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Abstract: Asian rainbow options provide investors with a new option solution as an effective tool
for asset allocation and risk management. In this paper, we address the pricing problem of Asian
rainbow options with stochastic interest rates that obey the Vasicek model. By introducing the Vasicek
model as the change process of the stochastic interest rate, based on the non-arbitrage principle and
the stochastic differential equation, the number of assets of the Asian rainbow option is expanded to
n dimensions, and the pricing formulas of the Asian rainbow option with multiple (n) assets under
the Vasicek interest rate model are obtained. The multi-asset pricing results under stochastic interest
rates provide more possibilities for Asian rainbow options. Furthermore, Monte Carlo simulation
experiments show that the pricing formula is accurate and efficient under double stochastic errors.
Finally, we perform parameter sensitivity analysis to further justify the pricing model.

Keywords: Vasicek model; rainbow options; Asian options; Monte Carlo simulation; multi-asset
option
Mathematics Subject Classification: 91B70, 91G30, 91G60

1. Introduction

Asian options are path-dependent options, meaning that the payoffs are based on the average price
of the underlying asset over a specific period of time [1]. Asian options can lessen their sensitivity to
asset price volatility thanks to this averaging feature, which also lowers trading risk [2]. As a result, it
is frequently utilized for risk management. Multi-asset options, such as rainbow options, can be used in
multi-asset allocation to lower the risks posed by multiple assets. In incentive contract design and risk
management, Asian rainbow options, a hybrid of Asian and rainbow options, are frequently used [3].
Asian rainbow options combine the characteristics of Asian and rainbow options. They are a multi-
asset, path-dependent option. Therefore, the maximum or minimum average price of the underlying
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assets determines whether Asian rainbow options will pay off [4]. However, the price of multi-asset
options is rarely mentioned in the existing literature, and two- or three-asset options are frequently
employed as a substitute for multi-asset options [5]. To derive analytical pricing formulas for Asian
rainbow call options on two geometric mean assets, the authors of [6] expanded the methodology for
pricing Asian and Rainbow options using PDE. Before and after taking into account fractional and
mixed fractional Brownian motion, Wang et al. [4] and Ahmadian et al. [7, 8] analyze the pricing
of Asian rainbow options, respectively. Despite the fact that some researchers [5, 7, 8] attempted to
increase the number of assets to n-dimensional, they weren’t taking into account the randomness of
real interest rates.

According to the efficient market hypothesis, the price of the underlying asset is currently
determined by a widely understood stochastic process [9], and this stochastic process can be
summarized as:

dS (t) = r(t, S (t))dt + σ(t, S (t))dW(t), (1.1)

where according to different random processes, the interest rate r and volatility rate σ can be constants
or specific functions. To reflect realism, the effects of stochastic volatility and stochastic interest
rates have been incorporated into the model in several ways to reflect reality [10–16]. For example,
Stein et al. [12] investigated the distributions of stock prices that result from diffusion processes with
stochastically varying volatility parameters. In [13], the authors used a hybrid model that combines
the CIR stochastic interest rate model and the Heston stochastic volatility model to get a closed-form
pricing formula for European options. He and Lin [14] formed a rough Heston-CIR model to capture
both the rough behavior of the volatility and the stochastic nature of the interest rate and present a semi-
analytical pricing formula for European options. The pricing of volatility and variance swaps using
a hybrid model with Markov-modulated jump-diffusion with discrete sampling times is the subject
of [16].

Furthermore, given that some short-term government bonds have negative interest rates, some
researchers have demonstrated that models like the Vasicek model that incorporate negative interest
rates can improve option pricing and implied volatility forecasting [17–24]. Guo [20] used an
assumption to derive the pricing formula for European call options: the price of the underlying asset
will follow the Heston stochastic volatility model, while the interest will follow the Vasicek stochastic
interest model. In [21], the issue of Bermuda option pricing on zero-coupon bonds was examined.
In this case, the model’s interest rate dynamics are based on the mixed fractional Vasicek model.
Mehrdoust and Najafi [22] obtained the value of the European option on the zero-coupon bond with
transaction cost by using the fractional Vasicek model to predict the interest rates in France and
Australia. Under the Vasicek interest rate model, Zhao and Xu [23] calibrated the time-dependent
volatility function for European options. Kharrat and Arfaoui [24] disentangled the Vasicek model for
European options to verify the stability and reliability of the model with option theory.

Based on the above, in this paper, we adopt the Vasicek model as a stochastic interest rate and
expand the number of assets of Asian rainbow options to n-dimensional cases to aim to present the
pricing formula of geometric mean Asian rainbow options. The rest of the paper is organized as
follows. In Section 2, we present the Vasicek and underlying asset price models and introduce the
payoff of the Geometric Asian Rainbow options. Four explicit formulas for the geometric Asian
rainbow options are derived in Section 3. In Section 4, the call option of the two and three assets
are obtained by applying the Monte Carlo simulation method and different values of the model’s
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parameters. Section 5 carries out a sensitivity analysis of the parameters in the pricing formula. In
Section 6, conclusions are drawn.

2. Asian rainbow options under the Vasicek interest rate model

In this paper, we use the Vasicek model [19] as the stochastic interest rate model, which
enables negative interest rates and follows the actual requirements of the financial market. Let
(Ω,F, {Ft}0≤t≤T ,Q) be a complete probability space equipped with a filtration {Ft} satisfying the usual
conditions (i.e., it is increasing and right-continuous when F0 contains all Q-null sets), where Q is a
risk-neutral probability measure. For the risk-neutral measure Q, consider the change process of the
risk-free interest rate satisfying the Vasicek model; that is, {r(t) : t ≥ 0} is the dynamic process of the
risk-free interest rate change at time t that follows the model

dr(t) = (α − βr(t))dt + σrdWr(t), 0 ≤ t ≤ T, (2.1)

where α and β , 0 are positive constants, the parameter σr > 0 is the volatility of the risk-free interest
rate, and Wr(t) is a standard Wiener process. Next, in the risk-neutral measure Q, we introduce the
Vasicek stochastic interest rate model to the process of change in the underlying asset and investigate
the dynamic process of underlying asset price change {S i(t) : t ≥ 0} at time t, which follows

dS i(t) = r(t)S i(t)dt + σiS i(t)dWi(t), i = 1, 2, · · · , n, (2.2)

where the constant σi > 0 is the volatility of the underlying asset. Wi(t) is a standard Wiener process
and any two dependent standard Brownian motions have a correlation coefficient ρi j ∈ [−1, 1], i.e.,
dWi(t)dW j(t) = ρi jdt ( j , i). In addition, we assume that the Brownian motion Wi(t) and Wr(t) are
independent of each other, i.e., dWi(t)dWr(t) = 0, and present the following assumptions:

(A1) The underlying asset price dynamics follow a log-normal distribution, and price volatility is
constant.

(A2) The risk-free interest rate is not constant, and its change follows the Vasicek model.
(A3) Securities trading is continuous; there are no riskless arbitrage opportunities; no dividends will

be paid during the option’s validity period; there are no transaction costs or taxes; all securities
are perfectly divisible; investors can borrow or lend funds at the same interest rate.

(A4) The option can only be exercised at maturity.

Asian rainbow options have the same characteristics as Asian options because they are a
combination of the two, i.e., the option price is determined by the average price of the underlying asset
from the start date to the expiration date [7]. Considering that the price of the underlying asset (2.2) is
followed by a geometric Brownian motion, we let

Gi(T, S i) = e
1
T

∫ T
0 ln S i(t)dt, i = 1, 2, · · · , n, (2.3)

be the geometric mean of the price S i (i = 1, 2, · · · , n) in [0,T ]. The four geometric Asian rainbow
options contract that we can take into consideration are call on max, call on min, put on max, and put
on min [3]. The payoffs of geometric Asian rainbow call on max and min options with the strike price
K and maturity T on n underlying assets are given by

max (max (G1(T, S 1), G2(T, S 2), · · · ,Gn(T, S n)) − K, 0) (2.4)
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and
max (min (G1(T, S 1), G2(T, S 2), · · · ,Gn(T, S n)) − K, 0) , (2.5)

respectively. The payoffs of the geometric Asian rainbow put on max and min options [7] are given by

max (K −max (G1(T, S 1), G2(T, S 2), · · · ,Gn(T, S n)) , 0) (2.6)

and
max (K −min (G1(T, S 1), G2(T, S 2), · · · ,Gn(T, S n)) , 0) , (2.7)

respectively.
Combining the above models and assumptions, the pricing of an Asian rainbow option

op(T, r, S i,V) under the Q-measure can be written as follows:

op(T, r, S i,V) = EQ
[
e−

∫ T
0 r(t)dtV(T, S i)|F0

]
, (2.8)

where V(T, S i) is the payoff of the option and is a function of T and S i(T ). The conditional expectation
under the F0 condition refers to valuing the expected payoff of the option when the initial time t = 0.

