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The rapid expansion of electric vehicle charging networks (EVCNs) makes them
critical infrastructures bridging power and traffic systems. The EVCN could be
vulnerable during power outages at fast charging stations (FCSs), which are
induced by planned maintenance or emergency load shedding. This paper
proposes an approach to assess the impact of power outages on the Quality-
of-service of the EVCN. The Markov decision process is utilized to model the
spatial–temporal randomness of EV movement in a graph-based EVCN. The
decision of charging by EV drivers is estimated by a fuzzy logic inference
system. The spatial–temporal EV charging load at FCSs is formulated by a
queuing-based non-linear optimization problem. Yen’s algorithm is adopted to
simulate the EV redistribution phenomenon of searching adjacent healthy FCSs in
response to the power outage. Quality-of-service (QoS) indices are derived to
assess the potential congestions in the adjacent healthy FCSs. The case studies
demonstrate that power outages may cause congestion at peripheral FCSs,
exacerbating the QoS of the EVCN. Partial charging may alleviate the QoS
deterioration in the event of FCS outages.
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1 Introduction

Electric vehicles (EVs) play a critical role to reduce greenhouse gas emissions. Rapid
expansion of charging networks (CNs) accelerates the pace of EV penetration and the
interdependency between power and traffic systems (Lv et al., 2020). From the aspect of the
power system, the charging/discharging power flow stems from the EV traffic flow captured
by the CN. From the aspect of the traffic system, electricity pricing schemes could be an
essential way to manage the EV traffic flow (Huang et al., 2015), which in turn alter the EV
charging power flow. As shown in Figure 1, such interdependency forms a closed loop with
the EVCN as the nexus between power and traffic flows.

The past decade has witnessed substantial research efforts devoted to studying the
interdependency between power and traffic systems. The impact of traffic flow on power flow
comes from the stochastic charging/discharging of massive EVs through CNs. Due to the
spatial–temporal random movement of EVs, the impacts vary in both space and time
domains (Tang and Wang, 2016). Peak charging demand may impose congestion (Liu et al.,
2018) and reliability (Hou et al., 2018) issues on the power system. A recent study implies
that ultra-fast charging may cause cascade failure of the transmission system (Mao et al.,
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2019). On the other hand, the power flow affects the traffic flow
indirectly by price-based charging strategies, which economically
incent the drivers to make profits by charging EVs at low price hours
and locations (Cui et al., 2021). The power flow is then altered by the
spatial–temporal redistribution of EV as an energy carrier (Yu et al.,
2016). It can be concluded that the power-traffic interdependency
should not be ignored because the spatial-randomness of EVs
should be captured.

Although significant attention has been paid to the
interdisciplinary study on the power-traffic coupled EVCN, the
exploration of the interdependency during system failure, such as
power outages, is still in the early stage. Extreme weather may
damage both roads and transmission lines (Zhang et al., 2020). The
impacts of system failure on power–traffic interdependency are two-
fold. First, road damages may cause adverse impacts on power
systems due to the spatial–temporal movement of EV traffic flow.
Wang et al. (2022) assessed the risk of a power system in terms of
voltage drop and line overload due to traffic incident and road
capacity reduction. Voltage violation may occur as a result of road
capacity degradation attacks (Wei et al., 2016). Second, extreme
weather may induce power system failures. EVs are mobile energy
storages that provide flexible vehicle-to-grid (V2G) support during
power outages. Shin and Baldick (2017) investigated vehicle-to-
home (V2H) operation that provides backup power. Yao et al.
(2020) proposed a service restoration strategy to optimize the
routing and scheduling of mobile energy storage fleet among
different microgrids.

Substantial efforts have been contributed to V2G-based power
system resilience enhancement. However, the impacts of power
system failure on the electrified traffic system are overlooked.
Power system faults may cause traffic light outages and traffic
congestion (Wang B. et al., 2019), which may further delay the
restoration process (Wang et al., 2020). The planned power outages
implemented in 2019 to prevent wildfires in Northern California
highlighted a critical issue that the functionality of the EVCN would
be interrupted by power outages, undermining the Quality-of-
service (QoS) of EV charging (Ucer et al., 2019). EVs are
interruptible loads, which are prone to power outages, leaving
stranded in the fast charging station (FCS). The EV charging
service reliability could be a major concern for estimating the
probability of charging service completion (Cheng et al., 2014).
Furthermore, the phenomenon of EV redistribution may occur. The
depleted EVs leave the outage area and randomly detour to the
healthy FCSs. Long queues might emerge, impairing the QoS of the

healthy FCSs. Shenzhen, a city in south China, experienced EVCN
outage on 19 May 2018 due to power system load shedding. Nearly
2,700 electric taxis and 4,000 drivers could not be recharged. The
congestions at the peripheral CSs worsen the charging QoS (Wei
et al., 2019). Such autonomous spatial–temporal redistribution of
EVs may further affect the power flow, which might cause power
system overloading.

Increasing attention has been paid to the continuous operation
of the EVCN during power outages. Wang et al. (2019) evaluated the
electrical safety of EVCNs for risk management and control
mechanisms considering power outages. Wu et al. (2021)
analyzed the response characteristics of EVs during the power
system outage. The optimal size of the energy storage system in a
fast charging station is determined to ensure the charging resilience
of EVs (Hussain et al., 2020). Price-based regulation (Sheng et al.,
2019) prevents the regional overloading caused by EV
redistribution. Vulnerability analysis should be traced to identify
the key power system component (Liu et al., 2022) for cascade failure
prevention (Wu et al., 2022).

