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Abstract
Presented is a novel way to combine snapshot compressive imaging and lateral shearing interferometry in order to capture
the spatio-spectral phase of an ultrashort laser pulse in a single shot. A deep unrolling algorithm is utilised for the
snapshot compressive imaging reconstruction due to its parameter efficiency and superior speed relative to other methods,
potentially allowing for online reconstruction. The algorithm’s regularisation term is represented using neural network
with 3D convolutional layers, to exploit the spatio-spectral correlations that exist in laser wavefronts. Compressed
sensing is not typically applied to modulated signals, but we demonstrate its success here. Furthermore, we train a neural
network to predict the wavefronts from a lateral shearing interferogram in terms of Zernike polynomials, which again
increases the speed of our technique without sacrificing fidelity. This method is supported with simulation-based results.
While applied to the example of lateral shearing interferometry, the methods presented here are generally applicable to
a wide range of signals, including Shack-Hartmann-type sensors. The results may be of interest beyond the context of
laser wavefront characterization, including within quantitative phase imaging.
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1. Introduction

Ultrashort laser pulses possess necessarily broad spectral
bandwidth [1]. The chromatic properties of the optical el-
ements that are used for generation or application of such
pulses can then create relations between the spatial and tem-
poral profiles, called spatio-temporal couplings (STCs) [2].
These phenomena can lead to a variety of effects including,
for example, the broadening of a focused laser pulse either
spatially or temporally, thereby reducing it’s peak inten-
sity [3]. Deliberately introduced STCs can lead to exotic light
pulses that behave very differently from ’normal’ pulses.
Examples of this are the so-called flying focus [4] with its
potential application in laser-driven wakefield accelerators [5]

or orbital angular momentum beams [6]. Universally, the
expansion in the applications of ultrafast laser pulses has
exacerbated the need for a robust way to measure their
properties.

To resolve STCs, one must gain wavefront information
over the three-dimensional hypercube (x, y, t) or equiva-
lently its spatio-spectral analogue (x, y, ω). Due to the
limitation that array sensors (such as CMOS cameras) cap-
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ture information in a maximum of two dimensions, the
majority of current techniques resort to scanning over one
or two dimensions; whether its a spatial [7,8], spectral [9] or
temporal [10] scan. Such techniques are time consuming and
are blind to shot-to-shot variations and drift of the laser.
While there exist some methods that are single-shot [11] -
i.e. those that capture the hypercube in one shot - these
currently lack resolution, spectral range and are cumbersome
to implement.

Here we present the concept for a single-shot method,
which utilises compressed sensing to resolve the wavefront
in both the spectral and spatial domains. The paper is
structured as follows. In Section 2 we will discuss the
wavefront sensor and in Section 3 we introduce snapshot
compressive imaging as a way to expand the wavefront
sensor to measuring multiple colors at once. Our imple-
mentation is based on deep unrolling, which yields high
performance in both reconstruction fidelity and speed, as
required for use as a real-time diagnostic. Section 4 lists
a thorough description of all neural network architectures
used, and Section 5 contains a description of how training
data was generated, before Section 6 displays the results of
the proposed method.
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Figure 1: Schematic of the experimental setup that was simulated. The pulse first travels through a quadriwave lateral shearing
interferometer, yielding a hypercube of interferograms, a slice of which is shown in the green box. The hypercube is then
passed through a CASSI setup. This consists of a random mask and a relay system encompassing a prism, before the coded
shot is captured on the camera. This diagram is not to scale.

2. Wavefront sensing

The wavefront sensor that was simulated in this example
was a Quadriwave Lateral Shearing Interferometer, which
is known for its high resolution and reconstruction fidelity.
Nonetheless, our method can in general be applied to any
kind of wavefront retrieval technique, including the popular
Shack-Hartmann sensor or multi-plane techniques such as
Gerchberg-Saxton phase retrieval.

A Lateral shearing interferometer (LSI) measures the
spatially varying phase of a light beam, and was first applied
to the measurement of ultrashort laser pulses in the late
1990s [12]. The LSI works by creating multiple copies
of the laser pulse and shearing them laterally relative to
each other before their interference pattern is captured on
a sensor. Due to the shear, information about the spatial
gradient of the wavefront is encoded in the interferogram.
This can then be extracted using Fourier filtering [13] and
stitched together to form the wavefront via methods such as
modal reconstruction [14] or Fourier integration [15]. The most
popular implementation is the aforementioned quadriwave
lateral shearing interferometer (QWLSI). By generating and
shearing four (2× 2) copies of the pulse under investigation,
this setup also enables the extraction of two separate pairs
of orthogonal gradients, meaning two distinct estimates for
the wavefront can be found, providing error estimation. This
property is highly desirable for a sensor based on compressed
sensing, because inevitable noise in the measurement can

corrupt the wavefront with reconstruction artifacts. This
would for instance be the case in a two-plane Gerchberg-
Saxton algorithm. In contrast, redundancy of phase informa-
tion in QWLSI provides direct validation and thus, makes the
wavefront retrieval much more resilient to noise. A sketch
illustration the concept of QWLSI is shown in the red box of
Fig. 1.

