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Melanoma is one of the deadliest skin cancers. Recently, developed single-cell

sequencing has revealed fresh insights into melanoma. Cytokine signaling in the

immune system is crucial for tumor development in melanoma. To evaluate

melanoma patient diagnosis and treatment, the prediction value of cytokine

signaling in immune-related genes (CSIRGs) is needed. In this study, the machine

learning method of least absolute selection and shrinkage operator (LASSO)

regression was used to establish a CSIRG prognostic signature of melanoma at

the single-cell level. We discovered a 5-CSIRG signature that was substantially

related to the overall survival of melanoma patients. We also constructed a

nomogram that combined CSIRGs and clinical features. Overall survival of

melanoma patients can be consistently predicted with good performance as

well as accuracy by both the 5-CSIRG signature and nomograms. We compared

the melanoma patients in the CSIRG high- and low-risk groups in terms of tumor

mutation burden, infiltration of the immune system, and gene enrichment. High

CSIRG-risk patients had a lower tumor mutational burden than low CSIRG-risk

patients. The CSIRG high-risk patients had a higher infiltration of monocytes.

Signaling pathways including oxidative phosphorylation, DNA replication, and

aminoacyl tRNA biosynthesis were enriched in the high-risk group. For the first

time, we constructed and validated a machine-learning model by single-cell

RNA-sequencing datasets that have the potential to be a novel treatment target

and might serve as a prognostic biomarker panel for melanoma. The 5-CSIRG

signature may assist in predicting melanoma patient prognosis, biological

characteristics, and appropriate therapy.

KEYWORDS

cytokine signaling in immune, prediction model, immune microenvironment, TMB,
melanoma, GSEA, single-cell sequencing, machine learning
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1 Introduction

Melanoma is the most dangerous type of skin cancer,

accounting for 90% of all skin cancer deaths. Melanoma has

become more common in recent decades, with an estimated

232,100 new cases and 55,500 deaths per year (1). Treatment of

melanoma includes surgery, chemotherapy, radiotherapy,

immunotherapy, targeted therapy, and other methods (2, 3). With

a 90% cure rate, melanoma surgery remains the most effective

treatment option. However, patients have a high rate of recurrence

despite aggressive interventions, which contributes to the poor

prognosis of melanoma (4). Therefore, new prognostic

biomarkers for melanoma should be investigated to identify high-

risk subpopulations and guide more effective individual treatments.

Lymphocytes, monocytes, macrophages, B cells, and T cells are

immune system cells that create cytokines (5). Immune system cells

can communicate with one another using cytokines to produce

coordinated, efficient, but self-restraining antigen responses.

Although there are numerous ways that the immune system can

communicate with one another directly between cells, cytokine

synthesis allows for a more varied and effective transmission of

immunological information (6). Numerous malignancies, such as

melanoma and renal cell carcinoma, are treated with cytokines (5).

Cytokines at the tumor site stimulate immune effector cells,

improving tumor cell recognition. The interaction between

interleukins and interferons has an enhanced immunostimulatory

impact (7). As a result, many cytokine- or cytokine antagonist-

based cancer therapies have been developed (5, 8, 9). However, for

patients with advanced-stage illness, cytokine-based therapy had a

modest therapeutic effect.

Based on single-cell data and TCGA data, we used least absolute

selection and shrinkage operator regression and Cox regression to

build a prediction model of melanoma. The predictive significance of

our cytokine signaling in immune-related genes (CSIRG) signature

was further verified by receiver-operating characteristic analysis.

Gene set enrichment analysis was conducted to help elucidate the

intrinsic mechanisms. Moreover, the predictive significance of our

CSIRG signature was confirmed using independent GEO data. Our

results imply that the CSIRG signature plays a crucial role in

predicting the prognosis of melanoma patients.
2 Methods

2.1 Data source

Melanoma single-cell datasets were accessed from GSE115978

(10). The TCGA (https://portal.gdc.cancer.gov/) (11) and
Abbreviations: AIC, Akaike information criterion; AUCs, The area under the

receiver operating characteristic curves; CSIRGs, Cytokine signaling in immune-

related genes; DEGs, Differentially expressed genes; LASSO, Least absolute

selection and shrinkage operator; OS, Overall survival; ROC, Receiver-

operating characteristic; RS, Risk score; TMB, Somatic tumor mutational

burden; GSEA, Gene set enrichment analysis.
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GSE65904 cohorts (12), with 470 and 214 patients, respectively,

provided bulk mRNA expression data in this study. Following data

collection, an integrated analysis was conducted.
2.2 Data processing with single-cell
RNA-sequencing

Seurat (version 4.1.0) was used to analyze the single-cell data of

31 melanoma patients. This cohort included 3 patients with primary

melanoma and 28 patients with metastatic melanoma. Among these

patients, 15 were untreated, and 16 were post-immunotherapy. The

raw data were accessed from GSE115978 (10). Cells with > 600 and <

4,500 RNA features were included in the following analysis.

