.961 11

Acetabulum_GLRLM F-contrast 0.953 0.956 0.948 0.952 5

Acetabulum_Histogram All 0.953 0.961 0.943 0.952 25

Acetabulum_Histogram F-contrast 0.910 0.923 0.894 0.908 5

Acetabulum_Signal All 0.964 0.964 0.964 0.964 12

Acetabulum_Signal F-contrast 0.952 0.970 0.931 0.950 5

Acetabulum_SS All 0.960 0.956 0.964 0.960 20

Acetabulum_SS F-contrast 0.956 0.959 0.952 0.955 5

Acetabulum_Texture All 0.961 0.962 0.960 0.961 34

Acetabulum_Texture F-contrast 0.959 0.961 0.957 0.959 5

ALL All 0.976 0.980 0.971 0.975 182

ALL F-contrast 0.954 0.959 0.948 0.954 5

Femur All 0.977 0.977 0.976 0.977 91

Femur F-contrast 0.935 0.940 0.929 0.935 5

Femur_FOS All 0.969 0.971 0.965 0.968 37

Femur_FOS F-contrast 0.960 0.954 0.966 0.960 5

Femur_GLCM All 0.971 0.977 0.964 0.971 23

Femur_GLCM F-contrast 0.971 0.973 0.969 0.971 5

Femur_GLRLM All 0.973 0.979 0.965 0.972 11

Femur_GLRLM F-contrast 0.922 0.924 0.920 0.922 5

Femur_Histogram All 0.970 0.973 0.965 0.969 25

Femur_Histogram F-contrast 0.953 0.951 0.956 0.953 5

Femur_Signal All 0.972 0.969 0.975 0.972 12

Femur_Signal F-contrast 0.969 0.969 0.969 0.969 5

Femur_SS All 0.915 0.921 0.908 0.915 20

Femur_SS F-contrast 0.903 0.910 0.896 0.903 5

Femur_Texture All 0.968 0.975 0.960 0.967 34

Femur_Texture F-contrast 0.965 0.973 0.955 0.964 5

FOS All 0.972 0.975 0.969 0.972 74

FOS F-contrast 0.949 0.955 0.941 0.948 5

GLCM All 0.977 0.977 0.976 0.977 46

GLCM F-contrast 0.972 0.977 0.966 0.972 5

GLRLM All 0.976 0.980 0.972 0.976 22

GLRLM F-contrast 0.903 0.922 0.881 0.902 5

Histogram All 0.966 0.967 0.964 0.965 50

Histogram F-contrast 0.952 0.949 0.956 0.952 5

Signal All 0.975 0.970 0.982 0.976 24

Signal F-contrast 0.948 0.957 0.936 0.947 5

SS All 0.970 0.968 0.972 0.970 40

SS F-contrast 0.957 0.958 0.955 0.957 5

Texture All 0.976 0.980 0.971 0.975 68
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contrast models trained using the five most pertinent features

with the lowest F-contrast p-values, where three of the four

models with the highest accuracy used features from the

femur. As shown in Table 2, differences in model performance

were also confirmed using the hold-out testing dataset, where

the model trained with 91 features from the femur had higher

diagnostic performance (0.977 accuracy, 0.977 sensitivity,

0.976 specificity, and 0.977 AUC) when compared to models

trained with all 182 features from the femur and acetabulum
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(0.976 accuracy, 0.980 specificity, 0.971 sensitivity, and 0.975

AUC) and models trained with 91 features from the

acetabulum (0.963 accuracy, 0.965 specificity, 0.962 sensitivity,

and 0.963 AUC). In particular, the model trained with the

femur had higher accuracy compared to the ones trained with

the acetabulum ones (Rank-sum test p < 0.05) even in the

F-contrasted subset (bottom subplot).