2.1. QWLSI Simulation

A physical implementation of QWLSI usually consists of a
phase grating with ‘pixels’ of alternating phase arranged in a
checkerboard pattern [16], which leads to dominant diffraction
in 2 × 2 copies of the beam. Instead of simulating this pro-
cess, we consider an idealized setup where we analytically
generate the four copies. We begin with creating the pulse of
interest by defining a spatial-spectral intensity, I0 and phase,
ϕ0,

E0(x, y, z = 0, ω) =
√
I0(x, y, z = 0, ω)eiϕ0(x,y,z=0,ω).

(1)
The pulse is copied 4 times, and each copy’s field is propa-
gated to the detector plane according to the following rules.
Note that for brevity, when the z index is not stated, z = 0
and the ω index will be suppressed from the electric field.

2.1.1. Propagation Considering the jth copy has travelled
a distance∆z, its poloidal angle is θj and its azimuthal angle
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is ζ, then one finds its displacement in the x and y directions
to be:

∆xj(ω) = ∆z sin(θj) sin(ζ(ω)),

∆yj(ω) = ∆z cos(θj) sin(ζ(ω)).

In a QWLSI, the poloidal angles are θj ∈ [0, π2 , π,
3π
2 ]. In

Fig. 1, one identifies the azimuthal angle, ζ as that between
the white copy lines, and the central yellow line. This is
related to both the pitch of the grating Λ and the wavelength
λ by:

ζ(ω) = arcsin

(
2π
λ

Λ

)
.

The resulting electric field of the copy is:

Ej(x, y,∆z) =
1

4

√
I0(x−∆xj , y −∆yj)e

iϕ0(x−∆xj ,y−∆yj).
(2)

2.1.2. Tilt As diffraction occurs at an angle ζ, the grating
imparts a tilt onto the copy. This translates to an additional
phase shift dependant on both the spectral and spatial do-
mains,

∆ϕj(x, y, ω) = k(ω) (x cos(θj) + y sin(θj)) sin(ζ),

where k = 2π
λ is the wavevector of the pulse. This tilt

is crucial in reconstruction as it provides a high frequency
modulation that separates the gradients in Fourier space.

Combining these two effects and summing over copies, we
obtain the final changes to the field of:

E(x, y,∆z) =
1

4

4∑
j=1

√
I0(x−∆xj , y −∆yj)

· ei(ϕ(x−∆xj ,y−∆yj)+∆ϕj(x,y))

(3)

At the Talbot self-imaging plane, ∆z = 2Λ2/λ, one has a
hypercube of interferograms. An example of a one frequency
channel slice is shown in the green box of Fig. 1.

In other applications one would collapse the cube onto
a sensor at this point; however this would eliminate the
chance of retrieving the spectrally-resolved phase. Instead,
as discussed in Section 3, we use snapshot compressive
imaging to aid in the capturing of the cube.

2.2. Wavefront Reconstruction

Once the interferogram is captured, one must extract the
wavefront. As previously mentioned, current reconstruction
methods usually involve multiple steps, i.e. extracting the
gradients, integrating and stitching them together. This can

be a time consuming process, especially in a hyperspectral
setting where the reconstruction has to be done for every
channel. To address this problem, we present a deep learning
approach to wavefront reconstruction for LSI. While similar
work has been done in the context of Shack Hartmann
sensors [17,18], this is the first application of deep learning
to LSI reconstruction, to the best of our knowledge. The
network that was used will be discussed in Section 4.

3. Snapshot Compressive Imaging

Compressed sensing (CS) describes the highly efficient ac-
quisition of a sparse signal from less samples than would
classically be required according to the Nyquist theorem,
by utilising optimisation methods to solve underdetermined
equations. Snapshot compressive imaging (SCI) is an ex-
ample of CS, capturing three dimensional data on a two
dimensional sensor in a single shot.