The stochastic interest rate function and the logarithm of the underlying asset price functions have
definite integrals from time 0 to T , according to Eqs (2.3) and (2.8). The stochastic interest rate function
r(t) is integrated as follows:∫ T

0
r(t)dt = 1

β

(
r(0) − α

β

) (
1 − e−βT

)
+ α

β
T − σr

β

∫ T

0

(
e−βT eβu − 1

)
dWr(u). (2.9)

Let
C0(T ) = 1

β

(
r(0) − α

β

) (
1 − e−βT

)
+ α

β
T,

m(u,T ) = −σr
β

(
e−βT eβu − 1

)
,

(2.10)

which are the constant and integral terms of
∫ T

0
r(t)dt, respectively. The logarithm of the underlying

asset price function ln S i(t) is integrated as follows:

1
T

∫ T

0
ln S i(t)dt = ln S i(0) + 1

β

(
r(0) − α

β

) [
1 − 1

βT (1 − e−βT )
]

+ 1
2

(
α
β
− 1

2σ
2
i

)
T

+ 1
T

∫ T

0

∫ T

u
m(u, t)dtdWr(u) + 1

T

∫ T

0
σi(T − u)dWi(u).

(2.11)

And let
Ci(T ) = ln S i(0) + 1

β

(
r(0) − α

β

) [
1 − 1

βT

(
1 − e−βT

)]
+ 1

2

(
α
β
− 1

2σ
2
i

)
T,

f (u,T ) = σr
β2T

(
e−βT eβu − 1

)
+ σr

β

(
1 − u

T

)
,

gi(u,T ) = 1
Tσi(T − u)

(2.12)

which are a constant term and two integral terms of 1
T

∫ T

0
ln S i(t)dt, respectively. For the sake of concise

writing, we abbreviate the above functions respectively as C0, m, Ci, f , and gi.
Based on the above model, we will analyze the pricing formulas of geometric Asian rainbow options

for multiple assets.

AIMS Mathematics Volume 8, Issue 5, 10685–10710.



10689

3. Pricing formula of multi-asset

In this section, we consider geometric Asian rainbow option prices for multiple assets (n), including
call options, put options, and the parity relationship.

3.1. Call options

Referring to [25], we derive the following lemma first to determine the precise expression for this
option’s price.

Lemma 3.1. LetZ = (Z1,Z2,Z3)T be standard normal random variables, follow the three-dimensional

standard normal distribution N(0,Λ) with the covariance matrix Λ =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

. Then, for

arbitrary constants a, b, c, k and l,

E
[
eaZ1I{bZ2≥k, cZ3≥l}

]
= e

a2
2 N

(
ρ12ab − k

b
,
ρ13ac − l

c
; ρ23

)
, (3.1)

where I(·) is the indicator function that takes the value 1 if the expression in parentheses is true and 0
otherwise, and N(·) is the two-dimensional cumulative standard normal distribution.

Proof. Let z = (z1, z2, z3)T, t = 1
√
|Λ|

(√
1 − ρ2

23z1 +
(ρ13ρ23−ρ12)z2+(ρ12ρ23−ρ13)z3−a|Λ|√

1−ρ2
23

)
, ξ = z2 − ρ12a, η =

z3 − ρ13a, we then obtain

E
[
eaZ1 I{bZ2≥k,cZ3≥l}

∣∣∣Z1 = z1,Z2 = z2,Z3 = z3

]
=

∫ +∞
l
c

∫ +∞
k
b

∫ +∞

−∞
eaz1 1

(2π)
3
2 |Λ|

1
2

e−
1
2 z

TΛ−1zdz1dz2dz3

=
∫ +∞

l
c

∫ +∞
k
b

∫ +∞

−∞

1

(2π)
3
2
√
|Λ|

e
− 1

2|Λ|

√1−ρ2
23z1+

(ρ13ρ23−ρ12)z2+(ρ12ρ23−ρ13)z3−a|Λ|√
1−ρ2

23

2

×e
− 1

2|Λ|

(1−ρ2
13)z2

2+(1−ρ2
12)z2

3+2(ρ12ρ13−ρ23)z2z3−

(
(ρ13ρ23−ρ12)z2+(ρ12ρ23−ρ13)z3−a|Λ|√

1−ρ2
23

)2
dz1dz2dz3

=
∫ +∞

l
c

∫ +∞
k
b

∫ +∞

−∞

1

(2π)
3
2
√
|Λ|

e
− 1

2|Λ|

(1−ρ2
13)z2

2+(1−ρ2
12)z2

3+2(ρ12ρ13−ρ23)z2z3−

(
(ρ13ρ23−ρ12)z2+(ρ12ρ23−ρ13)z3−a|Λ|√

1−ρ2
23

)2
×e−

t2
2

√
|Λ|√

1−ρ2
23

dtdz2dz3

=
∫ +∞

l
c

∫ +∞
k
b

1
2π
√

1−ρ2
23

e
− 1

2|Λ|

(1−ρ2
13)z2

2+(1−ρ2
12)z2

3+2(ρ12ρ13−ρ23)z2z3−

(
(ρ13ρ23−ρ12)z2+(ρ12ρ23−ρ13)z3−a|Λ|√

1−ρ2
23

)2
dz2dz3

=
∫ +∞

l
c

∫ +∞
k
b

1
2π
√

1−ρ2
23

e
− 1

2(1−ρ2
23)

((z2−ρ12a)2+(z3−ρ13a)2+2ρ13ρ23az2+2ρ13ρ23az3−2ρ23z2z3−a2(|Λ|+ρ2
12+ρ2

13))
dz2dz3

=
∫ +∞

l
c−ρ13a

∫ +∞
k
b−ρ12a

1
2π
√

1−ρ2
23

e
− 1

2(1−ρ2
23)

(ξ2+η2−2ρ23ξη)
e

a2
2 dξdη

= e
a2
2 N

(
ρ12ab−k

b , ρ13ac−l
c ; ρ23

)
.

(3.2)

This completes the proof of Lemma 3.1. �

From Lemma 3.1, we extend to the n-dimensional case.
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Corollary 3.1. Let Z = (Z0,Z1, · · · ,Zn)T be standard normal random variables, follow the
n + 1 dimensional standard normal distribution N(0,Λ) with the covariance matrix Λ =

1 ρ01 · · · ρ0n

ρ01 1 · · · ρ1n
...

...
. . .

...

ρ0n ρ1n · · · 1

. Then, for arbitrary constants a0, a1, · · · , an, k1, · · · , kn,

E
[
ea0Z0I{a1Z1≥k1, ··· , anZn≥kn}

]
= e

a2
0
2 N

(
ρ01a0a1 − k1

a1
, · · · ,

ρ0na0an − kn

an

)
. (3.3)

where I(·) is the indicator function that takes the value 1 if the expression in parentheses is true and 0
otherwise, and N(·) is the n-dimensional cumulative standard normal distribution.

Set the initial time and expiration time as 0 and T , respectively, we then calculate the geometric
mean of the time period from 0 to T for S 1, S 2, · · · , S n. The strike price of the option is set to K, and
the payoff Vc

max(T, S 1, S 2, · · · , S n) for this option is:

Vc
max(T, S 1, S 2, · · · , S n) = max (max (G1(T, S 1),G2(T, S 2), · · · ,Gn(T, S n)) − K, 0) , (3.4)

which is the n-dimensional case of Eq (2.4). It denotes that the price of a call on max option is
determined by the geometric mean of n underlying assets at their maximum. We use Eqs (2.8) and (3.4)
to calculate the price of a call on max option Cmax(T, r, S 1, S 2, · · · , S n), that is,

Cmax(T, r, S 1, S 2, · · · , S n) = op(T, r, S 1, S 2, · · · , S n,Vc
max). (3.5)

Through direct calculation, the following theorem provides the expression for the price of a call on the
max option.

Theorem 3.1. (Call on max option) Assume that the underlying assets S i (i = 1, 2, · · · , n) obey
generalized geometric Brownian motion, the stochastic interest rate follows the Vasicek model (2.1),
and the initial to expiration time is 0 to T , then the price of the geometric Asian rainbow call on max
option Cmax(T, r, S 1, S 2, · · · , S n) is given as follows:

Cmax(T, r, S 1, S 2, · · · , S n) =
n∑

i=1
eCi−C0+ 1

2

∫ T
0 (( f−m)2+g2

i )duNi

( ∫ T
0 ( f ( f−m)+g2

i )du+Ci−ln K√∫ T
0 ( f 2+g2

i )du
, · · · ,

∫ T
0 gi

(
gi − ρ

i jg j

)
du + Ci −C j√∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du

, · · ·

︸                                             ︷︷                                             ︸
n−1

)

−Ke−C0+ 1
2

∫ T
0 m2du

n∑
i=1

Ni

(
−

∫ T
0 f mdu+Ci−ln K√∫ T

0 ( f 2+g2
i )du

, · · · ,
Ci −C j√∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du
, · · ·

︸                                           ︷︷                                           ︸
n−1

)
,

(3.6)
where i, j = 1, 2, · · · , n, i , j, C0, m, Ci, f and gi are defined in Eqs (2.10) and (2.12). Ni(·)

is the n-dimensional cumulative standard normal distribution with the covariance matrix Λi =
1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
...

...
. . .

...

ρ1n ρ2n · · · 1

 as follows:

ρ1a =

∫ T
0 gi(gi−ρ

ibgb)du∫ T
0

√
( f 2+g2

i )(g2
i +g2

b−2ρibgigb)du
, with a = 2, · · · , n,

b = a − 1, a ≤ i

b = a, a > i
,
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and

ρcd =

∫ T
0 (g2

i −ρ
iegige−ρ

i f gig f +ρ
e f geg f )du∫ T

0

√
(g2

i +g2
e−2ρiegige)

(
g2

i +g2
f−2ρi f gig f

)
du
, with c = 2, · · · , n − 1,

e = c − 1, c ≤ i

e = c, c > i
,

d = c + 1, · · · , n,

 f = d − 1, d ≤ i

f = d, d > i
.

