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Ca2+ plays a crucial role in excitation-contraction coupling in cardiac myocytes.
Dysfunctional Ca2+ regulation alters the force of contraction and causes cardiac
arrhythmias. Ca2+ entry into cardiomyocytes is mediated mainly through L-type
Ca2+ channels, leading to the subsequent Ca2+ release from the sarcoplasmic
reticulum. L-type Ca2+ channels are composed of the conventional Cav1.2,
ubiquitously expressed in all heart chambers, and the developmentally
regulated Cav1.3, exclusively expressed in the atria, sinoatrial node, and
atrioventricular node in the adult heart. As such, Cav1.3 is implicated in the
pathogenesis of sinoatrial and atrioventricular node dysfunction as well as atrial
fibrillation. More recently, Cav1.3 de novo expression was suggested in heart
failure. Here, we review the functional role, expression levels, and regulation of
Cav1.3 in the heart, including in the context of cardiac diseases. We believe that the
elucidation of the functional and molecular pathways regulating Cav1.3 in the
heart will assist in developing novel targeted therapeutic interventions for the
aforementioned arrhythmias.
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Introduction

Cardiac excitation-contraction coupling is a process where electrical excitation of the
cardiomyocyte leads to a muscular contraction in the heart (Bers, 2002). L-type Ca2+

channels play an essential role in excitation-contraction coupling by mediating Ca2+

influx and membrane excitability (Bodi et al., 2005; Striessnig et al., 2014; Catterall et al.,
2020). These Ca2+ channels are modulated by small concentrations of different chemical
classes of Ca2+ antagonists, including dihydropyridines (Berjukow et al., 2000; Tang et al.,
2016). There are four types of L-type Ca2+ channels: Cav1.1, Cav1.2, Cav1.3, and Cav1.4
(Berjukow et al., 2000; Berger and Bartsch, 2014; Striessnig et al., 2014). The Cav1.1 and
Cav1.4 channels are restricted to the skeletal muscle and retina/immune cells, respectively.
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However, Cav1.2 is more widely expressed in the heart/smooth
muscle, neurons (somatodendritic), and endocrine cells, while
Cav1.3 is expressed in the heart, neurons (somatodendritic),
endocrine cells, and sensory cells (Striessnig et al., 2014; Mesirca
et al., 2015).

Cav1.3, the focus of this review, was initially thought to be of
neuroendocrine origin (Qu et al., 2005b; Zhang et al., 2005; Lu et al.,
2015). However, it was subsequently discovered in the adult heart
with distinct expression exclusively in the supraventricular tissues
(atria, sinoatrial node, atrioventricular node) and not in the
ventricles (Mangoni et al., 2003; Qu et al., 2005a). Genetic
deletion of Cav1.3 in mice (Cav1.3

−/−) causes congenital deafness,
sinus bradycardia, and various degrees of atrioventricular (AV)
block consistent with region-specific expression (Mangoni et al.,
2003; Hu et al., 2004; Qu et al., 2005a). Furthermore, Cav1.3

−/− mice
display impaired Ca2+ homeostasis associated with atrial fibrillation
(AF) (Figure 1) (Mancarella et al., 2008). Interestingly, loss of
Cav1.3 function in humans was associated with sinoatrial node
dysfunction and deafness (SANDD) syndrome with a cardiac and
auditory phenotype similar to Cav1.3

−/− mice (Baig et al., 2011;
Liaqat et al., 2019; Torrente et al., 2020).

Numerous neurotransmitters regulate Cav1.3 in the heart.
Phosphorylation of the channel by cAMP-dependent protein
kinase A (PKA) is at serine residues located at positions
1743 and 1816 of the C-terminus (Mitterdorfer et al., 1996).
Protein kinase C (PKC) also plays a vital role in regulating
Cav1.3 in an isozyme-specific manner, with the regulation site
being a serine residue located at position 81 of the N-terminal
domain (Baroudi et al., 2006). When calmodulin-dependent protein
kinase II (CaMKII) is co-expressed with densin, which binds to
Cav1.3, it facilitates the increase of Ca

2+ current (ICaL) as a result of

high-frequency stimulation (Maier and Bers, 2002; Jenkins et al.,
2010; Tokumitsu and Sakagami, 2022). This provides another
mechanism for Cav1.3 regulation (Jenkins et al., 2010; Tokumitsu
and Sakagami, 2022).

Alternative splicing in the Cav1.3 C-terminus affects its
electrophysiological properties by reducing Ca2+-dependent
inactivation of the Cav1.3 channels (Tan et al., 2011). A recent
study by Lu et al. showed that the C-terminus of Cav1.3 undergoes
cleavage and translocation to the nucleus, where it acts as a
transcription factor that affects the function of Ca2+-activated K+

channels in atrial cardiomyocytes (Lu et al., 2015).
This review summarizes the functional role and regulation of

Cav1.3 in healthy and diseased hearts. Specifically, we provide
current knowledge on Cav1.3 regulation across different cardiac
conditions and the resulting implications for diseases and potential
novel therapies.

