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Precision diagnostics in chronic
lymphocytic leukemia: Past,
present and future
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Genetic diagnostics of hematological malignancies has evolved dramatically

over the years, from chromosomal banding analysis to next-generation

sequencing, with a corresponding increased capacity to detect clinically

relevant prognostic and predictive biomarkers. In diagnostics of patients with

chronic lymphocytic leukemia (CLL), we currently apply fluorescence in situ

hybridization (FISH)-based analysis to detect recurrent chromosomal aberrations

(del(11q), del(13q), del(17p) and trisomy 12) as well as targeted sequencing (IGHV

and TP53 mutational status) for risk-stratifying purposes. These analyses are

performed before start of any line of treatment and assist in clinical decision-

making including selection of targeted therapy (BTK and BCL2 inhibitors). Here,

we present the current view on the genomic landscape of CLL, including an

update on recent advances with potential for clinical translation. We discuss

different state-of-the-art technologies that are applied to enable precision

diagnostics in CLL and highlight important genomic markers with current

prognostic and/or predictive impact as well as those of prospective clinical

relevance. In the coming years, it will be important to develop more

comprehensive genomic analyses that can capture all types of relevant genetic

aberrations, but also to develop highly sensitive assays to detect minor mutations

that affect therapy response or confer resistance to targeted therapies. Finally, we

will bring up the potential of new technologies and multi-omics analysis to

further subclassify the disease and facilitate implementation of precision

medicine approaches in this still incurable disease.

KEYWORDS

chronic lymphocitic leukemia, next-generation sequencing, genomic aberrations,
precision diagnostics, precision medicine
1 Introduction

The implementation of precision medicine in clinical practice requires a paradigm shift

in how health and disease are perceived, from targeting large disease categories, often

covering an aggregate of molecular phenotypes that broadly resemble each other in clinical

presentation and symptomology, to molecular medicine where the focus is instead placed
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on selecting targeted therapy for specific molecular alterations

based on the patient’s unique molecular features (1). For such

specific molecular targeting to be possible, highly sensitive

diagnostic methods characterizing the molecular phenotype of the

patient is necessary. One such method that has made great advances

from bench-to-bedside during the last decade is next-generation

sequencing (NGS) or massive parallel sequencing as the technology

is also known (2).

Chronic lymphocytic leukemia (CLL) is a disease that is well-

positioned at the forefront of these efforts to improve the molecular

disease characterization using the new high-throughput sequencing

technologies. At the same time, new targeted therapies have been

developed and introduced in the treatment of patients with CLL, i.e.,

BTK and BCL2 inhibitors, hitting the Achille’s heel of the disease and

making CLL an ideal candidate for applying the principles of

precision medicine (3, 4). CLL is a mature B-cell malignancy

characterized by progressively accumulating CD5+/CD19+

neoplastic B cells in the bone marrow, peripheral blood, and

secondary lymphoid organs (5). It is the most commonly occurring

leukemia among adults in the Western world, comprising

approximately 40% of all leukemias and demonstrating very

heterogenous disease courses and manifestations, ranging from

asymptomatic disease with no need for therapy, to an aggressive

condition demonstrating therapy resistance and short overall survival

(OS) (5). While the Rai and Binet clinical staging systems (6, 7) are

still used in routine practice to assess prognosis, these cannot identify

patients at an early stage, which today constitute the majority of cases

(>80%) (8), that will develop a more aggressive disease.

Instead, different molecular tests have been introduced with key

prognostic and/or predictive impact, including fluorescence in situ

hybridization (FISH)-based detection of a selected number of

chromosomal aberrations, TP53 gene sequencing, and assessment

of the immunoglobulin heavy variable (IGHV) gene somatic

hypermutation (SHM) status.

In this review, we discuss clinically relevant genomic

aberrations that we currently need to detect in order to risk-

stratify and guide treatment selection, including targeted therapy,

for patients with CLL, as well as provide our perspective on the

current view of the CLL genomic landscape. We will focus on the

clinical utility of the different technologies applied, in particular

NGS-based techniques, including their strengths and limitations.