Fundamentally, there are two requirements to be fulfilled
for CS to work. First, the signal must be sparse in some
basis, and second, the signal must be sampled in a basis
that is incoherent with respect to the sparse basis [19]. The
first condition was hypothesised to be satisfied given the
fact that laser wavefronts are known to be well-expressed
with a few coefficients of the Zernike basis. When one
doesn’t have prior knowledge about which basis the signal is
sparse in, the second condition is often solved by performing
random sampling. Whilst being trivial for two dimensional
data, in the context of SCI it is challenging, as the 3D
hypercube must be randomly sampled onto a 2D sensor. To
do so, nearly all research in this area uses hardware based on
the coded aperture snapshot compressive imaging (CASSI)
system [20,21].

3.1. CASSI

The hypercube is first imaged onto a coded aperture. This
is a binary random mask with each pixel transmitting either
100% or 0% of the light. The cube is then also passed
through some dispersive medium, e.g. a prism or grating,
before being captured by a sensor resulting in what is known
as the coded shot. The effect of this optical system is that
when the hypercube reaches the detector plane, each spectral
channel is encoded with a different coded aperture, thereby
approximating random sampling across the whole cube. It
is then possible for a reconstruction algorithm to retrieve
the cube. A diagram of a CASSI system is shown in the
yellow box in Fig. 1, with an example of a coded shot for
an interferogram hypercube shown on the far left of Fig. 3.
The setup can easily be simulated by multiplying the cube by
the mask, then shifting the channels of the cube according to
the amount of (angular) dispersion imparted onto them, and
finally summing over the spectral axis.

Mathematically, the CASSI system discussed above is
summarized into a matrix ΦΦΦ, which operates on mmm, a
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vectorized representation of the hypercube, to give nnn, a
vectorized coded shot,

nnn = ΦΦΦmmm. (4)

In order to reconstruct mmm, one can solve

m̃mm = argminmmm

||nnn− ΦΦΦmmm||2︸         ︷︷         ︸
data term

+ ηR(mmm,ψ)︸      ︷︷      ︸
regularizer

 . (5)

The first term on the right hand side is labelled the data term,
and enforces that the hypercube must match the coded shot
when captured. This alone would be an under-determined
system, so a regularization term, parameterised by ψ, is
added which restricts the solution space and selects the
correct hypercube.

Most methods that have been developed to solve this non-
convex equation can be sorted into two classes: iterative
algorithms or end-to-end neural networks. The former offers
good generalisation but lacks abstraction capability and is
slow, whilst deep nets are fast and have been shown to learn
almost any function, but can be prone to overfitting [22]. A
middle ground that offers state of the art performance is deep
unrolling.

3.2. Deep Unrolling

While an end-to-end neural net would attempt to solve
Eq. (5) directly, if it were possible to split the equation,
the data term can actually be solved analytically. This is
desirable as it alleviates the abstraction needed to be done
by the network resulting in greater generalisation and better
parameter efficiency [23]. To perform such a separation, half
quadratic splitting is employed. First an auxiliary variable
ppp is substituted into the regularization term, with equation
6 being equivalent to equation 5. Then, the constraint is
relaxed and replaced by a quadratic loss term,

m̂mm, p̂pp = argminm,p

[
|nnn− ΦΦΦmmm|2 + ηR(ppp)

]
s.t.mmm = ppp, (6)

≈ argminm,p

[
|nnn− ΦΦΦmmm|2 + ηR(ppp) + β|mmm− ppp|2

]
.

(7)

Here, β is a variable that controls the strength of the
constraint. If β → ∞, minimizing Eq. (7) will cause mmm = ppp
and the subject-to statement is reinstated. However, when β
is a finite value, mmm and ppp are not necessarily equivalent.

The benefit of this problem formulation is that it is then
possible to split Eq. (7) into two minimization sub-problems
in mmm and ppp, and effectively separate the data term from
the regularization term. When minimized iteratively, the
following sub-problems can approximate Eq. (7):

p̂ppk+1 = argminp
[
β|ppp−mmmk|2 + ηR(ppp)

]
= S(mmmk), (8)

m̂mmk+1 = argminm
[
|nnn− ΦΦΦmmm|2 + β|pppk+1 −mmm|2

]
. (9)

Eq. (9) is a convex equation and can be solved via a
conjugate gradient algorithm which provides better stability
than solving analytically. S on the right-hand side of Eq. (8)
represents that a neural network will be used to solve the
equation.

The deep unrolling process is shown in Fig. 2(bi). Firstly
mmm(0) is initialized: mmm(0) = ΦΦΦTnnn. Then the two equations
are solved for a fixed number of iterations, with the same
architecture neural net being used to represent Eq. (8) in each
iteration. However, the network has its own set of weights
for each iteration, hence the unrolling of the algorithm. The
architecture of the network will be discussed in Section 4.