Functional role of CaV1.3 in the heart

In cardiac musculature, Cav1.3 is involved in pacemaking and
AV conduction of the heart (Mesirca et al., 2016b). Cav1.3

−/− mice
are deaf and exhibit bradycardia and arrhythmia resulting from
sinoatrial (SA) node dysfunction (Platzer et al., 2000; Ortner, 2023).
This is likely because of the crucial role that Cav1.3 channels play in
the diastolic depolarization of SA node pacemaker cells (Mangoni
et al., 2003). In this regard, action potentials recorded from the SA
nodes in Cav1.3

−/− mice show a significant reduction in beating
frequency and diastolic depolarization rate compared with Cav1.3

+/−

or wild-type littermates, suggesting that this decrease is intrinsic to
the SA node (Zhang et al., 2002).

FIGURE 1
Deletion of Cav1.3 in mice leads to electrographic abnormalities. The absence of Cav1.3 in mice leads to the development of sinoatrial (SA) and
atrioventricular (AV) node dysfunction leading to sinus bradycardia and first-degree, second-degree, and third-degree AV block as well as atrial
fibrillation (AF).
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Another study reported that Cav1.3 deficiency impaired
intracellular Ca2+ ([Ca2+]i) dynamics by decreasing the frequency
of local [Ca2+]i release, eventually leading to dysfunctional
synchronization (Torrente et al., 2016). Cav1.3 appeared to
stimulate and synchronize ryanodine receptor (RyR)-dependent
[Ca2+]i release during regular SA node pacemaker activity. Thus,
Cav1.3 plays dual roles by mediating inward ICaL and stimulating
RyR-dependent [Ca2+]i release. This provides an additional
pathophysiological mechanism for congenital SA node
dysfunction and heart block linked to the loss of Cav1.3 function
in humans (Boutjdir, 2000; Torrente et al., 2016). Cav1.3 was
implicated as an essential molecular component of the voltage-
dependent, dihydropyridine-sensitive Na+ current (Ist), essential in
SA node automaticity. Hence, Ist and ICaL share Cav1.3 as a common
molecular determinant in the SA node, despite the relatively
unknown molecular nature of Ist (Toyoda et al., 2017).

Expression of CaV1.3 in the heart

Cav1.3 is generally less abundant than Cav1.2, the predominant
L-type Ca2+ channel in the heart and brain (Berger and Bartsch,
2014). The expression and localization of Cav1.3 are
developmentally regulated. Two forms of Cav1.3 (250 kD and
190 kD) were observed, with the full-length (250 kD) channel
protein predominant in the prenatal stages. Cav1.3 channel
protein was expressed in both atria and ventricles at fetal and
neonatal stages but was absent in adult ventricles. The short
form of Cav1.3 is only expressed in the adult and is restricted to
the atria (Qu et al., 2011).

The 190 kD form of Cav1.3 represents the channel with a
truncated C-terminus (Qu et al., 2011). Interestingly, this

truncation of Cav1.3 has been shown to translocate to the
nucleus, functioning as a transcriptional regulator to alter the
function of KCa2 in atrial myocytes. Nuclear translocation of the
C-terminal domain of Cav1.3 is modulated by [Ca2+]i. This results in
a decrease in protein expression of myosin light chain 2, which
interacts with and increases the membrane localization of
KCa2 channels (Lu et al., 2015). Another study reported that the
total and membrane expression of Cav1.3 were significantly
impaired by overexpression of the protein Snapin, resulting in
the ubiquitin-proteasomal degradation of the channel and a
consequent reduction of the total ICaL densities (Sun et al., 2017).

In embryonic atrial cardiomyocytes, elevated Cav1.3 expression
was reported upon truncation and subsequent inhibition of
Cav1.2 in murine models. Western blot analysis indicated an
increase of Cav1.3 protein in the atrium, likely compensating for
the functional loss of the truncated Cav1.2 channel in these murine
embryonic atrial cardiomyocytes by upregulating the Cav1.3 channel
(Ding et al., 2013).

