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1. Introduction

Line geometry possesses a close relationship to spatial kinematics and has thence found
implementations in robot kinematics and mechanisms [1–4]. Spatial kinematics considers the intrinsic
properties of the line trajectory from the notions of ruled surfaces in differential line geometry. As
we know, in spatial kinematics, the instantaneous screw axis (ISA) of a moveable body forms a pair
of ruled surfaces, i.e., the moveable and stationary axodes, with ISA as their generating line in the
moveable space and in the stationary space, respectively. In the movement the axodes roll and slide
relative to each other in a private way such that the tangential contact between the axodes is constantly
maintained over the entire length of the two matting rulings (one being in each axode), which together
define the ISA at any instant. It is considerable that not only does a private movement give rise to
a unique set of axodes, but the converse also applies. This means that, should the axodes of any
movement be known, the particular movement can be created without knowledge of the physical
members of the mechanism, their configuration, specific dimensions, or the means by which they
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are fastened. The use of axodes in the process of synthesis becomes apparent when the axodes are
intermediary between the physical mechanism and the actual movement of its members [5–9].

Rather unexpectedly, dual numbers have been utilized to consider the movement of a line space;
they appear even to be the more convenient tools for this end. In dual number and screw algebra, the E.
Study map concludes that the family of the dual points on the dual unit sphere in the dual 3-space D3 is
in one-to-one correspondence with the family of all oriented lines in Euclidean 3-space E3. According
to this map, a one parameter family of points (a dual curve) on the dual unit sphere matches to a one-
parameter family of oriented lines (ruled surface) in E3. Additional features of the E. Study’s map can
be found in [10–19].

In this work, based on the axodes, the invariants and the features of a line trajectory in spatial
kinematics are investigated. Meanwhile, a new height dual function is defined and utilized to extend
the planar and spherical results to spatial kinematics. The classical results of spatial kinematics are
obtained in this way, as well as new loci of lines which instantaneously generate special trajectories.
The torsion line congruence is established and researched in detail, and the invariants of the axodes are
utilized for establishing a new proof of the Disteli formulae.

2. Elements of screw calculus

In this section, we give a brief outline of the theory of dual numbers and dual vectors [1–5, 10–18].
If x, and x∗ are real numbers, the number x̂ = x + εx∗ is named a dual number. Here, ε is a dual unit
subject to ε , 0, ε2 = 0, ε.1 = 1.ε = ε. The set of dual numbers, D, creates a commutative ring having
the numbers εx∗(x∗ ∈ R) as divisors of zero, not a field. No number εx∗ has inverse in the algebra.
However, the other laws of the algebra of dual numbers are the same as of the complex numbers. The
set

D3 = {̂x:= x + εx∗ =(x̂1, x̂2, x̂3)}, (2.1)

together with the Euclidean scalar product

< x̂, ŷ >= x̂1̂y1 + x̂2̂y2 + x̂3̂y3, (2.2)

forms the so named dual 3-space D3. This yields

< f̂1, f̂1 >=< f̂2, f̂2 >=< f̂3, f̂3 >= 1,
f̂1 × f̂2 = f̂3, f̂2 × f̂3 = f̂1, f̂3 × f̂1 = f̂2,

(2.3)

where f̂1, f̂2, and f̂3, are the dual base at the origin point 0̂ (0, 0, 0) of the dual 3-space D3. Then, a dual
vector x̂ = (x̂1, x̂2, x̂3)t has coordinates x̂i = (xi + εx∗i ) ∈ D. If x , 0, the norm

∥∥∥̂x
∥∥∥ of x̂ is defined by

∥∥∥̂x
∥∥∥ =

√∣∣∣< x̂, x̂ >
∣∣∣ = ‖x‖ (1+ε

< x, x∗ >
‖x‖2

).

Then, the vector x̂ is named a dual unit vector if
∥∥∥̂x

∥∥∥2
=1. It is evident that∥∥∥̂x

∥∥∥2
= 1⇐⇒ ‖x‖2 = 1, < x, x∗>=0. (2.4)
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The six components xi, x∗i (i = 1, 2, 3) of x and x∗ are named the normed Plücker coordinates of x̂. The
dual unit sphere is:

K = {̂x∈D3 | x̂2
1 + x̂2

2 + x̂2
3 = 1}.

Via this we have the E. Study map [1–5]: The set of points on dual unit sphere K in the dual 3-space D3

are in one-to-one correspondence with the set of oriented lines in the Euclidean 3-space E3.

The representation of oriented lines in E3 by dual unit vectors brings sundry advantages, and from
now on we do not distinguish between oriented lines and their corresponding dual unit vectors.