Figure 4 shows the five most pertinent features with the lowest

F-contrast p-values for each feature class, while Figure 5 shows z-
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FIGURE 3

Diagnostic performance of the machine learning models for differentiating IJs from HJs using each subset of features during model training. The
histogram bars represent the distribution of the prediction metrics during the 100-fold cross-validation.
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scored values of each feature for the femur and acetabulum. For the

femur, the five most pertinent features were three textural features

(GLRLM Long Run Low Gray Level Emphasis*, GLRLM Short Run

Low Gray Level Emphasis*, and GLRLM Low Gray Level Run

Emphasis*) and two shape and size features (SS Area*, SS

Volume*). The values of the three GLRLM features of the femur

and the area and volume of the femur were higher in IJs than

HJs. The importance of the three GLRLM features of the femur

were further confirmed by the results in Table 2; Supplementary

Table S1, which showed that the five most pertinent features

with the lowest F-contrast p-values in the model trained with all

182 features from the femur and acetabulum included GLRLM

Long Run Low Gray Level Emphasis*, GLRLM Short Run Low

Gray Level Emphasis*, and GLRLM Low Gray Level Run

Emphasis* of the femur.
4. Discussion and conclusions

Our study was performed to investigate the feasibility of using

radiomics of 3D-MRI to distinguish between hips with and without
Frontiers in Radiology 10
symptomatic impingement in patients with FAI. Our results

showed some of the highest diagnostic performance for

differentiating IJs from HJs using imaging studies reported in the

literature. The top performing radiomic model in our study

analyzed all GLCM texture features from the femur and

acetabulum on 3D-MRI, followed by models analyzing all

intensity-based FOS features from the femur and acetabulum,

all shape and size features from the femur and acetabulum, and

all histogram FOS features of the femur.

FAI is characterized by impingement of the femoral head-neck

junction against the acetabular rim due to morphologic

abnormalities of the proximal femur and acetabulum (2–4). In

our study, the radiomic model trained with all shape and size

features from the femur and acetabulum on 3D-MRI yielded the

highest performance with 0.970 accuracy, 0.968 specificity, 0.972

sensitivity, and 0.970 AUC for differentiating IJs from HJs. The

model had higher diagnostic performance for detecting FAI than

currently used quantitative measures of bone shape on

radiographs, CT, and MRI. For example, studies have shown that

the alpha angle has sensitivities between 0.360 and 0.920 and

specificities between 0.620 and 0.950 for detecting cam
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FIGURE 4

Radar charts for shape and size (SS), gray level Co-occurrence matrix (GLCM), gray level Run matrix (GLRLM) and intensity based first order statistic (FOS)
of the acetabulum (left) and the femur (right). The five spokes represent the five most informative features in the group (F-contrast), the radial length of
each spoke is proportional to the magnitude of the value of the associated feature. The spokes are normalized so that the difference between hip joints
with impingement (IJ, blue line) and the healthy ones (HJ, orange line) is emphasized. For example, in the SS Acetabulum radar plot it is possible to see
how four features values are higher for the healthy joints compared to the injured ones (first plot on the left) while the mean normal0 features values are
higher in the injured acetabulum than in the healthy ones.
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FIGURE 5

Heat map of the values of the features for the acetabulum (top) and femur (bottom). Each row corresponds to one patient and each column corresponds
to one normalized (z-score) radiomic feature. HJ or IJ before the patient number refers to a healthy joint and joint with impingement, respectively. From
the heat map it is possible to see how both femur and acetabulum GLCM Correlation feature is of higher value for HJ than IJ.
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impingement (28–32), while the center edge angle has sensitivities

between 0.820 and 0.842 and specificities between 0.390 and 1.00

for detecting pincer impingement (32, 33). Furthermore, a high

prevalence of abnormal quantitative measures of proximal femur

and acetabulum shape have been described in healthy subjects

with no clinical evidence of FAI, which raises questions

regarding the high specificities of these metrics reported in some

studies (34).

