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1. Introduction

Grünwad, Letnikov, Riemann, and Liouville are the famous mathematicians who dealt with
fractional derivatives whose concept dates from 1695. Since then, fractional calculus has proven its
effectiveness as a relevant tool in the study of differential equations [1] and systems of equations
involving fractional derivatives, whether from a theoretical point of view or in the modeling of several
phenomena in different disciplines such as engineering, control theory, image processing, quantum
mechanics, solid-state physics, optical physics, chemical engineering, population dynamics, control
systems, fractional multi-pantograph systems, diffusion models and astronomy [2–4]. New progress
in the field of fractional calculus and the remarkable evolution of different types of fractional
derivatives (conformable derivatives [5], M-conformable fractional derivatives [6] and deformable
fractional derivatives [7]), widened the field of research to address several problems in different
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disciplines especially since the maximum information on the phenomena under study will be
incorporated in the mathematical models more realistically.

The deformable derivative was developed in [7] to remedy the lack of the conformable derivative
designed by R. Khalil in [5] and which does not include zero and negative numbers. Although the
deformable derivative is defined by a limit-based approach to the ordinary derivative, but the difference
lies in the fact that the range of the parameters varies over a unit interval which makes it lose the
notion of locality. Fundamental notions and results of existence and uniqueness concerning deformable
derivatives can be consulted in [5, 7–10] and the references therein. Delay differential equations are
powerful mathematical tools for modeling many delay phenomena in physics and engineering and
other fields of science since the present depended on past history. Pantograph is an articulated device
that allows an electric locomotive or tram or other electric self-propelled system to pick up current by
friction on a catenary. The pantograph differential equation is a mathematical model used to describe
the behavior of the mechanical system with a pantograph linkage, such as in trains or trams. It can also
be used to model the dynamic behavior of mechanical systems and provide valuable information about
the performance of such systems. Its origin comes from the work of Ockendon and Tayler [11] on the
dynamics of a current collection system for an electric locomotive. This kind of equation appears in
many domains of science where authors used them to model several problems [12–19].

Many scientists have investigated the pantograph equations with fractional order considering
various aspects and different derivative operators [20–25]. The existence results for the solution of the
hybrid pantograph equation with fractional order were studied in [24]. Later, Karimov et al. have
established existence results for a generalized hybrid type pantograph equation with
Riemann-Liouville fractional derivative in [26]. Afterwards, existence results were explored for a
coupled system of fractional order differential equation with ψ-Hilfer derivative in [27]. Recently
in 2020, using degree theory and some tools from nonlinear analysis, Ahmad et al. [28] have
established existence and stabilities results for a coupled system of pantograph fractional differential
equation involving Caputo fractional derivatives. In 2022, a more general coupled system of
pantograph problem with three sequential fractional derivatives was considered in the work of George
et al. [29]. Using the Leray-Schauder and Banach fixed point theorems and positive contraction-type
inequalities, two results on the uniqueness and existence were proved. In recent papers [30, 31], and
also in most of the works mentioned above, fixed point theorems are the basic tool for retrieving
existence results. Unfortunately, even if the solution exists, its analytical calculation is not obvious in
most cases, it is the researchers are generally content with an approximate solution to the problem
under study. But, when we have to deal with approximate solutions, the problems of convergence
towards the exact solution and the reduction of the calculation error appear. A technique to avoid the
problem of convergence is to study stability. In the last two decades, the stability of fractional
differential equation and systems have been considered in many work, see for
example [28, 29, 32–36]. In 2020, Derakhshan [37] has investigated Ulam-Hyers stability results of a
time-fractional linear differential equation arising in fluid mechanics and involving Caputo fractional
derivative. Very recent work in 2023 goes to Kahouli et al. [38] who have proven the Ulam-Hyers
stability for a class of Itô-Doob Stochastic integral equations with Hadamard fractional derivative.

We point out that the stability of a coupled system was respectively in 2019, 2020, 2022 in the
respective works: Zada et al. [39], Ahmad et al. [28], and George et al. [29]. The concept of stability
forms part of the quality aspect of dynamic systems. The Ulam and Ulam-Hyers are two types of
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stabilities which have contributed a great when we deal with the approximate solution of differential
equations. Indeed if an equation is Ulam or Ulam-Hyers stable then for each approximate solution
there is an exact solution that satisfies certain criteria. In fact, this replaces in a way the study of the
convergence of the approximate solution toward the exact solution.

Motivated by the large source of works on deformable fractional derivatives and their applications
associated with the works mentioned above on coupled systems of pantograph fractional differential
equation and combined with the notion of generalized hybrid-type pantograph equation, the study
of a coupled system of two generalized hybrid type pantograph equations involving deformable is
investigated. Our contribution is to prove the existence of a unique solution and the Ulam-Hyers
stability of the following system

Dτ

(
υ1

h1 (., υ1(.), υ2(g1(.)))

)
(x) = f1

(
x, υ1(x), υ2(g2(x))

)
,

Dτ

(
υ2

h2 (., υ1(.), υ2(g1(.)))