Additionally, a linear dimensionality reduction was created using

tSNE, and significant dimensions were identified with an estimated P

value. Adjusted P < 0.05 and |logFC| > 0.25 were used for

differentially expressed CSIRG analysis between metastatic

melanoma and the primary melanoma group. We obtained

cytokine signaling in immune-related genes (CSIRGs) from the

Reactome pathway database.
2.3 Establishment of prognostic signature

The research included CSIRG signature genes with matching

clinical characteristics. A training group (TCGA-SKCM) and a

testing group (GSE65904) were formed from the melanoma

patients. Univariate Cox regression was utilized in the TCGA-

SKCM group to narrow down the prognostic CSIRG genes. The

results from the univariate Cox regression were used for the least

absolute selection and shrinkage operator (LASSO) regression. We

further used the “glmnet” R package to perform the LASSO algorithm

and select the potential candidates. A subsample of 1000 iterations

was conducted on the dataset, and CSIRGs with occurrence

frequencies of more than 950 were identified for further analysis.

To narrow the list of candidate CSIRGs related to overall survival and

construct a predictive gene signature, multivariate Cox regression was

conducted. Finally, a risk score (RS) model of the CSIRG signature

was constructed using the multivariate Cox results. Multivariate Cox

regression was performed to acquire the regression coefficient (b),
and the RS was generated using the coefficients and expressions.

Using the findings, the RS equation is RS = coefficient1 * gene1

expression + coefficient2 * gene2 expression + coefficientN * geneN

expression. Patients in the TCGA-SKCM and GSE65904 cohorts

were divided into high- and low-risk groups by median RS. The

survival analysis of melanoma patients was calculated using the

Kaplan−Meier method. Receiver-operating characteristic (ROC)

analyses validated the signature performance.
2.4 Survival analysis of 11 CSIRGs accessed
from the results of LASSO regression

Kaplan–Meier survival analysis with the log-rank test was

performed to study the 11 CSIRGs (ATF2, CCR1, CRKL, EIF4A2,
frontiersin.org
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IFI30, MCL1, NUP188, STAT1, STAT3, TNFSF13B, and YWHAZ)

of melanoma patients in the TCGA-SKCM cohort. The patients

were categorized into two high and low gene expression groups

using the median expression level of each gene.
2.5 Nomogram construction

Before producing the nomogram, clinical and CSIRG signatures

were combined. The appropriate clinical characteristics (including

age, sex, tumor stage, tumor T stage, tumor M stage, and tumor N

stage) and CSIRG RS were subsequently chosen using univariate

and multivariate Cox regression models. The prognostic nomogram

model was further developed using the CSIRG RS and independent

clinical factors. ROC curves and decision curves were used to

evaluate the performance of the nomogram model.
2.6 Mutation identification and tumor
mutation burden quantification

TMB is base deletion, insertion, or substitution divided by the

total number of variants divided by exon length. Maftools was used

to analyze somatic mutation data to study TMB landscapes. The

data were separated into two categories based on the CSIRG risk

assessment. Mutant genes in the CSIRG high- and low-risk groups

were analyzed.
2.7 Gene set enrichment analysis

Broad Institute’s software was used to conduct gene set

enrichment analysis in the TCGA-SKCM cohort (13). A KEGG

gene set (KEGG C2, MsigDB database v7.5.1) was used in this study.

Gene set enrichment analysis was performed with 1,000

permutations (14). KEGG pathway study comparing the CSIRG

high- and low-risk groups.
2.8 Immune infiltration analysis by xCell
and CIBERSORT algorithm

We compared immune cell ratings using the xCell and

CIBERSORT algorithms in the TCGA dataset (15, 16). To

calculate the tumor-infiltrating cell distribution scores using xCell,

this research integrated the transcriptome data of patients with the

expression of marker genes from 64 different kinds of immune cells.