The C-terminal part of the Cav1.3 channel is encoded by exons
39 to 49 and it is the subject of intensive alternative splicing events
that affect its function (Figure 2) (Singh et al., 2008; Scharinger et al.,
2015; Hofer et al., 2021). Several splicing variants have been reported
in the nervous system and their role in heart is not yet well
elucidated (Hofer et al., 2021). The C-terminus is a strong target
for alternative splicing due to the C-terminus gating modulator’s
ability to prevent Ca2+ inactivation of the channels (Singh et al.,
2008; Scharinger et al., 2015; Hofer et al., 2021). The long isoform
(Cav1.342L) possesses all the regulatory domains, whereas two short
splicing isoforms (Cav1.342A and Cav1.343S) are characterized by the
absence of the distal C-terminal regulatory domain or both proximal
and distal C-terminal regulatory domains (Singh et al., 2008; Tan
et al., 2011; Scharinger et al., 2015). Alternative splicing in the

FIGURE 2
Alternative splicing at the C-terminus of Cav1.3. Alternative splicing of exon 41 that removes the IQ motif resulted in a truncated Cav1.3 protein with
diminished inactivation. Splicing of exon 43 which causes a frameshift variant and is susceptible to accelerating the inactivation similar to Cav1.342A. Ca

2+

current through Cav1.342A channels increased at negative voltages, and inactivation was faster because of Ca2+-dependent inactivation. Splicing of exons
44 and 48 was an in-frame variant and caused disruption of the binding of distal modulator to the IQ domain. PCRD (proximal C-terminal regulatory
domain), DCRD (distal C-terminal regulatory domain). Current tracing are from reference Tan et al., 2011.
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C-terminus of Cav1.3 modulates its electrophysiological properties
(Singh et al., 2008; Scharinger et al., 2015; Hofer et al., 2021).
Activation of ICaL through Cav1.342A channels increased at
negative voltages, and inactivation was faster due to enhanced
Ca2+-dependent inactivation (Singh et al., 2008). Furthermore,
the C-terminal modulator domain in the Cav1.342 isoforms
competed with calmodulin (CaM) in regards to binding to the
IQ domain (Kuzmenkina et al., 2019).

Alternative splicing was identified at four other different loci in
the C-terminus of Cav1.3. The splicing of exon 41 removes the IQmotif
resulting in a truncated Cav1.3 protein with diminished inactivation.
Secondly, splicing of exon 43 results in a frameshift variant and is
susceptible to increased inactivation similar to Cav1.342A. Lastly, the
splicing of exons 44 and 48 in-frame causes disruption of the distal
modulator binding to the IQ domain (Tan et al., 2011).

Regulation of CaV1.3 in the heart

Regulation by PKA

Cav1.3 is upregulated through the PKA-cAMP pathway
(Figure 3A) (Qu et al., 2005b; Ramadan et al., 2009). Specifically,
Ramadan et al. showed 3 PKA consensus sites phosphorylated on
the proximal C-terminus of the Cav1.3 α1-subunit at serines 1743,
1816 and 1964 using mass spectrometry (Ramadan et al., 2009).
Additional site-directed mutagenesis followed by patch clamp
studies demonstrated that serines 1743 and 1816 were major
functional PKA consensus sites while the phosphorylation of
serine 1964 was not functionally relevant. The resulting PKA
phosphorylation of Cav1.3 increased channel activity in the SA
node and atria (Qu et al., 2005b). The upregulation

Cav1.3 activity may account for as much as a 25% increase in
total ICaL (Qu et al., 2005b; Mahapatra et al., 2012; Vandael et al.,
2013). On the other hand, decrease in PKA activity and subsequent
downregulation of Cav1.3 was reported in mice with a frameshift
variant in the natriuretic peptide precursor A gene linked to AF
(Menon et al., 2019). Collectively, these findings show that Cav1.3 is
a target for sympathetic control of heart rhythm via PKA.

Regulation by PKC

There is limited available information about the regulation of
Cav1.3 by PKC in the heart. We showed that Cav1.3 is inhibited
through PKC activation by phosphorylation of its N-terminal
domain (Figure 3A) (Baroudi et al., 2006). PKC activation reduces
Cav1.3 ICaL by up to 50% by reducing the probability of Cav1.3 to
remain in an open state while increasing the likelihood and time spent
in the closed state (Baroudi et al., 2006; Chahine et al., 2008).
Interestingly, βIIPKC and εPKC are key PKC isozymes implicated
in this regulatory mechanism, and serine 81 represents an essential site
for PKC-mediated phosphorylation of Cav1.3 (Baroudi et al., 2006).
βIIV5-3 and εV1-2 peptides, which inhibit βIIPKC and εPKC,
respectively, prevent the downregulation of Cav1.3 by PKC. This
further supports the importance of isozyme specific PKC in the
regulation of Cav1.3 and the essential consensus site at serine 81 in
the downregulation of Cav1.3 (Baroudi et al., 2006; Ferreira et al., 2012).