Finally, we will bring up emerging technologies and how they can

further improve molecular profiling and pave the way for the next-

generation precision diagnostics in CLL.
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2 Clinically relevant genomic
aberrations in CLL

While the topological details of the genomic landscape of CLL

have increasingly emerged with the recent introduction of the new

sequencing technologies, certain recurring genomic aberrations,

initially demonstrated to be important in the cytogenetic era, are

still used in clinical decision-making.
2.1 Old facts – the importance of
chromosomal aberrations and
certain gene mutations

The impact of genetic alterations in CLL was first shown using

cytogenetics and chromosome banding analysis in the early 1980’s,

where two notable discoveries were the deletion of chromosome

13q [del(13q)] and trisomy 12 (9, 10). Due to the inherent

difficulties in culturing CLL cells, FISH analysis was introduced at

the turn of the millennium to detect a panel of clinically relevant

cytogenetic aberrations i.e., del(11q), del(13q), del(17p), and

trisomy 12 (Table 1) (14).

The del(13q) aberration occurs in more than 50% of cases and

in 35 to 40% as the lone genetic aberration. It usually indicates a

more favorable prognosis, stable disease, and is associated with the

longest time-to-first treatment (TTFT) and OS (14). The minimally

deleted region covers two microRNAs, MIR15A and MIR16, which

negatively regulate BCL2 expression levels (15). del(17p), involving

the TP53 gene, is seen in 5–10% of cases and associated with a

rapidly progressing disease, resistance to chemoimmunotherapy,

and a very poor clinical outcome (Table 1). In roughly 40-60% of

cases with TP53 aberrations, del(17p) is detected together with a

TP53 mutation, while another 20-30% of cases carry one or two

TP53 mutations without del(17p) (Figure 1) (11, 16–19). del(11q),

involving the ATM gene, a tumor suppressor involved in

recognizing DNA damage, is found deleted in 10–20% of cases

(where a minor proportion (20-25%) of these also carry a second

ATM mutation) (20) while trisomy 12 is detected in 10-15% of

cases. Both of these latter abnormalities are associated with an

intermediate prognosis.

In more recent years and owing to improved culturing protocols

for cytogenetic analysis, a renewed interest in detecting karyotypic

complexity in CLL, defined as five or more chromosomal
TABLE 1 Genetic tests in CLL.

Genetic test Technology Frequency Clinical utility

TP53 aberrations
FISH analysis
NGS or Sanger

del(17p) and/or
TP53mut: 5-12%†

CIT: Prognostic and predictive
BTKi/BCL2i: Predictive

IGHV gene SHM status Sanger or NGS
U-CLL: 30-40%
M-CLL: 60-70%

CIT: Prognostic, predictive (M-CLL)
BTKi/BLC2i: Predictive (U-CLL)

Complex
karyotype

Cytogenetics or microarrays High-CK: 5 or more aberrations (2%)*
CIT: Prognostic
BTKi/BCL2i: To be determined‡
†(11, 12), *Includes cases without TP53 aberrations (13). ‡Data is still limited for patients treated with BTKi/BCL2 inhibitors. FISH, fluorescence in situ hybridization; NGS, next-generation
sequencing; CIT, chemoimmunotherapy; BTKi, BTK inhibitor; BCL2i, BCL2 inhibitor.
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aberrations, has emerged (Table 1) (13). These patients have a

particularly poor response to chemoimmunotherapy but also to

targeted therapy (13, 21), at least in the relapse/refractory setting.

However, analysis of complex karyotype is not generally

recommended outside of clinical trials (5).

In addition to cytogenetic alterations, a notable and important

development was the discovery of the IGHV gene mutational status in

1999; this finding enabled the classification of CLL using the clonotypic

SHM status into favorable-prognostic IGHV-mutated (M-CLL; <98%

identity to germline) in 60-70% of patients or poor-prognostic IGHV-

unmutated (U-CLL; ≥98% identity to germline) in 30-40% of patients

(Table 1; Figure 2) (22, 23). While the IGHV gene mutational status is

one of the strongest prognostic markers in CLL, it has also become a

predictive marker relevant for therapy selection (discussed further

below) (24). Furthermore, it was shown that patients with TP53
Frontiers in Oncology 03
mutations, irrespective of del(17p), have a similarly poor outcome

comparable to those with del(17p) (11). Therefore, TP53 sequencing

analysis was added to FISH analysis to detect both types of aberrations

(Table 1). For both of these molecular tests (IGHV SHM status and

TP53 sequencing), PCR and Sanger sequencing were applied in routine

diagnostics to assess their mutational status (11). Sanger sequencing is

however a low-throughput and a time-consuming technique, in

particular for large genes without hotspot mutations (e.g., TP53 and

ATM); these issues were resolved by the introduction of high-

throughput NGS-based techniques in the last decade (20, 25).