Proof. From Eq (3.4), the payoff of the call on max option Vc
max(T, S 1, S 2, · · · , S n) can be expressed by

the following equation

Vc
max(T, S 1, S 2, · · · , S n) = (G1(T, S 1) − K)I{G1(T,S 1)≥K,G1(T,S 1)≥G2(T,S 2), ··· ,G1(T,S 1)≥Gn(T,S n)}

+(G2(T, S 2) − K)I{G2(T,S 2)≥K,G2(T,S 2)≥G1(T,S 1), ··· ,G2(T,S 2)≥Gn(T,S n)}

+ · · · · · ·

+(Gn(T, S n) − K)I{Gn(T,S n)≥K,Gn(T,S n)≥G1(T,S 1), ··· ,Gn(T,S n)≥Gn−1(T,S n−1)}.

(3.7)

Set Ai = {Gi(T, S i) ≥ K, · · · ,Gi(T, S i) ≥ G j(T, S j), · · · } (i, j = 1, 2, · · · , n, i , j), based on Eqs (2.3)
and (2.11), we can obtain

Ai =

{∫ T

0
f dWr(u) +

∫ T

0
gidWi(u) ≥ ln K −Ci, · · · ,

∫ T

0
gidWi(u) −

∫ T

0
g jdW j(u) ≥ C j −Ci, · · ·

}
.

(3.8)
It follows from Eq (3.5), we derive the call on the max option price as

Cmax(T, r, S 1, S 2, · · · , S n) =
n∑

i=1
E

[
e−

∫ T
0 r(t)dt+ 1

T

∫ T
0 ln S i(t)dtIAi

]
−

n∑
i=1

KE
[
e−

∫ T
0 r(t)dtIAi

]
=

n∑
i=1

Ii −
n∑

i=1
In+i.

(3.9)

From Eqs (2.9), (2.11) and (3.8), it is easy to see that

Ii = eCi−C0E
[
e
∫ T

0 ( f−m)dWr(u)+
∫ T

0 gidWi(u)I{ ∫ T
0 f dWr(u)+

∫ T
0 gidWi(u)≥ln K−Ci,··· ,

∫ T
0 gidWi(u)−

∫ T
0 g jdW j(u)≥C j−Ci,···

}] , (3.10)

where i, j = 1, 2, · · · , n and i , j. Let

Z0 =
∫ T

0
( f − m) dWr(u) +

∫ T

0
gidWi(u), i = 1, 2, · · · , n,

Z1 =
∫ T

0
f dWr(u) +

∫ T

0
gidWi(u), i = 1, 2, · · · , n,

Za =
∫ T

0
gidWi(u) −

∫ T

0
g jdW j(u), a = 2, · · · , n, i, j = 1, 2, · · · , n, i , j.

(3.11)

Since dW(u) = εd
√

u and ε ∼ N(0, 1) is a standard normal random variable, Z0 can be expressed as

Z0 = εr

∫ T

0
( f − m) d

√
u + εi

∫ T

0
gid
√

u, i = 1, 2, · · · , n, (3.12)

then the variance of the random variable Z0 is

σ2
0 =

∫ T

0

(
( f − m)2 + g2

i

)
du, i = 1, 2, · · · , n. (3.13)
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Similarly, the variance of Z1 and Za can be obtained as

σ2
1 =

∫ T

0

(
f 2 + g2

i

)
du, i = 1, 2, · · · , n, (3.14)

and
σ2

a =
∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du, a = 2, · · · , n, i, j = 1, 2, · · · , n, i , j, (3.15)

respectively. The correlation coefficients between the n + 1 random variables Z0, Z1, Za (a = 2, · · · , n)
with respect to

ρ01 =

∫ T
0 ( f ( f−m)+g2

i )du
σ0σi

, i = 1, 2, · · · , n, (3.16)

ρ0a =

∫ T
0 gi(gi−ρ

ibgb)du
σ0σa

, a = 2, · · · , n,

b = a − 1, a ≤ i

b = a, a > i
, i = 1, 2, · · · , n, (3.17)

ρ1a =

∫ T
0 gi(gi−ρ

ibgb)du
σ1σb

, a = 2, · · · , n,

b = a − 1, a ≤ i

b = a, a > i
, i = 1, 2, · · · , n, (3.18)

and

ρcd =

∫ T
0 (g2

i −ρ
iegige−ρ

i f gig f +ρ
e f geg f )du∫ T

0

√
(g2

i +g2
e−2ρiegige)

(
g2

i +g2
f−2ρi f gig f

)
du
, c = 2, · · · , n − 1,

e = c − 1, c ≤ i

e = c, c > i
,

d = c + 1, · · · , n,

 f = d − 1, d ≤ i

f = d, d > i
,

i = 1, 2, · · · , n.

(3.19)

Given the above, (Z0,Z1, · · · ,Zn)T ∼ N(0, Λ̃i) with Λ̃i =


σ2

0 ρ01σ0σ1 · · · ρ0nσ0σn

ρ01σ0σ1 σ2
1 · · · ρ1nσ1σn

...
...

. . .
...

ρ0nσ0σn ρ1nσ1σn · · · σ2
n

, i =

1, 2, · · · , n. According to Corollary 3.1, we derive the following result

Ii = eCi−C0E

[
eσ0

Z0
σ0 I{

σ1
Z1
σ1
≥ln K−Ci,··· ,σa

Za
σa
≥C j−Ci,···

}]
= eCi−C0+ 1

2σ
2
0Ni

(
ρ01σ0σ1−ln K+Ci

σ1
, · · · ,

ρ0aσ0σa+Ci−C j

σa
, · · ·

)
= eCi−C0+ 1

2

∫ T
0 (( f−m)2+g2

i )duNi

( ∫ T
0 ( f ( f−m)+g2

i )du+Ci−ln K√∫ T
0 ( f 2+g2

i )du
, · · · ,

∫ T
0 gi(gi−ρ

i jg j)du+Ci−C j√∫ T
0

(
g2

i +g2
j−2ρi jgig j

)
du
, · · ·

)
,

(3.20)

where i, j = 1, 2, · · · , n, i , j, C0, m, Ci, f and gi are defined in Eqs (2.10) and (2.12). Ni(·)
is the n-dimensional cumulative standard normal distribution with the covariance matrix Λi =

1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
...

...
. . .

...

ρ1n ρ2n · · · 1

, where the correlation coefficients ρ1a and ρcd are defined in Eqs (3.18) and (3.19).
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Moreover, In+i (i, j = 1, 2, · · · , n, i , j) follows

In+i = Ke−C0+ 1
2

∫ T
0 m2du

n∑
i=1

Ni

(
−

∫ T
0 f mdu+Ci−ln K√∫ T

0 ( f 2+g2
i )du

, · · · ,
Ci−C j√∫ T

0

(
g2

i +g2
j−2ρi jgig j

)
du
, · · ·

)
. (3.21)

Hence, the proof of Theorem 3.1 is confirmed. �

Remark 3.1. Equation (3.6) displays the geometric Asian rainbow call on max option, which supports
the investor in choosing multiple (n) underlying assets to diversify risk. Suppose that an investor
purchases an option at time 0 and chooses whether to trade it at time T based on market conditions.
During this period, the price of the underlying asset is fluctuating randomly. In the absence of market-
based arbitrage opportunities, an option purchased at t = 0 takes into account the expectation of the
future asset price. Due to the path dependence of Asian rainbow options, it is necessary to determine
the mean value of the n assets being chosen for the period between purchase and execution. We employ
a geometric mean approach, which enables the option price to depend on both the asset price at
expiration and the average price over the time between purchase and execution. As a result, the risk
of market conditions changes can be reduced. The option price given in Theorem 3.1 supports both of
these risk reduction options.

The following Theorem 3.2 provides an analytical solution for the call option with the minimum
geometric mean of n underlying assets, where the option has the payoff Vc

min(T, S 1, S 2, · · · , S n) as:

Vc
min(T, S 1, S 2, · · · , S n) = max (min (G1(T, S 1),G2(T, S 2), . . . ,Gn(T, S n)) − K, 0) . (3.22)

which is the n-dimensional case of Eq (2.5). That means that the price of a call on min option is
determined by the minimum of the geometric mean of the n underlying assets. It implies by (2.8)
and (3.22) that the price of a call on min option is

Cmin(T, r, S 1, S 2, · · · , S n) = op(T, r, S 1, S 2, · · · , S n,Vc
min). (3.23)

Theorem 3.2. (Call on min option) Assume that the underlying assets S i (i = 1, 2, · · · , n) obey
generalized geometric Brownian motion, the stochastic interest rate follows the Vasicek model (2.1),
and the initial to expiration time range is 0 to T , then the price of the geometric Asian rainbow call on
min option Cmin(T, r, S 1, S 2, · · · , S n) is determined by the following equation

Cmin(T, r, S 1, S 2, · · · , S n) =
n∑

i=1
eCi−C0+ 1

2

∫ T
0 (( f−m)2+g2

i )duNi


∫ T

0 ( f ( f−m)+g2
i )du+Ci−ln K√∫ T

0 ( f 2+g2
i )du

, · · · ,

∫ T
0 gi

(
ρi jg j − gi

)
du −Ci + C j√∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du

, · · ·

︸                                             ︷︷                                             ︸
n−1


−Ke−C0+ 1

2

∫ T
0 m2du

n∑
i=1

Ni


−

∫ T
0 f mdu+Ci−ln K√∫ T

0 ( f 2+g2
i )du

, · · · ,
C j −Ci√∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du
, · · ·

︸                                           ︷︷                                           ︸
n−1


,

(3.24)
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where i, j ∈ {1, 2, · · · , n} (i , j), C0, m, Ci, f and gi are given in Eqs (2.10) and (2.12). Ni(·)
is the n-dimensional cumulative standard normal distribution with the covariance matrix Λi =

1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
...

