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The Amsterdam petunia
germplasm collection: A tool in
plant science
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Plant Development and Genetics, Swammerdam Institute of Life Sciences, University of Amsterdam,
Amsterdam, Netherlands
Petunia hybrida is a plant model system used by many researchers to investigate

a broad range of biological questions. One of the reasons for the success of this

organism as a labmodel is the existence of numerousmutants, involved in a wide

range of processes, and the ever-increasing size of this collection owing to a

highly active and efficient transposon system. We report here on the origin of

petunia-based research and describe the collection of petunia lines housed in

the University of Amsterdam, where many of the existing genotypes

are maintained.
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Introduction

A large petunia germplasm collection is maintained at the University of Amsterdam

(UvA) in the Netherlands. For decades it has supplied biological material for fundamental

research and provided the basis for applications in agriculture and beyond.

Petunia-based research started over a century ago (and at the University of Amsterdam

some 70 years ago) (Saunders, 1910; Bianchi, 1959) with studies on flower shape and

pigmentation, including chemical analyses of anthocyanin pigments and other flavonoids

(Birkhofer et al., 1963a; Birkhofer et al., 1963b; Birkhofer et al., 1965; Ando et al., 1999) and

the inbreeding of commercial varieties for genetic analyses. Since then, the petunia has

proven to be a very suitable system for studying flower pigmentation and several other

processes related to the development of petals, in particular cells in the petal epidermis.

These specialized cells for displaying color to attract pollinators are vastly different from the

underlying mesophyll cells in their function, shape, and set of organelles (Li et al., 2021). In

addition, the petunia has proved to be a suitable model for identifying genes and the

mechanism involved in, for example, the regulation of gene expression, the definition of

plant architecture, plant hormone biology, and plant speciation (see below).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1129724/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1129724/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1129724/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1129724&domain=pdf&date_stamp=2023-03-21
mailto:f.quattrocchio@uva.nl
https://doi.org/10.3389/fpls.2023.1129724
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1129724
https://www.frontiersin.org/journals/plant-science


Strazzer et al. 10.3389/fpls.2023.1129724
Petunia in the wild

Petunia species belong to the family of the Solanaceae,

specifically the subfamily Petunieae (Petunioideae). The genus

Petunia comprises 14 or 15 wild species, as well as a number of

subspecies (Reck-Kortmann et al., 2014), that are endemic to South

America (Wijsman et al., 1983; Ando and Hashimoto, 1995; Ando

et al., 1995; Ando and Hashimoto, 1996; Ando and Hashimoto,

1998). The classification of species within the Solanaceae

subfamilies has for a long time been based on flower morphology

only; however, differences in morphological traits are often poorly

correlated with genetic divergence (Ando et al., 2005; Kulcheski

et al., 2006; Olmstead et al., 2008; Särkinen et al., 2013).

Calibrachoa, for example, was until recently included in the

Petunia genus (and is today still sold to consumers as “mini

petunias”), but is now recognized as a separate genus because it

has a different number of chromosomes. More recent extensive

studies on Solanaceae classification are based on the sequence of a

few (housekeeping) genes (Olmstead et al., 2008; Särkinen

et al., 2013).

A transcriptome-wide phylogenetic analysis of these species

revealed that Petunia, Calibrachoa, and Fabiana constitute a

distinct clade separate from the other Petunieae. For instance, the

genus Brunfelsia is more related to Nierembergia, Leptoglossis,

Bouchetia, Hunzikeria, and Plowmania than to the Petunia clade

(Wheeler et al., 2022).

The Smith Group at the University of Colorado, in

collaboration with de Freitas from the Universidade Federal do

Rio Grande do Sul in Brazil, carried out transcriptomic analyses

across the Petunieae subfamily to investigate the relationship

between floral anthocyanin variation and changes in gene

expression (Ng et al., 2018). Their sampling comprised 72 species,

including Petunia and other Petunieae that accumulate

anthocyanins in the flower. Comparative methods highlighted

that evolution of anthocyanin pigmentation in flowers occurred

through sequential gain and loss of the activity of the two

hydroxylating enzymes that shift the production from

pelargonidin- to cyanidin (F3′H)-based anthocyanins and from

cyanidin- to delphinidin (F3′5′H)-based anthocyanins

(see Figure 1A).