Regulation by calmodulin

The prevailing understanding of CaM modulation of
Cav1.3 appears not to be limited to the binding of CaM to the

FIGURE 3
Regulation of Cav1.3 L-type Ca2+ channel by protein kinase A, protein kinase C, and calmodulin-dependent protein kinase II. Panel (A) Schematic
representation of the four homologous domains (I-IV) of the Cav1.3 α1-subunit with 6 transmembrane segments (S1-S6) and N- and C- termini.
Phosphorylation of the channel by PKA is at serine residues located at positions 1743 and 1816 of the C-terminus. PKC phosphorylates at the N-terminal
domain at serine residue located at position 81. Calmodulin binding site is on the proximal C-terminus. Missense variant A376V and the founder
variant G403_V404insG, as well as heterozygous non-synonymous variant R930H in CACNA1D gene have been associated with sinoatrial node
dysfunction (Liaqat et al., 2019; Rinné et al., 2022). The missense variants G403R and I770M has been found in patients with atrioventricular node
dysfunction (Scholl et al., 2013). Panel (B) The sketch summarizes the regulation of atrial Cav1.3 channel by the different kinases, including PKA, PKC and
CaMKII. Ca2+ entry through Cav1.3 channel and subsequent Ca2+ release from RyR contributes to pacemaking, while Ca2+ entry through
Cav1.2 contributes to excitation-contraction coupling. PKA (protein kinase A), PKC (protein kinase C), SR (sarcoplasmic reticulum), SERCA
(sarcoendoplasmic reticulum calcium ATPase), RyR (ryanodine receptor), P (phosphorylation site), CaMKII (calmodulin-dependent protein kinase II).
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C-terminus of the channel (Figure 3A) (Maier and Bers, 2002; Ben
Johny et al., 2013). Johny et al. demonstrated that CaM might also
bind to alternative sites on Cav1.3, and subsequent binding of Ca2+

leads to alternative configurations of the CaM-Cav1.3 complex,
resulting in alternative forms of Ca2+-dependent inactivation (Ben
Johny et al., 2013). Thus, in addition to the previously assumed
association of CaM to the C-terminal IQ domain, the N-lobe may
bind to the proximal Ca2+-inactivating region. Furthermore, if Ca2+

binds to the N-lobe of CaM, then it will bind onto the NSCaTE
region of the Cav1.3 channel (Dick et al., 2008; Ben Johny et al.,
2013). Banerjee et al. reinforce this idea by demonstrating that CaM
must bind to Cav1.3 on both of its lobes tomodulate Cav1.3 to exit its
preinhibited configuration (Banerjee et al., 2018). If CaM only binds
on one of its sites to the Cav1.3 channel, the channel will fail to be
inhibited and operate as if CaM is not present. The C-terminal
modulator domain in the distal C-terminus of the Cav1.3 channel
can interfere with CaM binding, resulting in subsequent inhibition
of channel activity (Kuzmenkina et al., 2019). Cav1.3 may also be
modulated by CaMKII for increased channel activity (Maier and
Bers, 2002; Gao et al., 2006; Tokumitsu and Sakagami, 2022).
CaMKII-mediated phosphorylation of Cav1.3 channel may result
in the channels staying open for longer, and the increased channel
activity manifests in an action potential that looks similar to an
ascending staircase with multiple depolarizations from holding
potential (Maier and Bers, 2002). The specific pathway of insulin
growth factor 1 stimulates phospholipase C-ɣ to facilitate Ca2+

release from IP3-sensitive stores, thereby activating CaMKII and
phosphorylating the Cav1.3 channel (Gao et al., 2006).

Cav1.3 in heart disease

Autoimmune-associated congenital heart
block

Autoimmune-associated congenital heart block (aCHB) is an
electrophysiological abnormality affecting the SA and AV nodes of
structurally healthy hearts in fetuses and neonates. Clinical symptoms of
aCHB include a spectrum of variations of sinus bradycardia and AV
block. Of these variations, third-degree AV block is themost critical and
lethal manifestation, having the greatest mortality rate (Lazzerini et al.,
2017). aCHB is presumably acquired passively when the mother
transmits anti-Ro/SSA auto-antibodies through the placenta to the
fetus (Boutjdir, 2000; Lazzerini et al., 2017). Anti-Ro/SSA antibodies
are the most common antibodies associated with aCHB (Karnabi et al.,
2010; Qu et al., 2019). Qu et al. showed that human Cav1.3 expression
and associated electrophysiological activity were inhibited by anti-Ro/
SSA positive IgG antibodies obtained from mothers that had children
with aCHB (Qu et al., 2005a). This study also showed the ability of anti-
Ro/SSA positive IgG to recognize the Cav1.3 channel protein, which
suggests cross-reactivity between the anti-Ro/SSA antibodies with the
Cav1.3 channel (Qu et al., 2005a; Qu and Boutjdir, 2012).