...
. . .

...

ρ1n ρ2n · · · 1

 and

ρ1a =

∫ T
0 gi(ρibgb−gi)du∫ T

0

√
( f 2+g2

i )(g2
i +g2

b−2ρibgigb)du
, with a = 2, · · · , n,

b = a − 1, a ≤ i

b = a, a > i
,

ρcd =

∫ T
0 (g2

i −ρ
iegige−ρ

i f gig f +ρ
e f geg f )du∫ T

0

√
(g2

i +g2
e−2ρiegige)

(
g2

i +g2
f−2ρi f gig f

)
du
, with c = 2, · · · , n − 1,

e = c − 1, c ≤ i

e = c, c > i
,

d = c + 1, · · · , n,

 f = d − 1, d ≤ i

f = d, d > i
.

The proof of Theorem 3.2 is attached in A.

3.2. Put options

In order to price put options, the following Theorem 3.3 provides an analytical solution for the put
option with the maximum geometric mean of n underlying assets, where the option has the payoff

V p
max(T, S 1, S 2, · · · , S n) as

V p
max(T, S 1, S 2, · · · , S n) = max (K −max (G1(T, S 1),G2(T, S 2), · · · ,Gn(T, S n)) , 0) . (3.25)

This means that the price of a put on max option is determined by the maximum of the geometric mean
of the n underlying assets. It follows from Eqs (2.8) and (3.25) that the price of a put on max option

Pmax(T, r, S 1, S 2, · · · , S n) = op(T, r, S 1, S 2, · · · , S n,V
p
max). (3.26)

Through direct calculation, the following theorem provides the expression for the price of a put on
max option.

Theorem 3.3. (Put on max option) Assume that the underlying assets S i (i = 1, 2, · · · , n) obey
generalized geometric Brownian motion, the stochastic interest rate follows the Vasicek model (2.1),
and the initial to expiration time is 0 to T , then the price of the geometric Asian rainbow put on max
option Pmax(T, r, S 1, S 2, · · · , S n) is described by

Pmax(T, r, S 1, S 2, · · · , S n) = −
n∑

i=1
eCi−C0+ 1

2

∫ T
0 (( f−m)2+g2

i )duNi


−

∫ T
0 ( f ( f−m)+g2

i )du−Ci+ln K√∫ T
0 ( f 2+g2

i )du
, · · · ,

∫ T
0 gi

(
gi − ρ

i jg j

)
du + Ci −C j√∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du

, · · ·

︸                                             ︷︷                                             ︸
n−1


+Ke−C0+ 1

2

∫ T
0 m2du

n∑
i=1

Ni

( ∫ T
0 f mdu−Ci+ln K√∫ T

0 ( f 2+g2
i )du

, · · · ,
Ci −C j√∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du
, · · ·

︸                                           ︷︷                                           ︸
n−1

)
,

(3.27)
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where i, j ∈ {1, . . . , n} (i , j), C0, m, Ci, f and gi are taken as (2.10) and (2.12). Ni(·)
is the n-dimensional cumulative standard normal distribution with the covariance matrix Λi =

1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
...

...
. . .

...

ρ1n ρ2n · · · 1

 and

ρ1a =

∫ T
0 gi(ρibgb−gi)du∫ T

0

√
( f 2+g2

i )(g2
i +g2

b−2ρibgigb)du
, with a = 2, · · · , n,

b = a − 1, a ≤ i

b = a, a > i
,

ρcd =

∫ T
0 (g2

i −ρ
iegige−ρ

i f gig f +ρ
e f geg f )du∫ T

0

√
(g2

i +g2
e−2ρiegige)

(
g2

i +g2
f−2ρi f gig f

)
du
, with c = 2, · · · , n − 1,

e = c − 1, c ≤ i

e = c, c > i
,

d = c + 1, · · · , n,

 f = d − 1, d ≤ i

f = d, d > i
.

The proof of Theorem 3.3 is similar to the proof shown in Theorem 3.1, thus it is omitted here.
The put option with the minimum geometric mean of n underlying assets is summarized in

Theorem 3.4, where the option has the payoff

V p
min(T, S 1, S 2, · · · , S n) = max (K −min (G1(T, S 1),G2(T, S 2), · · · ,Gn(T, S n)) , 0) . (3.28)

Combining (2.8) and (3.28), we have the price of a put on min option

Pmin(T, r, S 1, S 2, · · · , S n) = op(T, r, S 1, S 2, · · · , S n,V
p
min). (3.29)

Straight forward computation yields that the following theorem provides the expression for the price
of a put on min option.

Theorem 3.4. (Put on min option) Assume that the underlying assets S i (i = 1, 2, · · · , n) obey
generalized geometric Brownian motion, the stochastic interest rate follows the Vasicek model (2.1),
and the initial to expiration time is 0 to T , then the price of the geometric Asian rainbow put on min
option Pmin(T, r, S 1, S 2, · · · , S n) is given by

Pmin(T, r, S 1, S 2, · · · , S n) = −
n∑

i=1
eCi−C0+ 1

2

∫ T
0 (( f−m)2+g2

i )duNi


−

∫ T
0 ( f ( f−m)+g2

i )du−Ci+ln K√∫ T
0 ( f 2+g2

i )du
, · · · ,

∫ T
0 gi

(
ρi jg j − gi

)
du −Ci + C j√∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du

, · · ·

︸                                             ︷︷                                             ︸
n−1


+Ke−C0+ 1

2

∫ T
0 m2du

n∑
i=1

Ni


∫ T

0 f mdu−Ci+ln K√∫ T
0 ( f 2+g2

i )du
, · · · ,

C j −Ci√∫ T
0

(
g2

i + g2
j − 2ρi jgig j

)
du
, · · ·

︸                                           ︷︷                                           ︸
n−1


,

(3.30)
where i, j ∈ {1, . . . , n} (i , j), C0, m, Ci, f and gi are stated in (2.10) and (2.12). Ni(·)

is the n dimensional cumulative standard normal distribution with the covariance matrix Λi =
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1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
...

...
. . .

...

ρ1n ρ2n · · · 1

 and

ρ1a =

∫ T
0 gi(gi−ρ

ibgb)du∫ T
0

√
( f 2+g2

i )(g2
i +g2

b−2ρibgigb)du
, with a = 2, · · · , n,

b = a − 1, a ≤ i

b = a, a > i
,

ρcd =

∫ T
0 (g2

i −ρ
iegige−ρ

i f gig f +ρ
e f geg f )du∫ T

0

√
(g2

i +g2
e−2ρiegige)

(
g2

i +g2
f−2ρi f gig f

)
du
, with c = 2, · · · , n − 1,

e = c − 1, c ≤ i

e = c, c > i
,

d = c + 1, · · · , n,

 f = d − 1, d ≤ i

f = d, d > i
.

Since the proof of this Theorem is similar to Theorem 3.2, we omit the proof here.

3.3. Parity relationship

For multi-asset options, put-call and min-max combined parity describe the relationship between
the prices of call on max, call on min, put on max, and put on min options with the same underlying
portfolio, strike price, and expiration date. This section presents this relationship for Asian rainbow
options based on stochastic interest rate dynamics equations obeying the Vasicek model (2.1). Here,
we fix n = 2 and summarize the relationship as the following theorem.

Theorem 3.5. The put-call and min-max combined parity relationship for two-asset geometric Asian
rainbow options under the Vasicek interest rate model (2.1) with a fixed strike price of K at maturity T
can be given by

Cmax(T, r, S 1, S 2) + Cmin(T, r, S 1, S 2) − Pmax(T, r, S 1, S 2) − Pmin(T, r, S 1, S 2)

= e−C0+ 1
2

∫ T
0 ( f−m)2du

(
eC1+ 1

2

∫ T
0 g2

1du + eC2+ 1
2

∫ T
0 g2

2du
)
− 2Ke−C0+ 1

2

∫ T
0 m2du,

(3.31)

where C0, m, C1, C2, f , g1 and g2 are respectively taken as (2.10) and (2.12).