EV drivers may not accept the risks of driving and finding
stations out of service, if FCSs are unreliable and susceptible to
power outages. Load redistribution may create congestion effects,
resulting in wait times and reduced QoS at popular FCSs. Recent
literatures focus on the price-based QoS guarantee. Sun et al. (2018)
developed an optimal charging policy to minimize the charging cost
with the service loss probability as the QoS of a battery swapping
station. An evaluation method is proposed in Zenginis et al. (2018)
by incentivizing EVs to reduce charging and wait time during peak
periods. Network calculus theory is used to formulate the QoS as the
minimum departure energy curve (Li et al., 2020). The QoS impact
analysis under FCS outage is in the nascent stage.

To summarize, the interdependency between traffic flow and
power flow manifests itself in both normal and failure states. The
stochastic modeling process of EV charging load redistribution is
significant to the key FCS identification and service restoration.
However, the spatial–temporal randomness of EV redistribution
is considered deterministic in previous studies. This assumption
decouples the correlation between the stochastic FCS selection
and routing. In addition, previous works focused on power
system resilience, while neglecting the pivotal role of the
EVCN for charging service guarantee. In this paper, we
endeavored to connect the nexus between power outage and
its impacts on the QoS of EV charging. A QoS assessment
framework of the EVCN outage is proposed, considering the
spatial–temporal randomness of EV load redistribution. The
major contributions of this study are as follows.

1) We model the stochastic process of EV load redistribution in
both spatial and temporal domains. The Markov decision
process and fuzzy-logic inference are utilized to model the
probabilistic behavior of EV charging. Yen’s algorithm is
deployed to model the EV redistribution of choosing among
multiple healthy FCSs.

2) Spatial–temporal QoS assessing methods are proposed to reveal
the nexus between FCS outages and the QoS of EV charging by
capturing the traffic congestions of FCSs. The aftermath impacts
of EV load redistribution on the power system is investigated
as well.

FIGURE 1
Interdependency between power and traffic flows.
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3) Partial charging is proposed as a possible mitigation strategy,
which could be helpful for utilities taking proactive and reactive
countermeasures for charging service guarantee during FCS
power outages.

The rest of this paper is organized as follows. Section 2
introduces the system architecture of the proposed method. The
spatial–temporal modeling of random EV movements is given in
Section 3. The phenomenon of EV load redistribution is modeled in
Section 3. The spatial–temporal QoS assessment and case studies
are, respectively, proposed in Sections 4, 5. Finally, Section 6
concludes the proposed method.

2 System architecture

This section presents the framework of the QoS-oriented impact
assessment of the EVCN, considering the power outages of FCSs. In
this paper, we establish an EVCN coupled with power systems in a
metropolitan area. The city is divided into several regions based on
the geographic locations of power system substations. The regions
are classified into residential (H), industrial (I), and commercial (C)
areas based on the local load types. FCSs are installed at each region
and electrically connected to the substations. Bi-directional streets
geographically link the regions and FCSs, forming an EVCN. EVs
are moving and charging among different regions and FCSs in the
EVCN. As shown in Figure 2, the system architecture consists of
three modules: EV movement modeling, EV load redistribution
modeling, and QoS assessment.

In an EVCN, EVs move among different FCSs in different
regions, with randomness in both space and time. The
spatial–temporal modeling of the stochastic EV movement is the
primary task for QoS assessment of the EVCN.Wemodel the EVCN
by a graph connecting the FCSs. The EVmovements are modeled by
daily trips in both space and time domains.

The second module focuses on EV load redistribution during
FCS outages. The randomness of load redistribution is based on the
charging decision and FCS selection. The charging probability is
derived based on the battery SOC to determine the random en route
charging. EVs could be charged at any en route FCSs during the
trip. When the FCS outage occurs, EVs are forced to make a detour

and seek a healthy FCS, which is randomly simulated by the FCS
selection algorithm.

The last module assesses the QoS impact of an FCS outage from
the perspectives of both the EVCN and power system. Several
indices are proposed to assess the underlying traffic congestion in
the FCSs due to EV load redistribution. The impact on the power
system is analyzed by considering the potential overloading caused
by EV load redistribution.

3 Stochastic modeling of daily EV
movement

The modeling of the EV movement is essential to capture the
spatial–temporal randomness. The daily EV movement can be
regarded as a chain of trips made among different regions. The
daily EV movement is a spatial–temporal stochastic process. When
an EV moves, the battery state-of-charge (SOC) decreases with the
increase in driving distance. The EV driver may charge the battery at
the FCS in any region and at any time for different durations based
on the SOC level, traveling schedule, and preference charging
stations, which means the EV charging load is moving during
24 h in the coupled EVCN–power system. This section intends to
model the daily chain of locations/regions in terms of spatial
randomness and the corresponding charging durations in terms
of temporal randomness.

3.1 EV charging network modeling

EVCN modeling is the first-cut for the stochastic modeling of
EV movement, by which the trip distance plays a significant role.
First, the trip distance bridges the spatial and temporal movements
because it determines not only the origin-destination regions but
also the trip duration and arrival time. The integrated modeling of
the EVCN and power systems is significant for simulating EV
driving and charging with spatial and temporal randomness.
Graph theory (Murty and Bondy, 2008) is adopted in this study
for EVCN modeling by considering the trip distance.