Sinoatrial node dysfunction: Autoimmune-
associated sinus bradycardia

Autoimmune diseases provide an additional level of insight into
the development of cardiovascular diseases since autoantibodies
have been found to modulate cardiac electrophysiological activity

(Qu et al., 2019). Voltage-gated L-type Ca2+ channels, specifically
Cav1.3, play a key role in the pathophysiology of cardiac arrhythmias
in the presence of autoimmune antibodies such as anti-Ro/SSA and
anti-La/SSB (Qu et al., 2019; Lazzerini et al., 2021). In particular, the
anti-Ro/SSA antibodies interact with Cav1.3 through a mechanism
of direct channel inhibition (Qu et al., 2005a; Lazzerini et al., 2018;
Qu et al., 2019). There are two types of anti-Ro/SSA antibodies: anti-
52 kD and anti-60 kD, and they are formed as a result of an
autoimmune response to the Ro/SSA antigen (Lazzerini et al.,
2018; Qu et al., 2019). In experiments with immunized (Ro/SSA
antigens) and non-immunized Cav1.3

−/− mice, only immunized
Cav1.3

−/− mice displayed severe sinus bradycardia, significantly
prolonged PR interval and significantly lower fetal parity when
compared to non-immunized mice (Karnabi et al., 2011).

Additional experiments with pregnantmice that were injected with
positive IgG from human mothers that had children with aCHB
showed that the timing of immunization during gestation was
important (Mazel et al., 1999). Although pups from the 8 days-,
11 days-, and 16 days-gestation groups showed electrocardiographic
symptoms, pups that were at least 11 days along in gestation were more
likely to develop a higher degree of sinus bradycardia and PR
prolongation (Mazel et al., 1999; Boutjdir, 2000). Hu et al. showed
that ICaL was reduced in rabbit SA node cells following superfusion of
maternal anti-Ro/SSA positive IgG from mothers who had children
with aCHB resulting in slow spontaneous action potentials consistent
with sinus bradycardia (Hu et al., 2004). As a potential therapy for
aCHB, genetic or drug-induced deactivation of themuscarinic-gated K+

channel in Cav1.3
−/− mice has been proposed to allow a net inward

current to be maintained to prevent dysfunction of SA node
pacemaking activity (Mesirca et al., 2016a). The role of autoimmune
cardiac channelopathies involving Cav1.3 in the development of cardiac
arrhythmias represents an avenue for future investigation (Capecchi
et al., 2019).

Atrioventricular node dysfunction: Autoimmune-
associated atrioventricular block

A hallmark of aCHB is complete AV block almost always being
accompanied by first-, second- or third-degree AV block (Boutjdir,
2000). In prospective studies of pregnancies in anti-Ro/SSA-positive
women with no previously affected children, the risk of aCHB was
estimated to be 2%–5%, whereas the risk of recurrence in mothers
with a previously affected child increases to approximately 15%–

20% (Boutjdir, 2000; Qu and Boutjdir, 2012). Treatment for aCHB
includes dexamethasone, plasmapheresis, sympathomimetic and in
utero cardiac pacing therapy, but none of these are definitive in
successfully treating AV block (Boutjdir, 2000).

AV block was successfully induced in isolated Langendorff
perfused human fetal hearts by purified IgG fractions and anti-52
kD Ro/SSA antibodies from mothers of children with aCHB
(Boutjdir et al., 1997). Perfusion of maternal anti-Ro/SSA positive
IgG into rat hearts resulted in the development of bradycardia
associated with second-degree AV block, which then degenerated
into complete AV block. Experiments have shown that anti-Ro/SSA
antibodies led to a reduction of Cav1.3 ICaL by 35% in naive
cardiomyocytes (Qu et al., 2019). Additionally, 14% of anti-Ro/
SSA antibody-positive IgG was reactive with domain I of the
extracellular S5-S6 loop in the pore-forming subunit of Cav1.3
(Karnabi et al., 2010).
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Altered electrophysiological activity was noted in mice and
rabbits that were immunized with recombinant anti-Ro
52 antigen (Lazzerini et al., 2017; Lazzerini et al., 2019; Qu
et al., 2019). Peak ICaL recorded in human fetal
cardiomyocytes was significantly inhibited by maternal 52 kD
anti-Ro/SSA antibodies. Prior work has also shown that 52 kD
anti-Ro/SSA showed more incidence of second-and third-degree
AV block. In rabbit AV node cells, action potentials recorded
following perfusion of human positive IgG showed significant
reduction in the beating heart (Boutjdir, 2000). To culminate
these findings, the inclusion of anti-Ro/SSA antibodies in isolated
multicellular AV node preparations and Langendorff-perfused
whole hearts resulted in bradycardia and AV block (Restivo et al.,
2001; Qu and Boutjdir, 2012; Qu et al., 2019). IgG antibodies
from mothers with children having aCHB reacted with the
sarcolemma of human fetal cardiomyocytes and recognized
Cav1.3 subunits, as opposed to anti-Ro/SSA negative IgG
antibodies from mothers that had healthy children (Qu et al.,
2005a). Collectively, Cav1.3 plays a critical role in the
pathogenesis of conduction abnormalities seen in aCHB and
can be a preferential target for novel therapies.