Proof. For the sake of simplicity, we set

A1 =

∫ T
0 ( f ( f−m)+g2

1)du−ln K+C1√∫ T
0 ( f 2+g2

1)du
, B1 =

∫ T
0 g1(g1−ρg2)du+C1−C2√∫ T

0 (g2
1+g2

2−2ρg1g2)du
,

A2 =

∫ T
0 ( f ( f−m)+g2

2)du−ln K+C2√∫ T
0 ( f 2+g2

2)du
, B2 =

∫ T
0 g2(g2−ρg1)du−C1+C2√∫ T

0 (g2
1+g2

2−2ρg1g2)du
,

A3 =
−

∫ T
0 f mdu−ln K+C1√∫ T

0 ( f 2+g2
1)du

, B3 = C1−C2√∫ T
0 (g2

1+g2
2−2ρg1g2)du

,

A4 =
−

∫ T
0 f mdu−ln K+C2√∫ T

0 ( f 2+g2
2)du

, B4 = C2−C1√∫ T
0 (g2

1+g2
2−2ρg1g2)du

,

ρ1 =

∫ T
0 g1(g1−ρg2)du∫ T

0

√
( f 2+g2

1)(g2
1+g2

2−2ρg1g2)du
, ρ2 =

∫ T
0 g2(g2−ρg1)du∫ T

0

√
( f 2+g2

2)(g2
1+g2

2−2ρg1g2)du
,

e1 = eC1−C0+ 1
2

∫ T
0 (( f−m)2+g2

1)du, e2 = eC2−C0+ 1
2

∫ T
0 (( f−m)2+g2

2)du, e3 = e−C0+ 1
2

∫ T
0 m2du.
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Then, by direct calculating, the sum of the call on max and min option prices is given by

Cmax(T, r, S 1, S 2) + Cmin(T, r, S 1, S 2)

= e1 (N (A1, B1; ρ1) + N (A1,−B1;−ρ1)) + e2 (N (A2, B2; ρ2) + N (A2,−B2;−ρ2))

−Ke3 (N (A3, B3; ρ1) + N (A3,−B3;−ρ1)) − Ke3 (N (A4, B4; ρ2) + N (A4,−B4;−ρ2)) .

(3.32)

According to the properties of two-dimensional normal distribution, we have

N (A, B; ρ) + N (A,−B;−ρ)

=
∫ A

−∞

∫ B

−∞

1

2π
√

1−ρ2
e−

x2+y2−2ρxy
2(1−ρ2) dydx +

∫ A

−∞

∫ −B

−∞

1

2π
√

1−ρ2
e−

x2+y2+2ρxy
2(1−ρ2) dydx

=
∫ A

−∞

1

2π
√

1−ρ2

(∫ B

−∞
e−

x2+y2−2ρxy
2(1−ρ2) dy +

∫ −B

−∞
e−

x2+y2+2ρxy
2(1−ρ2) dy

)
dx

=
∫ A

−∞

1

2π
√

1−ρ2

∫ +∞

−∞
e−

x2+y2−2ρxy
2(1−ρ2) dydx

= N (A,+∞; ρ) .

(3.33)

Therefore, we can get

Cmax(T, r, S 1, S 2) + Cmin(T, r, S 1, S 2)

= e1N (A1,+∞; ρ1) + e2N (A2,+∞; ρ2) − Ke3 (N (A3,+∞; ρ1) + N (A4,+∞; ρ2)) .
(3.34)

Similarly, we sum the put on max and min option prices

Pmax(T, r, S 1, S 2) + Pmin(T, r, S 1, S 2)

= −e1 (N (−A1, B1;−ρ1) + N (−A1,−B1; ρ1)) − e2 (N (−A2, B2;−ρ2) + N (−A2,−B2; ρ2))

+Ke3 (N (−A3, B3;−ρ1) + N (−A3,−B3; ρ1)) + Ke3 (N (−A4, B4;−ρ2) + N (−A4,−B4; ρ2)) .

(3.35)

In view of (3.33), we obtain that

Pmax(T, r, S 1, S 2) + Pmin(T, r, S 1, S 2)

= −e1N (−A1,+∞;−ρ1) − e2N (−A2,+∞;−ρ2) + Ke3 (N (−A3,+∞;−ρ1) + N (−A4,+∞;−ρ2)) .
(3.36)

As a result, we deduce that

Cmax(T, r, S 1, S 2) + Cmin(T, r, S 1, S 2) − Pmax(T, r, S 1, S 2) − Pmin(T, r, S 1, S 2)

= e1 (N (A1,+∞; ρ1) + N (−A1,+∞;−ρ1)) + e2 (N (A2,+∞; ρ2) + N (−A2,+∞;−ρ2))

−Ke3 (N (A3,+∞; ρ1) + N (−A3,+∞;−ρ1)) − Ke3 (N (A4,+∞; ρ2) + N (−A4,+∞;−ρ2))

= e1 + e2 − 2Ke3.

(3.37)

The proof is hence complete. �

Remark 3.2. For the geometric Asian rainbow option using the stochastic interest rate obeying the
Vasicek model, the put-call and min-max combined parity formulas are provided in Eq (3.31). It means
that the sum of call on max, call on min, put on max, and put on min option prices is a fixed value. This
fixed value ensures that there is no arbitrage opportunity in the pricing formula of Theorems 3.1–3.4
and that the pricing formula is realistic and consistent with market conditions. Investors can construct
a portfolio of long and short positions to obtain additional returns from the portfolio.
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4. Monte Carlo simulations

This section discusses the simulated values from the Monte Carlo simulations and analytical values
from (3.6) for the multi-asset Asian rainbow call option.

4.1. Two-asset case

For convenience, we choose n = 2 and assume that the initial prices of two assets S 1 and S 2 are both
40, and the option expiry period is 6 months, i.e., T = 0.5. The stochastic volatility values σr = 0.1,
σ1 = 0.1 and σ2 = 0.2 are adopted, and other parameters are shown in Table 1.

Assume that the initial time is 0 and the expiration time is T , we divide the option period
[0,T ] into m equal intervals, namely, 0 = t0 < t1 < · · · < tm = T and the time interval
∆t = T

m , where m can be understood as the step size of the Monte Carlo simulation under a path.
S i(t j+1)
S i(t j)

(i = 1, 2; j = 0, 1, · · · ,m − 1) follows the log-normal distribution with a mean and variance of[
r(t j−1)e−β∆t + α

β

(
1 − e−β∆t

)
− 1

2σ
2
i

]
∆t and

(
σreβt j−1∆t + σi

)2
∆t, respectively. Then we can classify the

simulation procedure in the following four steps.
Step 1. Simulating the path of the underlying asset price and stochastic risk-free interest rate changes.
Combining time division and Brownian motion dW(t) = εd

√
∆t, where ε ∼ N(0, 1) is a standard

normal random variable, we derive

S 1(t1) = S 1(t0) + r(t0)S 1(t0)∆t + σ1S 1(t0)ε
√

∆t,

S 2(t1) = S 2(t0) + r(t0)S 2(t0)∆t + σ2S 2(t0)ε
√

∆t,

r(t1) = r(t0) + (α + βr(t0))∆t + σrε
√

∆t,
...

S 1(tm) = S 1(tm−1) + r(tm−1)S 1(tm−1)∆t + σ1S 1(tm−1)ε
√

∆t = S 1(T ),

S 2(tm) = S 2(tm−1) + r(tm−1)S 2(tm−1)∆t + σ2S 2(tm−1)ε
√

∆t = S 2(T ),

r(tm) = r(tm−1) + (α + βr(tm−1))∆t + σrε
√

∆t = r(T ).

(4.1)

Step 2. Iterating κ times in the first step, we obtain the underlying asset price and the risk-free rate
under the κ paths, namely,

S 1
1(t j), S 1

2(t j), r1(t j), · · · , S κ
1(t j), S κ

2(t j), rκ(t j), j = 0, 1, · · · ,m.

Step 3. Calculate the κ samples of call on max option payoff for the given κ paths

Vc
max

(
T, S k

1 , S
k
2

)
= max

e 1
m+1

m∑
j=0

ln S k
1 (t j)
− K, e

1
m+1

m∑
j=0

ln S k
2 (t j)
− K, 0

 , j = 0, 1, · · · ,m, k = 1, 2, · · · , κ.

(4.2)
Step 4. Calculate the sample mean to obtain the Monte Carlo simulation of the two-asset geometric
Asian rainbow call on max option price

Cmax(T, r, S 1, S 2) =
1
κ

κ∑
k=1

Vc
max

(
T, S k

1 , S
k
2

)
e
− T

m+1

m∑
j=0

rk(t j)
, j = 0, 1, · · · ,m, k = 1, 2, · · · , κ. (4.3)
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Table 1. Two-asset Asian rainbow call option simulation and analytical values.

α β K r(0) = 0.03 r(0) = 0.05 r(0) = 0.07
S-value A-value R-error(%) S-value A-value R-error(%) S-value A-value R-error(%)

ρ12 = −0.3

0.005 0.1 35 6.6460 6.7868 2.0745 6.7325 6.9223 2.7418 6.9021 7.0556 2.1760
0.005 0.1 40 1.9041 1.9943 4.5239 2.0572 2.1470 4.1842 2.2202 2.3030 3.5938
0.005 0.1 45 0.1435 0.1380 −4.0077 0.1497 0.1565 4.3391 0.1772 0.1772 −0.0330
0.005 0.2 35 6.6169 6.7843 2.4680 6.7384 6.9183 2.6009 6.9118 7.0501 1.9619
0.005 0.2 40 1.9332 1.9907 2.8885 2.0610 2.1410 3.7379 2.1878 2.2945 4.6526
0.005 0.2 45 0.1383 0.1375 −0.5979 0.1451 0.1557 6.7693 0.1676 0.1759 4.7166
0.01 0.2 35 6.6079 6.7886 2.6619 6.7140 6.9225 3.0111 6.8722 7.0541 2.5797
0.01 0.2 40 1.8893 1.9965 5.3676 2.0527 2.1470 4.3926 2.2250 2.3006 3.2840
0.01 0.2 45 0.1278 0.1382 7.4851 0.1488 0.1564 4.8857 0.1783 0.1768 −0.8617