Subgroup investigation of immune cell infiltration in the CSIRG

high- and low-risk groups. To validate the xCell results, we further

performed the most widely used immune infiltration algorithm of

CIBERSORT to analyze the enrichment scores of 22 kinds of

immune cells for each melanoma patient.

2.9 Statistical analysis

Statistical analyses and graphs were calculated using R version

4.0.5 and the necessary packages. P < 0.05 was considered to be

statistically significant.
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3 Results

3.1 Single-cell RNA sequencing analysis

We accessed the single-cell data of 31 patients from GSE115978

(10). Then, we performed single-cell transcriptome analysis to

compare primary and metastatic melanoma by the Seurat

pipeline. After quality control, a differential analysis was

performed on the cells from the primary and metastatic

melanoma tissues. The distribution of the single-cell data is

shown in Figures 1A–H. The samples included 27 clusters

(Figure 1A). We also showed the distribution of cells in different

patient groups (Figure 1B, metastatic melanoma and primary

melanoma groups). Malignant cells are categorized by patients

(Figure 1C), while nonmalignant cells, including immune cells

and stromal cells, are classified by their cell type (Figure 1D), as

the original article reported. The nonmalignant cells included CD4+

T cells, CD8+ T cells, T cells, NK cells, macrophages cells, B cells,

cancer-associated fibroblast (CAF) cells, and endothelial cells

(Figure 1D). We further showed the distribution of malignant

cells and nonmalignant cells in the posttreatment group

(Figures 1E–F) and untreated group (Figures 1G–H). Among 31

patients, cells from only 23 patients were annotated with malignant

cells which were shown in Figures 1C, E, F.
3.2 A risk model based on five cytokine
signaling in immune-related genes

The CSIRGs used in the following analysis were obtained from

the Reactome pathway database. As a consequence, 54 CSIRGs were

differentially expressed between the metastatic melanoma and

primary melanoma groups (Figure 2A). Compared with the

primary melanoma group, 34 of the CSIRGs were upregulated in

the metastatic melanoma group (Figure 2B; Supplementary Table 1),

while 20 of the CSIRGs were downregulated in the metastatic

melanoma group (Figure 2C; Supplementary Table 1). Among the

upregulated CSIRGs, most were expressed in all of the cell types,

including malignant cells (Mal), CD4+ T cells, CD8+ T cells, T cells,

NK cells, macrophages cells, B cells, cancer-associated fibroblast

(CAF) cells, and endothelial cells. However, TNFSF8 was highly

expressed in CD4+ T cells and T cells of both the primary and

metastatic groups. TNFSF4 was highly expressed in malignant cells

and CD8+ T cells of the metastatic group. S100B and TRIM2 were

highly expressed in malignant cells and CAF cells of the metastatic

group. FN1 was highly expressed in Mal cells, CAF cells, and

endothelial cells of the metastatic group. COL1A2 was highly

expressed in CAF cells of the metastatic group. EGR1 was highly

expressed in macrophage cells of the primary group. SHC1 was

highly expressed in endothelial cells of the primary group

(Figures 2B, C).

We performed univariate Cox regression analysis to screen

prognostic CSIRGs from 54 CSIRGs. As a result, 20 CSIRGs were

revealed to be highly linked with overall survival (OS)

(Supplementary Table 2). LASSO regression further selected 11

CSIRGs (Figures 2D, E). Kaplan–Meier survival analysis of 11
frontiersin.org
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CSIRGs, including ATF2, CCR1, CRKL, EIF4A2, IFI30, MCL1,

NUP188, STAT1, STAT3, TNFSF13B, and YWHAZ, in melanoma

patients in TCGA was performed. The results showed that high

expression of CCR1, MCL1, STAT1, and TNFSF13B was correlated

with longer survival time (Figure 3). High expression of NUP188

was correlated with shorter survival time (Figure 3). Then,
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multivariate Cox regression analysis was carried out to screen

prognostic CSIRGs from 11 CSIRGs. Finally, five hub CSIRGs

(EIF4A2, MCL1, NUP188, STAT1, and YWHAZ) were identified

with the minimum Akaike information criterion (AIC) and were

further used for CSIRG model construction (Table 1;