Although FAI is a condition caused by morphological

abnormalities of bone, our study found that the radiomic model

analyzing all GLCM texture features of the femur and

acetabulum on 3D-MRI had the highest diagnostic performance

for differentiating IJs from HJs. GLCM features are calculated

over the co-occurrence matrix, which highlights how spread out

the image pixel signal intensity values are around a given pixel in

a square matrix. If all the pixels in the ROI had the same
Frontiers in Radiology 12
grayscale value (i.e., pixel signal intensity values were

homogeneous), the co-occurrence matrix would have only one

bin containing that particular co-occurrence image intensity

value set to 1 and all the other bins set to 0. The presence of

multiple peaks in the co-occurrence implies heterogeneity in

image pixel signal intensity. If the imaged tissue is mildly

heterogeneous, the values in the co-occurrence matrix are less

parse and more close to each other, whereas if the pixel values

are completely random, the co-occurrence matrix will have

sparser peaks (27). In our study, the model trained with all

GLCM texture features from the femur and acetabulum had

0.977 accuracy, 0.977 specificity, 0.976 sensitivity, and 0.977 AUC

for distinguishing between IJs and HJs. The five most pertinent

features of this model were GLCM Max Probability, GLCM1

Energy, and GLCM1 Correlation of the femur and GLCM

Correlation and GLCM Inverse Variance of the acetabulum. All
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these features were higher in the IJ than the HJ, indicating that FAI

leads to a more heterogeneous distribution of image pixel signal

intensity values. The femur and acetabulum primarily consist of

trabecular and cortical bone, hematopoietic cells, and fat with

little if any water content. As the water-only 3D-FLASH images

used for radiomic analysis in our study reflect the presence of

water within each image pixel, the greater heterogeneity of pixel

signal intensity values in the IJs likely results in increased water

content in some pixels. This may be due to subtle and non-

uniform bone inflammation due to impingement of the femoral

head-neck junction against the acetabular rim, which cannot

even be detected in the image by the human eye.

Our study has shown that it is possible to create machine

learning models to differentiate IJ from HJ with a high

diagnostic performance using only a small subset of radiomic

features on 3D-MRI. For each feature class, there was a relatively

small decrease in model performance when using the five most

pertinent features with the lowest F-contrast p-values compared

to the full model analyzing all features from the femur and

acetabulum. For example, the F-contrast model for GLCM

texture features had 0.972 accuracy, 0.977 specificity, 0.966

sensitivity, and 0.972 AUC for differentiating IJs from HJs

compared to 0.977 accuracy, 0.977 specificity, 0.976 sensitivity,

and 0.977 for the full model. Radiomic models analyzing a

smaller number of features are better suited for widespread use

in clinical practice as they are quicker and easier to create and

are likely more reproducible across different MRI scanners,

sequences, and imaging parameters.

Our study had several limitations. One limitation was the small

number of subjects used for model training and evaluation. The

problem of model training with a small number of subjects was

overcome by using a novel data augmentation framework to create

pseudo-plausible image data that magnified the pattern in the

features space between the IJs and HJs. Furthermore, our models

were created using a simple K-nearest neighbor method to focus

attention on the information content of the image features rather

than the accuracy of the models per se. However, the relative

simplicity of our machine learning approach may improve the

reproducibility of the models and indirectly determines the lower

bound of model performance as sensitivity and specificity could

likely be improved with use of more sophisticated machine

learning methods and larger training datasets. A final limitation

was that our study could not assess model generalizability as model

training and evaluation was performed using homogenous image

datasets acquired on the same MRI scanner with the same

sequence and imaging parameters.

In conclusion, our study has documented the feasibility of

using radiomics of 3D-MRI to distinguish between hips with and

without symptomatic impingement in patients with FAI. Our

radiomic models analyzed intensity-based FOS features, shape

and size features, and texture features and had some of the

highest diagnostic performance for differentiating IJs from HJs

using imaging studies reported in the literature. Additional

studies are needed to investigate the use of more sophisticated

machine learning approaches and larger training datasets to

optimize model performance and to evaluate model
Frontiers in Radiology 13
generalizability using more heterogeneous patient populations

imaged with different MRI scanners and imaging protocols.
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