Further underscoring the relevance of TP53 aberrations and the

IGHV gene SHM status, these markers were included in the CLL

international prognostic index (CLL-IPI) (26), along with age, b2M
levels and stage, which risk-stratifies patients into four categories (low,

intermediate, high and very high risk).
FIGURE 2

IGHV gene SHM status in CLL and its impact on BcR signaling. While the BcR in IGHV-unmutated CLL often displays polyreactive antigen affinity
resulting in increased BcR signaling, the BcR of IGHV-mutated CLL demonstrates reduced BcR signaling and reduced NF-kB activation.
FIGURE 1

TP53 abnormalities in CLL. In approximately 40-60% of cases with TP53 aberrations, del(17p) is found in combination with a TP53 mutation, another
20-30% of cases carry one or more TP53 mutations without del(17p), while in the remaining TP53 aberrant cases (10-20% of patients), only del(17p)
is detected.
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2.2 The emerging genomic
landscape in CLL

NGS technologies utilizing sequencing by synthesis chemistry,

where fluorescently labelled dNTPs are sequenced in a massive

parallel manner, have enabled the comprehensive characterization

of the genomic landscape of CLL. In 2011, by applying whole-

exome sequencing (WES) or whole-genome sequencing (WGS),

large-scale efforts provided a first detailed molecular map of CLL

(27–30). The somatic mutation rate in CLL was estimated to be

approximately 0.7 per megabase (this estimate has increased to 1.1

in later studies including larger cohorts), which is comparable to

other hematological malignancies, but markedly lower than what

can be observed in solid epithelial tumors where the mutation

burden is generally observed to be 5–20 times higher than in CLL

(28, 31). Important new driver genes included MYD88, NOTCH1,

SF3B1, POT1, and XPO1, and mutations in these genes were

associated with clinical outcome (27–30).

Following these first descriptions, two seminal papers were

published in 2015 which further improved the portrayal of the

genomic landscape of CLL, proposing 44 and 59 driver mutations,
Frontiers in Oncology 04
respectively (32, 33). However, only a few recurrent genomic

aberrations (i.e., alterations in ATM, NOTCH1, SF3B1, TP53)

were observed in more than 10% of cases, followed by a very long

tail of hundreds of low-frequency mutated genes present in less than

1-5% of cases. Despite this large heterogeneity, the genomic

aberrations could be grouped into more commonly affected

signaling pathways and cellular processes, such as B cell receptor

(BcR)/NF-kB signaling (BIRC3, NFKBIE), NOTCH signaling

(NOTCH1, FBXW7), DNA repair (ATM, TP53), and RNA and

ribosome processing (RPS15, SF3B1, XPO1) (Figure 3). The clinical

impact of this functional categorization of drivers into cellular

pathways was further supported by a study published in 2020 by

Brieghel et al, where the number of affected pathways was more

important than the number of driver mutations in predicting

clinical outcome (38).

The SF3B1 gene is one of the most frequently mutated genes in

CLL, reported to be mutated in 5-15% of early-stage patients with

an increasing frequency in relapsed and refractory patients (16-

28%) (18, 29, 30, 34, 39–42). Notably, SF3B1 mutations are

particularly enriched in patients belonging to stereotyped subset

#2 (up to 45%) (43, 44). SF3B is a complex that forms a functional
FIGURE 3

Mutational landscape and deregulated signaling pathways in CLL (18, 27, 30, 32–37). A selection of recurrently mutated genes are included; genes in
red indicate mutations emerging during or after targeted therapy.
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unit with the U2 small nuclear ribonucleoprotein (snRNP) within

the catalytic center of the spliceosome, which is responsible for pre-

mRNA processing into mRNA through the excision of introns. The

clustering of mutations in hotspot exons (exons 14-16) of the SF3B1

gene suggests that these mutations have been subject to positive

selection and serve as driving events in CLL pathology by giving rise

to alternative splicing that affects cellular processes such as DNA

damage response, telomere maintenance, and NOTCH signaling

(29, 45–48).