Supplementary Table 3). The gene model established based on
A B

D

E F

C

G H

FIGURE 1

Single-cell RNA sequencing analysis of the GSE115978 dataset. (A) T-SNE of all of the melanoma samples with 27 clusters. (B) T-SNE of the
metastatic melanoma and primary melanoma groups. (C) Malignant cells are categorized by the patients. (D) Nonmalignant cells, including immune
cells and stromal cells, are classified by their cell type. The distribution of malignant cells and nonmalignant cells in the posttreatment group
(E, F) and untreated group (G, H).
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five hub genes was as follows: risk score (RS) = -0.00536× EIF4A2 -

0.00378 ×MCL1 + 0.05332 × NUP188 - 0.00502 × STAT1 + 0.00571

× YWHAZ. The RS medians (TCGA-SKCM: 1.071; GSE65904:

1.023) were utilized to divide the TCGA-SKCM and GSE65904
Frontiers in Immunology frontiersin.org05
datasets into two groups with high and low RS (Supplementary

Tables 4, 5). The area under the receiver-operating characteristic

curves (AUCs) proved that the gene model had relatively good

accuracy. Specifically, the TCGA-SKCM dataset had AUCs of 0.693
A

B

D E

C

FIGURE 2

Identification of differentially expressed genes (DEGs) and cytokine signaling in immune-related genes (CSIRGs) between the metastatic melanoma
and primary melanoma groups. (A) DEGs and CSIRGs in GSE115978 (|logFC| > 0.25 and adjusted P value < 0.05). (B) Dot plot showing the DEGs that
were upregulated in the metastatic melanoma group. Mal: Malignant cells. (C) Dot plot showing the DEGs that were downregulated in the metastatic
melanoma group. Mal: Malignant cells. (D, E) LASSO regression was performed on CSIRGs.
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(1 year), 0.669 (3 years), and 0.747 (5 years) (Figure 4A), whereas

the GSE65904 dataset had AUCs of 0.669 (1 year), 0.645 (3 years),

and 0.655 (5 years) (Figure 4B). Furthermore, Kaplan−Meier curves

of both the TCGA-SKCM (Figure 4C) and GSE65904 datasets

(Figure 4D) revealed that melanoma patients in the CSIRG high-

risk group were associated with worse outcomes. The RS of each

patient in the TCGA-SKCM cohort is displayed in Figure 4E.
Frontiers in Immunology 06
Figure 4F also confirmed that the mortality of the CSIRG high-

risk melanoma patients increased. The expression of the five hub

CSIRGs (EIF4A2, MCL1, NUP188, STAT1, and YWHAZ) in the

high- and low-risk groups is shown in Figure 4G. The results

showed that EIF4A2, MCL1, and STAT1 were downregulated in

the high-risk group, while NUP188 and YWHAZ were upregulated

in the high-risk group (Figure 4G).
FIGURE 3

Kaplan–Meier survival analysis of 11 CSIRGs, including ATF2, CCR1, CRKL, EIF4A2, IFI30, MCL1, NUP188, STAT1, STAT3, TNFSF13B, and YWHAZ,
identified by LASSO regression in the TCGA-SKCM cohort.
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3.3 Nomogram model construction for
melanoma patients

To further construct a nomogram combining clinical variables

(including age, sex, tumor stage, tumor T stage, tumor M stage, and

tumor N stage) and CSIRG RS, univariate and multivariate Cox

regression models were constructed from the TCGA-SKCM dataset

(Table 2). As a result, the tumor T stage was selected and integrated

with the RS to create a clinical nomogram using the generalized

linear model regression technique (Figure 5A). The survival rates of

melanoma patients over 1, 3, and 5 years could be predicted using

the clinical nomogram. The AUCs for 1, 3, and 5 years were 0.81,

0.734, and 0.741 for the TCGA-SKCM dataset, respectively

(Figure 5B). Decision curve analysis was carried out to evaluate

the nomogram performance for 5-year OS (Figure 5C).
3.4 Tumor mutation burden analysis

The TMB profile of the TCGA-SKCM dataset was downloaded

and matched with the RS for subsequent analysis. TTN, MUC16,

DNAH5, BRAF, and PLCO were the top five mutated genes in the

CSIRG high- and low-risk groups, and their mutation rates were

higher in the low-risk group than in the high-risk group

(Figures 6A, B). The sixth mutated gene in the CSIRG high-risk

group was LRP1B, and the mutation rate of this gene was higher in

the high-risk group (38%) than in the low-risk group (39%)