2.1. One-parameter dual spherical movements

Let Km and K f be two dual unit spheres with 0̂ as a mutual center in D3. Let {̂e} = {̂0; ê1, ê2, ê3}

and {̂f} = {̂0; f̂1, f̂2, f̂3} be two orthonormal dual frames rigidly related with Km and K f , respectively. If
we set {̂f} as stationary, whereas the elements of set {̂e} are functions of a real parameter t ∈ R (say, the
time), then we may say that Km moves with respect to K f . This movement is named a one-parameter
dual spherical movement and will be denoted by Km/K f . According to the E. Study map, if Km and K f

represent to the line spaces Lm and L f , respectively, then Km/K f represents the one-parameter spatial
movement Lm/L f . Therefore, Lm is the moveable space with respect to the fixed space L f in E3.

Let us now introduce a further dual unit sphereKr addressed by the orthonormal dual frame {̂ζ} = {̂0;
ζ̂1, ζ̂2, ζ̂3}, which is considered by the 1st order instantaneous properties of the movement as follows:

ζ̂1(t) =ζ1(t) + εζ∗1(t) as the ISA of the movement Lm/L f , and ζ̂2(t) :=ζ2(t) + εζ∗2(t) =
dζ̂1
dt

∥∥∥∥dζ̂1
dt

∥∥∥∥−1
as

the mutual central normal of two detached screw axes. A third dual unit vector is ζ̂3(t) = ζ̂1 × ζ̂2.
{̂ζ} is named the relative Blaschke frame, and the lines ζ̂1, ζ̂2, and ζ̂3 intersect at the mutual striction
(central) point s of πi (i = m, f ) [5–9]. We have dŝi = dsi + εds∗i =

∥∥∥∥dζ̂1
dt

∥∥∥∥ dt = p̂(t)dt as the dual arc

length of ζ̂1(t). Since p̂(t) = p + εp∗ contains only first derivatives of ζ̂1(t), it is a first order estimate
of the movement Km/K f , in specific, its dual speed. We let dŝ = ds + εds∗ to designate dŝi, since they
are equal to each other. The tangent vector of the striction curve s(s) is given by [10–16]:

ds
ds

= Γi(s)ζ1(s) + µ(s)ζ3(s). (2.5)

The distribution parameter of πi is

µ(s) :=
p∗

p
=

ds∗

ds
. (2.6)

Proposition 1. In the movement Lm/L f the axodes have the ISA of the position in common, that is, the
moveable axode is fastened to the stationary axode over the ISA in the 1st order at any instant t (see
Figure 1).
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Figure 1. Typical portions of axodes.

Furthermore, the dual arc-length derivative of Kr/Ki is governed by [11–15]:

Kr/Ki :
d
dŝ


ζ̂1

ζ̂2

ζ̂3

 =


0 1 0
−1 0 γ̂i

0 −γ̂i 0



ζ̂1

ζ̂2

ζ̂3

 , (2.7)

where

γ̂i(̂s) = γi + ε(Γi − µγi) = det(̂ζ1,
dζ̂1

dŝ
,

d2̂ζ1

dŝ2 ), (2.8)

is the dual spherical curvature of πi. Via Eq (2.7), the Disteli-axis (evolute or curvature axis) of πi is
given by

b̂i(̂s) = bi + εb∗i =

dζ̂1
dŝ ×

d2ζ̂1
dŝ2∥∥∥∥dζ̂1

dŝ ×
d2ζ̂1
dŝ2

∥∥∥∥ =
γ̂îζ1 + ζ̂3√
γ̂2

i + 1
. (2.9)

Let φ̂i(̂s) = φi + εφ∗i be the radius of curvature between ζ̂1 and b̂i. Then,

b̂i(̂s) =
γ̂i√
γ̂2

i + 1
ζ̂1 +

1√
γ̂2

i + 1
ζ̂3 = cos φ̂îζ1 + sin φ̂îζ3, (2.10)

where
γ̂i(̂s) = γi + ε(Γi − µγi) = cot φ̂i. (2.11)

Thus, we obtain
γ̂ f (̂s)−γ̂m(̂s) = cot φ̂ f− cot φ̂m. (2.12)

This is the dual equivalent of a well-known formula of the Euler-Savary equation from ordinary
spherical kinematics [1–6]. This dual form is a relationship between the two axodes of the movement
Lm/L f . From the real and the dual parts of Eq (2.8), respectively, we get

cot φ f − cot φm = γ f−γm, (2.13)

and
φ∗m

sin2 φm
−

φ∗f

sin2 φ f
= Γm − Γ f − µ

(
γ f−γm

)
. (2.14)
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Equation (2.13) together with (2.14) are new Disteli formulae for the axodes of the movement Lm/L f .
Now, let us assume that the relative Blaschke frame is fixed in Km. Then,

Km/K f :
d
dŝ


ζ̂1

ζ̂2

ζ̂3

 = ω̂ ×


ζ̂1

ζ̂2

ζ̂3

 , (2.15)

where ω̂:=ω̂ f−ω̂m = ω̂ζ̂1 is the relative angular vector.
∥∥∥ω̂∥∥∥ = ω̂ = ω̂ + εω̂∗ = γr + ε (Γr − µγr) is the

relative dual spherical curvature. It follows that ω = γ f − γm and ω∗ = Γ f − Γm − µ
(
γ f − γm

)
are the

rotational angular speed and translational angular speed of the movement Lm/L f , as well as being both
invariants in kinematics, respectively.

