
TYPE Technology and Code

PUBLISHED 21 March 2023

DOI 10.3389/fninf.2023.1122470

OPEN ACCESS

EDITED BY

Seifollah Gholampour,

The University of Chicago, United States

REVIEWED BY

Ruben A. Tikidji-Hamburyan,

George Washington University, United States

Joon W. Shim,

Marshall University, United States

*CORRESPONDENCE

Karol Chlasta

karol@chlasta.pl

RECEIVED 13 December 2022

ACCEPTED 06 February 2023

PUBLISHED 21 March 2023

CITATION

Chlasta K, Sochaczewski P, Wójcik GM and

Krejtz I (2023) Neural simulation pipeline:

Enabling container-based simulations

on-premise and in public clouds.

Front. Neuroinform. 17:1122470.

doi: 10.3389/fninf.2023.1122470

COPYRIGHT

© 2023 Chlasta, Sochaczewski, Wójcik and

Krejtz. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Neural simulation pipeline:
Enabling container-based
simulations on-premise and in
public clouds

Karol Chlasta1,2*, Paweł Sochaczewski2, Grzegorz M. Wójcik3 and

Izabela Krejtz4

1Department of Computer Science, Polish-Japanese Academy of Information Technology, Warsaw,

Poland, 2Department of Management in Networked and Digital Societies, Kozminski University, Warsaw,

Poland, 3Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science,

Maria Curie-Sklodowska University in Lublin, Lublin, Poland, 4Eye Tracking Research Center, SWPS

University, Warsaw, Poland

In this study, we explore the simulation setup in computational neuroscience. We

use GENESIS, a general purpose simulation engine for sub-cellular components

and biochemical reactions, realistic neuron models, large neural networks,

and system-level models. GENESIS supports developing and running computer

simulations but leaves a gap for setting up today’s larger and more complex

models. The field of realistic models of brain networks has overgrown the

simplicity of earliest models. The challenges include managing the complexity

of software dependencies and various models, setting up model parameter

values, storing the input parameters alongside the results, and providing execution

statistics. Moreover, in the high performance computing (HPC) context, public

cloud resources are becoming an alternative to the expensive on-premises

clusters. We present Neural Simulation Pipeline (NSP), which facilitates the

large-scale computer simulations and their deployment to multiple computing

infrastructures using the infrastructure as the code (IaC) containerization

approach. The authors demonstrate the e�ectiveness of NSP in a pattern

recognition task programmed with GENESIS, through a custom-built visual

system, called RetNet(8×5,1) that uses biologically plausible Hodgkin–Huxley

spiking neurons. We evaluate the pipeline by performing 54 simulations executed

on-premise, at the Hasso Plattner Institute’s (HPI) Future Service-Oriented

Computing (SOC) Lab, and through the Amazon Web Services (AWS), the biggest

public cloud service provider in theworld.We report on the non-containerized and

containerized execution with Docker, as well as present the cost per simulation in

AWS. The results show that our neural simulation pipeline can reduce entry barriers

to neural simulations, making them more practical and cost-e�ective.

KEYWORDS

GENESIS, scientific workflows, Docker, computer simulations, liquid state machine (LSM)

1. Introduction

Neural simulation is a computational approach that involves building and running
computer models of the structure and function of the brain or parts of the brain. It can
be used to study the brain and how it works as well as to explore and test hypotheses about
brain function in health and disease. Using neural simulation can be useful in studying and
understanding the complexity of certain central nervous system (CNS) disorders as it allows
researchers to investigate and analyze the brain’s structure and function in a controlled and

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1122470
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1122470&domain=pdf&date_stamp=2023-03-21
mailto:karol@chlasta.pl
https://doi.org/10.3389/fninf.2023.1122470
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1122470/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

precise manner (Eliasmith and Trujillo, 2014). This can help
identify potential targets for therapeutic intervention and test
the effects of different treatments or interventions on the brain
function.

Neural simulation can be used to study the neural basis of
disorders such as Alzheimer’s disease or autism spectrum disorder
as well as to explore the mechanisms underlying brain development
and plasticity (Duch, 2000). The computer simulation can also be
used to investigate the effects of drugs and other interventions
on the brain function and to identify potential therapeutic targets
for the treatment of CNS disorders, e.g., using different boundary
conditions (Gholampour and Fatouraee, 2021).

Alzheimer’s disease is a progressive brain disorder that causes
problems with memory, thinking, and behavior. It is the most
common cause of 60–70% of cases of progressive cognitive
impairment in older adults, and it is estimated to affect at least
2.3 million (ranging from 1.09 to 4.8 million) people in the United
States (Cummings and Cole, 2002). The prevalence of Alzheimer’s
disease increases with age, and it is estimated that ∼1 in 10 people
over the age of 65 and nearly half of those over the age of 85 have
the disease (Weuve et al., 2015).

Autism spectrum disorder is a neurodevelopmental
disorder characterized by difficulties with social interaction
and communication, as well as repetitive behaviors and
interests (Hirota and King, 2023). It is estimated to affect
2.3% of children aged 8 years and ∼2.2% of adults in the United
States, with boys being four times more likely to be diagnosed with
ASD than girls. The prevalence of ASD has increased significantly
over the past few decades; however, it is not clear whether this is
due to an actual increase in the number of cases or due to improved
detection and diagnosis (Landrigan, 2010).

Large-scale simulations of biologically realistic neural networks
often require expensive computational resources (Markram, 2006;
Eliasmith and Trujillo, 2014). They also create challenges with
storing the massive amounts of their data (Eliasmith and
Trujillo, 2014) or with developing, distributing, and maintaining
their codebase (Davison et al., 2009). Their configuration and
model deployment might present a significant barrier for many
researchers tackling biocybernetic modeling. This is due to both
methodological and IT challenges (Eliasmith and Trujillo, 2014),
which include maintaining software dependencies and executing
on different hardware infrastructures. The task is not trivial
from a technical perspective even when using as well-established
simulation engine as GENESIS (Crone et al., 2019).

We focus on GENESIS (Bower and Beeman, 1998), the most
cited simulation engine (Tikidji-Hamburyan et al., 2017), originally
developed in 1989 by Dr. James M. Bower in his laboratory at the
California Institute of Technology (Caltech). GENESIS is designed
to be easily extensible and adaptable to run on different HPC
clusters. Apart from its maturity, one of the key advantages of using
GENESIS is its openness. The software is distributed under GNU
General Public License (GNU GPL; License, 1989), so its users
have the freedom to run, share, and modify the simulation engine’s
source code, and any derivative workmust also be distributed under
the same or equivalent license terms. There are two major flavors
of the simulation engine: a standard GENESIS and a PGENESIS
that runs on a wide range of hardware using the Message Passing

Interface (MPI) or the Parallel Virtual Machine (PVM; Bower,
2000).

There were several attempts to use the computational approach
to tackle Alzheimer’s disease (Duch, 2000; Chlasta and Wołk,
2021) or autism spectrum disorder (ASD; Duch et al., 2012,
2013; Dobosz et al., 2013; Duch, 2019). Our project aims to
deliver new tools facilitating the study of brain function through
software containerization based on Docker and can be used
to inform the development of new therapies and interventions
for a variety of CNS disorders, including Alzheimer’s disease
and autism spectrum disorder. However, the anticipated advance
goes beyond just brain network simulations, and in our view,
it also includes computational neuropharmacology (Aradi and
Érdi, 2006) as well as increasingly computational psychology
based on “neuron-like” processing principles, complementing
its “traditional” computational neuroscience background (O’reilly
and Munakata, 2000).

1.1. Project idea

Authors claim that numerical simulations must integrate a
robust model developmentmethodology, with adequate testing and
simulation steering workflows to increase scientific throughput and
improve utilization of current and next-generation computational
infrastructure, available both on-premise and in-cloud. To this
end, there is the need to transform the end-to-end computational
experiment workflow from one that is non-universal and manual
to one that is standardized and automated. Figure 1 presents the
relationship between the simulation setup and simulation run
in computational neuroscience. As it can be seen, conducting

experiment and running simulation are two distinct iterative
loops connected by a feedback process. This process uses the
interpretation of output results to design new simulation setups and
develop new cybernetic models.