4. Network Architecture

This section contains the architectures of the neural networks
that were used. They will be discussed in the order they
are used in the reconstruction process, which is displayed
in the flow chart of Fig. 2a. Firstly the deep unrolling
algorithm performs reconstruction of the interferogram hy-
percube from the coded shot, and secondly another network,
Xception-LSI, reconstructs the spatial-spectral wavefront
from the hypercube.

4.1. Deep Unrolling Regularizer

As previously discussed, the neural network, S, represents
a regularization term. This means one can exploit prior
knowledge about the data to choose a suitable architecture.
As will be discussed in the following section, STCs can be
described by a correlation between Zernike polynomial co-
efficients and wavelength. Accordingly, there will likely be
strong similarity in spot positions for neighbouring spectral
channels. Due to this, an architecture with 3D convolutions
was developed, which can exploit these relations. Inspired
by recent work in video snapshot compressive imaging [24],
a simplified ResUNet architecture was chosen [25], with the
standard 2D convolutions replaced with 3D ones. We used
10 iterations for our model, as it has been found that adding
more than this produces negligible performance gains [26]. A
diagram of the network is displayed in Fig. 2b(i).

4.2. Xception-LSI

A wavefront retrieval network was developed that takes a
single spectral channel QWLSI interferogram and predicts
the spatial wavefront in terms of Zernike coefficients. The
network is based on the Xception network [27], but as the
original 71-layer network is designed for classification, some
changes were made to adapt Xception to our application.
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Figure 2: A diagram showing the full reconstruction process of the wavefront from the coded shot. a): A flow chart of
the reconstruction process. b): (i) The deep unrolling process, where subproblems 1O and 2O are solved recursively for
10 iterations. Also shown is the neural network structure used to represent S(mmmk). b): (ii) The training curve for the deep
unrolling algorithm. Plotted is the training and validation PSNR for the 3D ResUNet prior that was used, as well as the
validation score for a local-nonlocal prior. Here is demonstrated the superior power of 3D convolutions in this setting. c): (i)
The network design for the Xception-LSI network. The Xception* block represents that the last two layers were stripped from
the conventional Xception network. c): (ii) The training curve for Xception-LSI for training and validation sets, with the loss
shown in log mean squared error. Also plotted is the validation loss when further training the model on the deep unrolling
reconstruction of the data (Transfer).

Firstly the final 2 layers were removed. A max pool layer and
a convolutional layer were added to shrink the output in the
spatial and spectral dimensions respectively. Dropout was
applied before using 3 dense layers with 1000, 500 and 100
nodes using the relu activation function [28]. The output layer
consists of 15 nodes with linear activation, corresponding to
the number of Zernike coefficients to predict. We name the
network Xception-LSI, and it can be seen in Fig. 2c(i).

5. Training data generation

To represent the initial pulse, a total of 300 cubes were gener-
ated with dimensions (nx×ny×nω) = (512×512×31). The
data was randomly split at a ratio of 4 : 1 : 1 into training,
validation and test sets, respectively. The wavelength range
considered was 750 − 850 nm, representing a broadband
Ti:Sapphire Laser, giving∆λ ≈ 3.23 nm. For each cube, the
wavefront for each channel was first initialised to a randomly
weighted sum of 15 Zernike basis functions. Then, to
simulate an STC, one Zernike function was chosen and was
made to vary either linearly or quadratically with frequency.
Indeed, common STCs such as pulse front tilt and pulse

front curvature can be represented in this way [1]. The mean
amplitude of this coefficient was also made to be higher. This
choice of Zernike coefficients is arbitrary, but allows for a
demonstration that the method can identify all Zernike basis
functions. The intensity of slices of the cube were set to an
image taken of a real laser intensity.

Each cube was then processed according to Fig. 1. Firstly
it was passed through the QWLSI simulation (see Sec-
tion 2.1), yielding a hypercube of interferograms - these are
the training labels for the deep unrolling algorithm. This
hypercube was then passed through the SCI simulation,
yielding a coded shot - the training data. The wavefront was
reconstructed via the process in Fig. 2a. The interferogram
hypercube was reconstructed via deep unrolling, before
being passed into the Xception-LSI network to predict the
spectral Zernike coefficients.

The pitch of the lateral shearing interferometer was set to
Λ = 80 µm, and the dispersion of the prism, measured at the
camera plane, was set to 1 pixel per channel (each channel
having a width of 3.23 nm).