Whereas Solanaceae are widely distributed across all continents

(with the exception of Antarctica), Petunieae are found in Central

and South America (including Patagonia). Petunia species are

typically found in the tropical and subtropical areas of the South

American continent (Chen et al., 2007). The most widely

distributed Petunia species are Petunia axillaris and Petunia

integrifolia, while other species, such as P. exserta, P. bajeensis,

P. bonjardinensis, P. mantiqueirensis, P. reitzii, P. saxicola, and

P. secreta, are found in very specific habitats only.

Distinct Petunia species display a remarkable diversity in plant

size and shape and, most noticeably, in color and morphology of

flowers. For example, species of the Petunia axillaris clade bear

flowers with long tubes and white scented petals that are pollinated
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by hawkmoths. Species of the P. inflata clade instead have flowers

with a short and wide tube, and violet non-scented petals that are

pollinated by bees. Finally, another very different phenotype is

shown by P. exserta, which has flowers with red petals that are

pollinated by hummingbirds (Stuurman et al., 2004; Venail et al.,

2010; Dell’Olivo et al., 2011; Hermann et al., 2015). Distinct species,

even in places where they occur side by side (sympatric), remain

genetically separated, as they are visited by different animals

(Stuurman et al., 2004; Venail et al., 2010; Dell’Olivo et al., 2011;

Hermann et al., 2015). Manual cross-pollination of natural Petunia

species is however possible. The first such interspecific crosses were

made in the early 19th century and gave rise to Petunia hybrida, or

the garden petunia (Bailey, 1867; Wijsman et al., 1983). Over the

next 200 years P. hybrida varieties were crossed numerous times

with new accessions of wild species, and the genome of current P.

hybrida varieties (2n = 14) is a mixture of multiple parental

genomes (each 2n = 14) (Koes et al., 1987; Quattrocchio et al.,

1999; Bombarely et al., 2016). The enormous variation between P.

hybrida varieties stems from the introgression of mutant alleles

from wild species and new mutations that arose during breeding.
The start of a petunia germplasm
collection

Over the years a collection of pure-breeding P. hybrida

accessions has been generated from a plethora of (unrelated)

commercial accessions. Classical genetic analysis of these lines

identified a wealth of loci that determine the color of petals,

anthers, and leaves, or various aspects of plant development

(Wiering, 1974; Cornu and Maizonnier, 1983; de Vlaming et al.,

1984), see some examples in Figures 2A–F2.

On several occasions, new mutants arose that displayed genetic

instability (e.g., Figure 2B1–D1), frequently reverting to the wild

type in somatic and sporogenic tissues, which is typical of

transposon insertions (Malinowski, 1935; Cornu, 1977). In the

1970s the red-flowering line R27, which was inbred from the

commercial Roter Vogel, produced mutant progeny with white

petals with numerous red spots due to a new unstable mutation in

the ANTHOCYANIN1 locus. This was maintained in the line White

138 (W138) (Bianchi et al., 1978; Doodeman et al., 1984). Progeny

of W138 produced unstable mutations at other loci at high

frequency (Doodeman et al., 1984; van Houwelingen et al., 1998).

Molecular analyses revealed that the large majority of these

unstable mutations resulted from insertions of a small (284-bp)

non-autonomous transposon of the non autonomous transposon of

the hobo, Activator, Tam3 (hAT) family named dTPH1 (Gerats

et al., 1990; van Houwelingen et al., 1998; Spelt et al., 2000). This

paved the way to molecularly identify a wealth of new genes

involved in, for example, flower pigmentation (de Vetten et al.,

1997; Quattrocchio et al., 1999; Spelt et al., 2000; Quattrocchio et al.,

2006; Verweij et al., 2008; Verweij et al., 2016) and plant

development (Souer et al., 1996; Tobeña-Santamaria et al., 2002;
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FIGURE 1