Proposition 2. In the movement Lm/L f , at any instant t ∈ R, the pitch h(s) is given by

h(s) :=
< ω∗,ω >

‖ω‖
=

Γ f − Γm

γ f − γm
− µ. (2.16)

In this study, we disregard the pure translational movements, that is, ω∗ , 0. Also, we omit zero
divisors ω = 0. Therefore, we shall think about only non-torsional movements, so that the axodes are
skew ruled surfaces (µ , 0).

3. Lines with special trajectories

For one-parameter spatial movement Lm/L f , each stationary line x̂ linked with the movable axode,
in general, will describe a ruled surface (x̂) in the stationary space L f . In kinematics, this ruled surface
is referred to as line trajectory. Since all kinematic-geometric characteristics can then be derived with
the invariants of the axodes of the movement Lm/L f . Then, the line trajectory can be obtained in terms
of these invariants. Therefore, we consider a dual unit vector x̂ such that its coordinates are

x̂(̂s)=x̂t̂ζ (̂s), x̂ =


x̂1

x̂2

x̂3

 =


x1 + εx∗1
x2 + εx∗2
x3 + εx∗3

 , ζ̂ =


ζ̂1

ζ̂2

ζ̂3

 , (3.1)

where
x2

1 + x2
2 + x2

3 = 1,
x1x∗1 + x2x∗2 + x3x∗3 = 0.

(3.2)

The velocity x̂′ and the acceleration x̂′′ of x̂ stationary in Lm, respectively, are

dx̂
dŝ

= ω̂×̂x = ω̂
(
−x3̂ζ2 + x2̂ζ3

)
(3.3)

and
d2̂x
dŝ2 = x̂3ω̂ζ̂1 + (x̂2ω̂

2 − x3
dω̂
dŝ

)̂ζ2 + (x̂2
dω̂
dŝ
− x̂1ω̂ + x̂3ω̂

2)̂ζ3. (3.4)

Then,
dx̂
dŝ
×

d2̂x
dŝ2 = ω̂2

[
(1 − x̂2

1)ω̂ζ̂1 + x̂3̂x
]
. (3.5)
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The dual arc length dû = du + εdu∗ of x̂(̂s) is

dû =

∥∥∥∥∥∥dx̂
dŝ

∥∥∥∥∥∥ dŝ = ω̂
√

1 − x̂2
1dŝ. (3.6)

The distribution parameter of (x̂) is

λ(u) :=
du∗

du
= h −

x1x∗1
1 − x2

1

. (3.7)

In order to consider the features of (x̂), the Blaschke frame is determined as:

x̂=̂x(̂u), t̂(̂u) = x̂
′
∥∥∥̂x
′
∥∥∥−1

, ĝ(̂s) = x̂ × t̂, (′ =
d

dû
). (3.8)

The dual unit vectors x̂, t̂ and ĝ match to three concurrent mutually orthogonal lines in E3. Their mutual
point is the central point c on the ruling x̂. ĝ(̂u) is the mutual perpendicular to x̂(̂u) and x̂(̂u + dû), and
it is considered the central tangent of (x̂) at the central point. The trajectory of the central point is the
striction curve. The line t̂ is the central normal of (x̂) at the central point. The Blaschke formulae are

x̂′

t̂′

ĝ′

 =


0 1 0
−1 0 γ̂

0 −γ̂ 0




x̂
t̂
ĝ

 , (3.9)

where

γ̂(̂u) = γ + ε(Γ − λγ) = det(̂x,̂x
′

, x̂
′′

) =
x̂1ω̂(1 − x̂2

1) + x̂3

ω̂(1 − x̂2
1)

3
2

, (3.10)

is the dual spherical curvature of x̂(̂u). The tangent of the striction curve is given by:

dc(u)
du

= Γ(u)x(u) + λ(u)g(u). (3.11)

The Serret-Frenet frame of x̂(̂u) is established through a rotation of (̂x,̂g) according to
t̂
n̂
b̂

 =


0 1 0

− sin φ̂ 0 cos φ̂
cos φ̂ 0 sin φ̂




x̂
t̂
ĝ

 , (3.12)

with a certain dual angle φ̂ = φ+ εφ∗, where b̂ is the binormal, and n̂ is the principal normal. It is clear
that b̂ is the Disteli-axis (striction axis or curvature axis) of the ruled surface (x̂). Thereby, the dual
Serret-Frenet formulae are 

t̂′

n̂′

b̂′

 =


0 κ̂ 0
−̂κ 0 τ̂

0 −̂τ 0




t̂
n̂
b̂

 ,
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where κ̂(̂u) is the dual curvature, and τ̂(̂u) is the dual torsion of the dual curve x̂(̂u) ∈ K f . Also, we may
write the following relationships:

cot φ̂ := cot φ − εφ∗
(
1 + cot2 φ

)
= γ̂(̂u),

κ̂(̂u) = κ + εκ∗ =
√

1 + γ̂2 = 1
sin φ̂

,

τ̂(̂u) = τ + ετ∗ = ±φ̂
′

= ± 1
1+γ̂2 γ̂

′

.