)
(x) = f2

(
x, υ1(x), υ2(g2(x))

)
,

x ∈ I = [a, b] ,

υ1(a) = υ2(a) = λ1, υ2 (g1(a)) = λ2, υ = (υ1υ2) , 0 < a < b, λi > 0, i = 1, 2,

(1.1)

where Dτ is the deformable fractional derivative of order τ with τ + α = 1, 0 ≤ τ ≤ 1, and α > 0. The
functions hi, fi, gi, i = 1, 2 will be defined later.

This article is composed of three sections, the second section is devoted to mathematical tools that
we will need in the sequel and the last section is intended for our existence and stability results and of
course an example to close the work.

2. Preliminaries

In this section, we present the most relevant notions concerning deformable fractional derivatives
by referring to [5, 7–10, 40].

Let C = C ([a, b] ,R) denote the Banach space of continuous functions from [a, b] into R endowed
with the norm

‖u‖C = sup
x∈[a, b]

|u(x)|.

Definition 2.1. [7, 8] Let u : [a, b]→ R be a continuous function and τ, α positive numbers with 0 ≤
τ ≤ 1 and τ + α = 1. The deformable derivative of u of order τ at x ∈ I = [a, b] is defined by

(Dτu) (x) = lim
ε→0

(1 + εα) u (x + ετ) − u(x)
ε

. (2.1)

If the limit exists, u is τ−differentiable at x. If τ = 1, then α = 0, we recover the usual derivative.
Therefore, the deformable derivative is more general than the usual derivative.
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Definition 2.2. [7, 8] For τ ∈ (0, 1] , the τ−integral of the function u ∈ L1 ([a, b] ,R+) is defined by

(
Iτau

)
(x) =

1
τ

e−
α
τ x
∫ x

a
e
α
τ tu(t) dt, x ∈ [a, b] , (2.2)

where τ + α = 1. When a = 0, we write (Iτu) instead of writing
(
Iτ0u

)
.

The following theorem gathers the most important properties of the operators Dτ, Iτa which can be
useful in the paper.

Theorem 2.3. [7] Let τ, τ1, τ2 ∈ (0, 1] be such that τ + α = 1 and τi + αi = 1 for i = 1, 2. Then

(1) The operators Dτ and Iτa are linear.
(2) The operators Dτ and Iτa are commutative.
(3) Dτ(σ) = ασ for all constant σ ∈ R.
(4) Dτ(uv) = (Dτu) v + τhDv.
(5) Let u be continuous function on [a, b]. Then Iτau is τ−differentiable in (a, b) and we have

Dτ (Iτau
)

(x) = u(x), (2.3)

Iτa (Dτu) (x) = u(t) − e
α
τ (a−x)u(a). (2.4)

Lemma 2.4. [12] Let τ ∈ (0, 1]. The differential equation (Dτu) (x) = 0 has solutions

u(x) = σe−
α
τ t,

where σ ∈ R is a constant.

3. Main results

3.1. Existence results

Lemma 3.1. Let f ∈ C ([a, b] ,R) and h ∈ C ([a, b] ,R∗) . The function u ∈ C ([a, b] ,R), such that

u(x) = h(x)
[ λ

h(a)
e
α
τ (a−x) +

1
τ

e−
α
τ x
∫ x

a
e
α
τ t f (t) dt

]
,

is a solution of the fractional initial value problemDτ
(u
h

)
(x) = f (x), x ∈ [a, b]

u(a) = λ > 0,

where Dτ is the deformable fractional derivative of order τ with τ + α = 1, 0 ≤ τ ≤ 1, and α , 0.

Proof. Since
u
h

is continuous on [a, b] and f is a continuous anti-τ-derivative of
u
h

over [a, b] , we have

[
Iτa+

(
Dτ

(u
h

))]
(x) =

(
Iτa+ f

)
(x).
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Using (2.4), we obtain
u
g

(x) −
u(a)
h(a)

e
α
τ (a−x) =

1
τ

e−
α
τ x
∫ x

a
e
α
τ s f (t)dt,

u(x) =
u(a)
h(a)

e
α
τ (a−x)h(x) +

1
τ

h(x)e−
α
τ x
∫ x

a
e
α
τ s f (t) dt

=
λ

h(a)
e
α
τ (a−x)h(x) +

1
τ

h(x)e−
α
τ x
∫ x

a
e
α
τ s f (t) dt.

The proof is completed. �

Now, we will reconsider our initial coupled system (1.1), where

hi ∈ C
(
[0, 1] × R × R,R − {0}

)
, fi ∈ C

(
[a, b] × R × R,R

)
and gi ∈ C

(
[a, b], [a, b]

)
. (3.1)

Let Σ be the Banach space defined by

Σ = {υ = (υ1, υ2) ∈ C ×C / υ1, υ2 ∈ C}

endowed with the norm
‖υ‖Σ = ‖υ1‖C + ‖υ2‖C.

Λ denotes the following space

Λ = {υ = (υ1, υ2) ∈ Σ / υ1, υ2 ∈ C, with Dτ

(
υi

hi

)
∈ C, i = 1, 2}

with Dτ is the deformable fractional derivative, τ ∈ (0, 1) satisfies α + τ = 1 for some α > 0.