A graph is composed of sets of vertices V(G) and edges E(G).
Graph theory has been widely used to describe the relationships
between entities, by which the vertices represent the entity and the
edges represent the relationship between the two entities. A graph
structure can effectively model and solve various practical problems,
such as social relations, traffic network, grammar structure, and
paper citation, where inter-entity relationships are considered. The
graph can be expressed as

G � V G( ),E G( ),ψG( ), (1)
where V(G) = {v1, . . ., vM}, E(G) = {e1, . . ., eN}, with M and N being
the number of vertices and edges, respectively. ψG is the incidence
function, which represents the mapping from the edge set to vertex
pair.

ψG: E G( ) → x, y{ }∣∣∣∣x, y ∈ V G( ){ }. (2)

The sequence of x and y indicates the edge direction, e.g., {x, y}
indicates the direction of the edge is from the vertex x to y. In a

FIGURE 2
System architecture.
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directed graph, a set of vertices can model the city regions and the
FCS clusters in the regions, while the vertices can represent the
power system buses. A set of directed edges can model the two-way
streets and the traffic flow direction between the FCS clusters
between regions. A two-dimensional Cartesian coordinate system
is established to link the regional FCS clusters in the EVCN and the
substations in the power system. Euclidean distance is used to
calculate the distances between the neighboring regions. By
assigning the distances to each edge of the graph, the coupled
EVCN and power system can be modeled as a weighted graph.

A walk in a graph G is a finite sequence of alternate vertices and
edges, given by

W � v0, e1, v1, e2, v2 . . . vk−1, ek, vk{ }, (3)
where the endpoints of ek are vk-1 and vk. If the vertices of the walk
are distinct, then the W is called a path in the graph. A path can be
used to model a trip of the EV driver, which consists of the origin,
destination, and the regions/streets traversed. The trip distance can
be modeled by the weight of a path, which is the sum of its edge
weights. The Dijkstra algorithm is an acknowledged approach for
finding the shortest path, which is deployed in this paper for
deriving the trip path. For a given region of the city as the trip
source, the algorithm produces the distance of the shortest weighted
path from the source region to each other region. By applying graph
theory, the spatial–temporal randomness can be captured by
modeling the trip distance.

3.2 Stochastic modeling of a trip chain

In traffic planning, trip chain has been widely applied for
analyzing the travel characteristics. In this paper, trip chain is
adopted to model the spatial randomness of EV movement in a
coupled EVCN–power system. Trip chaining is a time-ordered
sequence of trips in the form of the spatial changes of regions.
The trip chain may comprise three trip segments, i.e., HI–IC–CH.
Figure 3 illustrates a typical daily trip chain of going to work (I) from
home (R) in the morning and returning home (H) with a stopover
for shopping (C).

In this paper, we generate the daily trip chain of each EV driver
by two steps. First, we randomly generate the daily number of trips.
According to the National Household Travel Survey (NHTS) (Zhou
andWang, 2014), two and three trips per day account for most of the
total daily trip number. We assume the number of daily trips is two

or three, with the probability of p(Ntr).Ntr is the total number of trips
in a trip chain.

Second, the daily trip chain is generated. By enumeration, we can
generate the combinations of different daily trip chains, which
reflect the daily travel pattern of EVs. The probability of each
type of trip chain can be calculated by the conditional probability
p(C|Ntr), which represents the probability of a specific trip chain C
on the condition of Ntr number of trips. The joint probability of the
trip chain C with Ntr trips can be calculated and expressed as

p C∩Ntr( ) � p Ntr( ) · p C|Ntr( ) . (4)
By utilizing the trip chain, each trip can be recorded with the key

information such as source, destination, the departure and arrival
times, trip duration, the initial SOC, and energy consumptions.

3.3 Stochastic modeling of trip destination

To derive the specific region as the destination for the next trip,
we adopt the Markov decision process (MDP) to mimic the EV
driver’s decision on choosing the next destination (Sheskin, 2016).
The MDP is a mathematical description of sequential decision
problem. The general framework of the MDP is defined by a
five-tuple {T, J, A, P, and R}. Set T denotes the set of epochs in
a planning horizon. AnMDP produces a sequence of Markov chains
with a set of states J and the associated rewards R. The states and
rewards evolve over time for each epoch in a planning horizon. SetA
denotes the decision set. At the beginning of every epoch, a decision
is made by selecting one of several actions with rewards in every
state. The state is then transited by following the transition
probabilities P. A policy in an MDP is a rule that prescribes a set
of ordering decisions for all states. The objective of an MDP is to
determine an optimal policy that maximizes the vector of expected
total rewards received until the end of the horizon.

The stochastic process of determining the daily chain of
destinations can be modeled by an MDP. Figure 4 shows the
MDP for modeling the trip chain. The daily trip chain of Ntr

trips can be modeled by Ntr+1 epochs. Epoch n represents the
end of trip n and the beginning of trip n+1. At each epoch, the EV
can be in one of the regions in the city. The set of state J denotes the
total L regions in an EVCN. The EV is in region J at the end of trip n,
which can be expressed as Jn. The decision set A includes all the

FIGURE 3
Typical trip chain.