(3.13)

3.1. Height dual functions

In analogy with [18,19], a dual point b̂0 of K f will be said to be a b̂k evolute of the dual curve x̂(̂u) ∈
K f ; for all i such that 1 ≤ i ≤ k, < b̂0, x̂i(̂u) >= 0, but < b̂0, x̂k+1(̂u) >, 0. Here, x̂i indicates the i-th
derivatives of x̂ with respect to the dual arc length of x̂(̂u) ∈ K f . For the first evolute b̂ of x̂(̂u), we
have < b̂, x̂′ >= ± < b̂, t̂ >= 0, and < b̂, x̂′′ >= ± < b̂, x̂+γ̂̂g >, 0. So, b̂ is at least a b̂2 evolute
of x̂(̂u) ∈ K f .

We now address a differentiable dual function ĥ : I × K f → D, by ĥ(̂u, b̂0) =< b̂0, x̂ >. We call
ĥ a height dual function on x̂(̂u) ∈ K f . We use the notation ĥ(̂u) = ĥ(̂u, b̂0) for any stationary point
b̂0 ∈ K f .

Proposition 3. Under the above notations, the following holds:
(1) ĥ will be stationary in the 1st approximation if and only if b̂0 ∈ S p{̂x,̂g}, that is,

ĥ = 0⇔< x̂
′

, b̂0>=0⇔< t̂, b̂0>=0⇔ b̂0=̂a1̂x+̂a2̂g, (3.14)

for some dual numbers â1, â2 ∈ D, and â2
1 + â2

2 = 1.
(2) ĥ will be stationary in the 2nd approximation if and only if b̂0 is b̂2 evolute of x̂(̂u) ∈ K f , that is,

ĥ = ĥ = 0⇔ b̂0= ± b̂. (3.15)

(3) ĥ will be invariant in the 3rd approximation if and only if b̂0 is b̂3 evolute of x̂(̂u) ∈ K f , that is,

ĥ = ĥ = ĥ = 0⇔ b̂0= ±b̂, and γ̂
′

, 0. (3.16)

(4) ĥ will be stationary in the 4th approximation if and only if b̂0 is b̂4 evolute of x̂(̂u) ∈ K f , that is,

ĥ = ĥ = ĥ = ĥ = 0⇔ b̂0= ±b̂, γ̂
′

= 0, and γ̂
′′

, 0. (3.17)

Proof. For the 1st derivative of ĥ we get:

ĥ
′

=< x̂
′

, b̂0>. (3.18)

So, we get
ĥ
′

= 0⇔< t̂, b̂0>=0⇔ b̂0=̂a1̂x+̂a2̂g; (3.19)

for some dual numbers â1, â2 ∈ D, and â2
1 + â2

2 = 1, the result is clear.
(2) Derivative of Eq (3.18) leads to

ĥ
′′

=< x̂
′′

, b̂0>= < x̂ + γ̂̂g, b̂0> . (3.20)
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By using Eq (3.19), we have

ĥ
′

= ĥ
′′

= 0⇔< x̂
′

, b̂0>= < x̂
′′

, b̂0>=0⇔ b̂0= ±
x̂′ × x̂

′′∥∥∥̂x′ × x̂′′
∥∥∥ = ±b̂. (3.21)

(3) Derivative of Eq (3.20) leads to

ĥ
′′′

=< x̂
′′′

, b̂0 >=
(
1 + γ̂2

)
< t̂, b̂0> + γ̂

′

< ĝ, b̂0>. (3.22)

Hence, we have
ĥ
′

= ĥ
′′

= ĥ
′′′

= 0⇔ b̂0= ±b̂, and γ̂
′

, 0. (3.23)

(4) By similar arguments, we can also have

ĥ
′

= ĥ
′′

= ĥ
′′′

= ĥ
′′′′

= 0⇔ b̂0= ±b̂, γ̂
′

= 0, and γ̂
′′

, 0. (3.24)

The proof is completed. �

Via the above proposition, we have the following:
(a) The osculating circle S of x̂(̂u) ∈ K f is determined by the equations

< b̂0 ,̂x>= cos φ̂, <̂x′, b̂0 >= 0, <̂x
′′

, b̂0 >= 0, (3.25)

which are obtained from the status that the osculating circle should have contact of at least 3rd order
at x̂(̂u0) if and only if γ̂

′

, 0.
(b) The osculating circle S and the curve x̂(̂u) ∈ K f have at least 4th order at x̂(̂u0) if and only if γ̂

′

= 0,
and γ̂

′′

, 0.
In this way, by considering the evolutes of x̂(̂u) ∈ K f we can get a sequence of evolutes b̂2, b̂3, ...,

b̂n. The properties and the relationships among these evolutes and their involute are very interesting
problems. For example, it is easy to see that when b̂0= ± b̂, and τ̂(̂u) = 0(̂γ

′

= φ̂
′

= 0), x̂(̂u) ∈ K f is
located at φ̂ = dual const. relative to b̂0.