Definition 3.2. υ = (υ1, υ2) ∈ Λ is called a solution of the coupled system (1.1) if υ1, υ2 ∈ C,
respectively are solutions of the hybrid nonlinear fractional pantograph equations of the coupled
system (1.1).

T1,T2,T are three operators defined as follows:

Ti : C −→ C
υi 7−→ Tiυi

Tiυi : [a, b] −→ R

x 7−→ Tiυi(x)

Tiυi(x) =hi (x, υ1(x), υ2(g1(x)))
[ λi

hi (a, υ1(a), υ2(g1(a)))
e
α
τ (a−x)

+
1
τ

e−
α
τ x
∫ x

a
e
α
τ t fi

(
t, υ1(t), υ2(g2(t))

)
dt

]
, i = 1, 2,

(3.2)

and

T : Λ −→ Λ

(υ1, υ2) 7−→ T (υ1, υ2) = (T1υ1,T2υ2)
T (υ1, υ2) : [a, b] −→ R × R

x 7−→ T (υ1, υ2) (x)

T (υ1, υ2) (x) = (T1 (υ1(x), υ2(x)) ,T2 (υ1(x), υ2(x))) (3.3)
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with 
T1 (υ1(x), υ2(x)) = T1υ1(x),
T2 (υ1(x), υ2(x)) = T2υ2(x),
υ = (υ1, υ2) .

In order to carry out existence results for the coupled system (1.1), additional assumptions are made
on hi, fi, gi for i = 1, 2. Let δi > 0 be positive numbers satisfying

δi = sup
x∈[a, b]

|hi (x, 0, 0) |

and assume
(P1) ∃ki > 0, such that

|h1 (x, x1, x2) − h1 (x, y1, y2) | ≤ k1

(
|x1 − y1| + |x2 − y2|

)
,

|h2 (x, x1, x2) − h2 (x, y1, y2) | ≤ k2

(
|x1 − y1| + |x2 − y2|

)
,

for all x ∈ [0, 1] and x1, x2, y1, y2 ∈ R.
(P2) ∃θ > 2λ1 > 0, such that

|hi (a, λ1, λ2) | ≥ θ, i = 1, 2.

(P3) ∃qi > 0, such that

| f1 (x, x1, x2) − f1 (x, y1, y2) | ≤ q1

(
|x1 − y1| + |x2 − y2|

)
,

| f2 (x, x1, x2) − f2 (x, y1, y2) | ≤ q2

(
|x1 − y1| + |x2 − y2|

)
,

for all x ∈ [0, 1] and x1, x2, y1, y2 ∈ R.
(P4) ∃κi > 0, such that

sup
x∈[a, b]

| f1 (x, 0, 0) | ≤ κ1, and sup
x∈[a, b]

| f2 (x, 0, 0) | ≤ κ2, ∀x ∈ [a, b] .

(P5) ∃Mi > 0, M∗
i > 0, such that

‖ fi‖ ≤ Mi and ‖hi‖ ≤ M∗
i , i = 1, 2.

To make the computation simple, we use the following notations
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Θ =
1
α

(
e
α
τ (b−a) − 1

)
,

Ai = qiΘ,

Bi = κiΘ +
λ1

θ
,

ξ =

2∑
i=1

(kiBi + δiAi) ,

γ =

2∑
i=1

kiAi,

ν =

2∑
i=1

δiBi,

σ = νγ,

Xi = kiMi + qiM∗
i , i = 1, 2.

(3.4)

Lemma 3.3. The operator T defined on Λ by (3.3) is well defined.

Proof. We will prove that T1 and T1 are well defined on C, moreover Dτ

(
T1υ1

h1

)
and Dτ

(
T2υ2

h2

)
also

must be in C. For any υ1, υ2 ∈ C and for x ∈ [a, b], we have

T1υ1 = (ϕ1υ1) (ψ1υ1) , T2υ2 = (ϕ2υ2) (ψ2υ2) (3.5)

where 
ϕiυi(x) = hi

(
x, υ1(x), υ2(g1(x))

)
ψiυi(x) =

λi

hi

(
a, υ1(a), υ2(g1(a))

)e
α
τ (a−x) +

1
τ

e−
α
τ x

∫ x

a
e
α
τ t fi

(
t, υ1(t), υ2(g2(t))

)
dt,

i = 1, 2.

Let (xn) a sequence in [a, b] which converges to x0 ∈ [a, b] when n→ +∞. For any υ1 ∈ C, we have

∣∣∣∣ϕ1υ1(xn) − ϕ1υ1(x0)
∣∣∣∣ =

∣∣∣∣h1

(
xn, υ1(xn), υ2(g1(xn))

)
− h1

(
x0, υ1(x0), υ2(g1(x0))

)∣∣∣∣ −→
n→+∞

0. (3.6)

It yields that ϕ1υ1 is continuous on [a, b] . On the other hand, taking into consideration that xn ≥ x0, we
have
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10985∣∣∣∣ψ1υ1(xn) − ψ1υ1(x0)
∣∣∣∣ ≤ ∣∣∣∣ λ1

h1

(
a, υ1(a), υ2(g1(a))

)e
α
τ (a−xn)

−
λ1

h1

(
a, υ1(a), υ2(g1(a))