GENESIS (Bower and Beeman, 1998) supports the lower
loop within the system as shown above, but it leaves a gap

for setting up and executing the simulations (e.g., setting up
model parameter values, different stimuli, storing the parameters,
and providing execution statistics). A similar gap was identified
for other popular simulation engines (Tikidji-Hamburyan et al.,
2017) like BRIAN (Goodman and Brette, 2008), NEST (Gewaltig
and Diesmann, 2007), and NEURON (Hines and Carnevale,
2001) or the most popular functional simulation engine called
Nengo (Bekolay et al., 2014). Moreover, each simulator uses its own
programming or configuration language, what leads to challenges
in porting models from one simulation engine to another and
managing them (Davison et al., 2009). These problems triggered the
idea of creating a more universal simulation pipeline called Neural

Simulation Pipeline (NSP).
NSP manages simulations and allows them to be saved and

defined for different simulation engines in a unified way. The
framework provides both local and remote queues for executing
simulations. These queues can be executed regardless of the
hardware platform through Docker containers running in the
cloud or on-premise. The NSP also enables a faster analysis

Frontiers inNeuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

FIGURE 1

The relationship between experiment and simulation in computational neuroscience based on GENESIS documentation (Bower et al., 2003).

of experimental data. This is because (1) all the simulation
results are stored centrally using a single storage service, (2) they
can be managed using a set of standard NSP scripts on both
Linux and Windows machines, (3) or through the reusable NSP
variables, and (4) all the experimental data gets partially pre-
processed, by aggregating the results together with the statistics
on the execution environment (e.g., simulation run-times, detailed
information about CPUs, memory, and operating system processes,
and simulation engine specific statistics).

2. Materials and methods

2.1. GENESIS simulation engine

Brain network simulations can be performed with a GENESIS
simulation engine (Bower et al., 2003). GENESIS (Goddard and
Hood, 1997; Bower and Beeman, 2012) is an object-oriented multi-
function neural simulation software package that allows scientists
to flexibly build high-fidelity neurobiological models. These models
are capable of simulating brain functions on different levels from
the level of small sub-cellular components to sophisticated large
and complex neural networks.

Moreover, GENESIS from version 2.3 contains Kinetikit, an
interface and utilities for developing simulations of chemical
kinetics. This extension contains a comprehensive graphical
simulation environment for modeling biochemical signaling
pathways using deterministic and stochastic methods (Vayttaden
and Bhalla, 2004). The extended GENESIS becomes a tool
to investigate the biomechanics of the brain including its
time-dependent temperature and pressure variations, or the
liquid behaviors in contrast to ideal conditions. As such, the
GENESIS/Kinetikit simulations could be used to study the
dynamics of cerebrospinal fluid flow and pressure, which can
provide valuable information for diagnosing and managing fluid
disorders or testing the effects of different interventions or

optimizing treatment strategies (Musilova and Sedlar, 2021).
In authors’ view, this justifies the positioning of our article
to the Frontiers’ Research Topic “Modeling and Simulation of
Cerebrospinal Fluid Disorders.”

GENESIS simulations are programmed using objects that
have inputs on which mathematical operations are performed
and then, based on the result of those operations, generate
outputs which become inputs to other objects. Neurons in
GENESIS models are built from these basic components in a
compartmental fashion (Beeman, 2005) using a GENESIS Script
Language Interpreter (SLI) that provides the programmer with
a built-in language to define and manipulate these GENESIS
objects. In the compartmental approach, neuron’s compartments
in GENESIS are linked to their ion channels, and the channels
are linked together to form multi-compartmental neurons of up to
50–74 compartments per neuron. GENESIS simulations scale on
super-computing resources to neural network sizes as large as 9 ×
106 neurons with 18 × 109 synapses and 2.2 × 106 neurons with
45× 109 synapses (Crone et al., 2019).

2.2. Containerization with Docker

Authors believe that the problem of developing, testing, and
deploying new simulation setups, as well as their different software
dependencies could be resolved using a container platform like
Docker (Merkel, 2014). According to the recent IDC’s white
paper (Chen, 2018), Docker is themost popular container platform.
Software containerization makes it possible to use provider-
agnostic computing (IaC) in the way that the required resources can
be specified in a simple configuration file for multiple deployments
to different hardware architectures (Naik, 2022).

As summarized by Nickoloff and Kuenzli (2019), the Docker
platform uses the low-level operating system kernel internals
to run applications in containers using the Docker Engine. The

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

architecture of Docker containers relies on both namespaces

and control groups. The process is transparent for the applications
as a container is a ring-fenced area of the operating system with
limits imposing on how much system resource it can use. The
engine creates a layer of abstraction for all the required kernel
internals and creates a container that is designed for hosting specific
applications and their dependencies (Merkel, 2014). Although
the containers can be deployed and managed manually, most
organizations automate the processes using pipelines (Al Jawarneh
et al., 2019).

In spite of a wide enterprise adoption, there are significant
problems with resource allocations (de Bayser and Cerqueira,
2017) when using Docker containers on the HPC platform and
running simulations using MPI communications with an SLURM
scheduler (Yoo et al., 2003), a popular combination of tools used
for large scale simulations. These problems are resolved using
additional front-ends allocating the containers, or developing the
alternative containerization systems (Azab, 2017).

In this article, we present a simple alternative, the Neural

Simulation Pipeline (NSP), that is developed by Bash (Ramey, 1994)
and PowerShell (Holmes, 2012) and does not require SLURM to
execute simulations.

2.3. Simulation setting

We evaluate NSP through executing simulations in the Amazon
Web Services (AWS) cloud environment and on-premise at the
Hasso Plattner Institute. We selected AWS because in the last 3
years, it has remained the biggest Infrastructure as a Service (IaaS)
public cloud provider in the world if measured by both reported
revenue and market share. The company achieved a revenue of
$35.4 billion and a market share of 38.9% last year. They were
followed by Microsoft, Alibaba, Google, and Huawei, collectively
amounting to the 80% of the cloud computing market globally last
year (Gartner, 2022). These numbers are significant because AWS
is the biggest vendor and can deliver vast benefits of economies
of scale, while as the report suggests “cloud-native becomes the
primary architecture for any modern computing workloads.” In
the our view, this should and will affect the way large scale
computer simulations are executed in future. There might be no
return to the large and expensive HPC projects like the Blue
Brain Project (Markram, 2006), that simulated a single neural
column of 10,000 neurons using 8,000 cores of the IBM Blue Gene
supercomputer (that is, 1.25 neuron per core).

All the services that allowed us to perform the containerized
execution of NSP in AWS are presented in Figure 4 and
documented on AWS Cloud Products website.1 These are Amazon
Elastic Container Service (ECS), Amazon Elastic Compute Cloud
(ECC), and Amazon Elastic Load Balancing (ELB), whose task
definitions were used by Amazon ECS Cluster, AWS Secrets
Manager, AWS CodePipeline, AWS CodeBuild, AWS CodeDeploy,
Amazon Elastic Container Registry (ECR), Amazon CloudWatch,
AWS Simple Cloud Storage (S3), AWS Identity and Access

1 List of Amazon Web Services. Available online at: https://aws.amazon.

com/products/.

Management (IAM), Amazon Virtual Private Cloud (VPC), and
Amazon Route 53 (R53). All these services were used to provision a
physical Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30 GHz with 14 GB
RAM that run each container using a task configured to use 1 CPU
(task_cpu = 1, 024) and 8 GB of RAM (task_memory = 8, 192).
To summarize, we executed our simulations on Amazon Elastic
Compute Cloud (machines), using Amazon Elastic Container
Service (Docker) through Amazon Elastic Load Balancing (load
balancing) and Amazon Elastic Container Registry (Docker
registry) in Amazon Virtual Private Cloud (networking).

We managed all our AWS services through the Infrastructure
as Code approach (Kumar et al., 2023) with Terraform v1.0.11. As a
result, the whole configuration of our cloud environment is stored
as Terraform code in the main NSP repository (nsp-code) under
infra\core-infra sub-folder for the VPC configuration, and
under infra\nsp-lb-service for all the other associated
services. This configuration can be used as a reference point for
any future deployments of NSP by the members of scientific
community.