A Petunia collection uncovers the genetics of pollination syndrome. (A) Schematic representation of the anthocyanin biosynthetic pathway in
Petunia. Intermediate products are shown in boxes; the color of the boxes corresponds to the color of the accumulated pigment intermediates. If
these are colorless, the boxes are grey. The petunia flower drawings show the phenotype of different lines carrying mutations at specific steps of the
pathway. The different colors of the petals are the result of the accumulation of specific intermediates of the pathway (dihydroflavonols, white;
cyanidin derivatives, red; delphinidin derivatives, dull grey; peonidin derivatives, magenta; petunidin and malvidin derivatives, purple). Enzymes in the
pathway are indicated in bold: CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; F3′H,
flavonoid 3′-hydroxylase; F3′5′H, flavonoid 3′5′-hydroxylase; DFR, dihydroflavonol reductase; ANS, anthocyanidin synthase; 3GT, anthocyanidin 3-
glucosyltransferase; ART, anthocyanidin 3-glucosyde rhamnosyltransferase; 5GT, anthocyanidin 5-glucosyltransferase; AAT, anthocyanidin 3-
rutinoside acyltransferase; 3′AMT, anthocyanidin 3′ O-methyltransferase; 3′5′AMT, anthocyanidin 3′5′ O-methyltransferase. (B) Pictures of original
historical petunia drawings. Collection of petunia mutants recorded as water-based drawings in the 1960s. The different mutant phenotypes show
great variation in colors and shapes. Phylogenetic analysis of (C) ODO1, (D) AN2, and (E) MYBFL proteins from petunia and related species. In the
ODO1 and AN2 trees, Petunia, Calibrachoa, and Fabiana form a distinct clade (as in Wheeler et al., 2022) separated from the other related species
(i.e., from the genera Brunfelsia, Nierembergia, Leptoglossis, Bouchetia, Hunzikeria, and Plowmania). In the MYBFL tree, Petunia, Calibrachoa, and
Fabiana also cluster together, but Nierembergia is a sister to this group. PhODO, PhAN2, and PhMYBFL transcripts were blasted against floral
transcriptomes of different Petunieae species (Wheeler et al., 2022). The assembly of the reads into the predicted transcripts was performed with de
novo assembler Trinity. The trees are built by maximum likelihood, after curation of the alignments with the G-BLOCKS tool and then rendered with
TREEDYN using the online tools at http://www.Phylogeny.fr. Branch support is calculated on the basis of 300 bootstraps and indicated as a
percentage. The protein sequences from which these trees were generated are reported in Supplementary Table S2.
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Cartolano et al., 2007; Rebocho et al., 2008; Castel et al., 2010) via

dTPH1-tagged mutant alleles, and to obtain mutants of genes whose

sequence was known but for which no indication of function was

available (Koes et al., 1995; Vandenbussche et al., 2008).

Over the years, the spontaneous appearance of transposon-

induced mutations, together with ethyl methanesulfonate (EMS)

mutagenesis and more recently the CRISPR-Cas approach, has

resulted in a colorful collection of novel lines carrying mutations

in genes involved in many different processes.
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In the early years of this petunia collection, the phenotypes of

established lines and newly emerged mutants were recorded by

means of water-based drawings (Figure 1B), as color photography

poorly reproduced the true colors. Recently, these drawings inspired

the artist Christian Herren (Herren, 2021a; Herren, 2021b) to

produce different works illustrating the use of the small garden

petunia to address scientific questions. Later, watercolor paintings

were replaced by digital pictures that record the phenotype of each

mutant/line (Figure 2).
FIGURE 2 (Continued)
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FIGURE 2 (Continued)