Before being passed through the deep unrolling network,
the cubes and coded shots were split spatially into 64×64
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Figure 3: Example results of the reconstruction process. a): An example of the coded shot, along with a zoomed section. b):
Deep unrolling reconstruction of the interferogram hypercube in the same zoomed section at different wavelength slices. c):
The Xception-LSI reconstruction of the spatio-spectral wavefront displayed in terms of Zernike coefficients, where the x-axis
of each plot is the Zernike function, the y-axis is the wavelength and the colour represents the value of the coefficient. d): The
spatial wavefront resulting from a Zernike basis expansion of the coefficients in c) at the labelled spectral channels.

oblique parallelepiped patches, allowing for a one-to-one
reconstruction between the input and output [26]. The initial
learning rate was set to 0.01 and decayed by 10% every 5
epochs. The total number of epochs was 70, and the batch
size was 8.

The Xception-LSI network was fed individual channels
of the ground truth interferogram hypercubes and predicted
Zernike coefficient polynomials. Normal random noise
(N (µ = 0, σ = 0.1)) was applied to the input, to make the
model robust to noise produced by the SCI reconstruction.
The initial learning rate was set to 10−5 and decayed by
10% every 5 epochs. The total number of epochs was 40,
and the batch size was 16. Once trained on the ground
truth hypercubes, the model was trained on interferogram
hypercubes that had been reconstructed by deep unrolling,
for a further 8 epochs. The aim of this transfer learning
was to allow the network to account for any systematic
noise in the SCI reconstruction, resulting in a more accurate
wavefront reconstruction.

6. Results and Discussion

6.1. Snapshot Compressive Imaging

Crucial to this method’s success is the SCI reconstruction
of the hypercube of interferograms. As can be seen from
the green box of Fig. 1, the image slices are modulated and
appear as spot patterns. As a result, the images do not exhibit
the same sparsity in e.g. the wavelet domain as most natural
images used in SCI research do. Because of this, there was
uncertainty in whether it would be possible to recover the
cube.

Here it is demonstrated that it is indeed possible to recon-

struct such modulated signals with SCI. The training curve
can be seen in Fig. 2b(ii). Also plotted is the validation
loss when a local-nonlocal prior [29], which is state of the
art for natural images, was used. One sees that when both
architectures were used with 10 iterations of unrolling, the
3D convolutional model achieved a far superior peak signal
to noise ratio (PSNR) of 36 compared to 29. Furthermore, it
contains ∼45% less parameters.

6.2. QWLSI

In order to reconstruct the wavefront for a full hypercube,
each spectral channel is fed through the network sequen-
tially. After training, the final mean squared error on
the ground truth test set was 6.80 × 10−4. Fig. 2c(ii)
displays the training curve with the training, validation
and transfer loss curves. The additional transfer learning
proves to be extremely effective in reducing the error of
the wavefront predictions when working with reconstructed
interferogram hypercubes. The final mean squared error on
the reconstructed test set was 9.18× 10−4.

6.3. Hyperspectral Compressive Wavefront Sensing

An example of the full reconstruction process, from coded
shot to spatial-spectral wavefront, is displayed in Fig. 3.
It is apparent that the deep unrolling network was able to
accurately reconstruct the interferogram hypercube, and the
Xception-LSI network was able to reconstruct the wavefront.
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7. Summary and Outlook

In this report we have demonstrated the possibility of com-
bining a wavefront sensor with snapshot compressive imag-
ing in order to achieve a single-shot measurement of the
spatial-spectral phase. Crucially, it has been shown that SCI
has the ability to reconstruct modulated signals, such as those
produced by a quadriwave lateral shearing interferometer.

A natural progression to this study is to realize the results
in an experimental setting, where challenges arise from
the more complicated dispersion, transfer functions and
noise. Other further work could include extending the
deep learning LSI analysis to the hyperspectral setting. By
passing the network a hypercube of interferograms, rather
than individual slices, it may be possible to exploit spectral
correlations in order to improve accuracy and detect STCs
more easily. Also, work can be done on testing the model
with a more varied set of Zernike polynomials. Finally,
there has been recent interest in the possibility of spreading
phase contrast imaging to a hyperspectral setting. However,
current methods take many seconds to capture a hypercube
of phase [30]. The proposed method would be able to collect
information with higher spectral resolution in a single shot,
allowing for dynamic events to be recorded hyperspectrally.
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C. Thaury, K. Zeil, and F. Quéré, “Survey of spatio-
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B. Wattellier, “Wave-front reconstruction from multi-
directional phase derivatives generated by multilateral
shearing interferometers,” Opt. Lett., vol. 30, pp. 245–
247, Feb 2005.

16. S. Velghe, J. Primot, N. Guérineau, R. Haı̈dar,
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