We also received access to the machines from Hasso Plattner
Institute, allowing us to compile and install all the required
software, e.g., the latest version of the GENESIS simulation

TABLE 1 Full list of scripts in Neural Simulation Pipeline.

Component User scripts Container
scripts

Simulation buildNspImage.sh configAWSCLI.sh
preparation

listModels.sh (.ps1) validatePositive
Integer.sh

loadModels.sh (.ps1) validateReal
Number.sh

pullNspImage.sh (.ps1) validateRange.sh

pushNspImage.sh

runUnitTest.sh (.ps1)

runUnitTestCheck.sh

startNspContainer.sh (.ps1)

getCredentials.ps1

Simulation loginNspContainer.sh (.ps1) runSim.sh
execution

runSimLocally.sh (.ps1) runSimLocally.sh

runSimRemotely.sh (.ps1) runSimManagerS3.sh

runSampleSim.sh (.ps1) showStat.sh

showNspQueue.sh (.ps1) showSystemInfo.sh

calculatePeriod.sh

writeDebug.sh

writeOutput.sh

Simulation downloadSimS3.sh (ps1) downloadSim.sh
post-processing

listSim.sh (ps1) downloadModel.sh

showNspContainerLogs.sh (.ps1) listSim.sh

stopNspContainer.sh (.ps1) saveStat.sh

deleteNspImages.sh (.ps1)

Frontiers inNeuroinformatics 04 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://aws.amazon.com/products/
https://aws.amazon.com/products/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

FIGURE 2

Schematic diagram of neural simulation pipeline showing a user workflow. This persona interacts with the system via NSP scripts.

environment (Bower et al., 2003) (version 2.4 from May 2019) and
Docker (Merkel, 2014) platform (version 20.10.08 from July 2021).
The machine we received was equipped with 8 CPUs: 8 x 2.00
GHz, memory (RAM): 7.79 GB. We used the local Docker Registry
at HPI at registry.fsoc.hpi.uni-potsdam.de in the
development process. The other computing resource that is used
in this project is the Ubuntu 18.04.5 bionic virtual machine (vm-
20211005- 001.fsoc.hpi.uni-potsdam.de, running Linux 4.15.0-143-
generic on x86_64 architecture). It was used as our development
machine and on-premise execution environment.

2.4. Architecture of Neural Simulation
Pipeline

Different components of NSP connect to the AWS cloud via

the AWS CLI (AWS Command Line Interface), sending requests to
the AWS services by using HTTPS on TCP port 443. For security
reasons, we propose to create at least two types of user accounts
with AWS IAM service: an account for a user persona, focused on
simulation design and execution (the data), and a separate one for
a developer and maintainer persona, focused on the development of
simulation models and administration of the pipeline through the
code.We propose that these two different types of personas interact
with the system via different interfaces:

• A user persona, via NSP scripts, as described in Table 1.
• A developer and maintainer persona, via Git client (code),

AWS CLI, and AWS Management Console (actions; see text
footnote 1).

Figures 2, 3 illustrate an architectural blueprint of neural
simulations pipeline. They explain how different elements of the
pipeline run and interact with the two categories of the users.
The first, as shown in Figure 2, focuses on a user workflow,
whereas Figure 3 highlights a developer and maintainer workflow,
explaining what the key actions are and if they are performed by the
users or by the pipeline itself.

A user workflow in Figure 2 presents all the key user
interactions with the NSP through solid lines and straight arrows.
These key actions are installing the software pre-requisites,
downloading our NSP scripts, pulling our NSP Docker image
from the DockerHub registry, starting a local container, defining
a local or remote simulation queue, as well as monitoring the
status of execution, and finally downloading the simulation results.
After all the local simulations are finished, it is a good practice
to stop the container to release system resources. The user
workflow is supported by NSP user scripts described individually
in Appendix (Section 1).

However, if a remote cloud-based execution is attempted, the
NSP Docker image from the DockerHub is not needed. The
pipeline provides the automated build and management of NSP
image through a native Amazon ECR service, that guarantees the
optimal performance and connectivity to other AWS services. All
the repetitive actions related to data movement to/from a NSP
container have been automated through NSP container scripts,
described individually in Appendix (Section 2); Figure 2 shows
these actions with dotted lines. The figure also presents two
simulations queues available in NSP (localSimulationQueue.nsp or
remoteSimulationQueue.nsp, in yellow), with the local queue being
active since the start of local container, and the remote queue being
checked for the simulation tasks in a definable interval.

Frontiers inNeuroinformatics 05 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

FIGURE 3

Schematic diagram of neural simulation pipeline showing a developer and maintainer workflow. This persona interacts with the system via Git client

(code), AWS CLI, and AWS Management Console.

Figure 3 shows key actions performed in a developer and

maintainer workflow. The persona configures and operates the

cloud-based execution environment. Our AWS NSP infrastructure
is created on-demand via the Terraform (Brikman, 2016) using
IaC approach. The Terraform configuration covers all the required

services including network components of VPC, Amazon Elastic
Container Service cluster setup, and the configuration of AWS

CodePipeline using AWS CodeBuild and AWS CodeDeploy.
The AWS CodePipeline task is triggered automatically by a
commit done to the “main” branch of the nsp-code repository.
The AWS CodePipeline downloads the nsp-code repository
from the of “main” branch and runs the AWS build task
that executes Docker commands from the Dockerfile defined
in the repository. As a result, the new NSP Docker image
is created and pushed into the Amazon Elastic Container
registry.

Figure 4 complements the architectural overview with a list of

services needed to execute the simulations either (1) through the

public cloud (AWS) or (2) using on-premise infrastructure. In both
use cases, we adopted a central storage service (Amazon S3), whose

storage infrastructure holds those as follows:

• The simulation data (understood as both the input parameters
and the results of simulations).

• The model’s source code for the reference of the exact version
of the simulation to the results.

• The task queue for simulations, that are executed by Docker
containers.

• Supplemental experimental data including environment
statistics and cost reports.

Each type of execution requires provisioning a different set of
services:

1. Cloud execution (upper part of Figure 4). In this use case,
we use standard AWS services, allowing for an automated
build of the Docker image (based on the Dockerfile, defining
the compilation and installation steps of all the necessary
libraries, and software components; file available in the main
nsp-code repository). It provides AWS CodePipeline, AWS
CodeBuild, and CodeDeploy, that produces the container image
available in Amazon Elastic Container Registry. The container
image is maintained through the Amazon ECR service, with
individual containers being managed through the AWS Fargate
engine. All the logs from simulation processing, as well as
from the containers and the pipeline, are stored in AWS
CloudWatch. After NSP is configured in the AWS cloud, the
simulations can be run through AWS containers using the
remote simulation queue, that is defined as a text file at s3://nsp-
project/requests/remoteSimulationQueue.nsp. This queue, when
populated with a list of simulations, will be executed by AWS
containers.

2. On-premise execution (lower part of Figure 4). In this use
case, we execute simulations on own, or shared computer
such as a laptop, workstation, or a computational cluster.
As a result, a local Docker client needs to be installed, and
a public DockerHub service can be used to download our
NSP image2 containing the latest, pre-configured version of
GENESIS simulation engine.

2 O�cial DockerHub NSP Image. Available online at: https://hub.docker.

com/r/karolchlasta/genesis-sim/tags.

Frontiers inNeuroinformatics 06 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://hub.docker.com/r/karolchlasta/genesis-sim/tags
https://hub.docker.com/r/karolchlasta/genesis-sim/tags
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

FIGURE 4

NSP architecture for a full public cloud (AWS) simulation execution (top) and an on-premise execution (bottom). The diagram presents both AWS

services and network components needed to set up a VPC required to execute simulations in-cloud through Amazon Elastic Container Registry and

Amazon Elastic Container Cluster running on AWS Fargate, a serverless, pay-as-you-go compute engine.