)e
α
τ (a−x0)

∣∣∣∣
∣∣∣∣1
τ

e−
α
τ xn

∫ xn

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt −

1
τ

e−
α
τ x0

∫ x0

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

∣∣∣∣,
∣∣∣∣ψ1υ1(xn) − ψ1υ1(x0)

∣∣∣∣ ≤ λ1

θ

∣∣∣∣e α
τ (a−xn)

− e
α
τ (a−x0)

∣∣∣∣
+

∣∣∣∣1
τ

e−
α
τ xn

∫ xn

a
e
α
τ s f1 (t, υ1(t), υ2(g2(t))) dt −

1
τ

e−
α
τ x0

∫ xn

a
e
α
τ t f1 (t, υ1(t), υ2(g2(t))) dt

∣∣∣∣
+

∣∣∣∣1
τ

e−
α
τ x0

∫ xn

a
e
α
τ t f1 (t, υ1(t), υ2(g2(t))) dt −

1
τ

e−
α
τ x0

∫ x0

a
e
α
τ s f1 (t, υ1(t), υ2(g2(t))) dt

∣∣∣∣,
∣∣∣∣ψ1υ1(xn) − ψ1υ1(x0)

∣∣∣∣ ≤ λ1

θ

∣∣∣∣e α
τ (a−xn)

− e
α
τ (a−x0)

∣∣∣∣
+

1
τ

(
e−

α
τ xn − e−

α
τ x0

) ∫ xn

a
e
α
τ t
∣∣∣∣ f1 (t, υ1(t), υ2(g2(t)))

∣∣∣∣ dt

+
1
τ

e−
α
τ x0

∫ xn

x0

e
α
τ t
∣∣∣∣ f1 (t, υ1(t), υ2(g2(t)))

∣∣∣∣ dt,

by (P5), we obtain∣∣∣∣ψ1υ1(xn) − ψ1υ1(x0)
∣∣∣∣ ≤ ∣∣∣∣e α

τ (x0−xn)
− 1

∣∣∣∣(λ1

θ
e
α
τ (a−x0) +

M1

α
e
α
τ (a−x0)

∣∣∣∣e α
τ (xn−a)

− 1
∣∣∣∣ − M1

α
e
α
τ (xn−x0)

)
−→

n→+∞
0.

Then, ψ1υ1 is continuous on [a, b] . �

Besides, since T1υ1(a) = λ, it can be easily checked that

Dτ

 T1υ1

h1

(
., υ1(.), υ2(g1(.))

) (x) = f1

(
x, υ1(x), υ2(g2(x))

)
, x ∈ [a, b] ,

which means that Dτ

 T1υ1

h1

(
., υ1(.), υ2(g1(.))

) is continuous on [a, b].

In a same way, we prove that T2υ2, and Dτ

 T2υ12

h2

(
., υ1(.), υ2(g1(.))

) are in C. Therefore T is well

defined on Λ. The following theorem is devoted to our existence result.

Theorem 3.4. If (P1) − (P5) are hold and if

0 < ξ ≤ 1 − 2
√
σ, with 0 < σ <

1
4

(3.7)

and
0 < X1 + X2 <

1
Θθ

(θ − 2λ1) , (3.8)

then, the coupled system (1.1) has a unique solution.
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Our tool for the proof is Banach’s contraction principle.

Proof. The proof is done in two steps.

(1) T maps bounded sets into bounded sets in Λ.

Proof. r2, r1 are two real numbers satisfying r1 + r2 =
1 − ξ
γ

, and r1r2 =
ν

γ
. Regarding (3.7), it’s

obvious that r1 > 0 and r2 > 0. We assume that r2 > r1and we consider the set

Bρ = {υ ∈ Λ/‖υ‖Λ ≤ ρ}

where ρ is a positive real number such that ρ ∈ [r1, r2] . We claim that T
(
Bρ

)
⊂ ρ. Indeed, for any

υ ∈ Bρ, we have
‖Tυ‖Λ = ‖T1υ1‖c + ‖T2υ2‖c, with υ = (υ1, υ2) .

For any x ∈ [a, b] and υ1, υ2 ∈ C, we have∣∣∣∣T1υ1(x)
∣∣∣∣ =

∣∣∣∣h1 (x, υ1(x), υ2(g1(x)))
∣∣∣∣∣∣∣∣ λ1

h1 (a, υ1(a), υ2(g1(a)))
e
α
τ (a−x)+

1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

∣∣∣∣
∣∣∣∣h1 (x, υ1(x), υ2(g1(x)))

∣∣∣∣ ≤ h1 (x, υ1(x), υ2(g1(x))) − h1 (x, 0, 0))
∣∣∣∣ +

∣∣∣∣h1 (x, 0, 0))
∣∣∣∣

≤ k1

(
|υ1| + |υ2|

)
+

∣∣∣∣h1 (x, 0, 0))
∣∣∣∣

then,

sup
x∈[a, b]

∣∣∣∣h1 (x, υ1(x), υ2(g1(x)))
∣∣∣∣ = k1 sup

x∈[a, b]