Phenotypes of a sample of different petunia lines from the Amsterdam collection.(A) Fading of flower pigmentation in the hybrid V74 × R149: on the
right an fa mutant (pigmentation is stable) and on the left an FA wild type (Passeri et al., 2016). (B) A collection of flowers of different ages from a
fading plant of the hybrid in (A, C) Transposon-induced mutation in a PH gene impairs vacuolar hyper-acidification and results in bluish petals. The
more reddish spots are due to the excision of the transposon and restoration of hyper-acidification. On the right a ph mutant in an FL (flavonol
accumulating) background and on the left the same ph mutation in an fl (no flavonols) background. (D) Flowers from a transgenic AN2-
overexpressing line (Quattrocchio et al., 2013). (E) The untransformed host (line W115). (F) A wild-type inflorescence of the W138 petunia line. (G)
Mutant in the flower meristem identity gene ALF (Souer et al., 2008) in a W138 background. (H) Mutant inflorescence for the flower meristem
identity gene DOT (Souer et al., 2008) in a W138 background. (I) Mutant inflorescence in an evergreen (evg) plant. EVERGREEN encodes a WOX
protein crucial in the separation of floral meristems from inflorescence meristem. In the mutant the inflorescence has a fasciated phenotype. (J)
Mutant for the VEGGIE gene (Castel et al., 2010), in which flower identity determination is delayed, resulting in a series of bracts (instead of two)
preceding the flower on the inflorescence. (K) The transposon-induced hermit mutant (Castel et al., 2010). (L) Transgenic line P7017 containing a
35S:NAM-vp16 (Souer et al., 1996). (M) Mutant in which the sympodial meristem is transformed into a vegetative meristem. (N) A strong mutant
allele of the homeotic gene GREENPETAL (GP). The petals are fully transformed into sepals (Halfter et al., 1994; Vandenbussche et al., 2004). (O) A
weak mutant allele of GP; the petals are only partially transformed into sepals. (P) Flower of a floozy (flz) (Tobeña-Santamaria et al., 2002) plant.
FLOOZY encodes an enzyme involved in auxin synthesis. (Q) A 35S:DOT (Souer et al., 2008) transgenic plant. The ectopic expression of this
inflorescence identity gene results in very early flowering, changes the inflorescence in a terminal flower, and transforms leaf and sepal epidermal
cells into petal epidermal cells. (R) Flower from a mutant for the gene BLIND (BL) (Cartolano et al., 2007) encoding a microRNA that regulates
spatial expression of C-class homeotic genes in the flower. (S) Mutant with crinkled leaves, line P2036 (in the W138 background). (T) Unstable leaf
mutant P2032. Several mutants with such leaf phenotype are often found among the progeny of W138. (U) Mutant P2056, a choripetala Suzanne
(Vandenbussche et al., 2009) (chsu) mutant in the W138 background. The CHORIPETALA SUZANNE gene is involved in petal primordia fusion. (V)
Mutant P2058 in the W138 background. A strong chsu allele gives “exploded” flowers. (W) Flower of the hybrid commercial genotype D2028. This,
and the genotypes in X and Y, show pigmentation patterns due to suppression of CHS gene expression (Morita et al., 2012). (X) Flower of the hybrid
commercial genotype E2011. (Y) Flower of the hybrid commercial genotype E2010. (Z) Flower of the inbred line R27, which accumulates cyanidin
(hf1, rt mutant missing F3′5′H and rhamnosyl transferase activity). (A1) Flower of the inbred line R176 (originating from a reversion of the unstable
an1 allele in line W138). (B1) Flower of the inbred line W138. In this line, high transposon activity is maintained by selection, and in the progeny of