There are three functional components of NSP: (1) simulation
preparation, (2) simulation execution, and (3) simulation post-
processing. The preparation component manages the simulation’s
input data into a format suitable for the simulation, while the
execution module performs the actual simulation execution using
a selected engine. The current version of NSP also allows to
select either the standard or parallel version of the GENESIS
simulation engine. The selection is performed via a parameter
of runSim.sh script; with value parallelMode = 1 indicating a
parallel run. Finally, the post-processing module facilitates the
analysis of output data and generates the final results for a given
simulation.

These components are built around two types of scripts.
These are the container scripts, automating the simulation tasks
within the application container, and the user scripts, responsible

for the interaction with pipeline’s end-user. Both types of script
are summarized in Table 1 and described in Appendix (Section
1) (user scripts) and Appendix (Section 2) (container scripts).
All the NSP scripts are installed automatically with our Docker
image.

The NSP facilitates an automated testing of the simulation
code (models) through runUnitTest.sh and runUnitTestCheck.sh.
These files contain sample tests. If a new model is developed, then
the new test scripts might need to be created in an analogous
way. Ideally, the model will have full test coverage, that gives
confidence that a given model is tested, and any bug is identified
early in the development process. Applying this best practice is
especially important for the long running brain simulations, whose
bugs could often only be identified post-hoc, e.g., after running for
several days (or weeks) on expensive supercomputers. These are

Frontiers inNeuroinformatics 07 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

the three scripts to facilitate parameter validation: validateRange.sh,
validatePositiveInteger.sh, and validateRealNumber.sh). There are
also other scripts supporting the simulation setup and execution.
All the 35 Bash and 16 PowerShell scripts are listed in Table 1 and
described individually in Appendix (Sections 1, 2).

The pipeline also allows to define and reuse certain variables
that are universal and independent from the simulation engine.
We call them NSP variables. These variables should be added to
the model’s source code between the special character of “$ $”
(e.g., “$nspVariableName$”). As a result, the models’ code can
be more standardized, even across different simulation engines.
Moreover, new possibilities could be created. For investigating
boundary conditions to improve brain simulation process similar
to what was proposed in Gholampour and Fatouraee (2021).
The current version of the pipeline recognizes twelve NSP
variables:

1. $modelName$
2. $simSuffix$
3. $simDesc$
4. $simTimeStepInSec$
5. $simTime$
6. $columnDepth$
7. $synapticProbability$
8. $retX$
9. $retY$
10. $parallelMode$
11. $numNodes$
12. $modelInput$

There are two types of statistics managed by the pipeline
automatically through the showSystemInfo.sh NSP script,
generating the aggregated simulationInfo.out per simulation. They
are as follows:

• Operating system-level statistics. They describe the execution
environment including process timings. These are generated
using parameterized Linux commands of date, uname, lshw,
lscpu, lsblk, df, and lspci adn smem. The script also
uses calculatePeriod.sh subscript to calculate the exact time of
simulation.

• Simulation engine specific statistics. They are triggered by the
NSP through the GENESIS showstat routine.3

The pipeline’s source code is stored in the nsp-code repository
available publicly at GitHub.4 This is the main application
repository used for all the container builds, and it contains the
Dockerfile describing the automated build process for GENESIS (in
nsp-server/Dockerfile). The other repository used in the
project is called the nsp-model.5 It stores the source code of all the
RetNet models used in our simulations.

3 GENESIS showstat routine. Available online at: http://genesis-sim.org/

GENESIS/Hyperdoc/Manual-25.html#showstat.

4 NSP Code Repository, containing a source code of the pipeline. Available

online at: https://github.com/KarolChlasta/nsp-code.git.

5 NSP Model Repository, containing a source code of the simulations.

Available online at: https://github.com/KarolChlasta/nsp-model.git.

The pipeline’s configuration is managed on different
levels. The local Docker containers are configured
through the config.nsp file, while the remote AWS
containers are configured via Terraform configuration file
(modules\ecs-service\variables.tf). The minimum
required configuration includes the AWS access and secrets keys
for authentication as well as the basic metadata about the project
including scientist’s name, surname, and email. This information
is automatically added to the simulation results. One of the useful
NSP configuration parameters is a debug mode flag, enabled
via nsp_debug parameter.

To summarize, we have built our NSP image for the GENESIS
simulator using the official Canonical Ubuntu bionic (version
bionic-2022101) from DockerHub.6 The automated build process
installs csh, g++, libxt-dev, libxt6, libxtst6, libxtst-dev, libxmu-dev,
mpich, gcc, bison, flex, libncurses5-dev, and libxt-dev. As a result,
both GENESIS and its parallel version PGENESIS are compiled
with all the dependencies, and our official, publicly available NSP
image can be found in DockerHub. The image uses 424.83 MB and
can be pulled from the DockerHub with the below command:

docker pull karolchlasta/genesis-sim:prod

We welcome new pushes of the updated NSP image with a
“test” tag to DockerHub,7 so that thay can go through our review
process and can bemade available to the othermembers of scientific
community to facilitate their simulations.

2.5. Simulating visual system task

Liquid state machines (Maass, 2011) are important in
brain modeling and increasingly important in different
engineering (Wang et al., 2022) or real-life applications (Deckers
et al., 2022). The spiking neural networks built of Hodgkin–Huxley
(HH) (Hodgkin and Huxley, 1952) neurons behave like liquid state
machines (LSM) (Wojcik, 2012; Kamiński and Wójcik, 2015). Our
Hodgkin–Huxley Liquid State Machine (HHLSM) model uses
high fidelity multi-compartmental neurons with voltage-activated
sodium and potassium channels. The LSM-based model of visual
systems used to benchmark simulations performed with NSP had
already been presented in Chlasta and Wojcik (2021). That version
of the bio-inspired model was built using 4,880 Hodgkin–Huxley
neurons with two main components: an Input (acting as a retina of
the system) and Liquid (acting as a visual cortex, built of a single
LSM column).

This research study focuses on the much larger models, with a
progressively larger liquid column. The structure of each column
in the model is the same, but the size has been adjusted through the
NSP variable $columnDepth$ and built in six versions:

1. RetNet(8× 5,1,25) with 1,040 neural cells placed in a rectangular
cuboid of 8×5× 25.

6 O�cial DockerHub Linux Image. Available online at: https://hub.docker.

com//ubuntu18.04.

7 O�cial DockerHub NSP Image. Available online at: https://hub.docker.

com/r/karolchlasta/genesis-sim/tags.

Frontiers inNeuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
http://genesis-sim.org/GENESIS/Hyperdoc/Manual-25.html#showstat
http://genesis-sim.org/GENESIS/Hyperdoc/Manual-25.html#showstat
https://github.com/KarolChlasta/nsp-code.git
https://github.com/KarolChlasta/nsp-model.git
https://hub.docker.com//ubuntu18.04
https://hub.docker.com//ubuntu18.04
https://hub.docker.com/r/karolchlasta/genesis-sim/tags
https://hub.docker.com/r/karolchlasta/genesis-sim/tags
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

2. RetNet(8× 5,1,50) with 2,040 neural cells placed in a rectangular
cuboid of 8×5× 50.

3. RetNet(8× 5,1,75) with 3,040 neural cells placed in a rectangular
cuboid of 8×5× 75.

4. RetNet(8 × 5,1,100) with 4,040 neural cells placed in a
rectangular cuboid of 8×5× 100.

5. RetNet(8 × 5,1,200) with 8,040 neural cells placed in a
rectangular cuboid of 8×5× 200.

6. RetNet(8 × 5,1,300) with 12,040 neural cells placed in a
rectangular cuboid of 8× 5× 300.

In the simulated task, we used NSP to provide each model with
three different stimulus patterns of “0,” “A,” “1” (through different
values of NSP $modelInput$ variable). This gave us the opportunity
to evaluate the LSM system built with an increasing number of
neurons in a standardized way. We simulated 1 s of this biological
system (using the NSP variable $simulationTime$) across different
execution environments.

3. Results

This article presents NSP, a simple scientific workflow
management system, based on a set of 35 Bash and 16 PowerShell
scripts, that manages simulations and facilitates defining and
executing them across different simulation engines and execution
environments in a unified way. The authors managed to validate
NSP by running it in three different types of run-time environments
(1) using containers in the AWS cloud, on-premise (2) on an
HPI infrastructure, and (3) directly on the operating system
without containerization. This simple scientific workflow system
has also successfully managed the simulation queue, unified
key experimental variables, collected data and experimental
statistics, as well as provided basic validation of experimental
parameters, monitored simulation execution, supported simulation
code testing, and checking for the completeness of the simulation
results.