(∣∣∣∣υ1(x)
∣∣∣∣ +

∣∣∣∣υ2(g1(x))
∣∣∣∣) + sup

x∈[a, b]
|h1 (x, 0, 0) |

since for any x ∈ [a, b] it yields that g1(x) ∈ [a, b], we have

sup
x∈[a, b]

(∣∣∣∣υ1(x)
∣∣∣∣ +

∣∣∣∣υ2(g1(x))
∣∣∣∣) = ‖υ1‖C + ‖υ2‖C = ‖υ‖Λ,

hence,
sup

x∈[a, b]

∣∣∣∣h1 (x, υ1(x), υ2(g1(x)))
∣∣∣∣ ≤ k1‖υ‖Λ + δ1

sup
x∈[a, b]

∣∣∣∣ λ1

h1 (a, υ1(a), υ2(g1(a)))
e
α
τ (a−x)

∣∣∣∣ ≤ λ1

θ

∣∣∣∣∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

∣∣∣∣ ≤ ∫ x

a
e
α
τ t
∣∣∣∣ f1

(
t, υ1(t), υ2(g2(t))

)
− f1

(
t, 0, 0)

)∣∣∣∣ dt+
∫ x

a
e
α
τ t
∣∣∣∣ f1

(
t, 0, 0)

)∣∣∣∣ dt

and using (P4), we have

sup
x∈[a, b]

∣∣∣∣1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

∣∣∣∣ ≤
q1

α

(
e
α
τ (b−a)

− 1
)
‖υ‖Λ +

κ1

α

(
e
α
τ (b−a)

− 1
)
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‖T1υ1‖ ≤
(
k1‖υ‖Λ + δ1

)(λ1

θ
+

q1

α

(
e
α
τ (b−a)

− 1
)
‖υ‖Λ +

κ1

α

(
e
α
τ (b−a)

− 1
) )
.

In a similar way, we obtain

‖T2υ2‖ ≤
(
k2‖υ‖Λ + δ2

)(λ1

θ
+

q2

α

(
e
α
τ (b−a)

− 1
)
‖υ‖Λ +

κ2

α

(
e
α
τ (b−a)

− 1
) )
.

‖Tυ‖Λ ≤ ‖T1υ1‖C + ‖T2υ2‖C,

≤ γ‖υ‖2Λ + ξ‖υ‖Λ + ν,

≤ γρ2 + ξρ + ν,

≤ ρ,

where we have used (3.7) with the fact that ρ ∈ [r1, r2] to deduce that

γρ2 + ξρ + ν ≤ ρ.

Then the proof T
(
Bρ

)
⊂ Bρ is achieved. �

(2) Now, we show that T is a contraction.

Proof. Let υ = (υ1, υ2) , υ∗ =
(
υ∗1, υ

∗
2

)
∈ Λ, with υ1, υ2, υ

∗
1, υ

∗
2 ∈ C. For any x ∈ [a, b], we have

T1υ1(x) − T1υ
∗
1(x) = h1 (x, υ1(x), υ2(g1(x)))

(
λ1

h1 (a, υ1(a), υ2(g1(a)))
e
α
τ (a−x)

)
+h1 (x, υ1(x), υ2(g1(x)))

(
1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

)
−h1

(
x, υ∗1(x), υ∗2(g1(x))

)  λ1

h1

(
a, υ∗1(a), υ∗2(g1(a))

)e
α
τ (a−x)


−h1

(
x, υ∗1(x), υ∗2(g1(x))

) (1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ∗1(t), υ∗2(g2(t))

)
dt

)

sup
x∈[a, b]

(∣∣∣∣∣∣h1 (x, υ1(x), υ2(g1(x))) − h1
(
x, υ∗1(x), υ∗2(g1(x))

) ∣∣∣∣∣∣
(

λ1

h1 (a, λ1, λ2)
e
α
τ (a−x)

) )
≤
λ1

θ

∥∥∥∥υ − υ∗∥∥∥∥
Λ

(3.9)

h1 (x, υ1(x), υ2(g1(x)))
(
1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

)
− h1

(
x, υ∗1(x), υ∗2(g1(x))

) (1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ∗1(t), υ∗2(g2(t))

)
dt

)
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+ h1
(
x, υ∗1(x), υ∗2(g1(x))

) (1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

)
− h1

(
x, υ∗1(x), υ∗2(g1(x))

) (1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

)
=(

h1 (x, υ1(x), υ2(g1(x))) − h1
(
x, υ∗1(x), υ∗2(g1(x))

) ) (1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

)
+ h1

(
x, υ∗1(x), υ∗2(g1(x))

) (1
τ

e−
α
τ x
∫ x

a
e
α
τ t

[
f1

(
t, υ1(t), υ2(g2(t))

)
− f1

(
t, υ∗1(t), υ∗2(g2(t))

)]
dt

)
. (3.10)

By (P1), (P3), and (P5), we find

sup
x∈[a, b]

∣∣∣∣∣∣h1 (x, υ1(x), υ2(g1(x))) − h1
(
x, υ∗1(x), υ∗2(g1(x))

) ) (1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

) ∣∣∣∣∣∣
≤

k1M1

α

(
e
α
τ (b−a)

− 1
)
‖υ − υ∗‖Λ, (3.11)

sup
x∈[a, b]