Another important discovery was that of NOTCH1 mutations,

which were identified in 8-12% of early-stage patients (18, 27, 28,

34); a number that increases to 13-21% in chemoimmunotherapy

refractory patients and above 30% at Richter transformation (28,

41), i.e., progression to a diffuse large B-cell lymphoma with a

clinically significantly worse outcome. NOTCH1 mutations are also

enriched in patients with trisomy 12 and in poor-prognostic

stereotyped subsets #1 and #8 (44, 49, 50). NOTCH1 is a

transmembrane receptor protein (Figure 3) that after activation

contributes to the formation of a transcription factor complex

consisting of the NOTCH intracellular domain (NCID) and

recombinant signal binding protein for immunoglobulin kappa J

(RBPJ). A majority of NOTCH1 mutations (>70%) constitute a 2-

base pair frameshift deletion in the PEST domain of the terminal

exon, resulting in a premature stop codon and loss of the genetic

motive needed for degradation recognition (28, 34, 49). The activity

of this transcription factor complex results in the transactivation of

downstream target genes, such as HES1 and MYC (49, 51, 52),

hence leading to constitutive NF-kB activation (53). Further

analysis of the non-coding part of the genome by Puente et al.

revealed mutations also in the 3’UTR of NOTCH1 (32). These non-

coding mutations gave an alternative splicing of the PEST domain

leading to an increased stability of the protein similar to coding

NOTCH1 mutations.

A further recurrent event resulting in the constitutive activation

of the NF-kB pathway in CLL is mutations in NFKBIE, which

encodes IkBϵ and constitutes one of the negative regulators of the

NF-kB pathway (54). NFKBIE mutations occur at a frequency of 3-

7% in early-stage patients, which rises to 15% in poor-prognostic

stereotyped subsets #1, #5 and #6, and are most commonly observed

as a 4-bp frameshift deletion leading to a truncated protein and

reduced p65 inhibition (34, 35, 54).

BIRC3 mutations are another recurrent event in CLL with a

relatively low frequency at diagnosis (3-4%) (18, 34, 55), but with a

higher frequency in fludarabine-refractory patients (up to 24%)

(55). BIRC3 contributes to a protein complex that negatively

regulates MAP3K14, a central regulatory element in the non-

canonical NF-kB pathway (Figure 3). Most of the genetic lesions

affecting BIRC3 have been identified as insertions/deletions (indels)

resulting in frameshift mutations or premature stop codons located

in two hotspot regions between amino acids 367-438 and 537-564

(55, 56).

Additionally, EGR2, a transcription factor activated by ERK

phosphorylation during BcR signaling, has been found mutated in

2-4% of CLL patients and up to 7-8% in those with advanced-stage

disease or Richter transformation (34, 36, 54). EGR2 is most
Frontiers in Oncology 05
commonly affected by missense mutations in exon 2. Notably,

patients with EGR2 mutations have a particularly poor outcome,

comparable to patients carrying TP53 aberrations (36).

Finally, a more recently characterized genetic lesion in the

pathobiology of CLL is mutations in RPS15 (ribosomal protein

S15), which constitutes a component of the 40S ribsosomal subunit

(Figure 3). These abnormalities occur at a frequency of 4% in early-

stage patients (33, 57) and increase to 20% in patients relapsing

following FCR treatment (37). In addition to its role in altering

ribosomal fidelity (58, 59), RPS15 may also function as a negative

regulator of MDM2-mediated degradation of p53 (37). RPS15

mutations predominately occur as somatic missense mutations in

a 7 amino-acid region of exon 4 and are considered an early clonal

event in CLL (37).
2.3 Increasing the resolution of the
genomic landscape

In a recent study by Knisbacher et al, where WES andWGS data

from two previous large efforts were merged and re-analyzed

(totaling 1074 CLL cases), the authors could identify 202

candidate genetic drivers in CLL. This included 109 new drivers

involving both single nucleotide variants (SNVs), indels and copy-

number variants (CNVs) (60). The great majority of patients

(>96%) were shown to carry at least one driver lesion, leading to

a more complete picture of common pathways hit by genetic

lesions, including those involved in genomic stability, chromatin

remodeling and ribosomal functioning and biogenesis (Figure 3).

Examples of novel findings include mutations in ZFP36L1, which

functions as a tumor suppressor by negatively regulating NOTCH1

activity, and genetic aberrations in INO80, which is involved in

genomic stability by coding for the catalytic subunit of a chromatin

remodeling complex (60). Additionally, the investigators could also

detect genetic lesions shared with other hematological neoplasias,

e.g., RFX7 in diffuse large B-cell lymphoma and Burkitt’s lymphoma

as well as the 5q-deletion observed in myelodysplastic syndrome.