In order to evaluate the NSP, we have performed several
full-experimental cycles and shown that our LSM models react
differently to three different input patterns that are numbers (0,
1) and letter (A). We performed a total of 54 simulations on
the RetNet models on which we report. We measured the model
execution time (CPU time), memory consumption, as well as the
number of spikes in each simulation run. The exact results of
these simulations are presented in Tables 2, 3. All the results and
accompanying statistics have been gathered through running NSP
scripts throughout H2 2022.

These aggregated, average results are presented in Figures 5, 6.
They vary significantly, depending on the model complexity
(number of HH neurons) and the execution environment; hence,
they were averaged per model. As a result, the figures present how
each execution environment performs against that average. The
simulation execution time (as measured by CPU time in seconds)
varies from 2 min RetNet(8 x 5,1,25) to 28 h RetNet(8x5,1,300) for
the on-premise execution at HPI, and from 1 s for RetNet(8x5,1,25)
to 24 h for RetNet(8x5,1,300) when run as containerized at HPI,
and from 4 s till 11 h for the containerized AWS execution.

The AWS execution is over two times faster than the two
alternatives at HPI. This pattern is confirmed by the speed of

Docker image builds. For the five Docker image builds, the average
NSP_Genesis container build time was only 5.3 min at AWS,
whereas the same build at HPI took 12.40 min. Furthermore,
we notices a two-fold difference, which is surprising, assuming a
“similar” simulation setting.

The memory utilization (as measured by RAM consumed)
varies significantly from 19 MB for RetNet(8 × 5,1,25) to 16 GB
for RetNet(8 × 5,1,300) execution on-premise at HPI, from 26
MB for RetNet(8 × 5,1,25) to 4.6 GB for RetNet(8 × 5,1,300)
executing through a container at HPI, and from 68 MB to 17
GB for the containerized AWS execution. In the case of memory
consumption, we notice that the on-premise (direct) HPI execution
is similar to the containerized execution at AWS. Surprisingly, that
consumption for the containerized HPI execution is four times
smaller than in the other execution environments. On the contrary,
the memory utilization for the smaller models (so with a neural
column depth of 50, 75, and 100) that executed on-premise without
the container at HPI is four times smaller if compared with their
containerized execution at HPI.

We have also compared the standard and containerized
simulation setup on the same underlying hardware. The results
measured on the HPI on-premise infrastructure do not indicate
any major negative impacts of containerization on the overall
simulation performance. The average time (CPU time) needed
to complete the containerized simulations of our RetNet models
is 96.15% of the average simulation time needed to complete
the same simulation on the virtual machine. Interestingly, the
opposite was measured for memory consumption, and the
containerized simulation consumed only 292% of the memory
needed for a standard execution. The performance overhead of
containerized execution is invisible so running computationally
intensive neural simulations seem even more appealing, especially
assuming the scalability and affordability of public cloud execution
environments (Hale et al., 2017).

The execution of simulations with NSP in AWS public cloud
environment allowed us to investigate the cost per simulation, as
well as the overall cost structure for the RetNet models. The overall
cost structure is presented in Figure 7. We measured that 81.6%
of the total cost is spent on AWS compute services (AWS ECS
and Amazon EC2 spot instances). The rest of the cost is attributed
to non-computational services: 3.1% on data storage (Amazon
S3), 9.8% on Domain Name System (AmazonRoute53), 1.6% on
data transfer, secure connection to GitHub 2.6% (AWS Secrets
Manager), and 1.3% on automation (CodeBuild).

We have also calculated the real cost of each simulation.
Simulating a single second of 1,040 HH neurons using RetNet(8
× 5,1,25) costs on average USD 0.02, while the most expensive
RetNet(8 × 5,1,300) built with 12,040 HH neurons costs USD 4 to
execute. A detailed cost per simulation is provided in Table 3.

4. Limitations and future perspectives

The current NSP requires a basic knowledge of the computer
operating systems and the ability to run Bash scripts (and working
knowledge of someAWS cloud services). In future, we would like to
create a web application providing a simulation service using NSP
containers without the need for running any scripts. This would
allow us to expose NSP as a Scientific Workflow Management

Frontiers inNeuroinformatics 09 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

TABLE 2 Neural Simulation Pipeline—standard vs. containerized execution on HPI infrastructure.

On-Premise HPI

Model Neurons Pattern Spikes Execution [s] Memory [MB]

RetNet(8× 5,1,25) 1,040 0 20,829 132.27 18.78

A 20,827 136.13 37.97

1 20,818 124.69 21.25

RetNet(8× 5,1,50) 2,040 0 61,191 239.34 44.56

A 61,236 205.75 52.51

1 61,234 231.47 49.77

RetNet(8× 5,1,75) 3,040 0 121,605 628.24 53.28

A 121,646 536.32 65.27

1 121,627 648.69 53.42

RetNet(8× 5,1,100) 4,040 0 202,045 1269.55 88.81

A 202,036 1269.12 94.99

1 202,056 1321.30 72.24

RetNet(8× 5,1,200) 8,040 0 6,512,454 34082.88 1766.86

A 6,512,440 34065.61 1791.56

1 6,568,685 26548.51 1760.26

RetNet(8× 5,1,300) 12,040 0 14,568,366 102669.1 17482.09

A 14,568,498 97643.23 17582.11

1 14,568,473 101909.68 17169.67

Containerized HPI

RetNet(8× 5,1,25) 1,040 0 20,834 45.66 26.37

A 114,427 185.05 46.51

1 114,403 214.94 71

RetNet(8× 5,1,50) 2,040 0 61,215 150.40 57.97

A 428,368 1679.33 150.17

1 428,500 1659.42 146.53

RetNet(8× 5,1,75) 3,040 0 121,659 495.38 63.01

A 942,366 3949.42 292.29

1 942,452 3957.19 80.70

RetNet(8× 5,1,100) 4,040 0 202,014 938.60 73.91

A 1,656,397 7253.15 139.56

1 1,656,444 7467.51 437.87

RetNet(8× 5,1,200) 8,040 0 6,512,411 33000.14 1766.57

A 6,512,452 33434.70 1766.35

1 6,512,401 33198.74 437.87

RetNet(8× 5,1,300) 12,040 0 14,568,503 87163.24 4745.92

A 14,568,712 86226.93 4810.72

1 14,457,211 87213.56 4756.54

System to a wider community, gather feedback, and potentially also
allow us to perform more extensive testing with (other than AWS)
public cloud services providers.

That could lead to enhancing planning and forecasting of
costs for large-scale simulations across different public clouds. In
the current version, we have only used the AWS cost reports, as

Frontiers inNeuroinformatics 10 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

TABLE 3 Neural Simulation Pipeline—containerized execution on AWS cloud computing infrastructure.

Containerized AWS

Model Neurons Pattern Spikes Execution [s] Memory [MB] Cost [USD]

RetNet (8× 5,1,25) 1,040 0 114,431 253.14 67.84 0.02

A 114,425 253.53 46.07 0.02

1 114,407 89.81 67.24 0.01

RetNet (8× 5,1,50) 2,040 0 428,380 427.58 128.9 0.10

A 428,390 998.58 138.48 0.10

1 428,454 980.13 130.53 0.09

RetNet (8× 5,1,75) 3,040 0 942,445 1879.22 280.51 0.22

A 942,371 2033.78 291.59 0.19

1 942,416 1737.16 273.31 0.17

RetNet (8× 5,1,100) 4,040 0 1,656,346 3749.97 443.96 0.40

A 1,656,455 4104.38 436.08 0.39

1 1,656,388 3802.45 421.46 0.36

RetNet (8×5,1,200) 8,040 0 6,512,417 16913.23 1788.44 1.62

A 6,512,400 16564.92 1757.01 1.58

1 6,512,453 16850.31 1818.64 1.61

RetNet (8×5,1,300) 12,040 0 14,568,482 41814.32 17592.19 4.00

A 14,568,446 41916.18 17592.21 4.01

1 14,568,446 41824.63 17179.87 4.00

FIGURE 5

Average execution (CPU time) for each RetNet model (ranging in complexity from 1,040 to 12,040 Hodgkin–Huxley neurons) viewing three input

patterns (0, A, 1), expressed as a percentage of average CPU time across all execution environments for each RetNet model. Based on Tables 2, 3.

a source of cost information. We imagine that a trial run in a
public cloud could help computational neuroscience researchers
with their cost estimation. An automated trial run of a smaller
model could be a good proxy for a full scale execution, and it
would allow both easier and more accurate budgeting apart from
just providing the researchers with simulation management and
execution capabilities.