this genotype new mutations continuously and spontaneously appear. (C1) Flower containing the an1 mutable allele of W138 in a peonidin-
accumulating background. (D1) Flower of a mutant for the AN3 (van Houwelingen et al., 1998) locus encoding the F3H enzyme (see Figure 1C). The
loss of activity of F3H results in a nearly white corolla as the petunia dihydroflavonol 4-reductase (DFR) cannot convert monohydroxylated
anthocyanin precursors. This line is registered as W59. (E1) A weak allele of the AN3 gene somehow results in low accumulation of anthocyanin.
(F1) The flower of a hybrid of a carotenoid petunia line and the W138 line. (G1) Flower of a PH5 wild-type plant (Verweij et al., 2008). (H1) Flower of
a ph5 mutant isogenic to the wild type in G1. (I1) Flower of the inbred line obtained for the cross M1 × V30 (Magenta 1 × Violet 30). (J1) Flower of a
ph4 (Quattrocchio et al., 2006) mutant generated by CRISPR-Cas9 technology in the hybrid M1 × V30. (K1) The R143 line contains a mutation at
the PH3 (Verweij et al., 2016) locus caused by the complete deletion of the gene. Because this mutation causes female sterility, the line can be
maintained only by crossing heterozygous plants. Presented here is the flower of a WT plant arising from such a cross. (L1) A flower from a R143
mutant (ph3) plant. (M1) Flower from the R159 line carrying an unstable mutation (see the reddish reversion sectors) in the PH5 locus. (N1) Flower
of the inbred line V26 which carries a mutation in the PH2 locus. (O1) Flower from an unstable ph4 mutant in a malvidin-accumulating background.
(P1) Flower of the line R153 containing a weak mutant allele of the AN1 gene, also called PH6 (Spelt et al., 2000), as this mutation affects only
vacuolar acidification, without diminishing anthocyanin accumulation. The ph6 allele is unstable, as shown by the reddish reversion sectors. (Q1)
Flower of the inbred line V64, a stable ph4 mutant. (R1) Flower of the inbred line V74, another stable ph4 mutant. (S1) Flower of the M1 (Magenta 1)
inbred line, which accumulates peonidin and carries a mutation in the HF1 gene encoding the F3′5′H enzyme. (T1) Flower of the inbred line W225
carrying a stable mutant allele of the AN1 gene. This allele carries a footprint originated from the excision of the dTPH1 copy in the an1 allele of
W138. (U1) Flower of the inbred line W59 containing a mutant allele of the AN2 gene. This allele is characterized by a 4bp insertion in the coding
region, probably the footprint of a transposon that visited the locus. (V1) Flower of E2015, a hybrid of V63 (ph4) and R163 (ph5). (W1) Flower of the
inbred line M61. (X1) Flower of the inbred line W80, which carries a mutation in the AN6 locus encoding the enzyme DFR (Beld et al., 1989). (Y1)
The wild-type accession Petunia inflata registered in the collection as S6. (Z1) The wild-type accession Petunia axillaris N registered in the
collection as S26. (A2) The wild-type accession Petunia exserta registered in the collection as S25. (B2) The wild-type accession Petunia parodii
registered in the collection as S8. (C2) The wild-type accession Petunia axillaris registered in the collection as S21. (D2) The wild-type accession
Petunia axillaris registered in the collection as S2. (E2) The wild-type accession Petunia integrifolia registered in the collection as S20. (F2) The wild-
type accession Petunia axillaris P registered in the collection as S21.
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Regulation of pigmentation and
related processes in Petunia