FIGURE 4
Markov decision process-based trip chain modeling.
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possible destinations based on the region type generated by the trip
chain. At every epoch, the EV decides the next trip destination. LetA
denote the decision set, which encompasses all the possible trip
destinations according to the random trip chain. A daily trip chain
will generate a set of ordered decisions from epoch 1 to Ntr-1, which
can be modeled by the Markovian policy π, expressed by π = {πi(n),
n = 0, 1, . . ., Ntr-1, i∈J, n∈T}, where πi(n) = a: J→A, a∈A. A
transitional probability will be received when a decision is made at
an epoch. Let P denote the set of transitional probability. The
transitional probability from state i to state j is expressed as

paij n( ) � p Jn+1 � j
∣∣∣∣Jn � i ⋂ πi n( ) � a( ) . (5)

According to the Markov property, it is assumed that the
transitional probability of driving from region i to j depends only
on the region where the EV is currently parked.

At epoch n and in state i, the EV driver receives a reward qai (n)
after he/she makes the decision a. The reward in the MDP can be
regarded as the economic value received by the EV driver. Trip
distance and regular places can be dominant in the destination
decision-making. The shortest trip distance and the favorite places
may gain higher reward. Three regular places (RPs) are assigned to
each EV driver to represent home, workplace, and favorite shop. The
reward function is expressed as

qai n( ) � ε1 · 1
da
i n( ) + ε2 · RPa

i n( ) . (6)

The coefficients ε1 and ε2 (ε1+ε1=1) can be set to the value from
0 to 1, which is the influence of the driving distance d and RP on the
reward. Given a policy π, a trip chain with the expected total reward
received from initial region i is

Qπ
i � E ∑Ntr−1

n�0 qaJn n( )
∣∣∣∣∣ J0 � i[ ]. (7)

Backward recursion is utilized to calculate the expected total
reward received at epoch n, which is

Qπ
i n( ) � qai n( ) +∑L

j�1p
a
ij n( )Qπ

j n + 1( ). (8)

The probability of an EV driver choosing the policy π is

pπ � Qπ
i∑π∈Π Qπ

i

. (9)

Finally, the policy is randomly generated in the form of a chain
of destinations. The shortest paths with all the regions traversed in
the trip chain can be generated and the trip distances. Given the
speed, the driving time can be calculated. The parking duration tp
can be obtained by normal distribution tp ~ N (µp, σp

2), and µp and σp
are the mean and the standard deviation, respectively. The
parameters can be generated by data, considering the parking
location and time.

4 Spatial–temporalmodeling of EV load
redistribution during outages

The spatial–temporal modeling of EV load redistribution is the
key for QoS assessment of the EVCN. When power outage occurs,
the depleted EVs may reroute to other healthy FCSs for charging.

Due to the driving distance of detour, higher energy consumption
may cause increased charging demand at the destination FCS.
Charging queues could be formed at the destination FCSs to
accommodate the overwhelming charging demands from other
offline FCSs. The EV drivers may randomly choose any FCS,
which means the arrival SOC and the charging demand are
random. This section models the stochastic processes of EV
redistribution, including FCS selection, detour, and charging.

4.1 Spatial–temporal modeling of EV load
redistribution

EV load redistribution is the phenomenon of the reroute of depleted
EVs to the healthy FCS during the regional FCS outage. The stochastic
process of FCS selection and detour should be comprehensively
modeled by considering the residual SOC, the destination, and the
possible paths for the detour route. The residual SOC not only
determines whether the EV goes for charging at an FCS but also

TABLE 1 Pseudocode of Yen’s algorithm for k shortest paths (Zhang et al.,
2019).

Algorithm: Finding k shortest path

Function Yen’s Algorithm (graph, origin, destination, and k):

W(1) Dijkstra (Graph, origin, and destination);

B is an empty set for(1) every i (1 < i < K) do

for(2) every q in W(i-1) without destination do

SpurNode = q;

RootPath = W(i-1) from the origin to SpurNode; for(3) each path p in W do

if rootPath = = link p.(origin, q) do

remove p.(SpurNode, SpurNode +1) from the Graph;

end if

end for(3)

for(4) each RootPathNode in RootPath except SpurNode:

remove rootPathNode from the Graph;

end for(4)

spurPath = Dijkstra (graph, origin, and destination);

totalPath = RootPath + SpurPath;

if (totalPath not in B):

save totalPath in B

restore edges to Graph;

restore nodes in RootPath to Graph;

end for(2)

if B is empty

break

end if

W(k) = the shortest path of B end for(1)

Frontiers in Energy Research frontiersin.org05

Tang et al. 10.3389/fenrg.2023.1112169

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1112169


affects the selection of alternative healthy FCSs. The EV may be driven
to the nearest healthy FCS if the residual SOC is low. On the other hand,
en route charging on the way to the next destination is preferred. Given
the origin and destination, there could be multiple paths for route
selection. Generally, the shortest path is the first choice. However, the
FCSs traversed within the path could be non-accessible due to the low
residual SOC, power outage, or long queue by the overwhelming
charging demand. If the EV cannot find the alternative FCS when
all the FCSs of the shortest path have been traversed, the FCSs within
the other paths to the destination could be the alternative. It is similar to
mobile navigation applications that provide multiple paths to the
destination. Therefore, multiple paths should be provided for the
route and FCS selection to guarantee en route charging.