There are also a few other limitations in the current
version of the neural simulation pipeline. First, the current

version of our official NSP Docker image with the last
version of GENESIS simulation engines is relatively large.
It requires 1.17 GB in the local repository and 424.83
MB in the remote registry, that is after compression, at
DockerHub.8 We believe that the image could be optimized

8 O�cial Docker Image Distribution Registry. Available online at: https://

hub.docker.com/r/karolchlasta/genesis-sim.

Frontiers inNeuroinformatics 11 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://hub.docker.com/r/karolchlasta/genesis-sim
https://hub.docker.com/r/karolchlasta/genesis-sim
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

FIGURE 6

Average memory consumed for each RetNet model (ranging in complexity from 1,040 to 12,040 Hodgkin–Huxley neurons) viewing three input

patterns (0, A, 1), expressed as a percentage of average memory utilization across all execution environments for each RetNet model, based on

Tables 2, 3.

FIGURE 7

Cost structure for 18 simulations run using Neural Simulation Pipeline on AWS public cloud infrastructure.

by removing some uncritical operating system tools and

utilities.
Second, the current neural simulation pipeline supports

GENESIS and PGENESIS (Bower et al., 2003) only. We would

like to create a version of the pipeline for each major (Tikidji-

Hamburyan et al., 2017) simulation engine like BRIAN (Goodman

and Brette, 2008), NEST (Gewaltig and Diesmann, 2007), and

NEURON (Hines and Carnevale, 2001)/CoreNEURON (Kumbhar
et al., 2019), as well as other (e.g., functional) simulators like

Nengo (Bekolay et al., 2014). This will require a preparation of new

Dockerfile in the nsp-code repository.
Looking at these plans, we recognize that some simulators may

suit better for running in containers than the others (de Bayser
and Cerqueira, 2017). We think that the next simulator
to consider for NSP is NEURON (Hines and Carnevale,

2001)/CoreNEURON (Kumbhar et al., 2019). It is the most popular
software for brain network simulations if counting the number
of entries in ModelDB (Hines et al., 2004). Moreover, NEURON’s
architecture and installation9 resembles that of GENESIS, with the
simulation setup requiring additional MPI libraries for parallel
simulation. The next in line would be NEST,10 slightly less popular,
but capable of running thread-parallel simulations “out-of-the-
box” on multiprocessor computers with OpenMP (Dagum and
Menon, 1998). For NEST, the application of NSP could benefit
scientists, who would want to execute distributed simulations using

9 NEURON Documentation. Available online at: https://nrn.readthedocs.

io/en/8.2.2/install/install_instructions.html.

10 NEST Guide for Parallel Computing. Available online at: https://nest-

simulator.readthedocs.io/en/stable/guides/parallel_computing.html.

Frontiers inNeuroinformatics 12 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://nrn.readthedocs.io/en/8.2.2/install/install_instructions.html
https://nrn.readthedocs.io/en/8.2.2/install/install_instructions.html
https://nest-simulator.readthedocs.io/en/stable/guides/parallel_computing.html
https://nest-simulator.readthedocs.io/en/stable/guides/parallel_computing.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

MPI libraries. Finally, although the BRIAN software has monolithic
architecture, it does not use external modules, or libraries, and it
also does not use MPI parallelization. The benefit of using NSP
could then be in enabling this software to run simulations in parallel
on multiple nodes through the mechanism of NSP queues.

Third, at present, all the NSP containers are configured to
read the file with simulation tasks from the Amazon S3 bucket at
different moments in time. Nevertheless, a few containers could
theoretically fetch the same simulation if they hit the file at the
same moment in time. In future, we want to implement a proper
semaphore mechanism for allowing or disallowing access to the
simulation task. This problem could potentially also be resolved
using Amazon SQS, a standard or first-in-first-out (FIFO) queue.
Moreover, the NSP proof of concept was only tested with three
containers reading the remote queue and executing the simulations
in parallel. More containers could be evaluated to report detailed
performance of the solution.

Fourth, we would like to facilitate the use of the
ModelDB (Migliore et al., 2003) rather than the nsp-model
GitHub repository so that inserting a new model into NSP could
happen directly from ModelDB in a standard way (Hines et al.,
2004).

Finally, we would like to redesign the NSP to provide
a service for multiple research teams at the same time and
enable interdisciplinary work between different profiles of
researchers. That would likely require a web-interface for
simulation management (mentioned already), as well as the
security model based on a defined set of access rules, e.g., for model
developers and/or neuro-scientists.

To summarize, the practical significance of NSP would be in
reducing entry barriers to numerical systems modeling and large-
scale simulations through a Docker-based pipeline, that could be
executed across multiple compute infrastructures.

5. Conclusion

NSP provides a set of tools for automating the build of
GENESIS and PGENESIS from its source code to container images.
The simulation engines are bundled with all the necessary software
libraries and allow for flexible testing and deployment of simulation
code (e.g., of cybernetic simulation models) according to the IaC
principle.

NSP tools also facilitate the analysis of experimental data. All
simulation results are stored centrally, and available in a single,
online storage. The experimental data are partially prepossessed,
which facilitates further analysis by aggregating results and
enriching them with additional information on the details of
the execution environment and run-time statistics (e.g., runtimes,
detailed information on processors, memory, and operating system
processes).

We evaluated NSP using the liquid state machine RetNet
models of up to 12,040 neurons, executed through GENESIS.
We show how the containerized Docker-based pipeline designed
by the authors allows the simulations to be developed, tested,
and simulated in either an on-premise environment or in the
public cloud environment. Finally, we describe the application
of a novel simulation management method that simplifies

model development and simulation across multiple execution
environments, and we integrate the application of this method into
the neural simulation pipeline.

We measured no overhead of containerization on CPU time
for our RetNet model. The containerized execution was actually
faster, taking only 96.15% of the average simulation time needed to
complete the same simulation on the virtual machine. Interestingly,
the opposite was measured for memory consumption, and the
containerized simulation consumed only 292% of the memory
needed for a standard execution. The performance overhead of
containerized execution is invisible.

The simulation of our biological visual system was built of
12,040 HH neurons, that was executed for 11.62 h for US$ 4 only.
The other finding was that only 81.6% of the total cost spent on
AWS compute services is actually spent on AWS ECS and Amazon
EC2 spot instances.

The practical significance of NSP is in reducing entry barriers
to numerical system modeling and large-scale simulations, with
application to both brain networks (GENESIS) and brain bio-
mechanics (Kinetikit) simulations. The framework could also be
used to improve experiment budgeting. NSP hides the complicated
technical aspects of installing a simulation engine on different
platforms, enabling the same model to be easily run on different
types of processors and in-cloud computing with predefined service
parameters. With this system and its functionalities, the developers
want to popularize the use of computer simulators for brain
research.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

KC contributed to overall conceptualization, led the
algorithmic development, simulation execution, data analysis,
investigation, validation, and writing of the original draft. PS
contributed to the algorithmic development, simulation execution,
and data analysis. IK contributed to idea conceptualization. GW
supervised the entire study. All authors participated in manuscript
revision and approval of the submission.

Acknowledgments

We thank Michael Connolly for proofreading. We also
acknowledge access to high-performance computing resources
from Hasso Plattner Institute at University of Potsdam,
Germany, that were granted as a part of the 1.5 year research
project (Project 125: Exploring Spiking Neural Networks
for Real-Time Information Processing) and the continual
support from Prof. Andreas Polze and his team from the
HPI Future Service-Oriented Computing Lab. We also thank
reviewers, whose remarks contributed to the improvement of
this article.