3.2. Torsion line congruence

We now examine the line trajectories which are the spatial equivalent of the cubic of stationary
curvature [1–5]. It is obvious that for all points with τ̂(̂u) = 0, their trajectories lie on a dual great circle
up to third order. Then,

τ̂(̂u) = τ + ετ∗ = 0⇔ γ̂ = const. (3.26)

Therefore, the spatial equivalent of the cubic of stationary curvature is defined by (a) the line complex
defined by the torsion cone C : τ(u) = 0, and (b) the line complex defined by the related plane of
lines π : τ∗(u) = 0. All the family of lines x̂ of the movable space Lm and also in the plane satisfy π :
τ∗(u) = 0 initiating the torsion line congruence. Therefore, the torsion line congruence consists of a
family of planes π, each of which is related with a direction of the inflection cone C. Hence, we have
proved the following theorem:

Theorem 1. In one-parameter spatial movement Lm/L f , consider a family of related lines of the
movable axode, such that each one of these lines has analog of a cubic of stationary curvature. Then,
this family of lines forms a torsion line congruence which is common lines of the two line complexes
τ(u) = 0, and τ∗(u) = 0.
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However, from Eq (3.13), we have

τ̂(̂u) = τ + ετ∗ = 0⇔ φ̂(̂u) = φ + εφ∗ = ĉ(dual const.). (3.27)

This means that φ = c(real const.), and φ∗ = c∗(real const.). Hence, each ruled surface in the torsion
line congruence is a stationary Disteli-axis ruled surface. Furthermore, from Eq (3.9) we have the
ordinary differential equation; ODE, t̂

′′

+ κ̂2̂t = 0. Without loss of generality, we may take t̂(0) =

(0, 0, 1), and the general solution of the ODE becomes

t̂(̂u) =
(
a1 sin

(̂
κ̂u

)
,−a2 sin

(̂
κ̂u

)
, cos

(̂
κ̂u

)
+ a3 sin

(̂
κ̂u

))
,

for dual constants â1, â2 and â3. Since
∥∥∥̂t

∥∥∥2
= 1, we get â3 = 0, and â2

1 + â2
2 = 1. It follows that x(̂u) is

given by

x̂(̂u) =

(
−

a1

κ̂
cos

(̂
κ̂u

)
+ b̂1,

â2

κ̂
cos

(̂
κ̂u

)
+ b̂2,

1
κ̂

sin
(̂
κ̂u

))
,

where b̂1 and b̂3 are dual constants satisfying â1̂b2 + â2̂b2 = 0. We can change the coordinates by


̂̃x1̂̃x2̂̃x3

 =


â2 â1 0
−̂a1 â2 0
0 0 1




x̂1

x̂2

x̂3

 .
Then x̂(̂u) turns into

x̂(ϕ̂)= cos ϑ̂̂ζ1 + sin ϑ̂ cos ϕ̂̂ζ2 + sin ϑ̂ sin ϕ̂̂ζ3, ϕ̂ = κ̂̂u, (3.28)

for a dual constant â2̂b1 + â1̂b2 = cos ϑ̂. This means that ϑ = c1(real const.), and ϑ∗ = c∗1(real const.).
Here, ϕ̂ = ϕ + εϕ∗ is the dual angle among the projection of x̂ on the plane S p{̂ζ2, ζ̂3}. This shows that
a helical movement of angle ϕ on the ISA and distance ϕ∗ over it turns ζ̂3 to be the central normal t̂ of
x̂ (Figure 2). According to Eqs (3.11) and (3.28) we instantly find that:


x̂
t̂
ĝ

 =


cos ϑ̂ sin ϑ̂ cos ϕ̂ sin ϑ̂ sin ϕ̂

0 − sin ϕ̂ cos ϕ̂
sin ϑ̂ − cos ϑ̂ cos ϕ̂ − cos ϑ̂ sin ϕ̂



ζ̂1

ζ̂2

ζ̂3

 . (3.29)

Consequently, from Eqs (3.11) and (3.29) we get

b̂= cos α̂̂ζ1 + sin α̂m̂, m̂ = cos ϕ̂̂ζ2 + sin ϕ̂̂ζ3, (3.30)

where

α̂ = α + εα∗ = ϑ̂ − ϕ̂. (3.31)
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Figure 2. The line x̂ and its Disteli-axis b̂.