The finding of multiple paths can be formulated as a k shortest
path problem, which is the extension of the shortest path problem.
Yen’s algorithm provides an approach to find k shortest paths from
one origin to a destination in a network.

Yen’s algorithm is a recursion method that adopts the idea of
deviation path. It is suitable for directed acyclic graphs with non-
negative edge weight, such as the EVCN. The pseudocode of Yen’s
algorithm (Zhang et al., 2019) is shown in Table 1. The algorithm
can be divided into two parts. First, the shortest path W(1) is
obtained using the Dijkstra algorithm, and then other k-1
shortest paths W(2), . . ., W(i), . . ., W(k), i = 2, . . ., and k are
calculated successively. When calculating W(i+1), all nodes on W(i)
except the destination node are regarded as spur nodes q. The
shortest path from each spur node to the destination node is
calculated. The candidate path is formed by splicing the path
from the origin node to the spur node on the previous W(i), and
the shortest deviation path is obtained. The output of Yen’s
algorithm is the k shortest paths from the origin to the
destination. The lengths of these paths are incremental.

Figure 5 shows the flowchart of the procedure for the selection of
the FCS and route. When a charging decision is made, the EV driver

should judge the functionality of the desired FCS. Yen’s algorithm is
conducted for calculating the k shortest paths to the destination of
the next trip. The functionality of the nearest FCS for en route
charging and the residual SOC is checked to guarantee the
accessibility of the FCS. If the FCS is not accessible, the second
nearest en route FCS could be the alternative. If all the FCSs of the
shortest path are not accessible, the second shortest path is selected.
This procedure is repeated until the en route FCS is found. The EV
will proceed to the nearest FCS if all the FCSs within the k paths are
not accessible.

4.2 Spatial–temporal modeling of the arrival
rate at FCSs

Another key factor for EV redistribution modeling is the
derivation of the FCS charging load. The stochastic FCS selection
and detour randomly affect the spatial and temporal characteristics
of the arrival and service rates of FCSs.

EVs arrive at FCSs in a random manner. The arrival rate is
defined as the mean number of arriving EVs per unit time for
charging in a regional FCS cluster. In an EVCN, the arrival rates of
the FCS in different regions depend on the EV driver’s decisions of
whether charging the EV at the region. The advantages of an FIS
(fuzzy-logic inference system) lie in its simplicity and generality. The
Mamdani-type FIS is applied to determine the charging probability.
The concept of the FIS is close to human thinking because it uses
fuzzy terms rather than crisp values. Different cases of each input’s
fuzzy sets are evaluated according to if–then rules and membership
functions. Due to its generalization, the FIS has been widely applied
to emulate the decision-making process.

It is assumed that the residual battery SOC and the arrival SOC
at the destination are the key factors influencing the charging
decision. The crisp value of the residual and the arrival SOC is
resolved into linguistic fuzzy sets described as low (L), medium (M),
and high (H). The probability of charging (PC) is fuzzified as low
(L), medium low (ML), medium (M), medium high (MH), and high
(H). The fuzzy rule is shown in Table 2 with an “AND” operator.
Generalized bell-shaped membership function is utilized to quantify
the fuzzified residual SOC, arrival SOC, and charging probability.
The center of gravity method is deployed in defuzzification.

Figure 6 shows the flowchart for deducing the charging decision
of an EV driver. The deduction of charging decision is iterated from
the first trip to the last trip. The residual and arrival SOC is
calculated as the inputs for obtaining the PC by the FIS. If a

FIGURE 5
Flowchart of the procedure for the selection of FCSs and routes.

TABLE 2 Fuzzy rule for charging probability.

Residual SOC Arrival SOC Probability of charging

L L H

M L MH

M M M

H L M

H M ML

H H L
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charging decision is made, the EV may consider whether the FCS is
offline due to power outage and proceeds to the procedure shown in
Figure 5.

In order to estimate the expected arrival rate of each region,
Monte Carlo simulation (MCS) is employed to randomly obtain the
arrival time t of multiple EVs at the sth FCS. The arrival pattern at a
regional FCS cluster is simulated inNd −1 days because the battery is
assumed to be full before the first trip of the first simulation day.
When Nd is sufficiently large, the probability of the single EV e’s
arrival at the FCSs in region s and time t is

pes,t �
1

Nd − 1
∑Nd−1

i�1 f is,t , (10)

where fi
s,t is a binary variable that equals 1 if the EV is charging in

the region s during time interval t in day i. The arrival rate of the
FCSs at region s at time t can be estimated by the central limit
theorem and the technique in Tang and Wang (2016).

λs,t � ∑Ne

Ns,t�0Ns,t · p Ns,t( ) , (11)

where λs,t is the arrival rate of the FCS of region s at time t; Ne is the
total number of EVs; p(Ns,t) is the probability ofNs,t EVs charging
at the same time. A large arrival rate may cause unacceptable long
queue, deteriorating the Quality of service (QoS) of the EVCN.

4.3 Spatial–temporal modeling of the
service rate at FCSs

Service rate is defined as the mean number of EVs that can be
served by each charger per unit time in the region. A high service
rate indicates the short charging duration and results in the low
probability of congestion at the FCS. In order to determine the

service rate of a regional FCS cluster, the arrival time, arrival SOC,
and charging duration should be calculated.