The ability to identify and isolate new mutations is largely

affected by how difficult it is to spot the new phenotype. Among the

new mutants emerging in the collection, the easiest to spot are those

heavily affecting the plant architecture and those affecting the

biosynthetic pathway of anthocyanins and co-pigments such as

flavonols (both structural and regulatory genes) (van Houwelingen

et al., 1998) (see Figure 1A); the hyper-acidification of the lumen of

the vacuoles where the pigments are stored (also structural and

regulatory genes) (Spelt et al., 2000; Quattrocchio et al., 2006;

Verweij et al., 2008; Faraco et al., 2014; Verweij et al., 2016); the

formation of additional vacuoles (Faraco et al., 2017); and the shape

and dimension of the cells (Li et al., 2021). Many genes involved in

these processes were identified through mutants that appeared

spontaneously in progeny of W138 and derived lines.
Frontiers in Plant Science 05
Compared with other systems in which pigmentation and

related phenomena have been studied, Petunia offers the most

complete description of the genetics behind the coloration of

plant tissues by anthocyanins. This includes the regulation of the

biosynthesis of these pigments, the differentiation of cells in petal

epidermis, where coloration is displayed, and the contribution of

several other factors to the final color. Other species in which

pigmentation was studied, including bright-colored flowers such as

snapdragons (Albert et al., 2021), gerberas (Deng et al., 2014), lilies

(Yamagishi, 2020), and orchids (Liang et al., 2020), and other

pigmented organs such as oranges (Huang et al., 2018), apples

(Chagné et al., 2013), perilla (Jiang et al., 2020), and lychees (Lai

et al., 2019), have a poor set of genetics tools, lack a good transposon

system, or are not easy to transform. In others with excellent genetic

tools (e.g., Arabidopsis and tomatoes), anthocyanin production is

limited to small parts of the plant under stress conditions (Li and

Strid, 2005; Li et al., 2018).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1129724
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Strazzer et al. 10.3389/fpls.2023.1129724
The hyper-acidification mechanism of vacuoles in specialized

cells, such as the epidermis of petals (Verweij et al., 2008; Faraco

et al., 2014) and the flesh of fruits (Strazzer et al., 2019), was first

recognized in petunias because of the shift in color in the mutant

petals, and was shown to require activity of two, until then

unknown, types of P-type ATPases. It was found that the same

mechanism operates in other species, in petals (e.g., rose petals) or

other tissues such as fruit (e.g., in citrus and grapes) (Wang et al.,

2014; Cavallini et al., 2015; Li et al., 2016; Amato et al., 2017).

Remarkably, this was not first discovered in Arabidopsis, the most

popular plant model in which genomic tools have been available for

longer. The reason for this is that the gene for one of the two pumps

was lost from the Arabidopsis genome (Li et al., 2016). Similarly,

Arabidopsis is not useful for studying the mechanism for the

formation of acidic additional vacuoles (vacuolinos) in specialized

tissues (Faraco et al., 2017) because the small GTPase RAB5a, a key

player in the formation of these organelles, is absent from the RAB5

subgroup of Brassicaceae (Li et al., 2021).

Studies on the production of other pigments, such as

carotenoids, are ongoing in petunias. These are partly driven by

the ornamental market, which prefers rare yellow/orange colors;

therefore, new yellow inbred lines containing highly active

transposons are being generated (e.g., Figure 2F1).

This all is facilitated by the brightly colored flowers of petunias,

which are sufficiently large (3–7 cm in diameter depending on the

line) that it is easy to spot mutations affecting petal color and to

make molecular and biochemical studies very manageable.
Petunia unravels the evolution of
pollination syndrome

Efficient reproduction is the key to success for species in the

struggle for survival. Changes in reproductive strategy result in

genetic isolation and possibly in the appearance of a new species.

The pool of traits that determine the chosen strategy of a plant

species and, when needed, its interaction with pollinating animals

(mostly insects or birds) is known as a pollination syndrome

(Fenster et al., 2004; Rodrigues et al., 2018). The genetics behind

the appearance of new pollination syndromes is the key to plant

evolution biology and has been studied in several species. Petunia is

represented in the wild by several species and subspecies that are

genetically isolated in nature, but still produce viable seeds when

manually pollinated. This allows for the generation of biological

material to reconstruct the events that led to the appearance of new

pollination syndromes and consequently new species (Hermann

and Kuhlemeier, 2011; Turchetto et al., 2014).

Changes in the traits constituting the pollination syndrome of a

species result in a new pollination strategy. The shape, color, and

scent of the flower, as well as the amount of nectar and its

composition, are the main traits involved (Klahre et al., 2011;

Rodrigues et al., 2018). The identification of crucial mutations

that lead to a novel pollination syndrome helps reconstruct the

evolution of the distinct species in the Petunia genus, providing

insights into the molecular mechanism of speciation. Mutations in
Frontiers in Plant Science 06
the anthocyanin MYB regulator AN2 accompanied the appearance

of the white species (P. axillaris subspecies). However, molecular

analysis of the an2 alleles in the white species indicates not that the

loss of AN2 activity was initially responsible for the separation of

the white lines, but rather that it contributed to a reinforcement

mechanism (Quattrocchio et al., 1999).