4. Plücker coordinates

For more analysis of the torsion line congruence, from Eq (3.28), the Plücker coordinates of x̂ are:

x1 = cosϑ, x∗1 = −ϑ∗ sinϑ,
x2 = sinϑ cosϕ, x∗2 = ϑ∗ cosϑ cosϕ − ϕ∗ sinϕ sinϑ,
x3 = sinϑ sinϕ, x∗3 = ϕ∗ cosϑ sinϕ + ϕ∗ cosϕ sinϑ.

 (4.1)

Let η(η1, η2, η3) indicate a point on x̂. Since x∗ =η×x we have the system of linear equations in ηi for
i=1, 2, 3 (ηis are the coordinates of η):

η2 sinϑ sinϕ − η3 sinϑ cosϕ = x∗1,
−η1 sinϑ sinϕ + η3 cosϑ = x∗2,
η1 sinϑ cosϕ − η2 cosϑ = x∗3.

 (4.2)

The matrix of coefficients of unknowns ηi is the skew symmetric matrix
0 sinϑ sinϕ − sinϑ cosϕ

− sinϑ sinϕ 0 cosϑ
sinϑ cosϕ − cosϑ 0

 ,
and thus its rank is 2 with ϑ , 2πk (k is an integer). The rank of the augmented matrix

0 sinϑ sinϕ − sinϑ cosϕ x∗1
− sinϑ sinϕ 0 cosϑ x∗2
sinϑ cosϕ − cosϑ 0 x∗2


is also 2. Thereby, this system has infinite solutions given by

η2 sinϕ − η3 cosϕ = −ϑ∗,

η2 = (η1 − ϕ
∗) tanϑ cosϕ − ϑ∗ sinϕ,

η3 = (η1 − ϕ
∗) tanϑ sinϕ + ϑ∗ cosϕ.

(4.3)
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Since η1can be set arbitrarily, we may set η1 = ϕ∗. In this case, Eq (4.3) reduces to

η1 = ϕ∗, η2 = −ϑ∗ sinϕ, η3 = ϑ∗ cosϕ. (4.4)

If we set ϕ∗ = hϕ and ϕ as the movement parameter, then (x̂) is a ruled in L f -space. We now simply
find the base curve as

η(ϕ) = hϕζ1 − ϑ
∗ sinϕζ2 + ϑ∗ cosϕζ3. (4.5)

It can be shown that < η
′

, x′ >= 0, (′ = d
dϕ ), so the base curve η(ϕ) of (x̂) is its striction curve c. The

curvature κc(ϕ) and torsion τc(ϕ) of c(ϕ) can be given by

κc(ϕ) =
ϑ∗

ϑ∗2 + h2 , τc(ϕ) =
h

ϑ∗2 + h2 ,

which means that c(ϕ) is a circular helix. From Eqs (3.11), (3.29) and (4.5) it can be found that

(
Γ

λ

)
=

(
cosϑ − sinϑ
sinϑ cosϑ

) (
h
ϑ∗

)
.

Let y(y1, y2, y3) be a point on the oriented line x̂. Then,

(x̂) : y(ϕ, v) =


hϕ + v cosϑ

−ϑ∗ sinϕ + v sinϑ cosϕ
ϑ∗ cosϕ + v sinϑ sinϕ

 , v ∈ R. (4.6)

The constants h, ϑ and ϑ∗ can control the shape of the surface (x̂). Hence, the major geometrical
characteristics of (x̂) can be described as follows: (x̂) is a stationary Disteli-axis ruled surface, <
c′ , x >= Γ is constant, < c′ , g >= λ is constant, and c(ϕ) is a circular helix.

Theorem 2. Let (x̂) be any non-developable ruled surface in Euclidean 3-space E3. Then, (x̂) is a
ruled Weingarten surface if and only if (x̂) is contained in a torsion line congruence.

However, via Eq (4.6), the ruled surface can be classified into four types according to the forms of
their striction curves.
(1) Archimedes helicoid when its striction curve is a circular helix; for h = 1, ϑ∗ = 1, ϑ = π

4 , −2.5 ≤
v ≤ 2.5, and 0 ≤ ϕ ≤ 2π (see Figure 3).
(2) One-sheeted hyperboloid when its striction curve is a circle; for h = 0, ϑ∗ = 1, ϑ = π

4 ,−2.5 ≤
v ≤ 2.5, and 0 ≤ ϕ ≤ 2π (see Figure 4).
(3) Right helicoid when its striction curve is a line; for h = 1, ϑ∗ = 0, ϑ = π

2 , −2.5 ≤ v ≤ 2.5,
and 0 ≤ ϕ ≤ 2π (see Figure 5).
(4) Circular cone when its striction curve is a fixed point; for h = ϑ∗ = 0, ϑ = π

4 , −2.5 ≤ v ≤ 2.5,
and 0 ≤ ϕ ≤ 2π (see Figure 6).
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Figure 3. General helicoid.