ρ12 = 0.1

0.005 0.1 35 6.5672 6.5641 −0.0483 6.7499 6.7007 −0.7334 6.9295 6.8351 −1.3812
0.005 0.1 40 1.9170 1.8665 −2.7032 2.0299 2.0081 −1.0833 2.2194 2.1535 −3.0591
0.005 0.1 45 0.1239 0.1377 10.0102 0.1541 0.1561 1.2815 0.1821 0.1766 −3.0890
0.005 0.2 35 6.5911 6.5616 −0.4509 6.7319 6.6966 −0.5266 6.9053 6.8294 −1.1116
0.005 0.2 40 1.8745 1.8631 −0.6122 2.0261 2.0025 −1.1796 2.1733 2.1456 −1.2931
0.005 0.2 45 0.1377 0.1373 −0.2970 0.1521 0.1553 2.0321 0.1817 0.1754 −3.6172
0.01 0.2 35 6.5805 6.5659 −0.2214 6.7531 6.7008 −0.7797 6.8811 6.8335 −0.6955
0.01 0.2 40 1.8949 1.8685 −1.4097 2.0498 2.0080 −2.0806 2.1720 2.1512 −0.9669
0.01 0.2 45 0.1311 0.1380 5.0011 0.1609 0.1561 −3.1260 0.1706 0.1762 3.1849

ρ12 = 0.5

0.005 0.1 35 6.5993 6.2978 −4.7870 6.7393 6.4357 −4.7167 6.9443 6.5713 −5.6759
0.005 0.1 40 1.8975 1.7139 −10.7117 1.9855 1.8438 −7.6846 2.2101 1.9781 −11.7302
0.005 0.1 45 0.1381 0.1369 −0.9423 0.1617 0.1549 −4.4270 0.1732 0.1749 0.9325
0.005 0.2 35 6.6062 6.2952 −4.9394 6.7847 6.4315 −5.4926 6.8673 6.5655 −4.5961
0.005 0.2 40 1.8990 1.7108 −10.9983 2.0482 1.8386 −11.3977 2.1742 1.9707 −10.3279
0.005 0.2 45 0.1431 0.1364 −4.8938 0.1462 0.1541 5.0882 0.1828 0.1736 −5.2513
0.01 0.2 35 6.5984 6.2997 −4.7413 6.7487 6.4359 −4.8609 6.8823 6.5698 −4.7574
0.01 0.2 40 1.8948 1.7157 −10.4396 2.0241 1.8437 −9.7833 2.1892 1.9759 −10.7921
0.01 0.2 45 0.1307 0.1371 4.6602 0.1494 0.1548 3.5128 0.1742 0.1745 0.1704

This table displays the prices of two-asset geometric Asian rainbow call on max options, where S 1(0) = 40, S 2(0) = 40,
T = 0.5, σ1 = 0.1, σ2 = 0.2, σr = 0.1, m = 100 and κ = 10000. “A-value”, “S-value” and “R-error” represent “analytical
value”, “simulated value” and “relative error”, respectively. Furthermore, (analytical value - simulated value)/analytical value
is the formula for the relative error.

Using the above four steps, we calculate the Monte Carlo simulation values (see S-value in Table 1).
The strike price is set at K = 35, 40, 45, the initial risk-free rate is set at r(0) = 0.03, 0.05, 0.07, the
drift term is set at α = 0.005, 0.01, and the diffusion term is set at β = 0.1, 0.2, and the correlation
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coefficient is set at ρ12 = −0.3, 0.1, 0.5, respectively. We separately combine each parameter. As
an example, when K = 35, r(0) = 0.03, α = 0.005, and β = 0.1, ρ is equal to −0.3, 0.1, and 0.5,
respectively. The pricing results of Eq (3.6) are calculated using the same inputs; for details, see A-
values in Table 1. R-error in Table 1 shows the results of our comparison of the errors between the
simulated and analyzed values.

Table 1 demonstrates how the impact of changing parameters on the option price can have a
significant economic impact when the strike price K is allowed to rise. Take r(0) = 0.03, α = 0.005,
β = 0.1, and ρ12 = −0.3 as an example, the simulated prices for K equal to 35, 40, and 45 are
6.6460, 1.9041, and 0.1435, respectively. The option price may decrease significantly with an increase
in the strike price of K. The same phenomenon is noted for the analytical values, 6.7868, 1.9943,
and 0.1380, respectively. When K = 35, the analytical value is greater than the simulated value,
and the relative error between the two values is 2.0745%. The simulated value, analytical value, and
relative errors are 6.7325, 6.9223, and 2.7418%, respectively, when the other parameters are held
constant and the initial risk-free rate, r(0), is raised to 0.05. The errors do not significantly rise as r(0)
increases. This indicates that our pricing results are reasonable. The simulated, analyzed, and relative
errors are, respectively, 6.5672, 6.5641, and −0.0483% when all other parameters remain the same and
the correlation coefficient ρ is increased to 0.1. There is no discernible difference in the errors after
changing ρ. Similar results are discovered for the other parameters as well. As can be seen, changing
one of the parameters does not affect the relative errors but changes the simulated or analytical values.
In other words, the relative errors do not significantly change when a particular parameter is changed.
The results of the pricing formula are accurate and reasonable following the verification of the Monte
Carlo simulation.

4.2. Three-asset case

Taking n = 3, we set the initial prices of three assets S 1, S 2 and S 3 are all 40, and the option
expiry period is still 6 months, i.e., T = 0.5. The stochastic volatility values are respectively σr = 0.1,
σ1 = 0.1, σ2 = 0.2 and σ3 = 0.3, and other parameters are shown in Table 2. Since the steps of the
simulation procedure are comparable to those in the case of the two assets, we omit the details.

The correlation coefficients
(
ρ12, ρ13, ρ23

)
are chosen to be (−0.5,−0.1, 0.3); (−0.4, 0, 0.4); and

(−0.3, 0.1, 0.5). The other parameters are the same as those in Table 1. The simulated prices for K
equal to 35, 40, and 45 in Table 2 at r(0) = 0.03, α = 0.005, β = 0.1,

(
ρ12, ρ13, ρ23

)
= (−0.5,−0.1, 0.3)

are 8.0668, 3.2050, and 0.5974, respectively. The change in the strike price K will significantly lower
the option price, just as it did in the case of n = 2. The same phenomenon is seen for the analytical
values, which are 7.9958, 3.1468, and 0.6188, respectively. When K = 35, the relative error—the
analytical value being lower than the simulated value—is calculated as 0.8886%. The simulated value,
analytical value, and relative errors are 8.1916, 8.124, and −0.8260%, respectively, when the initial
risk-free rate, r(0), is increased to 0.05 while the other parameters are held constant. With an increase
in r(0), the errors do not significantly change. This matches the finding in Table 1’s results. The relative
error does not grow (or possibly even shrink) in proportion to the increase in the number of underlying
assets n when comparing the results of Table 1 with 2.7418%. This shows that the pricing formula
also works in the multi-asset case and is not just applicable in the two-asset case. The accuracy of the
pricing formula is confirmed following Monte Carlo simulations for the n = 2 and n = 3 cases.
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Table 2. Three-asset Asian rainbow call option simulation and analytical values.

α β K r(0) = 0.03 r(0) = 0.05 r(0) = 0.07
S-value A-value R-error(%) S-value A-value R-error(%) S-value A-value R-error(%)

ρ12 = −0.5, ρ13 = −0.1, ρ23 = 0.3

0.005 0.1 35 8.0668 7.9958 −0.8886 8.1916 8.1245 −0.8260 8.3443 8.2508 −1.1325
0.005 0.1 40 3.2050 3.1468 −1.8492 3.3765 3.3048 −2.1697 3.5716 3.4641 −3.1038
0.005 0.1 45 0.5974 0.6188 3.4508 0.6497 0.6647 2.2613 0.6926 0.7134 2.9154
0.005 0.2 35 8.1270 7.9937 −1.6681 8.1799 8.1210 −0.7250 8.2983 8.2461 −0.6329
0.005 0.2 40 3.2335 3.1434 −2.8667 3.3940 3.2989 −2.8819 3.5601 3.4559 −3.0151
0.005 0.2 45 0.5970 0.6176 3.3479 0.6290 0.6628 5.0959 0.6887 0.7106 3.0822
0.01 0.2 35 8.0731 7.9974 −0.9458 8.2268 8.1246 −1.2569 8.3148 8.2496 −0.7906
0.01 0.2 40 3.2639 3.1492 −3.6419 3.4201 3.3048 −3.4894 3.5484 3.4618 −2.4998
0.01 0.2 45 0.5957 0.6193 3.8144 0.6507 0.6646 2.0942 0.7227 0.7126 −1.4261

ρ12 = −0.4, ρ13 = 0, ρ23 = 0.4

0.005 0.1 35 8.0462 7.9817 −0.8085 8.1941 8.1149 −0.9763 8.3076 8.2456 −0.7526
0.005 0.1 40 3.2615 3.0574 −6.6747 3.3858 3.2134 −5.3662 3.5669 3.3713 −5.7990
0.005 0.1 45 0.6004 0.6102 1.5977 0.6512 0.6545 0.5136 0.7065 0.7016 −0.7007
0.005 0.2 35 8.0539 7.9795 −0.9321 8.1526 8.1112 −0.5099 8.3338 8.2406 −1.1314
0.005 0.2 40 3.2010 3.0539 −4.8160 3.3980 3.2076 −5.9378 3.5394 3.3632 −5.2397
0.005 0.2 45 0.5934 0.6091 2.5736 0.6957 0.6527 −6.5867 0.7202 0.6989 −3.0419
0.01 0.2 35 8.0555 7.9834 −0.9027 8.1895 8.1150 −0.9181 8.2868 8.2443 −0.5154
0.01 0.2 40 3.2408 3.0597 −5.9185 3.3733 3.2134 −4.9746 3.5800 3.3691 −6.2619
0.01 0.2 45 0.6312 0.6107 −3.3471 0.6685 0.6545 −2.1391 0.6844 0.7008 2.3299