Another MYB (MYB-FL) regulating the synthesis of flavonol

co-pigments was shown to be directly related to the shift from bee

pollination (in the purple-flowering P. inflata) to moth pollination

through the acquisition of high expression (white P. axillaris) and

then again to bird pollination by loss of activity (red P. exserta)

(Sheehan et al., 2016). Recent evidence shows that the shift from

white-lowering petunias to the red-flowering P. exserta was the

result of a change in the expression domain for the AN2 paralog

DPL (Deep Purple), accompanied by reprogramming of the

expression of hydroxylating genes and down-regulation of

anthocyanin acyltransferase (Berardi et al., 2021).

The biochemistry and genetics of the production and release of

fragrance in flowers, another component of the plant–pollinator

interaction, is also most extensively studied in petunias (Muhlemann

et al., 2014; Adebesin et al., 2017). It has been shown that two main loci

are responsible for the acquisition or loss of scent in the transition

between different pollination syndromes (Klahre et al., 2011).

Thanks to the brevity of their evolutionary separation, the process

that generated the different wild petunia accessions can be relatively easily

reconstructed. Using the data set published by Wheeler et al. (2022), we

built the phylogeny of Petunia and related species based on the main

speciation genes ODO1 (Amrad et al., 2016), AN2 (Quattrocchio et al.,

1999), and MYB-FL (Sheehan et al., 2016). The result was an outline of

the phylogeny of Petunia and closely related species based on their

chosen pollinators (Figures 1C–E). This shows that, although these three

genes did not evolve completely synchronously, the clade containing

Petunia, Calibrachoa, and Fabiana is in all trees well separated from

other closely related Petunieae. Petunia is moreover equally related to

Calibrachoa and Fabiana, although its morphological similarity to the

latter is clearlymuch less pronounced. The three genera are highly related

but still clearly circumscribed (indicated in Figures 1C–E by the different

color of the background), as reflected by the current taxonomy (Ng and

Smith, 2016). They offer biological material to study whether the same

mechanisms were adopted in the separation of white versus colored

Calibrachoa, Fabiana, and Petunia, as well as scenting fromnon-scenting

populations. The separation of different species within the Petunia genus

must have occurred “very recently”, as supported by the fact that it is

possible to obtain viable fertile plants from manual interspecific crosses

(Yarahmadov et al., 2020), whereas hybrids of Petunia and Calibrachoa

are rarely successful and the progeny is not fertile, which is to be expected

given the differing chromosome sets of the two species.
Petunia as model system in the study
of different biological processes

Here, we give a succinct overview of some of the fields of

research, outside pigmentation genetics, in which petunias have
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been the system of choice, reporting the most relevant discoveries

that these studies generated.

An attempt to change the amount of anthocyanin in petals by

expressing antisense or sense CHALCONE SYNTHASE (CHS)

transgenes in petunias in the 1990s yielded flowers with

intriguing pigmentation patterns on their petals (see Figures 2W–

Y) and the discovery of RNA interference (RNAi) (van der Krol

et al., 1988). This phenomenon, at the time not yet called RNAi,

turned out to regulate a variety of processes in plants and animals

(Han, 2018; Hung and Slotkin, 2021). The knockdown of single or

groups of genes has found a multitude of applications in research

(Matthew, 2004; Curtis and Nardulli, 2009) and medicine (Grimm

and Kay, 2007). The finding that double-strand RNA triggers gene

silencing through RNAi resulted the awarding of the 2006 Nobel

Prize in Physiology or Medicine to Craig Mello and Andrew Fire

(Zamore, 2006). Today this technology is, among techniques, the

basis of advanced strategies for the treatment of AIDS development

in HIV-positive patients (Swamy et al., 2016).

Distinct aspects of plant hormone synthesis and transport and

their effect on plant physiology and development were discovered in

petunias. A mutant with flowers lacking all organs except pistil and

carpels (floozy mutant; Figure 2P) isolated in a W138 background

revealed that flavin mono-oxygenase regulates the development of

flower organs and leaves, affecting local auxins synthesis (Tobeña-

Santamaria et al., 2002). The dad mutants described by Snowden

et al. are characterized by increased branching and define steps of

the strigolactone biosynthetic pathway (Snowden et al., 2005;

Simons et al . , 2007) . The study of the synthesis of

brassinosteroids (Drummond et al., 2009) and their signaling

pathway and sensing (Verhoef et al., 2013), as well as the

discovery of the protein involved in the transport of

strigolactones (Kretzschmar et al., 2012), were enabled by

mutants affecting these processes in Petunia.