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.2023.
1122470/full#supplementary-material

References

Al Jawarneh, I. M., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari,
R., et al. (2019). “Container orchestration engines: a thorough functional and
performance comparison,” in ICC 2019-2019 IEEE International Conference on
Communications (ICC) (Shanghai: China Empowering Intelligent Communications),
1–6. doi: 10.1109/ICC.2019.8762053

Aradi, I., and Érdi, P. (2006). Computational neuropharmacology:
dynamical approaches in drug discovery. Trends Pharmacol. Sci. 27, 240–243.
doi: 10.1016/j.tips.2006.03.004

Azab, A. (2017). “Enabling docker containers for high-performance and many-
task computing,” in 2017 IEEE International Conference on Cloud Engineering (iC2E)
(Vancouver, BC), 279–285. doi: 10.1109/IC2E.2017.52

Beeman, D. (2005). Genesis modeling tutorial. Brains Minds Media 1, 1–44.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D.,
et al. (2014). Nengo: a python tool for building large-scale functional brain models.
Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Bower, J. M. (2000). “Computational Neuroscience: Trends in Research 2000” in
Proceedings of the 8th Annual Computational Neuroscience (Amsterdam; Lausanne;
New York, NY; Oxford; Shannon; Singapore; Tokyo: Elsevier). Available online at:
https://books.google.pl/books?id=b8woDqWdTssC

Bower, J. M., Beeman, D., and Hucka, M. (2003). “The GENESIS simulation
system,” in The Handbook of Brain Theory and Neural Networks (Cambridge, MA: MIT
Press), 475–478. Available online at: https://resolver.caltech.edu/CaltechAUTHORS:
20130107-174057868

Bower, J. M., and Beeman, D. (2012). The Book of GENESIS: Exploring Realistic
Neural Models With the GEneral NEural SImulation System. New York, NY: Springer
Science & Business Media.

Bower, J. M., and Beeman, D. (1998). “Neural modeling with genesis,” in The Book
of GENESIS (Newyork, NY: Springer), 17–27. Available online at: https://link.springer.
com/content/pdf/bfm:978-1-4612-1634-6/1?pdf=chapter%20toc

Brikman, Y. (2016.). Why we use Terraform and not Chef, Puppet, Ansible,
SaltStack, or CloudFormation. University of the Basque, Faculty of Engineering
Vitoria-Gasteiz, Spain. Available online at: https://lsi.vc.ehu.eus/pablogn/docencia/AS/
Act7%20Admin.%20centralizada/Terraform%20Chef%20Puppet%20Ansible%20Salt.
pdf (accessed September 11, 2022).

Chen, G. (2018). The rise of the enterprise container platform. IDCWhite Paper.

Chlasta, K., and Wojcik, G. M. (2021). “Chapter 14: Liquid state machines for real-
time neural simulations,” in Selected Topics in Applied Computer Science, Volume 1, ed
J. Bylina (Lublin: Maria Curie-Skłodowska University Press), 233–246.

Chlasta, K., and Wołk, K. (2021). Towards computer-based automated
screening of dementia through spontaneous speech. Front. Psychol. 11:623237.
doi: 10.3389/fpsyg.2020.623237

Crone, J. C., Vindiola, M. M., Yu, A. B., Boothe, D. L., Beeman, D., Oie, K. S., et
al. (2019). Enabling large-scale simulations with the genesis neuronal simulator. Front.
Neuroinform. 13:69. doi: 10.3389/fninf.2019.00069

Cummings, J. L., and Cole, G. (2002). Alzheimer disease. JAMA 287, 2335–2338.
doi: 10.1001/jama.287.18.2335

Dagum, L., and Menon, R. (1998). OpenMP: an industry standard API for
shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55. doi: 10.1109/99.
660313

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,
et al. (2009). PYNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2, 11. doi: 10.3389/neuro.11.011.2008

de Bayser, M., and Cerqueira, R. (2017). “Integrating MPI with
docker for HPC,” in 2017 IEEE International Conference on Cloud

Engineering (IC2E) (Vancouver, BC), 259–265. doi: 10.1109/IC2E.2
017.40

Deckers, L., Tsang, J., Van Leekwijck, W., and Latré, S. (2022). Extended
liquid state machines for speech recognition. Front. Neurosci. 16:1023470.
doi: 10.3389/fnins.2022.1023470

Dobosz, K., Mikołajewski, D., Wójcik, G. M., and Duch, W. (2013). Simple cyclic
movements as a distinct autism feature-computational approach. Comput. Sci. 14.
doi: 10.7494/csci.2013.14.3.475

Duch, W. (2000). Therapeutic applications of computer models of brain activity for
Alzheimer disease. J. Med. Informat. Technol. 1, 27–34.

Duch, W. (2019). “Autism spectrum disorder and deep attractors in
neurodynamics,” in Multiscale Models of Brain Disorders, ed V. Cutsuridis (Cham:
Springer), 135–146. doi: 10.1007/978-3-030-18830-6_13

Duch, W., Dobosz, K., and Mikołajewski, D. (2013). “Autism and ADHD-two
ends of the same spectrum?,” in Neural Information Processing: 20th International
Conference, ICONIP 2013 (Berlin; Heidelberg: Springer), 623–630.

Duch, W., Nowak, W., Meller, J., Osiński, G., Dobosz, K., Mikołajewski, D., et
al. (2012). Computational approach to understanding autism spectrum disorders.
Comput. Sci. 13:47. doi: 10.7494/csci.2012.13.2.47

Eliasmith, C., and Trujillo, O. (2014). The use and abuse of large-scale brain models.
Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009

Gartner, I. (2022).Gartner SaysWorldwide IAAS Public Cloud Services Market Grew
41.4% in 2021. Available online at: https://www.gartner.com/en/newsroom/press-
releases/2022-06-02-gartner-says-worldwide-iaas-public-cloud-services-market-
grew-41-percent-in-2021 (accessed December 2, 2022).

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gholampour, S., and Fatouraee, N. (2021). Boundary conditions investigation
to improve computer simulation of cerebrospinal fluid dynamics in hydrocephalus
patients. Commun. Biol. 4, 1–15. doi: 10.1038/s42003-021-01920-w

Goddard, N. H., and Hood, G. (1997). “Parallel genesis for large-scale modeling,”
in Computational Neuroscience, ed J. M. Bower (Boston, MA: Springer US), 911–917.
doi: 10.1007/978-1-4757-9800-5_141

Goodman, D. F., and Brette, R. (2008). Brian: a simulator for spiking neural
networks in python. Front. Neuroinform. page 5:2008. doi: 10.3389/neuro.11.005.2008

Hale, J. S., Li, L., Richardson, C. N., and Wells, G. N. (2017). Containers for
portable, productive, and performant scientific computing. Comput. Sci. Eng. 19,
40–50. doi: 10.1109/MCSE.2017.2421459

Hines, M. L., and Carnevale, N. T. (2001). Neuron: a tool for neuroscientists.
Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M. (2004).
Modeldb: a database to support computational neuroscience. J. Comput. Neurosci. 17,
7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e

Hirota, T., and King, B. H. (2023). Autism spectrum disorder: a review. JAMA 329,
157–168. doi: 10.1001/jama.2022.23661

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544. doi: 10.1113/jphysiol.1952.sp004764

Holmes, L. (2012).Windows PowerShell Cookbook: The Complete Guide to Scripting
Microsoft’s Command Shell. O’Reilly Media.

Kamiński, W. A., andWójcik, G. M. (2015). Liquid state machine built of Hodgkin-
Huxley neurons-pattern recognition and informational entropy. Ann. Univ. Mariae
Curie 1, 1–7.