Cardiac phenotypes in families with
CACNA1D variants

Sinoatrial node dysfunction
Initially, no known human channelopathies were described for

Cav1.3 channels or its associated CACNA1D gene (Striessnig et al.,
2010). Rinné et al. conducted a study on a three-generation Turkish
family where whole genome sequencing was used to identify a
variant of CACNA1D associated with SA dysfunction
(Figure 3A) (Rinné et al., 2022) Specifically, examination of exon
22 on the CACNA1D gene led to characterization of the p
(Arg930His) variant of the CACNA1D gene, which induces the
alteration of the Cav1.3 long isoform, thus resulting in loss of

function of the channel which leads to SANDD. In this variant,
there is a substitution of arginine for a histamine residue at position
930 of the extracellular linker between the S1 and S2 transmembrane
segments of domain III on the Cav1.3 channel, which is associated
with the channel’s gating properties, resulting in loss of function
(Rinné et al., 2022). Later, Baig et al. showed that an alteration in
CACNA1D resulted in a glycine residue insertion near the
Cav1.3 pore, thus reducing Ca2+ entry, which became an
identifying feature of SANDD (Baig et al., 2011). The CACNA1D
gene holds significance in Pakistani lineages, where variants have
been discovered that lead to inhibited Cav1.3 function and possibly
result in SA node dysfunction. Liaqat et al. identified and further
characterized the founding variant p (G403_V404insG) and a new
missense variant p (A376V), both of which exhibited a phenotype of
SANDD (Liaqat et al., 2019).

Atrioventricular node dysfunction
The CACNA1D gene is also expressed in the AV node, meaning

any variants have implication for Cav1.3-related channelopathies in
the AV node. In this regard, AV block was reported in members of a
Turkish family that expressed the p (Arg930His) variant of the
CACNA1D gene (Figure 3A) (Rinné et al., 2022). Scholl et al. were
able to show that variants of the CACNA1D gene resulted in altered
glycine (G403R) and isoleucine residues (I770M) in the S6 of
Cav1.3 domain I and II. This substitution increased channel
activation and inhibited inactivation, leading to gain of function
in Cav1.3 for patients with aldosteronism; the cardiac implications
are yet to be characterized and further clinical studies are warranted
(Scholl et al., 2013).

Atrial fibrillation

AF is the most common cardiac arrhythmia that contributes
substantially to morbidity and mortality. The cellular mechanisms
underlying AF are multifactorial. A reduction in ICaL density was

FIGURE 4
Expression of Cav1.3 L-type Ca2+ channel in the fetal, neonatal, adult, and failing heart. Cav1.3 is expressed in the supraventricular and ventricular
tissue of the fetal and neonatal hearts. However in adult hearts, it is expressed only in the atria, sinoatrial (SA) node, and atrioventricular (AV) node, but not
in the ventricles. Recent evidence suggests a Cav1.3 de novo expression in the ventricles of adult failing hearts.
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initially reported in atrial myocytes from patients with AF (Van
Wagoner et al., 1999). Subsequently, atrial samples from patients
with AF also showed a significant decrease in Cav1.3 channel
mRNA, pointing to a functional role for Cav1.3 in AF
development (Gaborit et al., 2005). Cav1.3

−/− mice showed atrial
electrical dysfunction and predisposition to the development of AF
(Mancarella et al., 2008). The electrical abnormalities in the
Cav1.3

−/− mice were associated with reduced total ICaL density,
[Ca2+]i transient, and dysfunctional [Ca2+]i handling and atrial
stimulation induced AF in Cav1.3

−/− mice (Mancarella et al.,
2008). Whole-cell ICaL in atrial myocytes from Cav1.3

−/− mice

showed a significant depolarizing shift in voltage-dependent
activation (Mancarella et al., 2008). In contrast, there were no
significant differences in the ICaL recorded from ventricular
myocytes between wild-type and null Cav1.3

−/− mice (Zhang
et al., 2005). These data further support a potentially important
role for Cav1.3 in the development of AF.

Studies of molecular mechanisms for the role of Cav1.3 in AF are
still nascent. Reports show a reduction in ankyrin-B expression in
the atria of patients with documented AF, suggesting that ankyrin-B
was required for the membrane targeting and function of Cav1.3 in
atrial myocytes (Mesirca et al., 2021). Ankyrin-B was shown to

TABLE 1 Summary of published literature on Cav1.3 in SA/AV node dysfunction, atrial fibrillation, and heart failure.