The arrival time at the FCS can be calculated by the sum of
departure time and driving time. We assume dumb charging
because EVs charge immediately after arrival and stop charging
until the battery is full. It is to be noted that partial charging is
considered in this study to simulate the desired SOC, which may not
be 100%. Let t1, t2, and tc denote the departure time, arrival time, and
charging duration, respectively. Let u, d, and b be the specific energy
consumption in kWh/km, trip distance in kilometer, and battery
capacity in kWh, respectively. The arrival SOC is calculated by

SOC t2( ) � SOC t1( ) − u · d
b

× 100, SOC t2( )> 0 . (12)

The depleted EV is recharged to the desired SOC level in the
FCS. The charging duration can be calculated by

tc � 1 − SOC t2( )( ) · α
η · r , (13)

where η and r are the charging efficiency of a DC fast charger and the
fast charging rate in kW. It is noted that partial charging is modeled
by parameter α, which indicates the percentage of the SOC charged.
TheMCS randomly generates the charging durations ofNd-1 days at
FCS s and during time t. The mean of charging duration at regional
FCS s during time interval t can be estimated by

ts,tc � ∑Ne

e�0∑Nd−1
i�1 ts,tc e, i( )

∑Ne

e�0∑Nd−1
i�1 f s,t e, i( )

. (14)

ts,tc (e,i) is the charging duration of EV e at region s during
interval t at day i. fs,t(e,i) is the binary variable that is equal to 1 if EV
e is charging in the region s and during time interval t in day i. The
service rate at region s during time interval t can be estimated by

μs,t �
1

ts,tc
. (15)

4.4 Spatial–temporal estimation of EV
charging load at FCSs

EV load redistribution may cause traffic congestion at FCSs,
where the unacceptable long queues could be generated. For the
continuous charging service provision, the number of fast chargers
in the regions of an EVCN should be planned to satisfy the EV
charging demand. The probability of queuing is defined as the index
to measure the QoS of a regional FCS. The EV charging process can
be formulated using the M/M/c queuing system, a multi-server
Markov system based on first-come, first-served (FCFS). The service
facility consists of c identical DC fast chargers, where the inter-
arrival time and customer service time are assumed to follow an
exponential distribution. To minimize the investment costs and
ensure an acceptable QoS level, the number of chargers should be
minimized, while limiting the probability of queuing to acceptable
levels. The capacity planning of a regional FCS can be formulated as
a non-linear integer programming (NLIP) problem (Yao et al.,
2014).

FIGURE 6
Flowchart of charging decision.
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objective: min cs , (16)
subject to: pb,s < �p . (17)

The objective function is to minimize the number of chargers
at region s (cs), which subjects to the probability of queuing being
within an acceptable value �p. In the queuing theory, the blocking
probability can be utilized to model the queuing probability,
which refers to the probability that an arriving customer finds all
servers busy and is forced to wait in the queue. This situation
occurs when there are more than c customers in the system. The
queuing probability in the FCS is calculated by

pb,s �
p0,s csUs

max( )cs
cs! 1 − Us

max( ), (18)

p0,s � ∑cs−1
n�0

csUs
max( )n

n!
+ csUs

max( )cs
cs! 1 − Us

max( )⎡⎣ ⎤⎦−1 , (19)

Us
max � max

λs,t
μs,t

( ) , (20)

where n is the number of charging EVs. Us
max represents the

maximum utilization factor at region s during 1 day, which
usually happens in rush hours. After obtaining the number of
chargers, the EV charging power of each region in the EVCN
can be calculated by

Ps,t � Us,t · cs · η · r . (21)
The redistribution of power flow originates from the

redistribution of traffic flow and the charging demand. The local
distribution system has to accommodate both the local and EVs
from other systems, which may cause power system overloading
such as voltage drop. Therefore, we proposed the index “nodal
voltage deviation (NVD)” to evaluate the voltage drop caused by the
redistribution of power flow.

5 Spatial–temporal QoS assessment of
the EVCN

EV load redistribution alters the spatial–temporal
distribution of the traffic flow and power flow of the coupled
EVCN and power system. The impact of the redistribution of
traffic flow and power flow should be considered in the QoS
assessment. This section proposes the QoS indices that assess the
spatial–temporal variation of congestions in both the EVCN and
power system.

5.1 Spatial–temporal QoS indices

The redistribution of traffic flow stems from the power outage
of the FCS. Generally, the number of chargers of an FCS is
designed for capturing the local EV traffic flows. We use traffic
intensity (TI) to obtain the minimum number of chargers
required. In other words, to absorb the local traffic flow, we
need TI chargers at least.

However, when power outage happens, the FCSs have to
accommodate the traffic flow from other FCSs. The redistributed

EV charging demands could be overwhelming for the FCS. The
healthy FCSs may experience traffic congestion due to the extra
charging demand from the offline FCS. Therefore, utilization
factor is used to assess how busy the FCS is during the power
outage.

1) Traffic intensity

Queuing theory provides an analytical method to evaluate the
level of congestion in the FCSs. In queuing theory, TI is commonly
used in traffic engineering, which is a measure of the total arrival
traffic presented to a regional FCS cluster. A TI value greater than
1 indicates that EVs arrive faster than they are served. The physical
meaning of the TI is the minimum number of chargers required to
achieve a stable system. The TI of the sth regional FCSs at time t is
defined by the average arrival rate divided by the service rate.