Frontiers inNeuroinformatics 14 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://www.frontiersin.org/articles/10.3389/fninf.2023.1122470/full#supplementary-material
https://doi.org/10.1109/ICC.2019.8762053
https://doi.org/10.1016/j.tips.2006.03.004
https://doi.org/10.1109/IC2E.2017.52
https://doi.org/10.3389/fninf.2013.00048
https://books.google.pl/books?id=b8woDqWdTssC
https://resolver.caltech.edu/CaltechAUTHORS:20130107-174057868
https://resolver.caltech.edu/CaltechAUTHORS:20130107-174057868
https://link.springer.com/content/pdf/bfm:978-1-4612-1634-6/1?pdf=chapter%20toc
https://link.springer.com/content/pdf/bfm:978-1-4612-1634-6/1?pdf=chapter%20toc
https://lsi.vc.ehu.eus/pablogn/docencia/AS/Act7%20Admin.%20centralizada/Terraform%20Chef%20Puppet%20Ansible%20Salt.pdf
https://lsi.vc.ehu.eus/pablogn/docencia/AS/Act7%20Admin.%20centralizada/Terraform%20Chef%20Puppet%20Ansible%20Salt.pdf
https://lsi.vc.ehu.eus/pablogn/docencia/AS/Act7%20Admin.%20centralizada/Terraform%20Chef%20Puppet%20Ansible%20Salt.pdf
https://doi.org/10.3389/fpsyg.2020.623237
https://doi.org/10.3389/fninf.2019.00069
https://doi.org/10.1001/jama.287.18.2335
https://doi.org/10.1109/99.660313
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1109/IC2E.2017.40
https://doi.org/10.3389/fnins.2022.1023470
https://doi.org/10.7494/csci.2013.14.3.475
https://doi.org/10.1007/978-3-030-18830-6_13
https://doi.org/10.7494/csci.2012.13.2.47
https://doi.org/10.1016/j.conb.2013.09.009
https://www.gartner.com/en/newsroom/press-releases/2022-06-02-gartner-says-worldwide-iaas-public-cloud-services-market-grew-41-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2022-06-02-gartner-says-worldwide-iaas-public-cloud-services-market-grew-41-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2022-06-02-gartner-says-worldwide-iaas-public-cloud-services-market-grew-41-percent-in-2021
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1038/s42003-021-01920-w
https://doi.org/10.1007/978-1-4757-9800-5_141
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1109/MCSE.2017.2421459
https://doi.org/10.1177/107385840100700207
https://doi.org/10.1023/B:JCNS.0000023869.22017.2e
https://doi.org/10.1001/jama.2022.23661
https://doi.org/10.1113/jphysiol.1952.sp004764
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chlasta et al. 10.3389/fninf.2023.1122470

Kumar, M., Mishra, S., Lathar, N. K., and Singh, P. (2023). “Infrastructure as
code (IAC): insights on various platforms,” in Sentiment Analysis and Deep Learning:
Proceedings of ICSADL 2022 (Singapore: Springer Nature Singapore), 439–449.
doi: 10.1007/978-981-19-5443-6_33

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et
al. (2019). Coreneuron: an optimized compute engine for the neuron simulator. Front.
Neuroinform. 13:63. doi: 10.3389/fninf.2019.00063

Landrigan, P. J. (2010). What causes autism? Exploring the environmental
contribution. Curr. Opin. Pediatr. 22, 219–225. doi: 10.1097/MOP.0b013e328336eb9a

License, G. G. P. (1989). GNU General Public License. Boston, MA.

Maass, W. (2011). “Liquid state machines: motivation, theory, and applications,”
in Computability in Context: Computation and Logic in the Real World, eds
S. Barry Cooper and A. Sorbi (London: Imperial College Press), 275–296.
doi: 10.1142/9781848162778_0008 Available online at: https://www.worldscientific.
com/doi/pdf/10.1142/p577

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160.
doi: 10.1038/nrn1848

Merkel, D. (2014). Docker: lightweight Linux containers for consistent development
and deployment. Linux J. 2014, 2. Available online at: https://dl.acm.org/doi/10.5555/2
600239.2600241

Migliore, M.,Morse, T.M., Davison, A. P., Marenco, L., Shepherd, G.M., andHines,
M. L. (2003). ModelDB: Making models publicly accessible to support computational
neuroscience. Neuroinformatics. 1, 135–139. doi: 10.1385/NI:1:1:135

Musilova, J., and Sedlar, K. (2021). Tools for time-course simulation in systems
biology: a brief overview. Brief. Bioinform. 22:bbaa392. doi: 10.1093/bib/bbaa392

Naik, N. (2022). “Cloud-agnostic and lightweight big data processing platform in
multiple clouds using docker swarm and terraform,” in Advances in Computational
Intelligence Systems: Contributions Presented at the 20th UK Workshop on
Computational Intelligence (Aberystwyth: Springer International Publishing), 519–531.

Nickoloff, J., and Kuenzli, S. (2019). Docker in Action. New York, NY: Simon and
Schuster.

O’reilly, R. C., and Munakata, Y. (2000). Computational Explorations in
Cognitive Neuroscience: Understanding the Mind by Simulating the Brain.
London; Cambridge, MA: MIT Press. doi: 10.7551/mitpress/2014.001.0
001

Ramey, C. (1994). “Bash, the Bourne- again shell,” in Proceedings of The Romanian
Open Systems Conference & Exhibition (ROSE 1994) Cluj: The Romanian UNIX User’s
Group (GURU), 3–5. Available online at: http://bashcookbook.com/bashinfo/source/
bash-4.0/doc/rose94.pdf

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-Ghazawi, T. A. (2017).
Software for brain network simulations: a comparative study. Front. Neuroinform.
11:46. doi: 10.3389/fninf.2017.00046

Vayttaden, S. J., and Bhalla, U. S. (2004). Developing complex signaling
models using genesis/kinetikit. Science’s STKE 2004:pl4. doi: 10.1126/stke.21920
04pl4

Wang, L., Yang, Z., Guo, S., Qu, L., Zhang, X., Kang, Z., et al. (2022). LSMcore:
a 69k-synapse/mm 2 single-core digital neuromorphic processor for liquid state
machine. IEEE Trans. Circuits Syst. I 69, 1976–1989. doi: 10.1109/TCSI.2022.31
47380

Weuve, J., Hebert, L. E., Scherr, P. A., and Evans, D. A. (2015).
Prevalence of Alzheimer disease in us states. Epidemiology 26, e4–e6.
doi: 10.1097/EDE.0000000000000199

Wojcik, G. M. (2012). Electrical parameters influence on the dynamics
of the Hodgkin-Huxley liquid state machine. Neurocomputing 79, 68–74.
doi: 10.1016/j.neucom.2011.10.007

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “SLURM: simple linux utility for
resource management,” inWorkshop on Job Scheduling Strategies for Parallel Processing
(Berlin; Heidelberg: Springer), 44–60. doi: 10.1007/10968987_3

Frontiers inNeuroinformatics 15 frontiersin.org

https://doi.org/10.3389/fninf.2023.1122470
https://doi.org/10.1007/978-981-19-5443-6_33
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1097/MOP.0b013e328336eb9a
https://doi.org/10.1142/9781848162778_0008
https://www.worldscientific.com/doi/pdf/10.1142/p577
https://www.worldscientific.com/doi/pdf/10.1142/p577
https://doi.org/10.1038/nrn1848
https://dl.acm.org/doi/10.5555/2600239.2600241
https://doi.org/10.1385/NI:1:1:135
https://doi.org/10.1093/bib/bbaa392
https://doi.org/10.7551/mitpress/2014.001.0001
http://bashcookbook.com/bashinfo/source/bash-4.0/doc/rose94.pdf
http://bashcookbook.com/bashinfo/source/bash-4.0/doc/rose94.pdf
https://doi.org/10.3389/fninf.2017.00046
https://doi.org/10.1126/stke.2192004pl4
https://doi.org/10.1109/TCSI.2022.3147380
https://doi.org/10.1097/EDE.0000000000000199
https://doi.org/10.1016/j.neucom.2011.10.007
https://doi.org/10.1007/10968987_3
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	Neural simulation pipeline: Enabling container-based simulations on-premise and in public clouds
	1. Introduction
	1.1. Project idea

	2. Materials and methods
	2.1. GENESIS simulation engine
	2.2. Containerization with Docker
	2.3. Simulation setting
	2.4. Architecture of Neural Simulation Pipeline
	2.5. Simulating visual system task

	3. Results
	4. Limitations and future perspectives
	5. Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