Finally, the authors noted loss of mitochondrial uncoupling

proteins UCP2 and UCP3, caused by del(11)(q13.4), and found in

3% of patients and suggested to act as tumor suppressors by

regulating the mitochondrial membrane potential and the

efficiency of oxidative phosphorylation (OXPHOS). Importantly,

the authors provided further evidence that U-CLL and M-CLL

display different genomic landscapes, including significant

enrichment of driver mutations in U-CLL compared to M-CLL,

with a ratio of approximately 2.8:1 in untreated patients (60). Two

examples of genes that were detected as part of this subgroup

analysis in U-CLL included NFKB1, involved in NF-kB signaling,

and RRM1, involved in DNA replication and repair and a target of

nucleoside analogues such as fludarabine.

In another recent effort, using WGS to characterize 485 CLL

patients from the 100 000 Genomes Project in the UK, Robbe and

colleagues identified 56 genomic alterations linked to disease

outcome, of which 33 were also affected by CNVs and non-

coding mutations in regulatory elements. Notably, they detected
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genetic alterations in 72 promoters, including those associated with

known driver genes in CLL, e.g., BIRC3, IKZF3 and TP53, as well as

the PAX5 super enhancer region. An example of a novel driver

includes del(1)(q42.3), harboring the IRF2BP2 gene, which could

also be affected by SNVs. IRF2BP2 has previously been implicated in

the differentiation of immature B-cells (61). Other examples

concern the detection of translocations, where WGS provides a

considerable advantage, including t(14;22) with breakpoints in

WDHD1, indicated to affect translation efficiency in other forms

of cancers (62), and the recurrent t(5;6) encompassing CTNND2

(encodes d-catenin involved in Wnt signaling) and ARHGAP18

(involved in cell polarization and migration) in 2-3% of patients

(63, 64).
2.4 Large-scale validation of recurrent
gene alterations

Today, more than 50 genetic lesions have been linked to disease

outcome, including BIRC3, EGR2, MYD88, NOTCH1, NFKBIE,

POT1, RPS15, SETD2, SF3B1, TP53, and XPO1 mutations,

amongst others (12, 18, 30, 34–37, 49, 55, 65–68). Several

retrospective large-scale studies have confirmed the clinical

impact of these gene mutations as important prognostic risk

factors for both TTFT and OS and proposed different prognostic

indices (18, 42, 69). For instance, using recursive partitioning based

on OS, Rossi et al. integrated cytogenetic and genetic alterations and

proposed four risk groups: i) high-risk harboring TP53 and/or

BIRC3 aberrations, ii) intermediate-risk with NOTCH1, SF3B1

mutations and/or del(11q), iii) low-risk including trisomy 12 or

patients without aberrations, and iv) very low-risk with patients

carrying del(13q) (69). In another large-scale study by Baliakas et al.

including 3490 patients, sequencing analysis of five genes (BIRC3,

MYD88, NOTCH1, TP53, and SF3B1) showed that TP53 and SF3B1

mutations were the strongest factors in multivariate analysis of

TTFT (18).

As mentioned, recent studies have also revealed diverse

genomic landscapes in M-CLL and U-CLL and indicated that

genetic aberrations may affect outcome differently in U-CLL and

M-CLL patients (60, 70). To address this issue, Mansouri et al.

recently assessed the mutation status of 9 genes (BIRC3, EGR2,

MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in

4580 patients in relation to the IGHV gene SHM status (34). While

SF3B1 and XPO1 mutations were strong independent prognostic

factors in both U-CLL and M-CLL, TP53, BIRC3 and EGR2

alterations predicted outcome only in U-CLL patients and

NOTCH1 and NFKBIE in only M-CLL patients (34). These latter

findings highlight that all mutations do not confer the same

negative impact and that we need a more compartmentalized

approach to identify high-risk patients, where genetic aberrations

are considered in the context of the IGHV gene SHM status.

Admittedly, most of these retrospective studies included

patients treated with chemoimmunotherapy and few prospective

studies have been carried out, in particular for patients treated with

targeted therapy.
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2.5 Clonal dynamics and
resistance mutations

By combining WES with array-based copy-number analysis,

Landau et al. performed in 2013 a detailed investigation of the

cancer cell fraction of different CLL-related genomic aberrations.