(Figures 6A, B). Since TTN demonstrated the highest mutation

(high risk: 69%, low risk: 74%) in the TCGA-SKCM dataset, it

might be an important risk factor in melanoma (Figures 6A, B).
3.5 Gene set enrichment analysis

To gain further insight into signaling pathways associated with

melanoma, GSEA was performed on the TCGA-SKCM dataset

(Supplementary Table 6). The results from GSEA revealed that

aminoacyl tRNA biosynthesis, DNA replication, glyoxylate and

dicarboxylate metabolism, oxidative phosphorylation, pyrimidine

metabolism, and Vibrio cholerae infection were mainly enriched in

the high-risk group (Figures 7A). In contrast, antigen processing

and presentation, Leishmania infection, systemic lupus
Frontiers in Immunology 07
erythematosus, Toll-like receptor signaling pathway, type 1

diabetes mellitus, and viral myocarditis were mainly enriched in

the low-risk group (Figures 7B).
3.6 Immune cell infiltration analysis

We then evaluated the influence of the RS on the immune

microenvironment by comparing immune cell infiltration in the

TCGA-SKCM dataset through the xCell algorithm. Increased

enrichment of activated myeloid dendritic cells, B cells, memory

CD4+ T cells, naïve CD4+ T cells, nonregulatory CD4+ T cells, naïve

CD8+ T cells, CD8+ T cells, central memory CD8+ T cells, effector

memory CD8+ T cells, class-switched memory B cells, common

lymphoid progenitors, myeloid dendritic cells, macrophages, M1

macrophages, memory B cells, monocytes, naïve B cells,

plasmacytoid dendritic cells, plasma B cells, gamma-delta T

cells, Th2 CD4+ T cells, and regulatory T cells was found in the

high-risk group, while increased enrichment of NKT cells and Th1

CD4+ T cells was found in the low-risk group (Figure 8A;

Supplementary Table 7).

To validate the results of xCell, we further used the CIBERSORT

algorithm to analyze immune cell infiltration. The results showed

that increased enrichment of monocytes and M2 macrophages was

found in the high-risk group, while increased enrichment of plasma

cells was found in the low-risk group (Figure 8B). As a result, only

monocytes were found to be positively correlated with the high-risk

group in both the xCell and CIBERSORT algorithms.
4 Discussion

Previous research has shown that the prognoses of melanoma

patients cannot be adequately predicted using routinely utilized

clinicopathological markers. In this study, five cytokine signaling

pathways in immune-related genes (CSIRGs, including EIF4A2,

MCL1, NUP188, STAT1, and YWHAZ) were used to generate a

predictive signature. This signature was used to classify the

melanoma patients in the TCGA and GSE65904 cohorts into low-

risk and high-risk groups, depending on their risk scores. In addition,

the results of the receiver-operating characteristic (ROC) analysis

demonstrated that the five-gene signature has good potential for
TABLE 1 Multivariate cox regression analysis of different combination of CSIRGs by the Akaike information criterion (AIC).

Combination AIC

ATF2, CCR1, CRKL, EIF4A2, IFI30, MCL1, NUP188, STAT1, STAT3, TNFSF13B, YWHAZ 1483.79

ATF2, CRKL, EIF4A2, IFI30, MCL1, NUP188, STAT1, STAT3, TNFSF13B, YWHAZ 1481.89

ATF2, CRKL, EIF4A2, IFI30, MCL1, NUP188, STAT1, TNFSF13B, YWHAZ 1480.23

ATF2, CRKL, EIF4A2, IFI30, MCL1, NUP188, STAT1, YWHAZ 1478.98

ATF2, EIF4A2, IFI30, MCL1, NUP188, STAT1, YWHAZ 1478.27

ATF2, EIF4A2, MCL1, NUP188, STAT1, YWHAZ 1477.84

EIF4A2, MCL1, NUP188, STAT1, YWHAZ 1477.38
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predicting overall survival in melanoma patients. The expression of