∣∣∣∣∣∣h1
(
x, υ∗1(x), υ∗2(g1(x))

) (1
τ

e−
α
τ x
∫ x

a
e
α
τ t

[
f1

(
t, υ1(t), υ2(g2(t))

)
− f1

(
t, υ∗1(t), υ∗2(g2(t))

)]
dt

) ∣∣∣∣∣∣
≤

M∗
1q1

α

(
e
α
τ (b−a)

− 1
)
‖υ − υ∗‖Λ. (3.12)

From (3.9),(3.11),(3.12), we obtain

‖T1υ1 − T1υ1‖C ≤
λ1

θ

∥∥∥∥υ − υ∗∥∥∥∥
Λ

+
k1M1

α

(
e
α
τ (b−a)

− 1
)
‖υ − υ∗‖Λ +

M∗
1q1

α

(
e
α
τ (b−a)

− 1
)
‖υ − υ∗‖Λ,

≤

(
λ1

θ
+

k1M1

α

(
e
α
τ (b−a)

− 1
)

+
M∗

1q1

α

(
e
α
τ (b−a)

− 1
) )
‖υ − υ∗‖Λ. (3.13)

Therefore,

‖T2υ2 − T2υ
∗
2‖C ≤

(
λ1

θ
+

k2M2

α

(
e
α
τ (b−a)

− 1
)

+
M∗

2q2

α

(
e
α
τ (b−a)

− 1
) )
‖υ − υ∗‖Λ. (3.14)

On the other hand, using the above inequalities (3.13) and (3.14), we get

‖Tυ − Tυ∗‖Λ = ‖T1υ1 − T1υ
∗
1‖C + ‖T2υ2 − T2υ

∗
2‖C,

≤

(
λ1

θ
+

k1M1

α

(
e
α
τ (b−a)

− 1
)

+
M∗

1q1

α

(
e
α
τ (b−a)

− 1
) )
‖υ − υ∗‖Λ

+

(
λ1

θ
+

k2M2

α

(
e
α
τ (b−a)

− 1
)

+
M∗

2q2

α

(
e
α
τ (b−a)

− 1
) )
‖υ − υ∗‖Λ

≤

[(
λ1

θ
+

k1M1

α

(
e
α
τ (b−a)

− 1
)
+
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M∗
1q1

α

(
e
α
τ (b−a)

− 1
) )

+

(
λ1

θ
+

k2M2

α

(
e
α
τ (b−a)

− 1
)

+
M∗

2q2

α

(
e
α
τ (b−a)

− 1
) )]
‖υ − υ∗‖Λ, (3.15)

‖Tυ − Tυ∗‖Λ ≤
(2λ1

θ
+ (X1 + X2)Θ

)
‖υ − υ∗‖Λ,

≤ β‖υ − υ∗‖Λ,

with 0 < β =
2λ1

θ
+ (X1 + X2)Θ < 1, where we have used (3.8) for this deduction. Hence T is a

contraction and Banach fixed point theorem ensures the existence of a unique solution of the coupled
system (1.1) in Bρ. �

�

Remark 3.5. We can prove that T maps bounded sets into bounded sets even if (P4) is not carried out
and we have the theorem below.

By Y1 and Y2, we denote the following real numbers

Y1 =
λ1

θ
+ M1Θ, Y2 =

λ1

θ
+ M2Θ.

Theorem 3.6. If (P1), (P2), (P3), (P5) and (3.8) are satisfied and if

0 < k1Y1 + k2Y2 < 1 (3.16)

then, the Problem (1.1) has a unique solution.

In fact, the condition (P4) has not intervened in the demonstration that T is a contraction.
Let us consider the bounded set BR = {υ ∈ Λ/‖υ‖ ≤ R}, where R is a real positive number selected

as follows:

R ≥
δ1

(
λ1

θ
+ M1Θ

)
+ δ2

(
λ1

θ
+ M2Θ

)
1 −

(
k1

(
λ1

θ
+ M1Θ

)
+ k2

(
λ1

θ
+ M2Θ

) ) .
Therefore, we have to prove that T (BR) ⊂ R without using assumption (P4). Indeed, using (P5) and
taking υ = (υ1, υ2) ∈ BR, it yields:

sup
x∈[a, b]

∣∣∣∣1
τ

e−
α
τ x
∫ x

a
e
α
τ t f1

(
t, υ1(t), υ2(g2(t))

)
dt

∣∣∣∣ ≤ M1Θ, (3.17)

‖T1υ1‖ ≤
(
k1‖υ‖Λ + δ1

)(λ1

θ
+ M1Θ

)
. (3.18)

In the same manner, we get

‖T2υ2‖ ≤
(
k2‖υ‖Λ + δ2

)(λ1

θ
+ M2Θ

)
. (3.19)
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By summing (3.18) and (3.19), we obtain

‖Tυ‖Λ ≤ ‖T1υ1‖C + ‖T2υ2‖C,

≤ R
(
k1Y1 + k2Y2

)
+

(
δ1Y1 + δ2Y2

)
,

≤ R.