Based on their findings, only a few aberrations were demonstrated to

be clonal, i.e., present in the entire cell population (i.e., MYD88

mutations, del(13q), and trisomy 12), while the vast majority of

genomic lesions were present only in a proportion of the cells at

subclonal levels (71). Moreover, the clonal dynamics over time was

assessed by analyzing samples taken before and after therapy, revealing

major clonal shifts in patients relapsing after chemoimmunotherapy.

These data have since been confirmed in follow-up studies in larger

cohorts treated with chemoimmunotherapy as well as in patients

treated with targeted therapy (33, 60, 72).

One such subclonal aberration with potential clinical impact is

TP53 mutations. In a series of papers using deep-sequencing,

investigators have detected a significant proportion (2.5-9%) of

patients carrying minor subclones with TP53 mutations (variant

allele frequency (VAF) <10%) that were wildtype for TP53 using

Sanger sequencing (73–75). Importantly, patients carrying minor

TP53 mutated subclones appear to have similarly poor outcome as

patients with TP53 mutations detected by Sanger sequencing, at

least when treated with chemoimmunotherapy. That said, recent

studies based on targeted therapies did not appear to favor selection

of TP53-aberrant clones in a similar way as chemotherapy (76).

With the introduction of targeted therapies, resistance

mutations were detected for patients treated with BTK (e.g.,

ibrutinib, acalabrutinib) and BCL2 inhibitors (e.g., venetoclax). In

patients progressing during treatment with ibrutinib, between 65-

90% of patients display BTK and/or PLCG2 mutations (77–79).

BTK mutations are predominantly seen at the binding site of

ibrutinib (amino acid position C481), while mutations of the

downstream signaling molecule PLCG2 usually result in a gain-

of-function promoting sustained BcR signaling (Figure 3). Notably,

up to 40% of patients with BTK/PLCG2 mutations carry minor

subclones with VAFs below 10%, or even below 1%, which raises the

question as to how these mutations are involved in causing a clinical

relapse (77–79). In a proportion of patients relapsing on ibrutinib,

other mechanisms have been reported, such as del(8p) (causing loss

of TRAIL-R expression) or BIRC3/NFKBIE mutations (80). For

patients relapsing on venetoclax, BCL2 mutations have been linked

to development of resistance (Figure 3) (81) but other mechanisms

have also been described, such as upregulation of MCL1 and

NOTCH2 (82).
3 NGS-based technologies in
routine diagnostics

Taking advantage of the versatility of NGS in designing targeted

sequencing panels, amplicon-based gene panels including genes

recurrently mutated in CLL were rapidly designed. These panels

demonstrated a very high correlation with Sanger-detected
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mutations and provided several orders of magnitude higher

sequencing depth compared to Sanger sequencing (20, 25, 83, 84).

To test the reproducibility of NGS-based sequencing, Sutton

and colleagues recently performed a comprehensive evaluation of

different amplicon-based gene panels targeting 11 CLL-related

genes across 6 centers in Europe. Overall, a high (>90%)

reproducibility at a VAF cutoff >5% was reported between centers

while more heterogenous results were observed below this threshold

(84). This shows that amplicon-based NGS can safely be adopted

for mutation detection with VAFs >5%, while refinement of

methodologies using unique molecular identifiers is necessary to

reach a higher sensitivity for the detection of minor variants.

More recently, capture-based gene panels have been introduced

that can target a higher number of genes (usually hundreds) with a

more uniform sequencing depth, including challenging regions with

a high GC content. Another advantage with capture-based panel

sequencing is that different types of genomic aberrations, including

SNVs/indels, CNVs and structural variants, can be detected

simultaneously (Figure 4). Using this approach, two capture-

based panels were recently validated for lymphoid malignancies

including CLL, the Euroclonality-NGS panel and the LYNX panel,

which in addition to genomic aberrations (validated for SNVs down

to 5% VAF) also assess the IGHV gene SHM status (85, 86).