ρ12 = −0.3, ρ13 = 0.1, ρ23 = 0.5

0.005 0.1 35 8.0715 7.9795 −1.1522 8.1421 8.1177 −0.3003 8.3594 8.2534 −1.2843
0.005 0.1 40 3.2284 2.9705 −8.6823 3.4442 3.1248 −10.2194 3.5793 3.2818 −9.0653
0.005 0.1 45 0.6002 0.5991 −0.1907 0.6357 0.6418 0.9551 0.6824 0.6871 0.6861
0.005 0.2 35 8.0552 7.9772 −0.9781 8.2085 8.1138 −1.1662 8.3083 8.2481 −0.7303
0.005 0.2 40 3.2099 2.9670 −8.1873 3.4146 3.1190 −9.4760 3.4833 3.2736 −6.4050
0.005 0.2 45 0.6086 0.5980 −1.7708 0.6541 0.6401 −2.1861 0.7050 0.6846 −2.9808
0.01 0.2 35 8.0563 7.9813 −0.9393 8.2468 8.1179 −1.5880 8.3783 8.2520 −1.5312
0.01 0.2 40 3.2387 2.9727 −8.9485 3.4103 3.1248 −9.1362 3.5475 3.2795 −8.1743
0.01 0.2 45 0.6195 0.5996 −3.3154 0.6466 0.6417 −0.7571 0.7249 0.6863 −5.6208

This table shows the prices of three-asset geometric Asian rainbow call on max options, where S 1(0) = S 2(0) = S 3(0) =

40, T = 0.5, σ1 = 0.1, σ2 = 0.2, σ3 = 0.3, σr = 0.1, m = 100 and κ = 10000. “A-value”, “S-value” and “R-error”
represent “analytical value”, “simulated value” and “relative error”, respectively. Furthermore, (analytical value - simulated
value)/analytical value is the formula for the relative error.
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5. Sensitivity analysis

To assess the effectiveness of the model, we look at the effects of a few key parameters on the
analysis findings in this section. The strike price K, the correlation of the underlying assets ρi j (i =

1, 2; j = 2, 3; i < j), and the initial value of the risk-free interest rate r(0) were the main factors we
took into account. As a result, we can see how these parameters influence how much the option price
changes.

5.1. Sensitivity analysis of interest rate randomness

The effects of stochastic and constant interest rates on option prices are contrasted in this subsection.
In Figure 1, we depict the changes in Asian rainbow call on max option prices at two assets (n = 2)
and three assets (n = 3) with the stochastic or constant interest rates, respectively. The initial risk-free
interest rate is r(0), which ranges from −0.1 to 0.1. When the interest rate is stochastic, the drift term,
diffusion term, and volatility are all set to α = 0.01, β = 0.2, and σr = 0.2, respectively. The drift
term, diffusion term, and volatility are defined by α = 0, β = −1, and σr = 0 when the interest rate
is constant. From Figure (1a) and (1b), we can see that an increase in the risk-free interest rate causes
the option’s price to rise, but the option price increases more slowly at a stochastic rate than it does
at a constant interest rate. This is a result of the stochastic interest rate’s volatility, which affects a
portion of the option price and makes it less sensitive than it would be if the interest rate were constant.
In other words, under the stochastic interest rate, the option price is less influenced by the risk-free
interest rate’s size, reducing the dependence of the option price on the interest rate.

(a) Two-asset Asian rainbow call on max option price v.s.
the initial risk-free interest rate r(0), when S 1 = S 2 = K =

40 and ρ12 = 0.5

(b) Three-asset Asian rainbow call on max option price v.s.
the initial risk-free interest rate r(0), when S 1 = S 2 = S 3 =

K = 40 and ρ12 = −0.3, ρ13 = 0.1, ρ23 = 0.5

Figure 1. Comparison of two/three-asset option price with the constant or stochastic risk-free
interest rate, where T = 1, σ1 = 0.1, σ2 = 0.2, and σ3 = 0.3.

Figure 2 shows how the risk-free interest rate changes as expiration T increases, where the range
of the option’s expiration period, T , is 0 to 2. The other parameters of interest rates are the same as in
Figure 1. Figure (2a) and (2b) illustrate that an extension of the expiration period causes the option’s
price to rise. The impact of the expiration period on the option price will, however, be diminished and
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will rise logarithmically at the stochastic interest rate. The price of options rises more quickly over
time with a constant interest rate. The stochastic interest rate will not produce an absolute return and
can be viewed as a risk if the interest rate changes at random. Options will not experience the same
absolute return as a constant rate when this risk is present. Therefore, with a stochastic interest rate,
the option’s price must be reduced in order to offset the risk that the interest rate poses, preventing the
price from rising too quickly as the time period is extended.

(a) Two-asset Asian rainbow call on max option price v.s.
the maturities T , when S 1 = S 2 = K = 40 and ρ12 = 0.5

(b) Three-asset Asian rainbow call on max option price v.s.
the maturities T , when S 1 = S 2 = S 3 = K = 40 and ρ12 =

−0.3, ρ13 = 0.1, ρ23 = 0.5

Figure 2. Comparison of two/three-asset option price with the constant or stochastic risk-free
interest rate, where r(0) = 0.7, σ1 = 0.1, σ2 = 0.2, and σ3 = 0.3.

5.2. Sensitivity analysis of the initial risk-free interest rate

Figure (3a) and (3b) respectively depict the changes in Asian rainbow call on max option prices at
two-assets (n = 2) and three-assets (n = 3) with the strike price K ranging from 35 to 45 for the initial
risk-free interest rate r(0) is equal to 0.03, 0.05, and 0.07. For two assets n = 2 and three assets n = 3,
we set the initial prices S i (i = 1, 2) and S j ( j = 1, 2, 3) to be all 40 respectively, and the option expiry
period is still 6 months, i.e., T = 0.5. The stochastic volatility values are σr = 0.1, σ1 = 0.1, σ2 = 0.2,
and σ3 = 0.3, respectively. The correlation of the two and three underlying assets are respectively
ρ12 = 0.5 and ρ12 = −0.3, ρ13 = 0.1, ρ23 = 0.5.

The option price rises with the initial risk-free interest rate r(0) at the same strike price K, as shown
in Figure 3. The expected future return of the underlying asset will rise along with the rise in the
risk-free interest rate when the price of the underlying asset remains constant. When discounted time
prices are taken into account, a rise in the return on asset value appreciation, however, results in a
fall in the value of the discount. Investors who purchase call options will profit when the price of
options increases due to the higher risk-free rate. Furthermore, investing in stocks will cost more than
purchasing the same number of call options. In the end, when interest rates are high, investors prefer
to purchase call options because it is more expensive to buy stocks and hold them until they mature.
Figure 3 also demonstrates that as the strike price K rises, the option price gradually converges to 0.
It is more challenging for investors to profit from the options trade at expiration when the strike price
of K is very high. As a result of discounting to a very short initial time, the option price converges to
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zero.
Additionally, as can be seen in Figure 4, the option price of the two/three-asset Asian rainbow

increases as the time to maturity T increases and decreases as the strike price K increases. For call
options, the underlying asset price continues to rise over time. Therefore, extending the strike time
is beneficial for investors to meet their desired expectations. The longer the term of the option, the
greater the option’s time value, which in turn increases the option price.

(a) The prices of the two-asset Asian rainbow call on max
option v.s. the strike price K, when the initial value of the
risk-free interest rate r(0) = 0.03, 0.05, and 0.07, S 1 = S 2 =

40 and ρ12 = 0.5

(b) The prices of the three-asset Asian rainbow call on max
option v.s. the strike price K, when the initial value of the
risk-free interest rate r(0) = 0.03, 0.05, and 0.07, S 1 = S 2 =

S 3 = 40 and ρ12 = −0.3, ρ13 = 0.1, ρ23 = 0.5

Figure 3. The option’s price at various strike prices (K) under various (r(0)), where T =

0.5, σr = 0.1, σ1 = 0.1, σ2 = 0.2, and σ3 = 0.3.
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(a) Two-asset Asian rainbow call on max option price
v.s. the strike price K and maturities T , when the initial
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(b) Three-asset Asian rainbow call on max option price
v.s. the strike price K and maturities T , when the initial
value of the risk-free interest rate r(0) = 0.03, S 1 =
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Figure 4. Comparison of two/three-asset option price with various strike prices (K) and
maturities (T ), where σr = 0.1, σ1 = 0.1, σ2 = 0.2, and σ3 = 0.3.
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5.3. Sensitivity analysis of the correlation coefficient of underlying assets

Asian rainbow call option prices at n = 2 and n = 3 are displayed in Figure (5a) and (5b),
respectively, with strike prices K ranging from 35 to 45 and various correlation coefficients of the
underlying asset ρi j (i = 1, 2; j = 2, 3; i < j).