TIts � λts/μts . (22)

2) Utilization factor

The stable operation of the FCS could be assessed by queuing
theory. Queuing theory provides a theoretical insight into the
dynamics of the shared resources for better utilization and
Quality-of-service. Utilization factor is an important measure
for how busy the FCS are, which is defined as the fraction of time
a charger is engaged in providing service. In a time interval (t, t +
T), if there are N EVs in an FCS with c chargers, each charger will
serve (λT)/c EVs. Given the service rate, the utilization factor of
the sth regional FCSs at time t is defined by

Ut
s �

λtsT/c( ) × 1/μts( )
T

� λts
cμts

. (23)

The higher the utilization level, the longer the wait time is. As
the utilization factor approaches unity (U = 1), the queue
continues to grow without limit, and the system becomes
unstable. The value of the utilization factor should be less
than unity to satisfy the charging demand. The queuing
system will not be stable if the utilization factor is greater
than 1, which indicates potential congestion.

3) Nodal voltage deviation

The impact of EV load redistribution on the power system is
analyzed by performing a power flow. The safety limit of the power
system can be measured by the occurrence of overloading. We
propose nodal voltage deviation (NVD) for the assessment of voltage
drop. The NVD is designed to represent the voltage drop at node i
and time t due to EV charging as

NVDt
i �

Vt
i

∣∣∣∣ ∣∣∣∣ − Vi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Vi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

, (24)

where Vi is the minimum voltage magnitude of node i, which is
1 p.u. In general, the voltage should be limited in the range between
0.97 and 1.03 p.u. So, the accepted NVD range is 0–0.03 with 1 p.u.
as the minimum voltage magnitude.
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5.2 Procedure of spatial–temporal QoS
assessment of the EVCN considering power
outage

The procedure of the modeling technique assesses the
spatial–temporal QoS of the EVCN during power outage. The
following steps are implemented:

1) Establish the coupled EVCN and power system. Determine the
location and time of the power outage;

2) Randomly generate the daily trip chain, including the driving,
parking, and charging patterns of Ne EVs in Nd-1 days by
using MCS;

3) Randomly generate the detour and FCS selection for EV
redistribution under power outage;

4) Calculate the arrival rate, service rate, and the charging load at
region s and time t;

5) Calculate QoS indices for spatial–temporal impact assessment.

6 Results and discussions

As shown in Figure 7, a coupled EVCN and power system is
proposed based on themodified Roy Billinton test power system (RBTS)
with a 20-MW peak base load at node 1. Six regions and nodes in the
RBTS are proposed to represent the types of customers in different
geographic areas such as residential (R), industrial (I), and commercial
(C). The transmission lines and streets are represented by solid and dash
lines, respectively. The free-flow velocity is assumed to be 28.5 km/h. The
free-flow density of the streets is 34 veh/km/lane. A 30-min time
resolution with 48 discrete time segments is simulated in a day.

According to the data of the RBTS system and NHTS,
35000 EVs are simulated in 100 days. The EV battery capacity is
16 kWh, and the charging power is 36 kW with 90% charging
efficiency provided by the SAE J1772 standard. The specific
energy consumption is 16.78 kWh/100 km due to EPA rated city
fuel economy.

6.1 The minimum number of chargers
required

The traffic intensity reflects the minimum number of chargers
required to meet the charging demands. Due to the spatial–temporal
movement of EVs, the TI varies at different regions and times. The
TI reaches its maximum value during rush hours. To prevent the
traffic congestion at FCSs during rush hours, minimum number of
chargers required for each region is designed to keep the queuing
probability below 0.2. Figure 8 shows the number of DC fast
chargers at different regions. It is observed that region 4 requires
the highest number of chargers, where more households are located.
The number of chargers is not proportional to the power demand of
base load. The spatial–temporal movement of EVs among different
types of regions is important for estimating the number of required
chargers.

6.2 Spatial–temporal distribution of FCS
loads in normal operation

Figure 9 shows the expected EV loads in different buses/
regions. High morning peaks of EV loads can be found in the
residential areas of buses 1, 4, and 6. The reason is the SOC was
depleted for the driving in the previous day. The EVs need to get
recharged to carry out the daily trips. The highest peak is
observed in bus 4 where most households are located. High
peaks at the industrial areas can be found in the evening rush
hour for the trips made from workplaces to home or commercial

FIGURE 7
Proposal of a coupled EVCN and power system.

FIGURE 8
Minimum number of chargers required.
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areas. Morning and evening peaks of EV loads at bus 5 are
observed due to commuting trips. It can be summarized that the
nodal EV loads vary in different regions and times. Different
region types show distinct patterns of EV load distributions,
which is strongly related to the spatial–temporal movement
of EVs.

6.3 Spatial–temporal distribution of FCS loads
considering power outage

Figure 10 illustrates the spatial–temporal distribution of the
regional EV load by imposing a power outage at node 3 from 16:
30 to 24:00. Due to the EV load redistribution, the EV loads are
moving from the industrial area at bus 3 to the residential area at bus
1 and 4 and the commercial area at bus 5. The EV loads of bus
1 increased from 0.21 to 1.2 MW, while an increment from 0.22 to

1.96 MW can be found at bus 4. The highest load increment from
6.2 to 9.2 MW is observed at bus 5. The reason is the depleted EVs
detour to buses 1, 4, and 5 for en route charging. This phenomenon
reveals that the power outage may significantly change the
spatial–temporal EV load redistribution, which affects the service
provision of healthy FCSs.