In today’s precision diagnostics of CLL, we need to be able to

detect CNVs affecting TP53, i.e., del(17p), and TP53 mutations in

routine diagnostics, since these patients should be considered for

targeted therapy (Table 1) (87). As TP53 aberrations appear as

subclonal events and may emerge during disease progression and at

relapse, FISH analysis and TP53 sequencing analysis are

recommended before start of first treatment and any subsequent

line of treatment (5, 19). In many clinical laboratories world-wide,

Sanger sequencing has been replaced by amplicon-based or capture-

based panel sequencing to assess the TP53 mutation status

(Figure 4). To guide laboratories performing TP53 analysis, the

European Research Initiative on CLL (ERIC) has published

recommendations as well as introduced an international

certification system (19). These recommendations advocate that

all coding exons of TP53 (exons 2-11) should be covered with a

recommended sequencing depth of >100x, preferably >500x.
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Currently, the recommendation is to report pathogenic TP53

mutations with a VAF above 10% (corresponding to the

sensitivity of Sanger sequencing), although mutations in the VAF

range 5-10% can be reported if a disclaimer is made that their

clinical impact has not been conclusively demonstrated (19). Even

though these NGS-based gene panels provide results for the other

genes included, they are generally not reported clinically as they will

not influence current clinical decision-making but can instead be

used for research purposes.

We also need to assess the IGHV gene SHM status as this is

both a prognostic and a predictive marker (Table 1) (24). The latter

aspect has been reinforced with the high clinical efficacy of BTK

and/or BCL2 inhibitors in U-CLL patients (88–91). This analysis is

recommended to be performed once during the diagnostic process

since IGHV SHM status remains constant during the course of the

disease. The IGHV gene SHM status is still commonly analyzed by

PCR amplification and Sanger sequencing in many clinical

laboratories, although new amplicon-based protocols have been

published which we anticipate will replace Sanger in the coming

years (92). Similar to TP53 analysis, ERIC has provided detailed

recommendations on how to perform and report the IGHV gene

SHM status and a system allowing laboratories to certify their

analysis (24). In addition, when performing IGHV gene analysis,

information on BcR stereotypy can also be retrieved and patients

belonging to the poor-prognostic subsets #1, #2 and #8 can be

identified (93).

Finally, in the event that a patient progresses after targeted

therapy, testing of BTK, PLCG2 and BCL2 mutations can be

performed using panel sequencing or by performing highly

sensitive droplet digital PCR (ddPCR) assays targeting hotspot

mutations in subclonal populations (Figure 4).
4 Discussion

In the last 10 years, NGS-based technologies have been used to

characterize the genomic landscape in CLL, which has represented a

first critical step in mapping novel genomic biomarkers (27, 30, 32,

33, 60, 94). Based on these studies, a long list of potentially clinically
FIGURE 4

Precision diagnostics in CLL, present status and future directions. SNV, single-nucleotide variants; CNV, copy-number variants; SV, structural
variants; IGHV, immunoglobulin heavy variable.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1146486
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mollstedt et al. 10.3389/fonc.2023.1146486
relevant genomic lesions has been proposed, some of which have

been validated, albeit commonly in retrospective cohorts (18, 34). In

the coming years, it will be essential to validate such potential

biomarkers in prospective clinical trials, particularly in relation to

targeted therapy, before they can be generally recommended in

routine diagnostics. Hopefully, some of the newly discovered

disease mechanisms will also enable development of new

precision drugs.

Due to the higher sequencing depth, targeted NGS using

amplicon or hybrid-capture technologies have rapidly substituted

Sanger sequencing in routine diagnostics, usually including a select

number of relevant genomic aberrations (Figure 4). While WGS has

been implemented successfully in rare inherited disease diagnostics,

it is also increasingly employed in diagnostics of acute leukemias

and pediatric cancers (95, 96). A considerable advantage with WGS

is that a complete genomic profile is provided, detecting all types of

genomic alterations, e.g., SNVs/indels, CNVs, gene fusions and

large structural aberrations, including translocations, at the same

time (Figure 4). Additionally, WGS can also detect karyotypic

complexity and IGHV gene SHM status as well as non-coding

mutations e.g., the previously mentioned 3’ UTR mutations in

NOTCH1, which have been shown to function as driver

mutations (32, 94, 97). Finally, having access to a complete

genomic profile of a patient prior to start of treatment would also

be beneficial for research purposes, e.g., for the detection of novel

genetic aberrations linked to disease progression and therapy

resistance. Although WGS currently comes at a high cost, the

price for sequencing is rapidly decreasing, which may enable full

implementation of WGS in the coming years. However, one

disadvantage of WGS is the reduced read depth achieved with

this technology compared to gene panel sequencing, which limits its

usefulness in determining subclonal populations with minor

mutations. Hence, we need to continue developing ultra-sensitive

deep sequencing or ddPCR protocols, in particular for continuous

monitoring of therapeutic response (Figure 4).