Figure 4. One-sheeted hyperboloid.

Figure 5. Right helicoid.
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Figure 6. Circular cone.

5. Straightforward equation of the torsion line congruence

In order to have a straightforward equation of the torsion line congruence, from Eqs (3.10), (3.13)
and (3.28) we can write the equation

τ̂(̂u) = ±
ω̂

[
3 cos ϑ̂ sin ϕ̂ + (ω̂ − γ̂) sin ϑ̂

]
cos ϕ̂ − ω̂

′

sin ϑ̂ sin ϕ̂

ω̂2̂κ2 sin3 ϑ̂
.

Hence, at any instant, it is apparent that

τ̂(̂u) = 0⇔ cot ϑ̂ = â csc ϕ̂ + b̂ sec ϕ̂, (5.1)

where

â = a + εa∗ =
γ̂ − ω̂

3
, b̂(u) = b + εb∗ =

ω̂
′

3ω̂
. (5.2)

The real part of Eq (5.1) characterizes the torsion cone for the spherical part of the movement Lm/L f

and is given by
cotϑ = a cscϕ + b secϕ,
a(u) =

γ−ω

3 , and b(u) = b + εb∗ = ω
′

3ω .

}
(5.3)

The intersection of the torsion cone with a unit sphere fastened at the cone’s apex gives a spherical
curve. Linked with the direction of a line L on the torsion cone, there is a plane π defined by the dual
part of Eq (5.1). This plane is

a∗ cscϕ + b∗ secϕ + ϕ∗ (b secϕ tanϕ − a cscϕ cotϕ) + ϑ∗c sec2 ϑ = 0. (5.4)

So, for each direction of a line L of the torsion cone, there is an associated plane of lines parallel to L.
The torsion cone and plane of lines defines the torsion line congruence. Hence, if Eq (5.3) is solved
with respect to the angle ϑ, then we obtain

ϑ = cot−1 (a cscϕ + b secϕ) . (5.5)

Then, from Eqs (4.1) and (5.5) it follows that

x(ϕ)=
1√

1 + (a cscϕ + b secϕ)2
(a cscϕ + b secϕ, cosϕ, sinϕ) (5.6)
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From Eqs (4.6) and (5.5), we can also obtain that

(x̂) : y(ϕ, v) =


hϕ +

v(a cscϕ+b secϕ)
√

(a cscϕ+b secϕ)2+1

−ϑ∗ sinϕ +
v cosϕ√

(a cscϕ+b secϕ)2+1

ϑ∗ cosϕ +
v sinϕ√

(a cscϕ+b secϕ)2+1

 , v ∈ R. (5.7)

In the case of 0 ≤ ϕ ≤ 2π, and ϑ∗ , 0, we get:

(x̂) : −
Y2

1

Λ2 +
y2

2

ϑ∗2
+

y2
3

ϑ∗2
= 1, (5.8)

where Λ = ϑ∗ (a cscϕ + b secϕ), and Y1 = y1 − hϕ. Then, (x̂) is a one-parameter family of one-
sheeted hyperboloids. The intersection of each hyperboloid and the corresponding plane y1 = ϕ∗ is
one-parameter family of circular cylinders (c): y2

2 + y2
3 = ϑ∗2 which is the envelope of (x̂). According

to Eqs (5.6) and (5.7) we have the following:
(1) Spherical torsion curve with its torsion ruled surface: for a = 1, b = 0.5, ϑ∗ = 3, h = 1, 0 ≤
ϕ ≤ 2π, 0 ≤ v ≤ 4 (Figures 7 and 8).

Figure 7. Torsion curve.

Figure 8. Ruled surface.

(2) Spherical torsion curve with its torsion ruled surface: for a = 1, b = −0.5, ϑ∗ = 3, h = 1, 0 ≤
ϕ ≤ 2π, 0 ≤ v ≤ 4 (Figures 9 and 10).
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Figure 9. Torsion curve.

Figure 10. Ruled surface.

5.1. Disteli formulae of a line trajectory

In 1914 Disteli [9] created a curvature axis for a ruled surface and generalized the planar Euler-
Savary equation to line trajectories. There are several papers which deal with Euler-Savary formulae
and classical geometric invariants of ruled surfaces for several kinds of geometry [4–7]. The Disteli
formula may be given immediately as follows. From Eqs (3.10), (3.13) and (3.28), we obtain

cot φ̂ − cot ϑ̂ =
sin ϕ̂

ω̂ sin2 ϑ̂
. (5.9)