This last result is valid thanks to (3.16) and the selection of R. Since, the operator T remains a
contraction even if we delete (P4), then Theorem 3.6 ensures the existence of a unique solution of the
coupled system (1.1) in the bounded set BR.

3.2. Ulam-Hyers stability

Definition 3.7. The fractional boundary value problem (1.1) is generalized Ulam-Hyers stable if there
exists Υ( f1, f2) ∈ C(R+,R+), Υ( f1, f2) (0) = 0, such that for each % > 0 and for each solution ω = (ω1, ω2) ∈
Λ of the inequality∣∣∣∣Dτ

(
υi

hi (., υ1(.), υ2(g1(.)))

)
(x) − fi

(
x, υ1(x), υ2(g2(x))

)∣∣∣∣ ≤ %, x ∈ I, i = 1, 2,

there exists a solution υ = (υ1, υ2) ∈ Λ of the fractional boundary value problem (1.1) with

‖ω − υ‖ ≤ Υ( f1, f2) (%) , x ∈ I.

If Υ( f1, f2)(%) = ν%with ν > 0, then the fractional boundary value problem (1.1) is Ulam-Hyers stable.

Theorem 3.8. If all assumptions of Theorems 3.4 or 3.6 are hold, then the Problem (1.1) is Ulam-Hyers
stable.

Proof. Let % be a real positive number and υ = (υ1, υ2) the unique solution of the Problem (1.1) in Λ.
Let ω = (ω1, ω2) ∈ Λ be a solution of the coupled system of inequalities

∣∣∣∣Dτ

(
ω1

h1 (., ω1(.), ω2(g1(.)))

)
(x) − f1

(
x, υω1(x), ω2(g2(x))

)∣∣∣∣ ≤ %,
∣∣∣∣Dτ

(
ω2

h2 (., ω1(.), ω2(g1(.)))

)
(x) − f2

(
x, ω1(x), ω2(g2(x))

)∣∣∣∣ ≤ %,
x ∈ I = [a, b] ,

ω1(a) = ω2(a) = υ1(a) = λ1, ω2 (g1(a)) = υ2 (g1(a)) = λ2,

ω = (ω1, ω2) , 0 < a < b, λi > 0, i = 1, 2.

(3.20)

By integrating the inequalities in the coupled system (3.20), we obtain

∣∣∣∣∣∣ ω1(x)
h1 (x, ω1(x), ω2(g1(x)))

−
ω1(a)

h1 (a, ω1(a), ω2(g1(a)))
− Iτa

(
f1

(
x, ω1(x), ω2(g2(x))

))∣∣∣∣∣∣ ≤ Iτa (%) ,

∣∣∣∣∣∣ ω2(x)
h2 (x, ω1(x), ω2(g1(x)))

−
ω2(a)

h2 (a, ω1(a), ω2(g1(a)))
− Iτa

(
f2

(
x, ω1(x), ω2(g2(x))

))∣∣∣∣∣∣ ≤ Iτa (%) ,

(3.21)

AIMS Mathematics Volume 8, Issue 5, 10978–10996.



10991

and using the fact that υ1(a) = ω1(a) = ω2(a) = λ1, υ2 (g1(a)) = ω2 (g1(a)) = λ2, ω = (ω1, ω2) , we
get: ∣∣∣∣ω1(x) − T1ω1(x)

∣∣∣∣ ≤ %(Iτa(1)
∣∣∣∣h1 (x, ω1(x), ω2(g1(x)))

∣∣∣∣,∣∣∣∣ω2(x) − T2ω2(x)
∣∣∣∣ ≤ %(Iτa+(1)

∣∣∣∣h2 (x, ω1(x), ω2(g1(x)))
∣∣∣∣,

∣∣∣∣ω1(x) − T1ω1(x)
∣∣∣∣ ≤ %1

α

(
1 − e

α
τ (b−a)

)∣∣∣∣h1 (x, ω1(x), ω2(g1(x)))
∣∣∣∣,∣∣∣∣ω2(x) − T2ω2(x)

∣∣∣∣ ≤ %

α

(
1 − e

α
τ (b−a)

)∣∣∣∣h2 (x, ω1(x), ω2(g1(x)))
∣∣∣∣,∥∥∥∥ω1 − T1ω1

∥∥∥∥
C
≤ %

1
α

M∗
1, (3.22)

and ∥∥∥∥ω2 − T2ω2

∥∥∥∥
C
≤
%

α
M∗

2. (3.23)

Summing (3.22) and (3.23), we have ∥∥∥∥ω − Tω
∥∥∥∥
Λ
≤
%

α

(
M∗

1 + M∗
2
)
. (3.24)

On the other hand, since υ is the unique solution of the coupled system (1.1) and T is a contraction, it

yields that for ω in Λ satisfying the system of inequalities and for 0 < β =
2λ1

θ
+ (X1 + X2)Θ < 1, we

have ∥∥∥∥Tω − Tυ
∥∥∥∥
Λ
≤ β

∥∥∥∥ω − υ∥∥∥∥
Λ
. (3.25)

Therefore, ∥∥∥∥ω − υ∥∥∥∥
Λ
≤

∥∥∥∥ω − Tω
∥∥∥∥ +

∥∥∥∥Tω − υ
∥∥∥∥,

≤

∥∥∥∥ω − Tω
∥∥∥∥ +

∥∥∥∥Tω − Tυ
∥∥∥∥,

≤
%

α

(
M∗

1 + M∗
2
)