The symbiosis between Petunia plants and mycorrhizae has

been an effective instrument for identifying genes involved in

infection initiation, development, and the morphology of

arbuscular fungi (Sekhara Reddy et al., 2007), allowing for the

identification of genes controlling different steps in these processes

(Rich et al., 2015).

Adventitious root formation is the basis of vegetative

propagation, which is important in the horticultural and

ornamental industry. Hormonal regulation and the effect of

ammonium and iron on this process, as well as the induction of

genes involved in hormone transport and response at the site of

adventitious root emergence, have been extensively studied in

petunias (Druege and Franken, 2019).

The study of plant pararetroviruses and the contribution of

these and retrotransposon-related viruses to the evolution of

genomes has used different virus–host systems, including the

petunia vein-clearing virus (PVCV) (Richert-Pöggeler et al.,

2021). This virus interferes with the pigmentation patterns

generated by RNAi silencing of the CHS gene. A decrease in

DNA methylation of PVCV loci correlates with poor

maintenance of DNA methylation in proviral PVCV and the

appearance of pigmentation in otherwise white petal regions of

star-type bicolored petals, suggesting that the virus could act as a
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suppressor of post-transcriptional gene silencing (Kuriyama

et al., 2020).
The collection of Petunia lines
in Amsterdam

The petunia lines generated over decades of petunia-based

research are preserved at the University of Amsterdam along with

a detailed record of their origin and genetic characteristics. One of

the many advantages of such a system is that isogenic lines can be

compared when exploring the effect of single genes on any kind of

process. Indeed, for many mutants, perfectly isogenic wild-type

lines are available.

Most pure-breeding petunia lines, except for a few (V26 and

Mitchell/W115), are difficult to transform by leaf disk

transformation; however, all hybrids of two unrelated pure lines

can easily generate transgenics (Vandenbussche et al., 2016). Owing

to the multitude of lines available, it is possible to generate

transformable hybrids for use in virtually any experimental setup.

From some hybrids of two pure lines (e.g., M1 × V30) a new

transformable (almost homozygous) line has been generated by

repeated self-crosses. In such a background, some mutations have

been introduced by CRISPR-Cas technology (Figure 2I1, J1),

creating a set of isogenic mutants and wild types to be used in

transformation experiments.

The documentation for each individual plant in the collection

records its origin (father and mother), when it was grown, the

phenotype, the transgene (if applicable), and any other unusual

characteristics. These records have been kept and updated since

the 1970s.

The storage of seeds in dedicated stores where the humidity and

temperature can be controlled is crucial for their longevity.

However, the renewal of the stock for each line through

germination and the production of new seeds every 2–5 years is

necessary to avoid loss of genotypes.

Here, we report a catalog of the lines present in the collection,

complete with a description of the genetic background and main

characteristics of each genotype (see Supplementary Table S1).

Seeds are available in principle (if the line is not involved in

current projects) on request and agreement of conditions of use.

This can be arranged by sending an e-mail to f.quattrocchio@uva.nl.

A small fee is applied to cover the costs of line maintenance and

seed production.
Conclusion

A germplasm collection for a model species widely used in

different fields within experimental life sciences is a valuable

resource, and its preservation (and increase in available lines)

makes it attractive for an ever-growing range of applications.

Because little labor is required to generate new mutations,

this model has proved highly effective in the identification of

novel pathways that are absent or were lost during domestication

of some of the popular alternative model species (e.g., Arabidopsis
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and tomatoes). Furthermore, the ability to compare several model

species is a priority in evolutionary developmental biology, and

comparisons between Arabidopsis and Petunia have resulted in

interesting discoveries on several occasions.

This collection has for several decades been used for education

in practical classes and was recently described by the Faculty of

Humanities of the University of Amsterdam as an ‘archive of

imagination’ and ‘mental shortcut ’ to common heritage

and history.
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