Publication Disease/
Dysfunction

Summary

Platzer et al. (2000) SA node dysfunction Congenital deafness and SA node dysfunction in mice lacking Cav1.3 L-type Ca2+ channels

Baig et al. (2011) SA node dysfunction Loss of Cav 1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness

Liaqat et al. (2019) SA node dysfunction CACNA1D variants associated with SA node dysfunction and deafness in Pakistani families

Mangoni et al. (2003) SA node dysfunction Cav1.3 channels contribute to diastolic depolarization in SA node pacemaker cells

Zhang et al. (2002) SA node dysfunction Role for Cav1.3 in the generation of the spontaneous action potential in the SA node

Qu et al. (2005a) SA node dysfunction Cav1.3
−/− mice develop sinus bradycardia and various degrees of atrio-ventricular block

Rose et al. (2011) SA node dysfunction Chronic iron overload reduces Cav1.3 expression and associated electrical activity, potentially leading to sinus
bradycardia

Karnabi et al. (2011) SA/AV node dysfunction Cav1.3−/− mice infused with anti-Ro/SSA antibodies showed severe AV block and sinus bradycardia

Restivo et al. (2001) SA/AV node dysfunction Rabbit hearts infused with anti-Ro/SSA antibodies showed delayed action potentials in the sinoatrial junction,
representing sinus bradycardia in addition to AV block

Mesirca et al. (2016a) SA/AV node dysfunction The muscarinic-gated K+ channel represents a good target for genetic inactivation or pharmacological
inhibition to improve symptoms of in Cav1.3−/− mice afflicted by sick sinus syndrome and AV block.
Alternatives include selective suppression of Cav1.3-associated ICaL

Zhang et al. (2020) AV node dysfunction Cav1.3
−/− mice show a significant decrease in the firing frequency of spontaneous action potentials suggesting

an important role for Cav1.3 in the automaticity of the AV node

Mancarella et al. (2008) Atrial fibrillation Cav1.3
−/− mice are associated with reduced total ICaL density, intracellular Ca

2+ transient, and dysfunctional
intracellular Ca2+ handling

Sun et al. (2017) Atrial fibrillation Reduced expression of Cav1.3 paralleled with enhanced expression of Snapin was in atrial samples from AF
patients

Gaborit et al. (2005) Atrial fibrillation Atrial samples from patients with AF show a significant reduction in Cav1.3 channel mRNA

Zhang et al. (2005) Atrial fibrillation Total ICaL in atrial myocytes from Cav1.3
−/− mice shows a significant depolarizing shift in voltage-dependent

activation

Cunha et al. (2011), Wolf et al.
(2013)

Atrial fibrillation Reduction in ankyrin-B expression in atria of patients with AF. Ankyrin-B is required for the membrane
targeting and function of Cav1.3 in atrial myocytes

Srivastava et al. (2017) Atrial fibrillation Elucidation of an atrial endocrine secretion pathway regulated by Cav1.3 that is a possible candidate pathway
involved in generation of cardiac arrhythmias such as AF

Menon et al. (2019) Atrial fibrillation Atrial natriuretic peptide (ANP) overexpressing mouse model is more prone to developing AF and shows a
reduction in Cav1.2/Cav1.3 and ICaL

Schröder et al. (1998) Heart failure Increased availability and open probability of single L-type Ca2+ channels in failing human ventricles

Mørk et al. (2007) Heart failure Increased cardiomyocyte function and Ca2+ transients in mice during early congestive heart failure

Chen et al. (2002) Heart failure Density of L-type Ca2+ channels are reduced in failing ventricular cardiomyocytes but basal ICaL density is
maintained by increase in channel phosphorylation

Srivastava et al. (2020) Heart failure Cav1.3 is expressed in HF patients and therefore is a possible candidate gene involved in ventricular
remodeling in the failing heart
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associate with Cav1.3 directly. Loss of ankyrin-B in atrial myocytes
resulted in decreased Cav1.3 expression, membrane localization, and
function, leading to shortened atrial action potentials and
arrhythmias (Cunha et al., 2011; Wolf et al., 2013; Mesirca et al.,
2021). In a subsequent study, reduced expression of
Cav1.3 paralleled with enhanced expression of Snapin was seen in
atrial samples from AF patients (Sun et al., 2017). Upon further
investigation, it appeared that Snapin downregulated
Cav1.3 membrane expression and promoted its degradation
through the ubiquitin-proteasome pathway, thus functioning as a
novel regulator for Cav1.3 protein trafficking in atrial myocytes.
Further mechanistic insights came from a study from our group,
which showed that Cav1.3 and the Ca2+ activated K+ channel
SK4 were coupled in the atria and that Cav1.3 deletion led to
decreased SK4 mRNA and brain natriuretic peptide secretion
from the atria (Srivastava et al., 2017). Regulation of atrial
endocrine secretion by Cav1.3 is a possible candidate pathway for
generating cardiac arrhythmias such as AF. Particularly, cardiac
Ca2+ (Cav1.2/Cav1.3) channel expression and ICaL, along with the
action potential durations, were significantly reduced in mice with
frameshift human natriuretic peptide precursor A genes, providing
further evidence of the significant role of Cav1.3 in AF (Menon et al.,
2019). Rose et al. showed that chronic iron overload reduced
Cav1.3 mRNA and ICaL, thereby suppressing channel function
(Rose et al., 2011). They suggested this mechanism as a possible
contributor to the development of AF.