As can be seen in Figure 5, the higher correlation coefficient of the underlying assets, ρi j, increases
the likelihood that the underlying assets S i and S j will rise or fall together. The implied volatility of
the option is higher because the Asian Rainbow call on max option is based on the higher price of
the underlying asset. The price of options has increased as implied volatility has increased. Implied
volatility, however, only has a modest impact on option prices. As a result, the variations in option
prices under the various correlation coefficients are not significant when the strike price K is high.

(a) The prices of the two-asset Asian rainbow call on
max option v.s. the strike price K, when the correlation
coefficient of underlying assets ρ = ρ12 = −0.3, 0.1 and 0.5

(b) The prices of the three-asset Asian rainbow call on max
option v.s. the strike price K with different correlation
coefficients ρi j (i = 1, 2; j = 2, 3; i < j)

Figure 5. The option’s price at various strike prices (K) under various (ρi j).

6. Discussion

In this study, we take into account the pricing of geometric Asian rainbow options for multiple
assets (n) when the stochastic interest rate followed the Vasicek model. Our study focuses not only on
the use of stochastic interest rates but also more importantly on the expansion of the asset dimension.
This is also the significance of our study on rainbow options. The relevance of multi-asset options in
diversifying risk is obvious and is one of the purposes of this work. In detail, we propose an option
payoff based on the geometric mean using the Vasicek model and the underlying asset price model
combined. Four Asian rainbow option pricing formulas, including a call on max, call on min, put
on max, and put on min option, are derived through rigorous derivation. These four options’ pricing
outcomes all satisfy the option parity relationship. Put-call and min-max combination parity theories
are suggested based on this, and justifications are provided. Utilizing Monte Carlo simulations, the
option prices were determined, and the validity of the pricing formulas was confirmed. In order to
further demonstrate the compatibility of the pricing formulas with the financial derivatives market, a
sensitivity analysis of variables including strike price, the initial value of risk-free rate, correlation
coefficient, and strike time is carried out.
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Certain limitations still exist in our model (2.2). To define time-varying interest rates, some
stochastic processes are generally used: the Vasicek model, the CIR model, and the Hull-White model,
which is an expansion of the Vasicek and CIR interest-rate models. In this study, we are only concerned
with the former. However, it is reasonable to speculate that in some situations, the market’s predictions
about future interest rates include time-dependent parameters. The results in the Vasicek model might
not be the same as those of the CIR model and the Hull-White model. Additionally, it might be valuable
to search for a more inclusive and liberal result when choosing a stochastic interest rate model. We
shall deploy these in future work.
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A. Proof of Theorem 3.2

Proof. From Eq (3.22), the payoff of the call on min option Vc
min(T, S 1, S 2, · · · , S n) can be expressed

by the following equation

Vc
min(T, S 1, S 2, · · · , S n) = (G1(T, S 1) − K)I{G1(T,S 1)≥K,G2(T,S 2)≥G1(T,S 1),··· ,Gn(T,S n)≥G1(T,S 1)}

+(G2(T, S 2) − K)I{G2(T,S 2)≥K,G1(T,S 1)≥G2(T,S 2),··· ,Gn(T,S n)≥G2(T,S 2)}

+ · · · · · ·

+(Gn(T, S n) − K)I{Gn(T,S n)≥K,G1(T,S 1)≥Gn(T,S n),··· ,Gn−1(T,S n−1)≥Gn(T,S n)}.

(A.1)

Set Ai = {Gi(T, S i) ≥ K, · · · ,G j(T, S j) ≥ Gi(T, S i), · · · } (i, j = 1, 2, · · · , n, i , j), based on Eqs (2.3)
and (2.11), we can obtain

Ai =

{∫ T

0
f dWr(u) +

∫ T

0
gidWi(u) ≥ ln K −Ci, · · · ,

∫ T

0
g jdW j(u) −

∫ T

0
gidWi(u) ≥ Ci −C j, · · ·

}
.

(A.2)
It follows from Eq (3.23), we derive the call on min option price as

Cmin(T, r, S 1, S 2, · · · , S n) =
n∑

i=1
E

[
e−

∫ T
0 r(t)dt+ 1

T

∫ T
0 ln S i(t)dtIAi

]
− K

n∑
i=1
E

[
e−

∫ T
0 r(t)dtIAi

]
=

n∑
i=1

Ii −
n∑

i=1
In+i.

(A.3)

It follows from (2.9), (2.11) and (A.2) that we compute

Ii = eCi−C0E
[
e
∫ T

0 ( f−m)dWr(u)+
∫ T

0 gidWi(u)I{ ∫ T
0 f dWr(u)+

∫ T
0 gidWi(u)≥ln K−Ci,··· ,

∫ T
0 g jdW j(u)−

∫ T
0 gidWi(u)≥Ci−C j,···

}] , (A.4)

where i, j = 1, 2, · · · , n and i , j. Taking

Z0 =
∫ T

0
( f − m) dWr(u) +

∫ T

0
gidWi(u), i = 1, 2, · · · , n,

Z1 =
∫ T

0
f dWr(u) +

∫ T

0
gidWi(u), i = 1, 2, · · · , n,

Za =
∫ T

0
g jdW j(u) −

∫ T

0
gidWi(u), a = 2, · · · , n, i, j = 1, 2, · · · , n, i , j,

(A.5)

due to dW(u) = εd
√

u and ε ∼ N(0, 1) is a standard normal random variable, then Z0 is rewritten as

Z0 = εr

∫ T

0
( f − m) d

√
u + εi

∫ T

0
gid
√

u, i = 1, 2, · · · , n, (A.6)
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and the variance of the random variable Z0 is

σ2
0 =

∫ T

0

(
( f − m)2 + g2

i

)
du, i = 1, 2, · · · , n. (A.7)

Similarly, the variances of Z1 and Za take the form of

σ2
1 =

∫ T

0

(
f 2 + g2

i

)
du, i = 1, 2, · · · , n, (A.8)

and
σ2

a =
∫ T

0

(
g2

i + g2
j − 2ρi jgig j

)
du, a = 2, · · · , n, i, j = 1, 2, · · · , n, i , j, (A.9)

respectively. The correlation coefficients between the n + 1 random variables Z0, Z1, Za (a = 2, · · · , n)
satisfy

ρ01 =

∫ T
0 ( f ( f−m)+g2

i )du
σ0σi

, i = 1, 2, · · · , n, (A.10)

ρ0a =

∫ T
0 gi(ρibgb−gi)du

σ0σa
, a = 2, · · · , n,

b = a − 1, a ≤ i

b = a, a > i
, i = 1, 2, · · · , n, (A.11)

ρ1a =

∫ T
0 gi(ρibgb−gi)du

σ1σb
, a = 2, · · · , n,

b = a − 1, a ≤ i

b = a, a > i
, i = 1, 2, · · · , n, (A.12)

and

ρcd =

∫ T
0 (g2

i −ρ
iegige−ρ

i f gig f +ρ
e f geg f )du∫ T

0

√
(g2

i +g2
e−2ρiegige)

(
g2

i +g2
f−2ρi f gig f

)
du
, c = 2, · · · , n − 1,

e = c − 1, c ≤ i

e = c, c > i
,

d = c + 1, · · · , n,

 f = d − 1, d ≤ i

f = d, d > i
,

i = 1, 2, · · · , n.

(A.13)

Summing up the above, (Z0,Z1, · · · ,Zn)T ∼ N(0, Λ̃i) with Λ̃i =
σ2

0 ρ01σ0σ1 · · · ρ0nσ0σn

ρ01σ0σ1 σ2
1 · · · ρ1nσ1σn

...
...

. . .
...

ρ0nσ0σn ρ1nσ1σn · · · σ2
n

, i = 1, 2, · · · , n. In view of Corollary 3.1, we can obtain

Ii = eCi−C0E

[
eσ0

Z0
σ0 I{

σ1
Z1
σ1
≥ln K−Ci,··· ,σa

Za
σa
≥Ci−C j,···

}]
= eCi−C0+ 1

2σ
2
0 Ni

(
ρ01σ0σ1−ln K+Ci

σ1
, · · · ,

ρ0aσ0σa−Ci+C j

σa
, · · ·

)
= eCi−C0+ 1

2

∫ T
0 (( f−m)2+g2

i )duNi

( ∫ T
0 ( f ( f−m)+g2

i )du+Ci−ln K√∫ T
0 ( f 2+g2

i )du
, · · · ,

∫ T
0 gi(ρi jg j−gi)du−Ci+C j√∫ T

0

(
g2

i +g2
j−2ρi jgig j

)
du
, · · ·

)
,

(A.14)

where i, j = 1, 2, · · · , n, i , j, C0, m, Ci, f and gi are defined in Eqs (2.10) and (2.12). Ni(·)
is the n-dimensional cumulative standard normal distribution with the covariance matrix Λi =

1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
...

...
. . .

...

ρ1n ρ2n · · · 1

, where the correlation coefficients ρ1a and ρcd are defined in Eqs (A.12) and (A.13).
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In addition, In+i (i, j = 1, 2, · · · , n, i , j) satisfies

In+i = Ke−C0+ 1
2

∫ T
0 m2du

n∑
i=1

Ni

(
−

∫ T
0 f mdu+Ci−ln K√∫ T

0 ( f 2+g2
i )du

, · · · ,
C j−Ci√∫ T

0

(
g2

i +g2
j−2ρi jgig j

)
du
, · · ·

)
. (A.15)

This completes the proof of Theorem 3.2. �
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