EIF4A2 has also been shown to have a favorable correlation with the

prognosis of non-small cell lung cancer and breast cancer in a number

of studies (17, 18). On the other hand, a recent study found that higher

EIF4A2 expression in colorectal cancer (CRC) was linked to a worse

chance of survival. In addition, the findings of research conducted on

cells and animals have provided additional evidence that EIF4A2 has a
Frontiers in Immunology 08
role in both the promotion of CRC metastasis and oxaliplatin

resistance (19). An antiapoptotic protein that promotes resistance to

numerous chemotherapeutic agents (20) is encoded by the MCL1

gene, which is typically increased in melanoma as well as in many

other kinds of tumors. Nucleoporin is a component of the nuclear

pore complex, which is encoded by the NUP188 gene (NPC). In

mitotic cells, nucleoporin plays a role in the regulation of
A

B D

E

F

G

C

FIGURE 4

The prognostic value of the risk signature was validated. ROC curves for predicting 1-, 3-, and 5-year overall survival (OS) in the (A) TCGA and
(B) GSE65904 datasets using the risk model. Kaplan−Meier curves were used to assess the OS probabilities in the training (C) and testing groups
(D). (E) In the training dataset of TCGA, the risk score (RS) of each patient is displayed. (F) OS and survival status are shown in the TCGA cohort (red
dots indicate death, and green dots indicate survival). (G) The expression of the five CSIRGs (EIF4A2, MCL1, NUP188, STAT1, and YWHAZ) used to
construct the prediction model was analyzed in the high- and low-risk groups. : ***: P≤0.001 and ****: P≤0.0001.
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chromosomal segregation by increasing chromosome alignment. It

is possible that problems with the chromosomal segregation process

are responsible for the aneuploidy that occurs in some cancer cells

(21). Therefore, NUP188 might play a part in the process of

oncogenesis. Studies have also demonstrated that the expression of

STAT1 is lower in gliomas than in normal brain tissues (22, 23). This

difference in expression has been proven to occur in gliomas. The

overexpression of STAT1 significantly inhibits the development of

glioma cells and stimulates apoptosis (24) in these cells. However, the

function of aberrant STAT1 and the mechanism by which it causes

melanoma are not yet fully understood. Emerging data have
Frontiers in Immunology 09
shown that YWHAZ is essential in the growth of many different

kinds of tumors (25). YWHAZ has also been shown to be a useful

prognostic marker for multiple cancers according to a number of

studies (26–29).

We further analyzed the correlation of tumor mutation burden

(TMB) in the CSIRG high- and low-risk groups. Patients in the high-

TMB group had significantly better survival outcomes. The mutation

of TTN, which can aid carcinogenesis and metastasis in melanoma,

was proven to be the most common mutation in melanoma patients.

We showed that TTNmutation might lead to a good overall outcome

for melanoma patients in the low-risk group. The mutation of TTN,
TABLE 2 Univariate and multivariate Cox regression to analysis independent prognosis factors in the TCGA-SKCM cohort.

Characteristics
Univariate Cox Multivariate Cox

HR (95% CI) P value FDR HR (95% CI) P value FDR

Age (≥ 60 vs.<60) 1.57 (1.07-2.29) 2.02E-02 2.83E-02 1.37 (0.92-2.04) 1.20E-01 2.09E-01

Gender (Male vs. Female) 0.97 (0.65-1.43) 8.64E-01 8.64E-01 1.04 (0.69-1.56) 8.55E-01 8.55E-01

Tumor stage (III/IV vs. I/II) 1.78 (1.21-2.61) 3.49E-03 8.15E-03 1.6 0(1.00-2.56) 5.09E-02 1.19E-01

Tumor T stage (T3/T4 vs. T1/T2) 2.09 (1.42-3.08) 1.94E-04 6.80E-04 1.81 (1.20-2.73) 4.81E-03 1.68E-02

Tumor M stage (M1 vs. M0) 2.06 (0.75-5.61) 1.59E-01 1.86E-01 1.74 (0.61-4.91) 2.99E-01 4.07E-01

Tumor N stage (N2/N3 vs. N0/N1) 1.76 (1.10-2.80) 1.79E-02 2.83E-02 1.32 (0.74-2.34) 3.49E-01 4.07E-01

CSIRG risk score (High vs. Low) 1.23 (1.14-1.32) 2.61E-08 1.83E-07 .25 (1.16-1.35) 2.08E-08 1.46E-07
fron
P<0.05 were shown in the bold values.
A

B C

FIGURE 5

Development and evaluation of a risk-based predictive nomogram for melanoma. (A) A nomogram for predicting melanoma prognosis that includes
the CSIRG RS and tumor T stage. (B) Receiver operating characteristic curves and the area under the receiver operating characteristic curve
evaluation of the nomogram performance of 1-, 3-, and 5-year OS. (C) Decision curve evaluation of the nomogram performance for 5-year OS.
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which should be investigated in further studies, was negatively

correlated with RS in our study.