As the genomic landscape of CLL is emerging, other new

technologies are also being investigated, such as transcriptomics,

proteomics and drug-response profiling (Figure 4). The integration of

different omics technologies using multi-omics analytical models has

already provided new insights into the molecular landscape of CLL.

An example of this is the recent study by Knisbacher and colleagues

where they integrated genomic, transcriptomic and epigenomic data

into multi-omics models (60). Transcriptomic data identified 8

expression clusters (ECs) with distinctive expression patterns that

also correlated with clinical outcome. Additionally, these ECs were

strongly associated with epigenetic subtypes based on DNA

methylation profiles (i.e., naive-like CLL (n-CLL), intermediate CLL

(i-CLL), and memory-like CLL (m-CLL)) (98, 99), IGHV gene SHM

status and driver mutations. For instance, del(11q), andXPO1 andU1

mutations were enriched in EC-u1, while SF3B1 and IGLV3-21R110

mutations were more frequent in EC-I. In another recent study, the

authors integrated genomic, transcriptomic and ATAC-seq data and

identified 5 genomic subgroups (GSs) that were linked to certain

genomic aberrations, expression signatures and outcome. u-GS1 was

characterized by the presence of TP53 aberrations, short telomeres

and MAPK/PI3K mutations, whereas u-GS2 was enriched by ATM/
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BIRC3 alterations, and mutations in DNA damage response genes

(94, 100).

Yet another example is the recent study by Herbst et al, which

integrated genomic, transcriptomic and proteomic data using

multi-omics factor analysis (MOFA) combined with drug

profiling and discovered 6 subgroups of CLL patients (101).

While 5 of these subgroups could be linked to known genetic

features (i.e., IGHV gene SHM status, trisomy 12 and TP53

aberrations), one subgroup was previously unknown and could

only be detected when integrating the proteomic data into the

analysis. This novel subgroup constituted 20% of patients, was

characterized by downregulation of BcR expression, increased

splicing, and had a very poor clinical outcome. Previously, MOFA

has also been used to identify factors in multi-modal analyses that

were not apparent when looking at the data modalities in isolation,

highlighting the role of oxidative stress response in CLL (102).

Integration of transcriptomic and proteomic data could potentially

also give more immediate insights into the altered phenotype of the

patient at the molecular level following introduction of new therapies

and therefore contribute to an increased understanding of causality

between therapeutic interventions and the resulting molecular

phenotype in an unbiased manner. In a recent example by Wang

et al, the authors connected transcriptomic and epigenomic data to

elucidate the role of BTK inhibition on epigenetic reprogramming

(103). Other emerging technologies, such as single-cell sequencing and

spatial transcriptomics, have the potential to provide high-resolution

insight on the clonal dynamics and evolution of the neoplastic B-cells

in CLL and other cells in the tumor microenvironment, which we

anticipate will be essential to further our understanding of the disease

pathobiology, particularly in regard to development of treatment

resistance or Richter transformation (104, 105). In the coming years,

using advanced analytical models to reduce complexity and finding

patterns in multi-modal data generated from even larger patient

cohorts will hopefully pave the way for a more robust

subclassification of the disease. It will also be important to develop

clinical decision support systems that can assist with data

interpretation to identify both prognostic and predictive markers/

subgroups as well as integrate various layers of clinicobiological

information. Whilst these types of support tools are already an

essential part of molecular tumors boards for solid tumors (106),

which brings together interdisciplinary teams to discuss individual

patient cases, they could also become relevant for CLL in the future to

match individual patients to targeted therapy or to ongoing

clinical trials.
5 Conclusions

Since several decades, we have used prognostic and predictive

genetic biomarkers such as FISH-based detection of recurrent

chromosomal aberrations and sequenced-based assessment of the

TP53 and IGHV SHM status in the clinical management of CLL.

This has greatly increased our ability to risk-stratify patients with

CLL and to identify patients that should be treated with targeted

therapies. In addition, if a patient does not respond to targeted

therapy, we can assess a selected number of genes linked to drug
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resistance (i.e., BTK, PLCG2 and BCL2 mutations). In the coming

years, multi-omics integration will advance the understanding of

the molecular landscape of CLL, where the different data modalities

can be used to complement each other, to identify new disease

subgroups as well as to provide prognostic and/or predictive

markers and new treatment targets. Hopefully, this improved

molecular understanding of the disease will enable clinicians and

scientists to truly implement precision medicine approaches in the

management and treatment of all patients with CLL.
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