Equation (5.9) shows the correlations between x̂(̂u) ∈ K f , which corresponds to the ruled surface (x̂),
and its osculating dual cone, which is corresponding to the Disteli-axis, at any instant. It is comparable
to the Euler-Savary equation of a point trajectory in planar and spherical movements in form [1–5]. By
separating the real and the dual parts, we get

cot φ = cotϑ +
sinϕ

ω sin2 ϑ
, (5.10)

and

φ∗ =
sin2 φ

ω
[(h + 2ϑ∗ cotϑ) sinϕ − ϕ∗ cos φ] +

ϑ∗ sin2 ϕ

sin2 ϑ
. (5.11)
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Equation (5.10) detects the correlations among the locations of the ruling x̂ in the movable space
Lm and the Disteli-axis b̂. Equation (5.11) depicts the distance from x̂ to the Disteli-axis b̂. Their
geometrical explanations are shown in Figure 2. The sign of φ∗(- or +) indicates that the location of the
Disteli-axis b̂ is on the negative or positive orientation of the central normal t̂ of (x̂). Equations (5.10)
and (5.11) are new Disteli formulae of a line trajectory in the movement Lm/L f . Since the central
points of the ruled surfaces are on the normal plane, when the direction of their rulings is defined by
the dual unit vector x̂ with (ϕ̂, ϑ̂) according to Eq (3.28), the Disteli fomulae (5.10) and (5.11) can be
displayed in the plane π : S p{ζ1, t̂}. Hence, any arbitrary point c(ϕ∗, ϑ∗) on the plane π is defined as
central point of (x̂) whose ruling is the oriented line x̂, and the radius ϑ∗ is the line segment from the
point q to the point c on the plane π. Also, the vector from q to c is in the positive (resp. negative)
orientation of t̂ if ϑ∗ > 0 (resp. ϑ∗ < 0). The central point c(ϕ∗, ϑ∗) can be on the ISA if ϑ∗ = 0
(α∗ = −ϕ∗) and on the Disteli-axis b̂ if φ∗ = 0 ⇔ α∗ = ϑ∗. In the latter case the central point c(ϕ∗, ϑ∗)
can be determined by setting φ∗ = 0 in Eq (5.11) which is clarified as

L : ϕ∗ =
1

cosϕ

(
sin2 ϕ

sin2 ϑ
+ 2 cotϑ

)
ϑ∗ + h tanϕ. (5.12)

Equation (5.12) is linear in the position coordinates ϕ∗and ϑ∗ of x̂. Hence, in one-parameter spatial
movement Lm/L f the fixed lines in Lm lie on a plane. The line L will change its location if the
parameter ϑ∗ is defined as a varying value, but ϕ∗ =constant. However, a set of lines envelops a
curve on the plane π. Meanwhile, the π has several positions if the parameter ϕ∗ of a line has several
values, but ϑ∗ =constant. Therefore, the set of all lines L defined by Eq (5.12) is a line congruence for
all values of (ϕ∗, ϑ∗).

On the other hand, we can derive other dual version of the Euler-Savary equation as follows:
Substituting Eq (3.5) into Eq (3.21), we have

b̂ =
ω̂2

[
(1 − x̂2

1)ω̂ζ̂1 + x̂3̂x
]∥∥∥̂x′ × x̂′′

∥∥∥ . (5.13)

Thus, from Eqs (3.1), (3.30) and (5.13), one finds that:

(1 − x̂2
1)ω̂ + x̂1 x̂3

cos α̂
=

x̂2 x̂3

sin α̂ cos ϕ̂
=

x̂2
3

sin α̂ sin ϕ̂
. (5.14)

Substituting Eq (3.28) into Eq (5.14), we obtain

cot α̂ − cot ϑ̂ =
ω̂

sin ϕ̂
. (5.15)

This is exactly a second dual extension of the Euler-Savary equation. From the real and the dual parts,
respectively, we get:

cotα − cotϑ =
ω

sinϕ
, (5.16)

and
ϕ∗(cotα − cotϑ) cosϕ − (

α∗

sin2 α
−

ϑ∗

sin2 ϑ
) sinϕ =

ω

sinϕ
(h − µ) . (5.17)

Once the angles α and ϑ are known, Eq (5.17) gives the correspondence between α∗ and ϑ∗ in terms
of (ϕ,ϕ∗) and the 2nd order invariant ω

sinϕ (h − µ). The spherical Euler-Savary Eq (5.16) and (5.17) are
new Disteli formulae of spatial kinematics.
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6. Conclusions

For one-parameter spatial movement Lm/L f , based on E. Study, expressions of the axodes and their
invariants were derived, and then the geometric–kinematic meanings were revealed. By employing the
Blaschke frames, the properties of a line trajectory and its Disteli axis were researched. Interestingly,
the results slightly explain the analogies between point geometry of spherical curves in Euclidean 3-
space E3 and point geometry of dual spherical curves in dual 3-space D3. Hence, the invariants of
the axodes were utilized for obtaining new proof of the Disteli-formulae for a line trajectory in spatial
kinematics.

The study of spatial kinematics in Euclidean 3-space E3 via the geometry of lines may be adopted
to research some problems and conclude new applications. For future research, we will attract with the
design of ruled surfaces as tooth flanks for gears with skew axes, as offered in [7].
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