6.4 Impact of power outage on the EVCN and
power system

EV load redistributionmay affect both the QoS of the EVCN and
the nodal voltage level of the power system. As shown in Figure 11,
the utilization factor of bus 5 becomes greater than 1 after the power
outage. Potential traffic congestion and queues can be formed at the
FCSs in bus 5, which may not be able to accommodate the
overwhelming EV charging demand from the FCSs in bus 3.

FIGURE 9
Expected EV loads in different buses.

FIGURE 10
Spatial–temporal distribution of FCS loads considering power
outage.

FIGURE 11
Impact of power outage on the EVCN.

FIGURE 12
Impact of power outage on the power system.
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Figure 12 compares the NVD of bus 6 in normal operation
and during power outage. It is observed that EV load
redistribution worsens the voltage drop at the bus with the
remotest electrical distance such as bus 6. Both the EVCN and
power system operators should pay more attention on EV load
redistribution caused by power outage proactively and
preventatively.

6.5 Penitential impact alleviation by partial
charging

Partial charging could alleviate the impacts of an FCS power
outage on the operations of the EVCN. In the simulation, we set the
partial charging percentage to 50%, which indicates that the EV
drivers will charge half of the energy required when he/she detours
to the healthy FCS. As shown in Figure 13, it is evident that the surge
of charging demand occurs at bus 5. However, the utilization factor
is less than unity for the whole day by the adoption of partial
charging during FCS outage.

7 Conclusion

This paper proposes an approach for the QoS assessment and
alleviation of EV load redistribution caused by power outage in a
coupled EVCN and power system. We modeled the daily trip
chain by the MDP and MCS. Yen’s algorithm is adopted to
simulate the multiple FCS and detour selections for en route
charging at healthy FCSs. The FIS is utilized to model the
decision-making process of charging. The spatial–temporal
variation of EV load redistribution is evaluated by QoS

indices for traffic congestion assessment. EV load
redistribution may jeopardize the operation of coupled EVCN
and power systems in the form of FCS traffic congestion and
voltage drop. This could be the major concern for EVCN and
power system operators during power outage. Proactive and
preventative countermeasures such as partial charging should be
implemented for impact alleviation of load redistribution. In the
future work, the relationship among extreme weather, power
system load shedding, and EV load redistribution should be
investigated to identify the vulnerable components in the
coupled EVCN and power system.
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Nomenclature

G Graph

V Set of vertices

E Set of edges

ψG Incidence function

W Walk/path in a graph

T Set of epochs

J Set of states

A Set of actions

P Set of transition probabilities

R Set of rewards

p(C∩Ntr) Joint probability of the trip chain C with Ntr trips

pa
ij(n) Transition probability from state i to state j in epoch n

qai (n) Reward at state i to state j in epoch n

Qπ
i (n) Expected total reward in epoch n by policy π

pe
s,t Probability of the EV e’s arrival at the FCSs in region s and time t

λs,t Arrival rate of the FCS of region s at time t

t1 Departure time

t2 Arrival time

tc Charging duration

ts,tc Mean of charging duration at regional FCS s during time
interval t

μs,t Service rate of the FCS of region s at time t

cs Number of chargers at region s

pb,s Probability of finding cs EVs are charging in region s

p0,s Probability of finding no EV is charging in region s

Us
max Maximum utilization factor at region s during 1 day

Ps,t EV charging power of region s at time t

TIts Traffic intensity of region s at time t

NVDt
i Nodal voltage deviation at node i and time t

Vt
i Voltage at node i and time t

u Specific energy consumption in kWh/km

d Trip distance in kilometer

b Battery capacity in kWh

α Percentage of the SOC charged

η Charging efficiency

r Fast charging rate in kW

Frontiers in Energy Research frontiersin.org13

Tang et al. 10.3389/fenrg.2023.1112169

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1112169

	Spatial–temporal QoS assessment of the EV charging network considering power outages
	1 Introduction
	2 System architecture
	3 Stochastic modeling of daily EV movement
	3.1 EV charging network modeling
	3.2 Stochastic modeling of a trip chain
	3.3 Stochastic modeling of trip destination

	4 Spatial–temporal modeling of EV load redistribution during outages
	4.1 Spatial–temporal modeling of EV load redistribution
	4.2 Spatial–temporal modeling of the arrival rate at FCSs
	4.3 Spatial–temporal modeling of the service rate at FCSs
	4.4 Spatial–temporal estimation of EV charging load at FCSs

	5 Spatial–temporal QoS assessment of the EVCN
	5.1 Spatial–temporal QoS indices
	5.2 Procedure of spatial–temporal QoS assessment of the EVCN considering power outage

	6 Results and discussions
	6.1 The minimum number of chargers required
	6.2 Spatial–temporal distribution of FCS loads in normal operation
	6.3 Spatial–temporal distribution of FCS loads considering power outage
	6.4 Impact of power outage on the EVCN and power system
	6.5 Penitential impact alleviation by partial charging


	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Nomenclature