Heart failure

Heart failure (HF) is the heart’s inability to maintain adequate
blood circulation to the body’s tissues or to pump out the venous
blood returned to it by venous circulation (Dyck et al., 2022).
There is substantial evidence that the contractility of failing
human hearts is depressed (Houser and Margulies, 2003). As
described above briefly, Ca2+ enters the cardiomyocytes via
voltage-gated Ca2+ channels upon electrical excitation, which
causes further Ca2+ release from the sarcoplasmic reticulum
(Figure 3B). This raises free [Ca2+]i, thereby activating the
contraction of cardiac tissue (Bers and Despa, 2006).
Therefore, abnormalities in basal Ca2+ regulation and
dysfunctional Ca2+ signaling cause contractile dysfunction and
arrhythmias in pathophysiological conditions such as HF (Houser
et al., 2000; Houser and Margulies, 2003).

However, the role of the L-type Ca2+ channels which provide
Ca2+ entry to failing cardiomyocytes is unclear and controversial
(Beuckelmann et al., 1992; Mukherjee et al., 1998; Benitah et al.,
2010). Among L-type Ca2+ channels, Cav1.2 is highly expressed in
the ventricles; therefore, research on HF focused on Cav1.2. No
research except a recent study by Srivastava et al. has addressed
the potential role of Cav1.3 in HF (Srivastava et al., 2020).
Published results on Cav1.2 gene expression during HF are
inconsistent and show either decreased or insignificant
changes in mRNA levels (Takahashi et al., 1992; Schröder
et al., 1998; Hong et al., 2012). Furthermore, there are
contradictory reports where some studies observed an increase
in ICaL during HF, while others reported no changes (Schröder
et al., 1998; Chen et al., 2002; Mørk et al., 2007).

Several fetal genes, including the T-type Ca2+ channel Cav3.1,
are re-expressed during ventricular remodeling following
experimental myocardial infarction in rats (Gidh-Jain et al.,
1998; Huang et al., 2000). Atrial natriuretic peptide,
hyperpolarization activated cyclic nucleotide gated potassium
channel 4, β-myosin heavy chain, skeletal α-actin, and smooth
muscle 22α are other genes that are also re-expressed in HF
(Kuwahara et al., 2012; Nandi and Mishra, 2015; Sano et al.,
2021). Therefore, Cav1.3 was postulated as a possible candidate
to be involved in ventricular remodeling in HF (Figure 4)
(Nikolaidou et al., 2015; Menon et al., 2019; Zhang et al., 2020).
In HF patients, we observed a 6.2-fold increase in Cav1.3 mRNA
levels and a 14.9-fold decrease in Cav1.2 mRNA levels in failing
hearts compared to healthy human left ventricular control tissue
(Srivastava et al., 2020). This alteration was also reported for
Cav1.3 protein with western blots in seven failing hearts,
demonstrating high expression of Cav1.3 mRNA. A functional
re-expression of Cav1.3 might serve as a novel compensatory
mechanism for the ventricle to improve cardiac function in HF
(Ding et al., 2013; Srivastava et al., 2020; Torrente et al., 2020).
Single-cell RNA sequencing data from human dilated and
hypertrophic cardiomyopathy demonstrated that Cav1.3 is
highly expressed in activated fibroblasts (Chaffin et al., 2022).
Thus, it cannot be excluded that the re-expression of Cav1.3 in HF
could also originate from cardiac fibroblasts, a common feature of
ventricular cardiac remodeling in HF. To elucidate the potential
role of Cav1.3 in the ventricles of adult failing hearts, further
investigations into its effect on ICaL and inotropy in the ventricle
will be required. It will be crucial to delineate the role of Cav1.3 re-
expression in HF for developing novel therapeutic interventions.

Conclusion

The physiological role of L-type Ca2+ channels has been studied
extensively, aided by generating gene knockout animal models.
Given their crucial role in excitation-contraction coupling and
maintaining a delicate balance of [Ca2+]i in cardiomyocytes, there
is a need for further investigation into these channels in diseased
states, particularly Cav1.3, as a therapeutic target. Table 1 reports
published literature on the role of Cav1.3 in SA node dysfunction,
AV node conduction defects, AF, HF, and autoimmune cardiac
channelopathies. However, most studies have not elucidated the
molecular mechanisms that underlie disease progression and
management. Downregulation or upregulation of Cav1.3 observed
in these various diseases will likely facilitate the maintenance of
[Ca2+]i and generating and regulating pacemaking. Hence, detailed
mechanistic insights into the role of Cav1.3 and its expression and
function in the heart will assist in identifying new therapies targeted
towards treating the aforementioned cardiovascular diseases.
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