+ β
∥∥∥∥ω − υ∥∥∥∥

Λ

It yields (
1 − β

)∥∥∥∥
Λ
ω − υ

∥∥∥∥ ≤ %

α

(
M∗

1 + M∗
2
)
, (3.26)

hence ∥∥∥∥ω − υ∥∥∥∥
Λ
≤

(
M∗

1 + M∗
2
)

α
(
1 − β

) %. (3.27)

That is ∥∥∥∥ω − υ∥∥∥∥
Λ
≤ Υ( f1, f2)(%), (3.28)

where Υ( f1, f2)(%) =

(
M∗

1 + M∗
2
)

α
(
1 − β

) %. Then the coupled system (1.1) is Ulam-Hyers stable. �
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4. An Example

Let us consider the following coupled system

D
1
4

(
υ1

h1 (., υ1(.), υ2(g1(.)))

)
(x) = f1

(
x, υ1(x), υ2(g2(x))

)
,

D
1
4

(
υ2

h2 (., υ1(.), υ2(g1(.)))

)
(x) = f2

(
x, υ1(x), υ2(g2(x))

)
,

x ∈ I = [0, 1] ,

υ1(a) = υ2(a) = λ1, υ2 (g1(a)) = λ2, υ = (υ1υ2) ,

(4.1)

where x ∈ [0 1] , y, z ∈ R,

f1 (x, y, z) =
e−3x

100
(y + z − 0.05)

f2 (x, y, z) =
sin(x)

x2 + 100

(
y2

y2 + 1
+

z2

z2 + 1
− 0.02

)
h1 (x, y, z) =

y + 0.01
2 ln(x + 1) + 200

+
ze−x

x + 200

h2 (x, y, z) =
1

x2 + 200
(
x sin(y) + z + 0.035

)
,

g1(x) =
|x|
|x| + 1

g2(x) = e−x.

For all x ∈ [0 1] and for all y, y
′

, z, z
′

∈ R, we have:
(P1) ∣∣∣∣∣∣h1 (x, y, z) − f1

(
x, y

′

, z
′
) ∣∣∣∣∣∣ ≤ 1

200

(
|y − y

′

| + |z − z
′

|
)
, then k1 =

1
200

,∣∣∣∣∣∣h2 (x, y, z) − f1

(
x, y

′

, z
′
) ∣∣∣∣∣∣ ≤ 1

200

(
|y − y

′

| + |z − z
′

|
)
, then k2 =

1
200

,

(P2) For 0 < λ1 ≤ 0.035 and λ2 = 400λ1, there exists θ = 2λ1 +
λ1

200
such that∣∣∣∣∣∣h1 (0, λ1, λ2)

∣∣∣∣∣∣ ≥ θ ≥ 2λ1

and ∣∣∣∣∣∣h2 (0, λ1, λ2)

∣∣∣∣∣∣ ≥ θ ≥ 2λ1
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(P3) ∣∣∣∣∣∣ f1 (x, y, z) − f1

(
x, y

′

, z
′
) ∣∣∣∣∣∣ ≤ 1

100

(
|y − y

′

| + |z − z
′

|
)
, then q1 =

1
100

,

∣∣∣∣∣∣ f2 (x, y, z) − f2

(
x, y

′

, z
′
) ∣∣∣∣∣∣ ≤ 1

25

(
|y − y

′

| + |z − z
′

|
)
, then q2 =

1
25
,

δ1 =
0.01
200

, δ2 =
0.035
200

,

(P4)

κ1 =
0.05
100

, κ2 =
0.02
100

.


τ =

1
4
, α =

3
4
, Θ = 25.20, A1 = 0.252, A2 = 1.008,

λ1

θ
= 0.49,

B1 = 0.502, B2 = 0.495, ξ = 0.00516, γ = 0.0063, ν = 0.000111,

σ = 6.99 × 10−7 <
1
4
, 1 − 2

√
σ = 0.998,

θ − 2λ1

Θθ
= 9.89 × 10−5, X1 = 0.000004, X2 = 0.00000925.

Hence
0 < ξ ≤ 1 − 2

√
σ

and

X1 + X2 = 1.32 × 10−5 ≤
θ − 2λ1

Θθ
.

Therefore, all assumptions of Theorem 3.4 are satisfied which implies that the coupled system (1.1)
has a unique solution and it is Ulam-Hyers stable.

Remark 4.1. Since for all x ∈ [0 1], we have fi (x, 0, 0) , 0. Then, the unique solution of the coupled
system (1.1) is nontrivial.

5. Conclusions

In this paper, we investigate the existence and uniqueness of solution for a particular coupled system,
namely, coupled system of two generalized hybrid-type pantograph equations involving deformable.
The novelty of the manuscript lies in the fact that it combines three notions in the same problem: A
coupled system, generalized hybrid pantograph equation, and deformable derivative. The study of the
existence and uniqueness of solutions and Ulam stability for such problems has not been mentioned
before. We use the Banach contraction principle to prove our results.
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