The association of immune cell infiltration with risk score was

explored, and the modulation of immune cells by CSIRGs is relatively
Frontiers in Immunology 10
underexplored in skin melanoma. We compared the immunological

microenvironments (TMEs) of the CSIRG high- and low-risk groups

and discovered that the former was enriched with monocytes.

Although monocytes were more enriched in the high-risk group,
A

B

FIGURE 6

The difference in tumor mutation burden between the CSIRG low- and high-score groups is shown. (A, B) Gene mutation information in the high-
risk (A) and low-risk (B) categories of the TCGA dataset.
A

B

FIGURE 7

KEGG and hallmark gene set enrichment analysis for the CSIRG high-risk (A) and low-risk (B) melanoma patient groups in the TCGA cohort.
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survival was worse in the high-risk group. Previous studies proved

that there are functionally distinct subsets of monocytes in different

tumor microenvironments (30, 31). Pathologically activated

monocytes are myeloid-derived suppressor cells (MDSCs) that have

potent immunosuppressive effects (32). Important differences

between MDSCs and classical monocytes were also reported (32,

33). In addition to causing tumor vasculogenesis, MDSCs suppress T-

cell immunity and enable tumors to escape immunity (33). (PMID:

24060865). A previous study also proved that a poor prognosis was

associated with phosphorylated STAT3 expression in monocytes (34).

Aberrantly hyperactivated STAT3 monocytes promote liver

tumorigenesis in both clinical patients and in vivo animal

experiments (34). It is possible that the enriched monocytes in the

CSIRG high-risk group have the same characteristics as MDSCs,

which have potent immunosuppressive activity.

CSIRG may participate in the TME and immunological

responses. Among the five CSIRGs, STAT1 and MCL1 were

previously reported to be associated with infiltrating immune cells.

JAK1/STAT1 activation occurs in immune-exhausted cells and is

associated with increased Treg cell scores and upregulation of PDL1

(35). STAT1 in the majority of immune cell populations was more

active in the high-risk group, but survival was worse. It was also

reported that STAT1-deficient mice exhibited decreased

accumulation of Th1 cells (36). Moreover, STAT1 is a biomarker of

immune infiltration changes after anti-tuberculosis treatment (37).

STAT1 was positively correlated with monocytes and neutrophils and

negatively correlated with CD8+ T cells (37). In a study of acute lung

injury,MCL1 was found to be negatively correlated with both B cells
Frontiers in Immunology 11
and T cells (38). Further in-depth research is required to study the

relationship between CSIRG and the TME.

We further applied GSEA to detect the genet set enrichment in

the CSIRG high- and low-risk groups. KEGG pathway analysis

showed that these genes are associated with cytokine signaling in

immune pathways. Enrichment with phenotypic consistency was

also found in pathways such as glyoxylate and dicarboxylate

metabolism, oxidative phosphorylation, DNA replication,

aminoacyl tRNA biosynthesis, and pyrimidine metabolism, which

were enriched in the high-risk group, whereas antigen processing

and presentation, the Toll-like receptor signaling pathway and viral

myocarditis were enriched in the low-risk group. Above all, it is

reasonable to suggest that these CSIRGs might participate in the

occurrence and development of melanoma through these pathways.

In summary, we defined a novel CSIRG signature in melanoma.

This CSIRG signature and nomogram showed high predictive

capability for the prognosis of melanoma patients. New insights

into the prognosis of patients with melanoma may be provided by

the CSIRG signature. Melanoma therapeutic targets may be

developed through pathways related to CSIRG. Patients may

benefit from further screening of anticancer drugs sensitive to

both high and low CSIRG groups.
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FIGURE 8

Correlations between melanoma RS and tumor immune microenvironment. The proportionate differences in immune and stromal cells between the
CSIRG high- and low-risk melanoma patient groups were visualized using a violin plot by the xCell (A) and CIBERSORT (B) algorithms.
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